
Special Issue on Iterative Methods in Numerical Linear Algebra
This issue of SISC is dedicated to papers that were presented at the Colorado Conference

on Iterative Methods, which was held in Breckenridge, Colorado, April 5-9, 1994. This was
the ninth in the series ofCopper Mountain Conferences, the third dedicated to general iterative
methods, and the first held outside Copper Mountain. Although the two locations are less than
20 miles apart, Breckenridge offered a new setting complete with an historic mining town that
was established over a century ago.

The meeting was attended by approximately 180 mathematicians from all over the world
who presented 115 talks on a broad range of subjects. The talks were organized into morning
and afternoon sessions leaving the afternoons free for informal discussions. Loosely grouped
by topic, the sessions included

Domain Decomposition (8 talks)
Nonlinear Problems (7 talks)
Integral Equations and Inverse Problems (4 talks)
Eigenvalue Problems (3 talks)
Nonsymmetric System Solvers (16 talks)
Parallel Computation (16 talks)
Iterative Method Theory (4 talks)
Software and Programming Environments (4 talks)
ODE Solvers (4 talks)
Student Papers (3 talks)
Multigrid and Multilevel Methods (12 talks)
Applications (11 talks)
Preconditioners (7 talks)
Teoplitz and Circulant Matrix Solvers (3 talks)
Saddle Point Problem Solvers (3 talks)

In addition, two evening workshops were held on
Recent Progress in Iterative Software (5 talks)
Robust Iterative Methods (5 talks)
A special effort was made to bring students to the meeting. The vehicle for this was the

Student Paper Competition, which was funded by the National Science Foundation. Students
were asked to submit an original research paper consisting primarily of their own work and
limited to 10 pages in length. The winners were chosen by a panel of judges taken from
the program committee. Ten excellent papers were submitted, which made the judges’ job
difficult but gratifying. This year’s winners were

First place: Johannas Tausch, Colorado State University, "Equivalent Precondition-
ersfor Boundary Element Methods";
Second place: Lina Hemmingsson, Uppsala University, "Analysis of Semi-Toeplitz
Preconditionersfor First-Order PDE’s ";
Third place: Qing He, Arizona State University, "Parallel Algorithms for Uncon-
strained Optimizations by Multisplitting."

The winners presented their papers in a special session just prior to the conference banquet.
Due to the generosity of the NSF we were able to provide travel expenses, lodging, and

registration for the three winners and lodging and registration for all contestants who were
able to attend. Lodging and registration expenses were provided to a number of other students.
In all, 22 students were given support.

This special issue contains a set of papers that represent a broad range of topics. The issue
begins with a paper by Toh and Trefethen on fast calculation of pseudospectra of matrices,
followed by a paper by Eisenstat and Walker on inexact Newton methods. Then, a group of six
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viii INTRODUCTION

papers are concerned with preconditioned iterative methods. The first of this group, by Elman
and Silvester, develops multilevel preconditionings for the Navier-Stokes equations that yield
a condition independent of the mesh parameter. Also notable in this group are two student
papers, one by Lina Hemmingsson and the other by Johannas Tausch. The next group of five
papers involves multigrid methods either explicitly or as a preconditioning strategy. The first
of this group, by Meza and Tuminaro, describes a multigrid preconditioner for semiconductor
equations. This exemplifies the many talks at the meeting devoted to iterative methods applied
to real world problems. The last paper in this group, by Henson, Limber, McCormick, and
Robinson, develops a multilevel method for image reconstruction and is followed by two
other papers on iterative solution of integral equations. The next two papers are concerned
with parallel computing issues and are representative of the large number of talks on parallel
computing at the meeting. The final three papers represent a cross section of new ideas in
iterative methods.

I would like to thank the following members of the program committee for their help in
editing this special issue.

Howard Elman Roland Freund
Anne Greenbaum Steve McCormick
Seymour Parter Nick Trefethen
Homer Walker

Through their efforts, the articles contained in this special issue were carefully refereed and
brought to print on schedule.

I would like to extend a special thanks to Fred Howes of the Applied Mathematical
Sciences Program of the Department of Energy for generous support of this meeting. Without
his help, this meeting could not have taken place. Special thanks also go to Mike Steuerwalt of
the NSF Computational Mathematics Program for his generous support of the Student Paper
Competition.

As this issue goes to press, planning for the next conference in this series is in its final
stages. It will be held in Copper Mountain, Colorado, April 9-13, 1996 and will again
focus on general iterative methods. It is our hope that the lively interaction and fine quality
of presentations and papers that have marked previous meetings can be duplicated at the
upcoming meeting.

Tom Manteuffel
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CALCULATION OF PSEUDOSPECTRA BY THE ARNOLDI ITERATION*

KIM-CHUAN TOHt AND I,LOYD N. TREFETHEN

Abstract. The Amoldi iteration, usually viewed as a method for calculating eigenvalues, can also be used to
estimate pseudospectra. This possibility may be of practical importance, because in applications involving highly
nonnormal matrices or operators, such as hydrodynamic stability, pseudospectra may be physically more significant
than spectra.

Key words. Amoldi, Lanczos, pseudospectra, numerical range, hydrodynamic stability

AMS subject classifications. 65F15, 47A12

1. Introduction. Large-scale nonsymmetric matrix eigenvalue problems, which typi-
cally arise via discretization of non-self-adjoint differential or integral operators, are com-
monly solved numerically by the Arnoldi iteration and its variants [1], [8], [18], [25]. In
this paper we explore the possibility that the Arnoldi iteration can also be used for the esti-
mation of pseudospectra. Such an idea was first proposed by Nachtigal, Reichel, and Tre-
fethen [17] and Freund [7], and methods much closer to those of the present paper have
been presented by Ruhe in talks at the Householder (1993) and St. Girons (1994) symposia
on linear algebra [23]. Recent developments indicate that in some applications, the pseu-
dospectra of a matrix or operator may be more significant physically than its spectrum (see
7). Since calculation of pseudospectra is much more expensive than calculation of spec-
tra, this suggests that it may be desirable to develop methods for determining them itera-
tively.

The idea investigated here is that the pseudospectra of a matrix A can be approximated
by those of the Hessenberg matrices constructed by an Arnoldi iteration. In the version of
this paper originally submitted for publication [30], we made use of the n x n Hessenberg
matrices H (see the next section for definitions). However, Tom Manteuffel recommended
to us that it might be advantageous to consider instead the (n + 1) x n Hessenberg matrices
n, as is done, for example, in [13]. Meanwhile, this is also the idea that Axel Ruhe has
been investigating. In the end we have decided to present experiments here for both H,
and ,,, while giving greater attention to the latter. For the examples we have computed,
the distinction between the two makes little difference in practice, but has theoretical
advantages (monotonic convergence) and also conceptual appeal, because it bypasses the
usual consideration of Ritz values or "Arnoldi eigenvalue estimates." Thus we find ourselves
exploring a new way of interpreting approximations not only of pseudospectra but also of
spectra, one that may be of interest even in the special case of the Lanczos iteration for
symmetric matrices.

For any e > 0, the e-pseudospectrum of a matrix A is defined by

(1) A(A) {z e C" II(zI A)-lll

with the convention il(zl A)-lll c if z A(A), the spectrum of A [32]. If I1" is the
2-norm, an equivalent definition is
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(2) A(A) {z C trmin(ZI A) < e},

where O’min (zl A) denotes the smallest singular value of zI A. Either definition makes
it clear that the pseudospectra of a matrix are a family of nested subsets of C, with Ao(A)
A(A). They can be computed most straightforwardly by evaluating Crmin(ZI A) on a grid of
values in the complex z-plane, then sending the result to a contour plotter. S.-H. Lui has shown
that this straightforward algorithm can be speeded up by a factor of five to ten by a preliminary
reduction of A to Hessenberg form followed by inverse iteration combined with continuation
12]. Variants of this procedure involve triangular instead of Hessenberg reduction or Lanczos

instead of inverse iteration. Such ideas apply to our matrices Hn and n as well as A, and
thus have little bearing on the relative speedup to be gained via Arnoldi iterations, so we shall
not give details.

If A is normal (has a complete set of orthogonal eigenvectors), then A,(A) is just the
closed e-neighborhood of A(A), but if A is far from normal, A(A) may be much larger.
These are the cases where difficulties are likely to arise if one tries to use the spectrum A(A)
to estimate quantities such as IIAn II, lieta II, or f(A)II, Better estimates can often be obtained
from the pseudospectra using methods such as Cauchy integrals, the Laplace transform, or the
Kreiss matrix theorem [21 ], [32]-[34].

2. The Arnoldi iteration. Let A be a real or complex rn x rn matrix, and let denote
the 2-norm. A complete unitary reduction of A to upper Hessenberg form might be written
A QHQ* or A Q QH. The idea of the Arnoldi iteration is to compute the successive
steps of this reduction columnwise, starting from the condition that the first column of Q is a
prescribed vector ql with ]lql 1. Let Qn be the rn n matrix whose columns are the first
n columns of Q,

(3) Qn ql q2 qn

and let ,, be the (n + 1) x n upper-left section of H,

h21 h22
(4) H, "-. "..

hn,n-1

hln

hnn
hn+l,n

Then we have

(5) A Qn Qn+l In,
and the nth column of this equation can be written Aq,, hlnql +... + h,,,,q,, + hn+l,,,q,,+ x.
The Arnoldi iteration is the modified Gram-Schmidt iteration that implements this (n+ 1)-term
recurrence relation:
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q arbitrary (11 ql 1)
forn 1,2,3

v Aqn
for j 1 to n

hjn qfv
v v hjnqj

hn+l,n
qn+l V/ hn+l,

The vectors {qj form orthogonal bases of the successive Krylov subspaces generated by A
and ql,

](’n (ql, Aql An-lql) (ql, q2 qn) -- Urn"

As a practical matter the iteration can be implemented with the aid of a "black box" procedure
for computing the matrix-vector products Aq,,, which can be designed to take advantage of
sparsity or other structure of A.

The product Q Qn+l is equal to the n x (n + 1)identity, i.e., the n x (n + 1)matrix
with 1 on the main diagonal and 0 elsewhere. Therefore Q* Q+I,, is the n x n Hessenberg
matrix obtained by removing the last row of ,,
(6) Hn

hll hln
hzl hzz

hn,n-1 hnn
From (5) we can accordingly derive the formula

(7) Hn Q, A Qn.

Though they differ in only one row, Hn and nn are entirely different objects. To highlight
the difference, it is helpful to extend/-, to the m x n matrix , consisting of the first n
columns of H:

(8) Rn

’hll hln ’h21 hzz

0

hn,n-1 nn

hn+l,n
0

o)

The matrices n and , are identical except for the presence of rn (n + 1) additional rows
of zeros in the latter, and thus they have, for example, the same rank, norm, and singular values.
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We can interpret Hn and n as follows. With respect to the basis {ql, q2 }, ,, represents
the action of A on/Cn, whereas H,, represents the same operation followed by an orthogonal
projection back into/C. Since the domain and range of H are the same, it makes sense to
speak of the eigenvalues of H; but since has distinct domain and range, it does not make
sense to speak of its eigenvalues.

3. Estimation of pseudospectra and numerical range. We propose that in many cases,
for sufficiently large n, some of the pseudo_spectra of A can be reasonably approximated by
the corresponding pseudospectra of Hn or Hn"
(9) A(A) , A,(Hn) , A,(Hn).

For n << m, the computation of A,(H) or A, (,,) will be O((m/n)3) times faster than that
of A,(A). Note that in considering A,(Hn), we are dealing with the e-pseudospectmm of
a rectangular matrix. This set can be defined just as for square matrices by (1), with I now
denoting a rectangular version of the identity and (zl A)-1 denoting the pseudoinverse.
Equivalently, it can be defined by (2). As far as we know, pseudospectra of rectangular
matrices have not been discussed before. However, the smallest singular value of Hn has been
considered in work by Meza, for example, on iterative solution of ill-conditioned systems of
equations 16].

We are not aware of very satisfactory theorems to justify the approximation
A,(H). On the other hand the approximations A,(A) A,(I) converge monotonically
(cf. (3.21) of [16] and Thm. 3.1 of [13]).

THEOREM 1. Let an m x m matrix A be unitarily similar to a Hessenberg matrix H, and
let In denote the (n + 1) n section (4). (In particular, tn might be computed by an Arnoldi
iteration, with arbitrary restarts in case a zero subdiagonal element hn+l,n is encountered.)
Thenfor any z we have

(10) O’min(zI I 1) -> O’min (ZI /-2) --> O’min (ZI /’3) --> --> O’min (zl A),

and, consequently, for any e > O,

(11) A,(I)
__

h,(/-2)
__

he(/-3)
__ __

A,(A).

Proof. Since zl In and zI In differ only by rows. of zeros, they have the same

singular values, and we may replace n in (10) by/n" Since zI A and zl H are unitarily
similar, they too have the same singular values, and we may replace A in (10) by H. Since

is simply the first n columns of H, (10) now follows directly from the characterization

Crmin(A) minllxll=l IIAxll. By (2), this implies (11).
It is interesting to compare Theorem with the more familiar interpretation of Amoldi

and Lanczos iterations. Conventionally, a set of n Ritz values are considered at step n, and
one is faced with the problem of estimating how close they may be to eigenvalues of A. In
Theorem 1, there are no Ritz values. However, it may be noted that Ritz values can be defined
as the points z at which O’min (zl nn) achieves a local minimum (namely, zero). An analogue
for the rectangular case would be to consider the points at which O’min (zl Iln) achieves a
local minimum. It follows from (10) that this minimum value will be equal to zero if and only
if z is an eigenvalue of A corresponding to an eigenvector that lies in the Krylov subspace

Besides pseudospectra, it is well known that an Arnoldi iteration also may provide esti-
mates of the numerical range (= field of values) of A, which we denote by W(A). Now it is

Hn that we most naturally make use of:

(12) W(A) W(nn).
gain we have monotonic convergence (cf. Thm. 3.1 of [13]).
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THEOREM 2. Let A and H be as in Theorem 1, and let Hn denote the n x n section (6).
Then

(13) W(H1) __. W(H2) c_ W(H3) __...._ W(A).

Proof. This is aneasy consequence ofthe definition W(A) {x*Ax Ilxll 1}.

4. Numerical experiments. We now turn to numerical examples computed in MATLAB.
Consider first the m m "Kahan matrix"

(14) A

1 -c -c -c c

s -sc -sc

s2 _$2c _$2c

o

sm-1

where Sm-1 0.1 and s2 + c2 1. Matrices of this type were proposed by Kahan to
illustrate that QR factorization with column pivoting is not a fail-safe method of numerical
rank determination [8], 11 ]. Pseudospectra of this matrix, for m 32, were plotted in [32].

In Fig. 1, we take m 64 and consider Arnoldi approximations A(Hn) to A(A) with
n 5, 10, 15, 20. At each of these steps, the figure shows the approximate numerical range
and the e-pseudospectra for e 10-1, 10-2, 10-3, 10-4 In this and all of our numerical
experiments, the initial vector q is random (independent normally distributed entries).

To the eye, at least, the convergence of A(Hn) to A(A) in Fig. 1 is compelling. At
n 5, the Arnoldi iteration has not learned much of value, but by n 10, recognizable
approximations have begun to emerge. At n 20 the approximations are excellent. Since the
cost of an SVD grows cubically with the dimension of the matrix, and 1000 or more SVDs
are involved in making one of these plots, calculations of pseudospectra even for these small
matrices can be time-consuming, and if n 64 can be replaced by n 20, the savings will
be a factor of around 30.

Note that, as is typical in cases of extreme nonnormality, the convergence of the eigenval-
ues of H,, to those of A in Fig. is slow. The eigenvalues are too ill conditioned to be easily
resolved. This is just the sort ofproblem where eigenvalues are likely to be of limited physical
significance and where pseudospectra may provide a useful alternative. For a discussion of the
physical significance of pseudospectra, including transient evolution phenomena, the effect of
small perturbations, and the notion of "pseudo-resonance" in highly nonnormal systems, see
[34].

Figure 2 shows the same computation, for the same matrix, exceptnow the approximations
are based on the rectangular Hessenberg matrix ,. Broadly speaking, the approximations
are about as good as in Fig. 1. Notice that there are no longer any Ritz values in the plot,
which might be considered conceptually advantageous. On the other hand, in dealing with a
matrix whose behavior was close to normal in some parts of the complex plane and far from
normal in others, it might certainly be convenient to have Ritz values.

Not every matrix behaves as nicely as in Figs. 1 and 2. In Fig. 3 we consider the 64 64
"Grcar matrix," a Toeplitz matrix with 1 on the subdiagonal and 1 on the main diagonal and
on the first three superdiagonals. This time, Arnoldi approximations based on H,, at steps 10,
20, 30, and 40 are plotted, and only at n 40 is reasonable convergence of the pseudospectra
beginning to be evident. Although (40/64)3 0.24 is still substantially less than 1, this is
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/ \
/ \

/

I-

n=10

I-

n 15 \\

\ll l

i
FIG. 1. e-pseudospectra ofthe 64 x 64 Kahan matrix (14) compared with those offour Arnoldi approximations

Hn ( 10-1 10-2, 10-3, 10-4). The upper halfofeach plot corresponds to A(Hn), and the lower halfto A(A).
The dashed curves represent an analogous comparison of the numerical ranges W(Hn) and W(A). The small dots
are the eigenvalues of A in the lower half-plane (hard to distinguish; they appear like a solid interval on the real
axis), and the small circles are the eigenvalues of Hn in the upper half-plane (Ritz values). The real and imaginary
axes are marked by ticks in each plot; the axis limits are 1.8 < 97z < 1.8, 1.8 < z < 1.8.

a case where there is probably little to be gained in approximating AE(A) by/E(/-n) (or
A (Hn), whose performance is about the same).

Figures 2 and 3 represent two of the thirteen examples of highly nonnormal matrices
considered in [32]. We have plotted Arnoldi approximations to pseudospectra for all of these
and find that the Kahan matrix exhibits the best convergence and the Grcar matrix among the
worst. Based on these examples alone, one would probably conclude that the Arnoldi approach
to calculation of pseudospectra holds some promise but is not completely convincing.

However, the matrices of [32] are not typical of the large-scale problems that arise in
practice. For these special matrices, selected for their dramatic pseudospectra, the nonnor-
mality is such that all m eigenvalues are strongly coupled to one another. In applications, it
is more typical for a small number of eigenvalues to be dominant and not strongly coupled to
the others, with the behavior of the pseudospectra in the vicinity of these eigenvalues being of
primary interest. In such cases Arnoldi approximations may perform better.
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n5.. ---- ..\ n= !0 \\
/ \

\iiI \

//I /111
n=15 \\\ n=20 \\

I
FI. 2. Same as Fig. 1, but now the curves in the upper, half of each plot correspond to A(ISln) instead of

A(Hn). Since the Ritz values have no simple connection to Hn, they are no longer shown. The dashed curves still
correspond to W Hn and W A).

Figure 4 presents an example ofthis kind. Here A is the 64 x 64 bidiagonal matrix defined
by

(15) ak,k+ ag,g k- /2.

We can think of this as a prototype of a highly nonnormal compact operator and imagine that
it is the behavior of the spectrum and pseudospectra away from the origin that is of interest.
The convergence in this part of the complex plane is excellent. Moreover, it would be nearly
as fast even if rn were much larger than 64. For an example like this, the payoff in estimating
pseudospectra iteratively could be huge.

5. Modified Arnoldi iterations. The large-scale matrices that arise most often in appli-
cations are of a kind different from all of our examples so far. These are discretizations of
differential operators, which are not compact. As in Fig. 4, it is the behavior near a few leading
eigenvalues that is of greatest interest, but the rest of the spectrum will typically extend to o
in the complex plane.
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n=10

n=30

I \

\

n =40

FIG. 3. Same as Fig. 2, exceptfor the pentadiagonal Grcar matrix ofdimension m 64. The axis limits are
-3 < Rz < 4,-3.5 < z < 3.5.

It is well known that a pure Arnoldi iteration may be ineffective in cases of this kind. As
an example, consider another bidiagonal matrix defined by

(16) ak,k =-0.3k, ak,k+ 1.

Here the spectral and pseudospectral behavior near the origin should be largely unaffected
by whether the dimension is 64 or 64,000. A pure Arnoldi iteration will have difficulty
nonetheless, and the difficulty will increase with the dimension. This is illustrated in Fig. 5a,
with rn 64, where we see quite disappointing convergence to the pseudospectra near z 0.

Solutions to this problem have been proposed by a number of authors. One approach is
to suppress the part of the spectrum far from the origin by an ancillary linear process such
as a Chebyshev iteration or some other polynomial filter. Such ideas have been investigated
by Chatelin and her colleagues and by Saad, Scott, Sorensen, and others [6], [9], [17], [24],
[25], [27], [29]. A more powerful possibility, when it is feasible, is to modify the problem
with the use of matrix inverses, in effect working with rational functions of A rather than
just ’polynomials. Variations on this theme go by names such as shift-and-invert Arnoldi and
rational Krylov iteration, and have been investigated by Ruhe, Saad, and Spence, among others
15], [22], [23], [25]. To be effective, such methods depend on the assumption that inverting
A (i.e., solving a system Ax b) is cheaper than the computation of main interest. This
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n=10

/

n=15

/

n=20

FIG. 4. Same as Fig. 2 butfor the bidiagonal matrix (15), a prototype ofa compact operator. The axis limits
are-0.3 _< tz _< 1.6,-0.95 _< z _< 0.95.

assumption is satisfied by many sparse eigenvalue problems, since sparsity can often be better
taken advantage of for systems of equations than eigenvalues. It is amply satisfied in many
calculations of pseudospectra, since these computations are even more expensive. Finally, an
intermediate class of acceleration methods is based on preconditioning the eigenvalue problem
by inverses not of A itself but of more easily inverted approximations M A. This is the
idea behind Davidson’s method [4], [5] and related methods developed more recently by
Meerbergen, Van der Vorst, and others [14], [25], [28].

We shall not attempt a systematic comparison of the uses for estimating pseudospectra of
the various acceleration and preconditioning methods that have been proposed. Instead, we
shall consider just the simplest modified Arnoldi process to give an idea of the great speedups
that may be achieved by these methods. Figure 5b is a repetition ofFig. 5a in which the Arnoldi
iteration has been replaced by an "inverse Arnoldi" iteration carried out with A-1 instead of
A. This entails a solution of a system of equations involving A at each step, but this is a minor
matter since A is bidiagonal. The result is a Hessenberg matrix H that approximates A-1,
and it is the pseudospectra of Hn-1 that we plot as approximations to those of A. Since Hn-1
is square, the plot also shows its eigenvalues.

Figure 5b shows excellent agreement of/k(nn-1) and A,(A). Evidently the inverse-
Arnoldi idea is highly effective for this problem. We take this as illustrative of the kind



10 KIM-CHUAN TOH AND LLOYD N. TREFETHEN

n=5 n=15

FIG. 5A. Same as Fig. 2 butfor the bidiagonal matrix (16), a prototype ofan unbounded operator. The axis
limits are-2 <_ 9z <_ 0.4,- 1.2 <_ z _< 1.2.

n=5 n=15

FIG. 5B. Repetition ofFig. 5a with the Arnoldi iteration replaced by an inverse-Arnoldi iteration based on A-1

instead of A. The plot shows pseudospectra and eigenvalues ofH

n=5

/

// \\

/

n=15

FIG. 5C. Repetition ofFig. 5a with the Arnoldi iteration replaced by aprojection ofA onto the invariant subspace
associated with the n eigenvalues ofmaximal real part.
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of gains that may be achieved by acceleration techniques in cases where A is invertible at
reasonable cost. More sophisticated algorithms of this kind (based on n, not just Hn) are
currently under development by Ruhe [23].

6. Projection onto an invariant subspace. There is another, more elementary, trick that
we must not fail to mention. The calculation of pseudospectra is expensive, much more so
than the calculation of a single eigenvalue decomposition. It follows that when the latter is
affordable, much may be gained by simply calculating an eigenvalue decomposition of A, then
projecting it onto the subspace of Cm spanned by certain eigenvectors. In typical applications
these might be the eigenvectors associated with a subset of eigenvalues of A of maximal real
part. This idea may be useful even when no Arnoldi iterations are in store; it is used, for
example, in [20].

The mechanics of such a projection are as follows. We have already noted after (8) that if
Q is an rn x n matrix with orthonormal columns, then Q*A Q represents the projection of A
onto the column space of Q. Suppose now that we start with an rn x n matrix V whose columns
are selected eigenvectors ofA, satisfying AV VD for some n x n diagonal eigenvalue matrix
D. If V QR is a QR decomposition of V, with Q of dimension rn x n and R of dimension
n x n, then we have Q*V R and Q VR-1 and therefore

(17) Q*AQ- Q*AVR-1-- Q*VDR-1- RDR-1.

Thus RDR-1 (upper triangular) is the matrix representation of the projection of A onto the
subspace spanned by the selected eigenvectors.

Figure 5c illustrates that for the example (16), this eigenvalue projection idea gives highly
accurate pseudospectra. Despite its triviality, this trick can save a great deal of work. For
example, an eigenvalue decomposition of a matrix of dimension 300 is a straightforward
matter, whereas computing pseudospectra of such a matrix is a major project on most machines
available today. If the dimension can be reduced to 30 by eigenvalue projection, the calculation
of pseudospectra becomes easy.

Figure 6, following the format of Fig. 5, presents a less contrived example. Consider the
convection-diffusion operator

(18) /u u" + u’, u(O) u(d) 0

acting on the interval [0, d (in the Hilbert space L2[0, d ]). The spectrum of this operator is a
discrete, unbounded subset ofthe negative real axis, but, as discussed in [21 ], the pseudospectra
are large regions in the left half-plane shaped approximately like parabolas. Taking d
40, suppose we want to determine these pseudospectra in the neighborhood of the origin
determined by the axis limits in Fig. 6. As discussed in [21], an efficient procedure is to
construct a discretization matrix A based on Chebyshev spectral differentiation (we omit
details). Unfortunately, for an accurate picture, the dimension of A has to be on the order
of 100, making the calculation of the pseudospectra quite time-consuming, and if we wanted
results in a larger region of the complex plane, matters would get worse. The figure shows
that the inverse-Arnoldi idea works reasonably wellhere. Since A is dense, the eigenvalue
projection idea is even better, and with n 40 it produces a perfect picture with ten times less
computing than would be involved in treating the full matrix with rn 100.

The dashed curves in Fig. 6, corresponding to the boundary of the numerical range, are
worth a comment. Note that in Figs. 6b and 6c, we appear to have convincing convergence of
the numerical range estimates in the upper half of the plot, but no dashed mirror image appears
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(a) n=20 \ n =40

(b) n=20 n =40

(c) n=20 =40

FIG. 6. Same as Fig. 5, but for a 100 x 100 Chebyshev spectral approximation to the convection-diffusion
operator (18). The axis limits are -5 < z < 1, -3 < z < 3.

in the lower half. The explanation is that the actual 100 x 100 spectral differentiation matrix
considered here has some huge "outlier" eigenvalues of size 1.2 x 104. These eigenvalues are
artifacts of the discretization, with no relevance to the convection-diffusion operator Z, but
they make the numerical range of A much larger than the axis scales of the figure. Thus the
numerical range estimates in the upper half of Fig. 6 are no good at all, strictly speaking, for
the matrix A being approximated. As it happens, however, they are excellent approximations



CALCULATION OF PSEUDOSPECTRA BY THE ARNOLDI ITERATION 13

to the numerical range of the operator/. This stroke of good fortune is more than just
coincidence, but of course one would have to be cautious about counting on such effects in
applications.

For larger problems than those illustrated in this paper, a combination of the Arnoldi
iteration and eigenvalue projections might be advantageous. A matrix of dimension 5000,
for example, might be projected to dimension 100 by the Arnoldi iteration, whereupon an
eigenvalue decomposition might be used to project further to a matrix of dimension 50, whose
pseudospectra could then be plotted quickly by the methods proposed by Lui [12]. In such
a sequence, the speedup over a naive calculation of pseudospectra might be on the order of
many thousands.

7. Discussion. In this paper we have proposed that the iterative algorithms that have
been developed for calculating spectra of large matrices may also be useful for estimating
pseudospectra. If the matrix is a sparse approximation of a differential operator, the gains to
be achieved by rational variants of the Arnoldi algorithm may be very great. If the matrix is
dense, other acceleration devices may play a role, and surprisingly good results can be achieved
by the simple method of computing the eigenvalue decomposition of A, then projecting onto
an invariant subspace associated with a subset of the eigenvalues.

We have made no attempt to explain why our methods approximate pseudospectra as well
as they do, beyond the lower bound on A(A) of Theorem 1. An upper bound on A, (A) has
been developed by Ruhe [23], but it appears to be far from sharp in practice.

It should be emphasized that the idea of using Arnoldi iterations for purposes more
general than the calculation of eigenvalues is not new. The Arnoldi iteration potentially has
relevance in all kinds of matrix problems where A is too big to deal with directly, but where
there is reason to expect that the essential behavior can be captured by a low-dimensional
projection. The example that has received the most attention is the use of Krylov subspaces to
approximate eta [6], 10], [26]. Ofcourse, the approximation ofpseudospectra is not unrelated
to the approximation of eta, since the ultimate purpose of estimating pseudospectra is often
to obtain better insight into the behavior of lieta than the spectrum alone provides.

In closing, we would like to make two remarks.
Our first observation concerns the uses of Arnoldi iterations and the uses of spectra. The

examples of this paper have shown that in cases of pronounced nonnormality, the behavior
of a Krylov subspace iteration may be more closely tied to the pseudospectra of a matrix or
operator than to its spectrum. A curious parallel of this statement is the recent discovery that
in applications involving pronounced nonnormality, what is ultimately of physical interest
may also be tied more closely to the pseudospectra than to the spectrum. In particular this
is true of problems of hydrodynamic instability of fluid flows in a pipe or a channel, where
traditional eigenvalue methods fail to explain the instabilities that are observed in practice,
but pseudospectra do much better [2], [3], [19], [31], [34]. In our view, these two parallel
statements about spectra andpseudospectra form a natural pair. In highly nonnormal problems,
the Arnoldi iteration may indeed not be effective at determining eigenvalues, but we should
not wish it to be. The information that it does acquire may be deeper and more valuable. It will
be interesting to see whether this vision of broader uses of Arnoldi iterations in applications
comes to fruition in upcoming years.

Our second remark is addressed to all those who use nonsymmetric Krylov subspace
iterations or who produce software for such computations. For the present, due to the great
variety of iterations and preconditioners that have been found to be useful, computations ofthis
kind almost invariably involve an element of exploration. We believe that such explorations
can be carded out far more effectively if the user habitually produces plots, not just numbers.
Such plots might show Ritz values, lemniscates, pseudospectra of Hn, pseudospectra of H,,,
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eigenvalues ofperturbed matrices, or other things--tastes differ, and at this time no one choice
seems clearly superior to all others. But we firmly believe it is a mistake to plot nothing at all,
or to plot nothing but Ritz values. The habit of looking at plots leads almost unconsciously to
new questions and new understanding. Matrices and operators have personalities, which may
be revealed with surprising economy by a few curves on the computer screen.

Acknowledgments. We are greatly indebted to Tom Manteuffel for his good advice,
which has had a fundamental impact on this paper, and to Axel Ruhe for sharing with us his
unpublished report [23]. We are also grateful to Anne Greenbaum for numerous technical
suggestions.
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CHOOSING THE FORCING TERMS IN AN INEXACT NEWTON METHOD*
STANLEY C. EISENSTATt AND HOMER E WALKER

Abstract. An inexactNewtonmethod is a generalization ofNewton’s method for solving F(x) 0, F n
__

in,
in which, at the kth iteration, the step sk from the current approximate solution xk is required to satisfy a condition
F(x) + F’(xk) sk _< F(x)II for a "forcing term" r/ [0, 1). In typical applications, the choice of the

forcing terms is critical to the efficiency of the method and can affect robustness as well. Promising choices of the
forcing terms are given, their local convergence properties are analyzed, and their practical performance is shown on
a representative set of test problems.

Key words, forcing terms, inexact Newton methods, Newton iterative methods, truncated Newton methods,
Newton’s method, iterative linear algebra methods, GMRES
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1. Introduction. Suppose that F" I" I is continuously differentiable in a neigh-
borhood of x, In for which F(x,) 0 and F’(x,) is nonsingular. Suppose further that F’
is Lipschitz continuous at x, with constant ., i.e.,

(1.1) IIF’(x)- F’(x,)ll .llx- x,

for x near x,, where denotes some norm on In and the induced norm on Inn.
An inexact Newton method (Dembo, Eisenstat, and Steihaug [4]) is an extension of clas-

sical Newton’s method for approximating x, formulated as follows"

Algorithm IN: Inexact Newton Method [4]
LET X0 BE GIVEN.

FOR k 0 STEP 1 UNTIL "CONVERGENCE" DO:

FIND some r/k s [0, 1) AND Sk THAT SATISFY

(1.2) IlF(xk) -t- F’(xk) skll < rlkllF(xk)ll.
SET Xk+l Xk -t- Sk.

Note that (1.2) expresses both a certain reduction in the norm of F(x) + F’(x) s, the local
linear model of F, and a certain accuracy in solving the Newton equation F (x)s F(xg),
the exact solution of which is the Newton step. In many applications, notably Newton iterative
or truncated Newton methods1, each r/k is specified first, and then an s is determined so that
(1.2) holds. The role of r/ is, then, to force IIF(x) + F’(x)sgll to be small in a particular
way; accordingly, r/ is often called aforcing term.

The local convergence of an inexact Newton method is controlled by the forcing terms.
Some specific illustrative results are the following (see Dembo, Eisenstat, and Steihaug [4])"
Under the present assumptions, if x0 is sufficiently close to x, and 0 < r/ < rlmax < for each
k, then {Xk} converges to x, q-linearly in the norm I1" I1,, defined by Ilvll, IIF’(x,)vll for
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1These are implementations of Newton’s method in which iterative linear algebra methods are used to solve the
Newton equation approximately.
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V n, with asymptotic rate constant no greater than 0max. Furthermore, iflim 0k 0,
then the convergence is q-superlinear, and if Ok O(llF(xg)ll), then the convergence is
q-quadratic.2

In addition to controlling local convergence, there is another important issue associated
with the forcing terms. Away from a solution, F and its local linear model may disagree
considerably at a step that closely approximates the Newton step. Thus choosing Ok too small
may lead to oversolving the Newton equation, by which we mean imposing an accuracy on
an approximation of the Newton step that leads to significant disagreement between F and
its local linear model. Oversolving may result in little or no decrease in F and, therefore,
little or no progress toward a solution. Moreover, in applications such as Newton iterative
or truncated Newton methods, in which additional accuracy in solving the Newton equation
requires additional expense, it may entail pointless costs; a less accurate approximation of the
Newton step may be both cheaper and more effective.

Our purpose is to propose choices of the forcing terms that achieve desirably fast local
convergence and also tend to avoid oversolving. All of the proposed choices incorporate
information about F but are scale independent in that they do not change if F is multiplied by
a constant.

In 2, we outline the proposed choices and analyze the local convergence of Algorithm
IN that results from them; we also note some practical safeguards that improve performance.
In 3, we discuss numerical experiments. The algorithm used in the experiments is a special
case of Algorithm IN and is outlined in 3.1. The test problems are described in 3.2. An
example of oversolving is given in 3.3, with additional observations and examples in 3.4.
Summary test results are shown in 3.5. A summary discussion is given in 4.

Preliminaries. We define some useful constants and formulate several elementary results.
Set M max F’(x,)ll, F’ (x,)-lll }. For 3 > 0, define

g(x,) {x IIx -x, < },

and let 3, > 0 be sufficiently small that
1. F is continuously differentiabl.e and F’ is nonsingular on N, (x,),
2. F’(x)- 111 _< 2M for x N, (x,),
3. inequality (1.1) holds for x N, (x,),
4. 3, < 2/(,kM).
LEMM. 1.1. Ifx Na, (x,) and ifs is such that x+ =- x + s Na, (x,), then

IlF(x+)-F(x)-F’(x)sl. _< & (2llx-x,.l / )Ilsll.
Proof. Setting x(t) =- x + ts for 0 < < 1, we have

liE(x+) f(x) F’(x) sll F’(x(t)) s dt F’(x) s

_< . IIx x, / tllsll dt + .llx x, Ilsll

o

See, e.g., Dennis and Schnabel [6, 2.3 and 3.1 for definitions ofthe types ofconvergence referred to throughout
this paper.
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LEMMA 1.2. There is a Ix > 0 such that

1
-IIx- x, < IIF(x)ll < llx- x,

whenever x N,(x,).
Proof. With Lemma 1.1, we have

F(x)II < F’(x,) (x x,)II + F(x) F(x,) F’(x,) (x x,)ll

< MIIx -x, + llx -x, 2 < M + -- IIx -x,

and

F(x)ll > F’(x, (x x, F(x F(x, F’(x, (x x,. (1 .,)> IIx x, IIx x,
M

> IIx x, II.M 2

The lemma follows with/x max {M + A,/2, (1/M ,t,/2)-1 }. [-1

LEMMA 1.3. lfx N, (x,) and liE(x) + F’(x) sll _< ollF(x)llfor some s and [0, 1),
then Ilsll _< 4MllF(x)[I.

Proof. We have

Ilsll < IIF’(x)-llllF’(x) sll

< 2M(IIF(x)II + liE(x) + F’(x)sll)
_< 2M(1 / 0)llF(x)ll _< 4MIIF(x)ll.

LEMMA 1.4. There is a B > 0 such that if x N, (x,), s and [0, 1) are such that
I[F(x) + F’(x) s[[ _< r/[lF(x)[[, and x+ =-x + s N,(x,), then

IIF(x+)ll < (r/+ BIIF(x)ll)llF(x)ll.

Proof. With Lemmas 1.1-1.3, we have that

IIF(x+)ll < liE(x) + F’(x)sll + liE(x/) F(x) F’(x)sll

_< ollF(x)ll / .(2tzllF(x)ll-4- 2MIIF(x)ll). 4MIIF(x)ll

(0-4- BIIF(x)ll)llF(x)ll,

where B 8.M(/z + M).

2. The proposed choices. In the analysis in this section, we use the Lipschitz constant. in (1.1) and the constants M, ,,/x, and B introduced in the preliminaries in 1. We also let
d be such that 0 < < 3,/(1 + 4/zM) and note the following consequence of Lemmas 1.2
and 1.3.
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PROPOSITION 2.1. If x Na (x,) and F(x) + F’(x) s < r/II F(x)II for some s and

7 6 [0, 1), then x + s Na, (x,).
We assume for convenience that Algorithm IN continues indefinitely without termination

and that F(xk) 0 for all k. Note that if Xk N, (x,), then F’(xk) is nonsingular and,
therefore, suitable sk and Xk+l exist for any 7k 6 [0, 1). Our standing assumptions on F and
x, are those made in the first paragraph of 1.

Our first choice is the following.
Choice 1: Given 70 6 [0, 1), choose

F(xk) F(Xk- F’(xk-1 Sk- 111(2.1) 7k k 1, 2
F(xk-1)

or

F(xk)ll F(xk-1 + F’(xk- Sk-111
(2.2) Ok IIF(xk-1)ll

k 1, 2

Note that 7k given by either (2.1) or(2.2) directly reflects the agreement between F and its
local linear model at the previous step. The choice (2.2) may be more convenient to evaluate
than (2.1) in some circumstances. Since it is at least as small, local convergence will be at
least as fast as with (2.1); however, if it is significantly smaller, then it may be more difficult
to find a suitable step in some applications and perhaps risk greater oversolving as well.

THEOREM 2.2. Under the standing assumptions on F and x,, if xo is sufficiently near
x,, then {xk produced by Algorithm IN with Tk given by Choice 1 remains in N, (x,) and
converges to x, with

(2.3) IlXk/l x, </311x x, llllxk- x, ll, k 1, 2

for a constant independent ofk.
Remark. It follows immediately from (2.3) that the convergence is q-superlinear and

two-step q-quadratic. As in the case of the classical secant method, it also follows that the
convergence is of r-order (1 + f)/2; see, e.g., Stoer and Bulirsch [14, p. 293] for the
argument.

Proof. It suffices to prove the theorem with 7k given by (2.1).
Suppose that 70 6 [0, 1) is given. Let r be such that 70 < r < 1, and let e > 0 be

sufficiently small that 70 + Be < 5, [8,M(/x + M) + B] < r, and < //z. Note that if
x 6 N, (x,) and F(x)II _< , then x 6 N(x,) by Lemma 1.2.

Let xo N(x,) be sufficiently near x, that IIF(x0)ll _< . Since xo N(x,), we have
Xl N, (x,) by Proposition 2.1. Also, by Lemma 1.4,

(2.4)
IIF(xl)ll < (0o -+- BIIF(xo)ll)llF(xo)ll <_ (0o + Be)llF(xo)ll

<- F(xo) -< F(xo) _< ,
and, hence, Xl N8 (x,).

As an inductive hypothesis, suppose that, for some k > 1, we have xk 6 Na (x,), xk-1 6

N(x,), IIF(x)II _< , and IIF(xg-1)ll _< . Then Xk+l Na,(x,) by Proposition 2.1, and
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Lemmas 1.1-1.3 give

.<

F(Xk) F(Xk- F’(xk- Sk- 111
F(x-)

.(21lxt-1- x,]l + IISk-llll2)llSk-lll
IIF(x-)ll

2.(2/zllF(x-l)ll + 2MIIF(x-)ll) 4MIIF(x:-l)ll
F(xk-1)

8.M(/z + M)llF(xk-1)ll.

Then Lemma 1.4 implies

(2.5)

IIF(xk/l)ll (Ok + BIIF(xk)ll)llF(xk)ll

[8M(/x + M)llF(Xk-1)ll + nllF(x)ll]llF(x.)ll
< [8.M(/z + M) + B]llf(x)ll <_ rllf(x)ll.

Thus F(Xk/l) llF(x)ll and, hence, xk+l Ns(x,).
It follows from this induction that {Xk} C Ns(x,) C N, (x,). Furthermore, (2.4) and

(2.5) give IIF(x+l)ll _< rllF(x)ll for each k > 0; hence, F(xk) 0 and, by Lemma 1.2,
xk x, as well.

To show (2.3), we note that (2.4) and (2.5) give, for k > 1, IIF(xg)ll _< IIF(xk-1)ll and

IIF(xg+l)ll [8)M(/z + M)IIF(xg-1)II + nllF(xg)ll]llF(x)ll
< [8ZM(/z + M) + B]IIF(x,-1)IIIIF(x,)II.

With Lemma 1.2, this implies (2.3) with/ --/z3 [8ZM(/z + M) + B]. [3

One possible way to obtain faster local convergence while retaining the potential advan-
tages of (2.1) and (2.2) is to raise those expressions to powers greater than one. A particular
possibility that we considered in our numerical experiments is squaring those expressions. We
note without proof that this leads to local convergence with

IIx,+l x, max {llxk-1 x, 2, IIx, x, ll} IIx, x, ll, k 1, 2

which implies that xk -+ x, r-quadratically. However, this possibility was not as successful
in our experiments as the other choices proposed here, and we do not consider it further.

Our second choice is the following.
Choice 2: Given ?, [0, 1], cr (1, 2], and 00 e [0, 1), choose

(2.6) 0k ’ F(xk_l)II
k 1, 2

The choice (2.6) does not directly reflect the agreement between F and its local linear
model, as does Choice 1. However, the experiments in 3 show that it results in little oversolv-
ing in practice, and the following theorem shows that it offers attractive local convergence.
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THEOREM 2.3. Under the standing assumptions on F and x,, if xo is sufficiently near
x,, then {Xk produced by Algorithm IN with rig given by Choice 2 remains in N, (x,) and
converges to x,. If, < 1, then the convergence is ofq-order or. If), 1, then the convergence
is ofr-order t and ofq-order p for every p [1, u).

Proof. Suppose that ri0 6 [0, 1) is given and let 6 > 0 be sufficiently small that ri0 + B6 <
1/a

ri0’ and 6 < 3//z. Note that if x 6 N, (x,) and F(x) _< , then x 6 N(x,) by Lemma 1.2.
Let xo N(x,) be sufficiently near x, that IIF(xo)ll _< . As an inductive hypothesis,

suppose that, for some k > 0, we have xk N(x,), IIF(xk)ll < 6, and ri < ri0. Since

xk N(x,), we have X+l 6 Na, (x,) by Proposition 2.1. Also, by Lemma 1.4,

(2.7)
IIF(x+l)ll

_
(r/k + nllF(xg)ll)llF(x)ll

_l/ot<_ (rio / n)llr(x)ll <_ Oo I[V(x)ll.

1/orThen ]]F(X+l)ll < ri0 6 < 6, and it follows that x,+l Na(x,). Furthermore, (2.7) gives

rik+l ’(llF(x+l)ll/llF(x)ll)
_

’1o 1o.

It follows from this induction that {x} C N(x,) C N, (x,). Furthermore, (2.7) gives
_l/orIIF(x+l)ll < ’to IIF(x)ll for each k > 0; hence, F(xk) --> 0 and, by Lemma 1.2, xk --> x,

as well.
It remains to show the desired rates of convergence. Note that, for k > 0, (2.7) and (2.6)

give

(2.8)
F(x)ll + B F(x)ll F(x)ll.IIF(xk+l)l[

_
IIF(x-l)ll

First, suppose that , < 1 and set pk =- IlF(x)ll/llF(xk_l)l[ for k > 0. From (2.8) and
(2.7), we have Pk+l <-- J/Dk 2t- BIIF(xk)[[2- < ’Pg / BllF(xo)[[z- for k > 0, and it follows
inductively that

f)k+l <_ ’kpl "+" ’J BIIF(xo)[I2- <_ Pl + 1
\j=0

IIF(xo)ll2-

Thus {p} is uniformly bounded. Consequently, F(xk) --+ 0 with q-order t, and it follows
from Lemma 1.2 that Xk --+ x, with q-order ct as well.

Now, suppose that ?, 1. We first show that the convergence is of q-order p for
p 6 [1, c). For k > 0, (2.8) gives

(2.9)

IIF(x+)ll <
IIF(x)ll + nllF(x)ll IIF(x)ll
F(X-l)

IIF(x-)ll
IIF(x)ll + nllF(x)ll2_p] IiF(xg)llp"

IIF(xk-1)ll p

For each k > 0, set try, _= F(xk)II /II F(Xk_l)II p and recall that (2.7) gives F(xk)II
1/a

ri0 IIF(xk-1)ll, whence IIF(xg)ll < ’to IIF(x0)ll. Then for k > 0, (2.9) implies

1-p/ot Briko(2-p)/ot 2-p k(Tk+ <-- ri0 O’k + IlF(xo)ll < Crk + C,
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_l-pwhere q0 and C B F(x0)II 2.p, It follows inductively that

O.k+ < k ((7.1 _1_ kC),

and, hence,

IIF(x+l)ll _< (o1 "4- kC)IIF(x)ll p.

Since k (O. "4- kC) -’+ 0 as k x, we conclude that F(xk) 0 with q-order p and, by
Lemma 1.2, Xk x. with q-order p as well.

Still assuming , 1, we now show that Xk x. with r-order or. By Lemma 1.2, it
suffices to show that F(xk)II --> 0 with r-order or; we shall prove the somewhat stronger
result that rk F(xt)II/II F(xg_ 1)II --> 0 with r-order c.

It follows from the results above that rt -- 0. Then there is a k0 such that (2rk0+l) (6-1) +
2B F(Xko)II _< 1. For convenience, we re-index if necessary so that k0 0. Then (2rl)(6-1) +
2BIIF(xo)ll < 1, which implies D _= 1/(2rl) > 1. Set flk ---- Dzk for k > 0. Note that
fll 1/2. It suffices to show that fig --+ 0 with r-order c.

We claim that flk < fl,,-i for k 1, 2 from which it follows that flk 0 with
r-order a. The claim clearly holds for k 1. Suppose that it holds up to some k > 1. Then
Lemma 1.4 implies

IIF(x,+)ll < (rff + BIIF(xg)ll)IIF(x)ll,

whence

Wk+l _< Wff -[’- nWk.., rlllF(x0)ll.

From this, we obtain _
BIIF(xo)ll+ <D , + D

_
...6

(< D1-6 ]k-1 (6k-1 +’"+ 1)-t- nllF(xo)ll,l

< (D1-6 -1- BIIF(xo)ll/l)’

[(2rl)6- + 2BllF(xo)ll] ’ <

and the proof is complete.
It is possible to show local convergence for Algorithm IN when {r/ is given by Choice 2

with , > 1, provided r/0 is sufficiently small. However, Choice 2 with ?, > 1 was not
competitive in our experiments.

2.1. Practical safeguards. Although the forcing term choices given above are usually
effective in avoiding oversolving, we have observed in experiments that they occasionally
become too small far away from a solution. There is a particular danger of the Choice 1
forcing terms becoming too small; indeed, an r/ given by (2.1) or (2.2) can be undesirably
small because of either a very small step or coincidental very good agreement between F and
its local linear model. In our experiments, we observed relatively few occasions on which the
Choice 2 forcing terms became undesirably small; however, this did occur.
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We introduce safeguards here that are intended to prevent the forcingterms from becoming
too small too quickly. The rationale is that if large forcing terms are appropriate at some point,
then subsequent forcing terms should not be allowed to become much smaller until this has
beenjustified over several iterations. These are not claimed to be the most effective safeguards
that might be devised for general use or even for the test problems used in our experiments.
However, they were consistently effective in our tests, more so than several other possibilities
that we tried, and they serve to demonstrate the usefulness of safeguards.

For each choice, we restrict 0k to be no less than a certain minimum value, but only if that
minimum value is above a threshhold. The minimum value is determined by raising 0k-1 to a
power associated with the rate of convergence of the (unsafeguarded) choice. The threshhold
that we use here is. 1; this is clearly somewhat arbitrary but was effective in our experiments.
Note that, in each case, the minimum value eventually drops below the threshhold whenever
there is convergence to a solution. Thus the safeguards eventually become inactive whenever
there is convergence, and the asymptotic convergence is that for the unsafeguarded choice
given by the theorems above.

For Choice 1, the safeguard is the following:

Choice 1 safeguard: Modify 0k by Ok - max{0k, 0(l+/-)/2k- whenever 0(1+/)/2k- >. 1.

For perspective, recall from the remark after Theorem 2.2 that the convergence of (2.3) implies
convergence of r-order (1 + /)/2. For Choice 2, the safeguard is the following:

Choice 2 safeguard: Modify 0k by 0k -- max{0k "0k-1 whenever , k-1 > 1

Finally, we note that, away from a solution, it may be possible for each of the proposed
choices to be greater than one. Accordingly, it may be necessary in practice to impose an
additional safeguard to make sure that Ok [0, 1) for each k, as in the algorithm in 3.1 below
that was used in our experiments.

3. Numerical experiments. In this section, we report on numerical experiments with
the forcing term choices outlined in 2, modified with the safeguards given in 2.1. In the
experiments, for computational convenience, we always used Ok given by (2.2) for Choice 1.
For Choice 2, we used , 1, .9, .5 and ot 2, (1 + )/2. The latter value of c results in an
order ofconvergence roughly comparable to that for Choice 1; see Theorem 2.3 and the remark
after Theorem 2.2. For a broader comparison, we also included the following representative
forcing term choices:

1. the choice 0k 10-1, which requires modestly accurate approximations of Newton
steps and results in local q-linear convergence in the norm II,.

2. the choice 0k 10-4 used by Cai, Gropp, Keyes, and Tidriri [3], which requires
uniformly close approximations of Newton steps for all k and results in fast local
q-linear convergence in the norm II,.

3. the choice 0k 1/2k+l of Brown and Saad [2]. This choice results in local q-
superlinear convergence and allows relatively inaccurate approximations of Newton
steps for small k, when xk may not be near x.; however, it incorporates no information
about F.

4. the choice 0 min{1/(k + 2), IIF(xg)ll} of Dembo and Steihaug [5]. This choice
results in q-quadratic local convergence and also may allow relatively inaccurate
approximations of Newton steps for small k. It incorporates some information about
F; however, it does not reflect the agreement of F and its local linear model and, in
addition, depends on the scale of F.

3.1. The algorithm. A globalized inexact Newton algorithm was necessary because ini-
tial approximate solutions were not always near a solution. We used Algorithm INB of
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Eisenstat and Walker [7, 6]. This is an inexact Newton method globalized by backtracking,
which we write here as follows.

Algorithm INB: Inexact Newton Backtracking Method [7]
LET x0, r/max (E [0, 1), (0, 1), AND 0 < 0min < tgmax < 1 BE GIVEN.
FOR k 0 STEP 1 UNTIL "CONVERGENCE" DO:

CHOOSE AN initial r/g [0, r/max] AND Sk SUCH THAT

IIF(xk) + F’(xk)sgll r/gllF(xg)ll.

WHILE IIF(xg + sg)ll > [1 t(1 r/g)]llF(xg)ll DO:

CHOOSE 0 (E [0min, 0max].
UPDATE Sg OSg AND

SET Xk+l Xk -[- Sk.

Note that Algorithm INB requires r/g [0, r/max] for each initial r/g. For the safeguarded
choices in 2, this necessitates the additional safeguard r/g - min{r/k, r/max}.

Theorem 6.1 of Eisenstat and Walker [7] states that if {xg generated by Algorithm INB
has a limit point x, such that F’(x,) is invertible, then F(x,) 0 and xg x,. Furthermore,
in this case,.the initial r/k and sg are accepted without modification for all sufficiently large k;
it follows in particular that the asymptotic convergence to x, is determined by the initial r/g’s.

In implementing Algorithm INB, we first chose each initial r/g (with r/0 1/2 for Choices
1 and 2) and then determined an initial sg by approximately solving the Newton equation using
GMRES(m), the restartedGMRES method ofSaad and Schultz 12], with restart value rn 20.
Products of F’(xg) with vectors were evaluated analytically in some cases and approximated
by finite differences of F-values in others; see 3.2. When finite-difference approximations
were used, a second-order central difference was used to evaluate the initial residual at the
beginning of each cycle of 20 GMRES steps, and subsequently first-order forward differences
were used within the cycle. This selective second-order differencing gave essentially the same
accuracy as if central differences had been used throughout, but atmuch lower cost (see Turner
and Walker 16]).

The parameters used were r/max .9, 10-4, 0min 1/10, and 0max 1/2. The
norm was the Euclidean norm I1=, In the while-loop, each 0 was chosen to minimize over
[tgmin, (gmax] the quadratic p(O) for which p(0) g(0), p’(O) g’(O), and p(1) g(1), where
g(O) IIF(xg + 0s)ll. Convergence was declared when either IIF(xk)ll2 <_ 10-1211F(xo)l12
or IIsll= _< 10-1. These tight stopping tolerances allowed asymptotic convergence behavior
to become evident.3 Failure was declared when one of the following occurred: (1) k reached
200 without convergence, (2) an initial sg was not found in 1000 GMRES(20) iterations, or
(3) ten iterations of the while-loop failed to produce an acceptable step. All computing was
done in double precision on Sun Microsystems workstations using the Sun Fortran compiler.

3.2. The test problems. The test set consisted of four PDE problems and two integral
equation problems. The PDE problems are all elliptic boundary value problems posed on
if2 [0, 1] x [0, 1]

_
2.

3.2.1. A PDE problem. The problem is

Au + u 0in f2, u 0 on 0f2.

3In some applications, less stringent convergence tolerances are commonly used. As a result, asymptotic conver-
gence behavior may not be very important, and it may be appropriate to use forcing terms that are not asymptotically
increasingly demanding, such as constant forcing terms that give adequately fast q-linear convergence.
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This problem has multiple solutions, but only one that is positive everywhere (McKenna
[10], Schaaf [13]). These properties appear to be shared by the discretized problem, and
finding the everywhere-positive solution can be difficult without a good initial approximate
solution. Discretization was by the usual centered differences on a 100 x 100 uniform grid,
so that n 104. The discretized problem was preconditioned on the right using a fast
Poisson solver from FISHPACK (Swartztrauber and Sweet [15]). Products of F’ with vectors
were evaluated analytically. The initial approximate solution was a discretization of uo(x) =-
XXl(1 Xl)X2(1 x2), which should lead to the everywhere-positive solution for large
Two test cases were considered: tc 100 and tc 1000. For the latter value, the initial
approximate solution is farther from the solution and the problem is harder.

3.2.2. The (modified) Bratu problem. The problem is

0u
Au / X-x + ,keu 0 in f2, u 0 on 0f2.

The actual Bratu (or Gelfand) problem has x 0; see, e.g., Glowinski, Keller, and Reinhart
[8] or the description by Glowinski and Keller in the collection of nonlinear model problems
assembled by Mor6 11, pp. 733-737]. As tc and . grow, solving the Newton equations for the
discretized problem becomes harder forGMRES(20). Discretization andpreconditioning were
as in 3.2.1. Products of F’ with vectors were evaluated analytically. The initial approximate
solution was zero. Two test cases were considered: tc . 10 and tc ) 20.

3.2.3. The driven cavity problem. The problem is

(1/Re)A2ap -+-A Ap 0 in
0xl 0x2 0x2

ap=O and g onOf2,
On

where g(xl, x2) 1 if X2 and g(xl, x2) 0 if 0 < x2 < 1. This is a widely used
test problem; see, e.g., Brown and Saad [2] or Glowinski, Keller, and Reinhart [8]. The
numerical problem becomes harder as the Reynolds number Re increases. Discretization
was by piecewise-linear finite elements on a uniform 63 x 63 grid4, so that n 3969.
The discretized problem was preconditioned on the right using a fast biharmonic solver of
BjCrstad ]. Products of F’ with vectors were approximated with finite differences. The initial
approximate solution was zero. Two test cases were.considered: Re 100 and Re 500.

3.2.4. The porous medium equation. The problem considered here is

A(u2)+dx(u3)+f=0 in

with u 1 on the bottom and left sides of f2 and u 0 on the top and right sides. This is
more or less a steady-state special case of a general problem considered by van Duijn and de
Graaf 17]. Discretization was by the usual centered differences on a 64 x 64 uniform grid, so
that n 4096. The discretized problem was preconditioned on the right using the tridiagonal
part of the Jacobian. Products of F’ with vectors were evaluated analytically. The function

f was a point source of magnitude 50 at the lower left grid point. The initial approximate
solution was a discretization of uo(x) =- 1 XlX2 on the interior grid points, which tended to
require more backtracking for negative d and to cause more oversolving for positive d. Two
test cases were considered: d 50 and d -50.

4We thank P. N. Brown for providing the code for this.
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3.2.5. An integral equation. The problem, from Kelley and Northrup [9], is

l f01 1
cu(x): - cos(yu(x))u(y) dy + - sin 1 c 0, x [0, 1].

Clearly, u (x) 1 is always a solution, and there exist other solutions for at least some values
of c. The discretized problem was determined by approximating integrals using 20-point
Gaussian quadrature5 over 20 subintervals, of [0, 1], so that n 400. No preconditioning
was necessary. Products of F’ with vectors were approximated with finite differences. The
initial approximate solution was a discretization of u0(x) --- 1 + c cos 9zrx. One test case was
considered: c c 1.25.

3.2.6. TheChandrasekhar H-equation. The problem is

u(x) --0, x [O, 1],
1 Lu(x)

where

C fo XU()
Lu(x) =-- - x + d.

This problem arises in radiative transfer problems; see, e.g., the description by Kelley in the
Mor6 problem collection 11, pp. 737-739]. The continuous problem is singular at c 1, and
so is the discretized problem considered here with discretization as in 3.2.5. The discretized
problem becomes more difficult to solve as c ---> but is still tractable at c 1. As in 3.2.5,
no preconditioning was necessary. Products of F’ with vectors were approximated with finite
differences. The initial approximate solution was zero. Three test cases were considered:
c .5, c .999, and c 1.

3.3. An example of oversolving. Algorithm INB with the Dembo-Steihaug [5] choice
r/k min{ 1/(k + 2), F(xk)ll2} was applied to the driven cavity problem withRe 500. The
results are shown in Fig. 3.1, in which the logarithms of the norms of F and its local linear
model are plotted as dotted and solid curves, respectively, versus the numbers of GMRES(20)
iterations. (Most of the F-values used for Figs. 3.1-3.4 would not normally be available but
were computed for these illustrations.) Triangles indicate the start of new inexact Newton
steps. In this example, r/k IIF(x)ll= for each k > 0; the safeguard value 0k 1/(k + 2)
was never invoked for k > 0.

In Fig. 3.1, gaps between the solid and dotted curves indicate oversolving. Note that once
oversolving begins, there is virtually no further reduction in F II until the beginning of the
next inexact Newton step; thus further GMRES(20) iterations represent wasted effort. Note
also the vertical discontinuity in the dotted curve at the end of the fourth inexact Newton step
(after 45 GMRES(20) iterations); this indicates a reduction of the initial inexact Newton step
through backtracking.

To show the benefits gained by reducing oversolving, we applied Algorithm INB with r/k
given by the safeguarded Choice 1 to the same problem. The results are shown in Fig. 3.2. Note
that oversolving is almost eliminated and there are no step reductions through backtracking.
Also, the total number of GMRES(20) iterations is 221, compared to 327 in the previous case.
However, the number of inexact Newton steps is 12, compared to 10 previously.

5We thank C. T. Kelley for providing the code for this.
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FIG. 3.1. Illustration of oversolving with Ok min{ 1/(k + 2), IIF(xk)ll2} on the driven cavity problem with
Re 500. The horizontal axis indicates the number ofGMRES(20) iterations. The solid curve is loglo IIF / Ftsll2;
the dotted curve is loglo FIl.. Triangles indicate new inexact Newton steps.
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FIG. 3.2. Illustration of reduction of oversolving with the safeguarded Choice forcing terms on the driven
cavity problem with Re 500. The horizontal axis indicates the number ofGMRES(20) iterations. The solid curve
is loglo IIF / Ftsll2; the dotted curve is loglo IIFII2. Triangles indicate new inexact Newton steps: "A" indicates
given by (2.2); "V" indicates the safeguard value.
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FI6. 3.3. Illustration of the performance ofAlgorithm INB with selective second-order differencing and safe-
guarded Choice 2forcing terms, ot 2, F .9, on the driven cavity problem with Re 500. The horizontal axis
indicates the number ofGMRES(20) iterations. The solid curve is log10 liE / F’sll2; the dotted curve is log10 IIFII2.
Triangles indicate new inexact Newton steps: "A" indicates Ok given by (2.6); "V" indicates the safeguard value.

3.4. Additional observations and examples. In an algorithm such as the implementa-
tion of Algorithm INB used here, choosing a very small forcing term may risk more than
needless expense in obtaining an unnecessarily accurate solution of the Newton equation.
First, if oversolving results, then disagreement between F and its local linear model may re-
quire significant work from the globalization procedure or even cause it to fail. In the example
in 3.3, the choice 0k min{ 1/(k + 2), IIF(xk)ll2} required one backtracking, while the safe-
guarded Choice 1 did not. We observed a more dramatic example involving the PDE problem
of 3.2.1 with tc 1000. With the safeguarded Choice 1, the iterates from Algorithm INB
converged to the everywhere-positive solution in 40 GMRES(20) iterations; two backtracks
were required. With the choice r/k min{1/(k + 2), IIF(x)ll2}, 164 GMRES(20) iterations
and 11 backtracks were necessary; furthermore, convergence was to a solution other than the
everywhere-positive solution. Such convergence to a "wrong:’ solution may or may not be
undesirable per se, but it does indicate the potentially serious effects of disagreement between
F and its local linear model.

Second, unless special care is taken, a very small forcing term may require more residual
reduction than an iterative linear solver such as GMRES can accurately deliver, especially
when products of F’ with vectors .are approximated with finite differences. Recall from 3.1
that our implementation of Algorithm INB uses selective second-order differencing to obtain
essentially the same accuracy as if second-order differences were used throughout. Using the
safeguarded Choice 2 forcing terms with ct 2 and F .9, we applied this implementation
to the driven cavity problem with Re 500; the results are shown in Fig. 3.3. There is
no evidence of inaccuracy in GMRES(20), and 218 iterations were required for successful
termination. However, when the implementation was changed to use only first-order forward
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FIG. 3.4. Illustration of the performance ofAlgorithm INB with first-order differencing throughout and safe-
guarded Choice 2forcing terms, ot 2, / .9, on the driven cavity problem with Re 500. The horizontal axis
indicates the number ofGMRES(20) iterations. The solid curve is loglo IIF + Ftsll2; the dotted curve is loglo ItFII2.
Triangles indicate new inexact Newton steps: "A" indicates rlk, given by (2.6); "V" indicates the safeguard value.

differences throughout, we obtained the results in Fig. 3.4. Note the increase in the linear
residual norm curve (the solid curve) just after iteration 200. The linear residual norm values
used for this curve were evaluated directly at the beginning of each GMRES(20) cycle and
then maintained recursively within the cycle; the observed increase occurs after the direct
evaluation at iteration 200 and indicates that the recursively maintained values have become
inaccurate. We note also that the number of GMRES(20) iterations required for termination
has increased to 232.

3.5. Summary test results. In Table 3.1, we summarize the results of applying Algo-
rithm INB to all test problem cases described in 3.2. In Table 3.2, we summarize the results
over the PDE problem cases only. The results for the PDE problems are broken out in a
separate table not only because these problems constitute an important problem class but also
because the characteristic performance of Algorithm INB on these problems differed from
that on the integral equations. On the integral equations, and on the H-equation in particular,
GMRES(20) was so effective that the effects of different forcing term choices tended to be ob-
scured. In most cases, only one to three GMRES(20) iterations were required for each inexact
Newton step, and the linear residual norm was often reduced by several orders of magnitude
in a single iteration. On the PDE problems, many more GMRES(20) iterations were typically
required for each inexact Newton step, with only modest linear residual norm reduction per
GMRES(20) iteration. Thus the PDE problems gave a somewhat more refined view of the
effects of different forcing term choices.

The first three columns of Tables 3.1 and 3.2 give geometric means of the numbers
of linear iterations (GMRES(20) iterations), inexact Newton steps, and "function evalua-
tion equivalents," where, for each test case, we define the number of "function evaluation
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TABLE 3.1
Summary test results over all problems. GMLI, GMINS, and GMFEE are geometric means of the numbers of

linear iterations, inexactNewton steps, and "function evaluation equivalents’ respectively. NB, NW, andNFAIL are
the total numbers ofbacktracks, instances of convergence to a "wrong" solution, andfailures, respectively. Results
marked were over successful runs only.

r/k choice GMLI GMINS GMFEE NB NW NFAIL

10-1 65.5* 12.00" 82.3* 2* 1"
10-4 90.2* 7.21" 103.3" 1" 0* 2
1/2k+l 70.3* 9.24* 85.4* 6* 1"
min{1/(k 4- 2), IlF(xk)ll2} 72.2 8.72 86.5 18 2 0
Choice 51.7 9.14 65.3 5 0 0
Choice 2, ct 2, , 51.8 8.38 64.3 6 0 0
Choice 2, ct 2, , .9 52.5 7.89 64.7 8 0 0
Choice 2, c 2, ?’ .5 66.8 7.93 79.4 13 0

Choice 2, ot 1_45, , 50.0 9.05 63.2 4 0 0

Choice 2, ( L., , .9 51.5 8.91 64.9 6 0 0

Choice 2, c 1+_5, , .5 59.4* 7.67* 70.9* 4* 1"

TABLE 3.2
Summary test results over the PDEproblems. GMLI, GMINS, andGMFEE are geometric means ofthe numbers

oflinear iterations, inexactNewton steps, and "function evaluation equivalents]’ respectively. NB, NW, and NFAIL
are the total numbers of backtracks, instances of convergenceto a "wrong" solution, and failures, respectively.
Results marked were over successful runs only.

r/ choice GMLI GMINS GMFEE NB NW

10-1 102.2" 11.89" 117.8* 0* 0*

10-4 152.4" 6.68* 163.7" 1" 0*

1/2g+l 104.2" 8.95* 118.4" 3* 0*

min{1/(k 4- 2), IIF(xk)ll2} 117.6 8.22 130.3 15

Choice 83.5 8.94 96.4 3 0

Choice 2, ct 2, , 81.7 8.18 93.8 4 0

Choice 2, a 2, , .9 83.3 7.57 95.2 6 0

Choice 2, c 2, , .5 98.4 7.57 110.4 10 0

Choice 2, t 2---, ’ 79.6 8.80 91.9 2 0

Choice 2, c 12-, , .9 83.0 8.70 95.9 4 0

Choice 2, c 1-25, F .5 91.9" 6.98* 101.3" 0* 0*

NFAIL

0

0

0

0

0

0

0

equivalents" to be the sum of the numbers of linear iterations, backtracks, and inexact Newton
steps. The number oflinear iterations is the same as the number ofproducts of F’ with vectors;
ifthese products were always approximated by first-order forward differences, then the number
of "function evaluation equivalents" would be equal to the number of function evaluations.
This number provides a rough relative measure of overall work for the test problems used
here. It would be a less suitable measure, e.g., if there were additional costs associated with
beginning a new inexact Newton step, such as initializing a new preconditioner. The fourth
column gives numbers of backtracks over all test cases, i.e., numbers of step-reductions in the
while-loop in Algorithm INB. The fifth column gives numbers of instances of convergence to
a "wrong" solution, i.e., convergence to a solution other than the everywhere-positive solution
in the PDE problem of 3.2.1 or to a solution other than u 1 in the integral equation problem
of 3.2.5. As noted previously, convergence to a "wrong" solution illustrates the potentially
serious effects of disagreement between F and its local linear model. The sixth column gives
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the number of failures over all test cases. If failure occurred in a test case, then that case
was not included in the statistics for columns 1-5; consequently, those statistics are not fully
comparable to those for which all runs were successful.

One sees from Tables 3.1 and 3.2 that the best overall performances were from Choice 1
and from Choice 2 with , .9 and , 1. Taking , .5 in Choice 2 resulted in significantly
less efficiency with ct 2; in addition, it led to increased numbers of backtracks with ct 2
and to one failure and one instance ofconvergence to a "wrong" solution with c (1 /)/2,
which suggest less robustness when , is as small as .5. The other choices included in the tests
were notably less effective.

Among Choice 1 and Choice 2 with , .9 and , 1, Choice 2 with , 1 and
c (1 + /)/2 placed first in every category except mean numbers of inexact Newton
steps; thus this choice might be judged the winner. However, its margin of superiority was
slight: for example, in "function evaluation equivalents," the best and worst means for these
choices differ by less than 4% over all problems and by less than 5% over the PDE problems.
Furthermore, there was considerable variance in the relative performance and ranking of these
choices among the individual test cases.

The results for Choice 2 illustrate that more aggressive choices of the forcing terms, i.e.,
choices that are smaller or result in faster asymptotic convergence, may decrease the number
of inexact Newton steps up to a point but, through oversolving, may also lead to more linear
iterations, more backtracking, and less robustness. Less aggressive choices, on the other hand,
may reduce the number of linear iterations up to a point and improve robustness but may also
result in increased numbers of inexact Newton steps.

4. Summary discussion. We have outlined forcing term choices that result in desirably
fast local convergence and also tend to avoid oversolving the Newton equation, i.e., imposing
an accuracy on an approximation of the Newton step that leads to significant disagreement
between F and its local linear model. The choices, along with theoretical support and practical
safeguards, are given in 2. Practical performance on a representative set of test problems is
discussed in 3.

Choice 1 directly reflects the agreement between F and its local linear model at the pre-
vious step. It results in a certain q-superlinear local convergence; see Theorem 2.2 and the
following remark for precise statements. Choice 2 does not directly reflect the agreement
between F and its local linear model; however, it performed effectively in our tests. Further-
more, it can give up to q-quadratic local convergence (see Theorem 2.3), and the parameters
ot and appearing in it allow flexibility that may be useful in applications.

The best performances in our tests were from Choice 1 and from Choice 2 with F .9
and , 1. (With Choice 2, the values c 2 and c (1 + v/)/2 were used in the tests.
The latter value was chosen to give convergence roughly comparable to that for Choice 1.) Of
these choices, Choice 2 with ?, 1 and ot (1 + v/)/2 could be considered most effective
in these tests, but only by a small margin; any of these choices might be best for a particular
application.

The numerical results in 3 illustrate that, in.a globalized Newton iterative or truncated
Newton method such as the implementation ofAlgorithm INB used here, oversolving resulting
from inappropriately small forcing terms not only may incur unnecessary expense in solving
the Newton equation but also may place significant demands on the globalization and even
cause it to fail. In addition, unless special care is taken, very small forcing terms may call for
more residual reduction than the iterative linear solver can accurately obtain, especially when
finite differences are used to approximate products of F’ with vectors. Conversely, choosing
larger forcing terms may reduce oversolving and avoid inaccuracy in the iterative linear solver
but increase the number of the inexact Newton steps required for convergence.
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FAST NONSYMMETRIC ITERATIONS AND PRECONDITIONING FOR
NAVIER-STOKES EQUATIONS*

HOWARD ELMANt AND DAVID SILVESTER

Abstract. Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsym-
metric indefinite linear system of equations. In this paper, we introduce preconditioning techniques for such systems
with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size
used in the discretization. We confirm and supplement these analytic results with a series of numerical experiments
indicating that Krylov subspace iterative methods for nonsymmetric systems display rates of convergence that are
independent of the mesh parameter. In addition, we show that preconditioning costs can be kept small by using
iterative methods for some intermediate steps performed by the preconditioner.

Key words. Navier-Stokes, iterative methods, preconditioners, Krylov subspace
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1. Introduction. Consider the steady-state Navier-Stokes problem: given data f, find
the velocity u and pressure p satisfying

1
(1.1) -vV2u + u(div u) + u. Vu + grad p f in f2

divu =0

subject to boundary conditions, typically, specified velocity u g on Of2; f2 C R2 or g2 C R3.
Here, the scalar v is the inverse of the Reynolds number or the ratio of convection to diffusion
in the system. In the diffusion dominated case, (v --+ oo) (1.1) tends to a linear self-adjoint
system of equations known as the Stokes problem.

There are two ways of calculating solutions to the system (1.1). A popular approach is to
compute "true" steady-state solutions of the time-dependent Navier-Stokes equations. There
are many ways to do this: one way is to make use of the "characteristics" associatedwith the
hyperbolic part ofthe Navier-Stokes operator via a Lagrange-Galerkin approach (for example,
see [13]). The associated transpose-diffusion splitting leads to absolutely stable temporal
discretizations so that large time steps can be taken. At each time step, a symmetric indefinite
matrix system corresponding to a time-discretized Stokes-like system must be solved. These
systems can be solved efficiently by iterative methods, for example, if a multigrid solver
is used to precondition the primary (Laplacian) operator. There are, however, a number of
disadvantages to the time-dependent approach. Simple time discretization methods based
on the/2-projection onto the discretely divergence-free subspace [10] have an O(h) CFL
restriction on the time step, which impinges on efficiency. On the other hand, absolutely
stable schemes like the method of backward characteristics are known to be sensitive to
implementation issues (e.g., the need to perform quadrature; see 13]). Even with fixed grids,
efficiency is often limited by the costs associated with interpolation.

In this work, we consider the alternative approach of attacking the system (1.1) directly.
Applying a fixed point (or Picard) iteration, the system (1.1) reduces to solving a sequence of
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linear Oseen problems of the following form: given some velocity field w, find the velocity u
and pressure p satisfying

1
(1.2) -vV2u + u(div w) + w. Vu + grad p f in Q

div u 0

subject to the same boundary conditions.
For this methodology to be effective it is necessary to solve the discrete versions of (1.2)

efficiently. Finite element discretization of (1.2) leads to the matrix problem

(vA + N B u(1.3)

where A A represents diffusion (for example, -X72) and hence is a positive definite matrix
of order nu; N represents convection (1/2div w + w. X7); and the ne x nu matrix B represents
the coupling between the discrete velocity u and the pressure p. Note that the representation
of the quadratic convection term in (1.1) ensures that if velocity is specified everywhere on
the boundary then N -Nt; that is, the discrete form of the convection operator is skew-
symmetric [10, p. 53]. Note that with these boundary conditions the system (1.3) is singular;
pressure is only unique up to a (hydrostatic) constant. We assume in the following analysis
that the pressure solution is uniquely specified in this case, e.g., by insisting that its mean is
zero.

Working in a conventional mixed finite element framework, we will further assume that
the underlying velocity and pressure approximations are (div-)stable (see, e.g., [2, p. 57], [10,
pp. lOff], and [19]); i.e., defining a mesh parameter h, a velocity space Vh, ,and a pressure
space Ph, there exist constants V, F, independent of h, such that

(1..4) y2 <
(P, BA-1Btp)

< i-,2 YP Ph.
(P, Qp)

Here, Q is the pressure mass matrix, or alternatively the Grammian matrix of basis functions
defining Ph. The lower bound , is the so-called inf-sup constant. The relation (1.4) is crucial
to the success of iterative solvers for solving discrete Stokes problems because it implies
that, using a quasi-uniform mesh, the Schur complement BA-1B has a condition number
bounded independently of h. It is also known from our previous work 16] that when v
"optimal" preconditioners for the Laplacian subblocks give rise to "optimal" preconditioners
for the Stokes problem in the sense that the spectra of the underlying discrete operators are
contained in small clusters, which are bounded independently of h. A consequence of this
is that the asymptotic convergence rate, with respect to the preconditioned residual norm, of
Krylov subspace methods applied to discrete Stokes problems is also independent of h.

In this paper, we derive analogous results for eigenvalues in the general Oseen case. We
introduce two preconditioners for the Oseen problem such that, for any value 0 < v < o,
the eigenvalues of the preconditioned Oseen operator are bounded independently of the mesh
size. These observations apply to arbitrary discretizations satisfying (1.4). In addition, in a
series of numerical experiments we show that these bounds on eigenvalues are predictive of
the performance of Krylov Subspace iterative methods for solving the preconditioned Oseen
equations. Ofcourse, it is well known that when convection dominates (i.e., when v is "small"
relative to h and Ilwll ), the standard Galerkin approximation deteriorates. Oscillations in the
discrete velocity are apparent if the local mesh Reynolds number Reh h llwll/v is greater
than unity. In such situations, the addition of streamwise diffusion to the discrete system is
known to give added stability, both theoretically and numerically; see [3] and [12]. In our
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experiments, we demonstrate the effectiveness of the ideas using both a standard Galerkin
discretization on a set of quasi-uniform grids and a streamline-upwind scheme on a set of
uniform grids.

The remainder of the paper is divided into three sections. Our main theoretical results
are presented in 2, and results of numerical experiments confirming and augmenting the
theoretical analysis are given in 3. In 4, we considermore practical preconditioning strategies
and present a perturbation analysis and additional numerical experiments demonstrating their
effectiveness.

2. Preconditioning strategies. In this section, we introduce two preconditioning tech-
niques for (1.1) and present an analysis showing that the spectra of the preconditioned systems
are bounded independently of the discretization mesh size h. Throughout the section, we will
be concerned with the eigenvalues ofpreconditioned matrices; these matrices can be viewed as
being ofthe form 4A/[- 1, where 4 is the original matrix and A/[ is the preconditioner. Equiva-
lently, we are concerned with the solution of the generalized eigenvalue problem Av .A//v.
All the matrices in question are implicitly parameterized by h. For simplicity, we state our
results under the assumption that B of (1.3) has full rank.

The first idea is derived from a method developed in 14], 16], [20] for the discrete Stokes
equations, where the coefficient matrix has the form

Consider the preconditioner

for (2.1). The eigenvalues of the preconditioned operator are then given by the solution to the
generalized eigenvalue problem

(2.2) ( Bt u uo)( t
One solution is . 1, of multiplicity nu -np, for which the eigenvectors have the form ()
where Bu 0; i.e., u is "discretely divergence free." The remaining eigenvalues come from
the solution of the quadratic equation ) 0 1) =/z, where/x is a generalized eigenvalue of
the Schur complement associated with (2.1),

(2.3) BA-1 B p lz Qp

Equivalently,

(2.4) )
1 4- /1 +4/z

Since (1.4) implies that as h 0 the solutions to (2.3) remain bounded above and below, it
follows that the eigenvalues of (2.2) are also bounded. The preconditioned conjugate residual
method can then be used to solve (2.1), with a convergence rate independent of h 14], 16].

A natural generalization for the discrete Oseen equations uses the block preconditioner

(2.5) (F 0)0 Q
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where F vA + N. As above, the generalized eigenvalues for

(2.6) (FB Bt u (F 0 ) (p
are either ) or (2.4), where/z is now a solution to the generalized eigenvalue problem

(2.7) Sp Iz Q p,

with S BF-1Bt, the Schur complement for the discrete Oseen operator. The following
result, which generalizes the analysis for the Stokes operator in 19], provides a bound.

THEOREM 1. The eigenvalues ofthe generalized Schur complementproblem (2.7)for the
Oseen operator are contained in a rectangular box in the right halfplane whose borders are
bounded independently of h.

Proof. Let C B ( F-l+2F-f) B’ denote the symmetric part of S, and let R B ( F-1-2 F-t ) Bt
denote its skew-symmetric part, so that S C + R. By Bendixson’s theorem ([17, p. 418]),
any eigenvalue/z of the problem (2.7) satisfies

(p, Cp) (p, Cp) I(P, Rp)I
(2.8) minp (P, 1Qp) -< Re(/z) < maXp (P, -vl Qp)

IIm(/z)l < maXp (p, 1Qp)
To construct bounds on these Rayleigh quotients, it will be convenient to refer to S

BA-1Bt, the Schur complement for the Stokes operator. For the symmetric part C in (2.8),
we use the relation

(p, Cp) (p, Cp) (p, Sp)

1Soop (p, Qp)
(2.9)

(p, QP) (p, -In light of (1.4), we need only consider the first quotient on the fight in (2.9). Note that

(2.10)

F-1 +F-t --F-I(F+Ft)F-t2
(vA + N)-1 (vA) (vA N)-1

A-1/2(vI ]2)-1
A-l2,

where/ A-1/2NA- 1/2. Consequently,

]2)-1 A-1/2Bt(p, Cp) (p, BA /2 (vI - p)
1BA_B p) (v, v)(p, Sp) (p,

(V,(I--2)-lv)

where v A-1/2B p. But/ is skew-symmetric, so that the eigenvalues of __/r2 are real and
nonnegative. Moreover, since N and A are first-order and second-order operators, respectively,
the eigenvalues of are uniformly bounded in modulus by a constant 3 that is independent
of h [5]. Therefore, the spectrum of I /2 is contained in the interval [1, 1 + 32/v2], or,
equivalently,

v2 (p, Cp)
< <1.

32 + v2 (p, - Sp)Combining this with (1.4) and (2.9) gives

’21)2 (p, Cp)
t2 -Jr" 132 p - Qp
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For the skew-symmetric part R in (2.8), the analogue of (2.9) is

(p, lop) (p, lop) (p, sp)

(p,-Qp) (p,- Sop) (p, Qp)

and as in (2.10), we have

F-1 F-t
-A-1/2 (vl + ])-1 )Q (pl [)-1 A-1/2

Therefore

(p, Rp) v(v, v)
(2.11)

1Sp) (v, (v2I N:Z)v)(P -where v (vI -/)- A-1/2BTp. The skew-symmetric matrix/ admits a decomposition
of the form UAU/, where A is a real diagonal matrix and U is unitary. Consequently,
[2 _UA2UH, and the modulus of the Rayleigh quotient on the right side of (2.11) can be
expressed in the form

(w, (u:ZI + A2)to)

This is bounded by

max max
-d<)< 1)2 -[.- ,2 o<.<d 1)2 ..]_ ,2

It follows from elementary calculus that this maximum is , obtained when . 1), giving

I(p, Rp)
(p, - Qp) 2

Corollary 1 follows immediately from Theorem 1 and (2.4).
COROLLARY 1. The eigenvalues of the discrete Oseen operator preconditioned by (2.5)

consist of ) of multiplicity nu np, together with four sets consisting ofpoints of the
form 1 + (a 4- bi) and -a 4- bi. These sets can be enclosed in two rectangular regions that

whose borders are bounded independently ofhare symmetric with respect to Re (,) ,
[ v ]The inclusion regions for these eigenvalues consist of the image of the box -, 1" x

[--, - under the mapping x - .(x) given by (2.4). It can be shown that the rectangular
regions of this result are contained in

1 + Smin 1 -+- Smax 1 Smax 1 Sminx[-t t] and x[-t t]
2 2 2 2

in the right and left half sides, respectively, of the complex plane, where

4),,21)2 ) 1/2
Smin 1 -- t2 "+" 1)2

t=
(1 + )1/2

)]1/2(1 + 4rz + 41 + 8y2 -+- 20Smax
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The fact that the eigenvalues for the preconditioned system derived from (2.5) lie on both
sides of the imaginary axis is a potential disadvantage of this idea. An alternative that avoids
this problem is the block triangular operator

(
0

For this choice, the preconditioned eigenvalue problem is

Again, one solution is ) 1, now of multiplicity nu. If ) : 1, then premultiplying the first
block row of (2.13) by BF-1 and using the relation Bu -.(-Q)p leads to equation (2.7)
for the other eigenvalues. Thus, we have the following result.

THEOREM 2. The eigenvalues of the discrete Oseen operator preconditioned by (2.12)
consist of 1 together with the generalized eigenvalues of S in (2.7). Therefore, the
eigenvalues are bounded independently ofh.

Remark 1. Use of either preconditioning operator (2.5) or (2.12) entails the computation
of the action of F-1 at each step of an iterative procedure. F is a discrete convection-diffusion
operator and applying F-1 to a vector using direct methods will be expensive. An alternative
is to replace this computation with an approximation obtained by iterative solution of the
convection-diffusion equation. We will examine this approach in 4.

Remark 2. Both preconditioners also require the action of Q-l, which may also be
expensive, depending on the choice ofpressure discretization. In this case, however, it is known
that Q can be replaced by some approximation 0 without affecting asymptotic convergence
properties; only the constants , and F of (1.4) change [21 ]. In the experiments discussed in

3 and 4, we replace Q with a diagonal matrix consisting of the main diagonal of Q.

3. Numerical results I: Exact convection-diffusion solves. In this section, we present
the results of numerical experiments indicating that the analysis of 2 is predictive of the
performance of iterative methods for solving (1.3). Computations were performed using
MATLAB 4.1 on a variety of computing platforms.

Our test problem is a "leaky" two-dimensional lid-driven cavity problem in a square
domain (-1 < x < -1 < y < 1). The boundary conditions are Ux Uy 0 on the three
fixed walls (x -1, y -1, x 1), and Ux 1, Uy 0 on the moving wall (y 1). The
hydrostatic pressure is not explicitly specified, so that all the linear equation systems we solve
below are singular with a one-dimensional nullspace. The convective "wind" is a circular
vortex as illustrated in Fig. 1, and is given by

Wx 2y(1 x2),
wy -2x(1 y2).

The fact that there is no dominant flow direction makes this a challenging test problem. Note
that in the comers and in the center of the flow region the driving flow is stagnant.

Unless otherwise specified, we consider values of the viscosity parameter u between 1
and 1/100. When v we have diffusion dominated (essentially Stokes) flow, whereas as

This is actually not a linearization ofthe Navier-Stokes equations since w and u do not satisfy the same boundary
conditions; this fact does not affect the demonstration of the solution algorithms. Also, note that div w 0 so that
the term 1/2 u(div w) in (1.2) is identically zero.
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2

1.5

0.5

-1 -1

FZG. 1. Magnitude and direction ofthe convectingflow.

Streamlines’equally spaced Streamlines "selected

FZG. 2. Uniform 64 x 64 grid: v 1.

v --+ 0 the flow becomes dominated by the "wind." Typical flow solutions are illustrated
in Figs. 2 and 3. Note that as the viscosity is decreased, the center of primary recirculation
moves to the fight (the Stokes flow solution is perfectly symmetric about the line x 0), and
secondary vortices are generated in the two bottom comers.

To discretize (1.2), we take a finite element subdivision based on n x n grids of rectan-
gular elements. Bearing in mind the nature of the flow solution being computed, we present
results for two representative discretizations here: a conventional Galerkin approach using
a quasi-uniform sequence of grids and a streamline-upwind method using uniform grids of
square elements of size h 2In. In either case, the mixed finite element used was the
div-stable "Taylor-Hood" method based on continuous bilinear pressure with a continuous
bilinear velocity field defined on four element macroelements (see, e.g., [10, p. 30]).

For the Galerkin discretization, the quasi-uniform grids are chosen to resolve the details
of the flow in the four comers of the domain: they are symmetric about x 0 and y 0, and
in each quadrant the grid lines become more dense near the boundary. The 64 x 64 grid is
shown in the pressure solution plot in Fig. 4. The analytic pressure solution is singular at the
top comers where the imposed velocity is discontinuous.
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FIG. 3. Nonuniform 64 x 64 grid: v / 100.
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FIG. 4. Pressure solutionfor v / 10.

The streamline-upwind discretization is as described in 12, p. 185]. In this case, the block
convection-diffusion operator F is perturbed by a symmetric positive semidefinite matrix Aw.
That is, F --yAh + Aw + N, where Ah is the discrete Laplacian obtained from the usual
Galerkin formulation. Aw is the discrete form of a stabilizing term c (w. Vu, w. Vv) that adds
ot O(h) diffusion along the streamlines. For our experiments with streamline upwinding,
we took c hi4. Note that the perturbation does not affect the skew-symmetric part of
the convection-diffusion operator, so that the analysis of 2 holds; only the definition of the
"diffusion matrix" A is changed, from --Ah to --Ah / Aw.

We first consider the bounds of Theorem 1. Table shows the extreme real parts and
maximum imaginary parts of the generalized eigenvalues (2.7) of the Schur complement
operator, for v 1 / 10 and 1 ! 100 with the streamline-upwind discretization, on three meshes.
The small changes in all values are in accordance with the analysis, although it appears that
finer meshes would be needed to produce constant values. The analysis also shows that the
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TABLE
Eigenvalues ofthe Schur complementfor streamline-upwind discretization.

v- 1/10
Grid Min Re Max Re Max Im

16 16 7.17E-2 1.11 0.46
32 32 8.75E-2 1.64 0.71
54 54 9.08E-2 2.00 0.87

v 1/100
Min Re Max Re Max Im
1.66E-2 1.07 0.20
1.33E-2 1.11 0.50
1.14E-2 1.37 0.74

10

F:: 10
.2

E
E

10
.3

10
2

10
nu

FIG. 5. Minimum real parts ofeigenvalues ofthe Schur complement,for streamline-upwind discretization on a
54 64 grid.

real parts and largest imaginary parts of the eigenvalues are bounded independently of v; the
bound for the smallest real part is proportional to v2. The data in Table 1 are in agreement
with the upper bounds. Figure 5 plots the smallest real parts on a logarithmic scale for the
streamline-upwind discretization on a 64 x 64 grid and u 1/20, 1/40, 1/80, and 1 / 160.
The results indicate that the lower bound is also tight.

We test the preconditioners here with two Krylov subspace methods for solving non-
symmetric systems: the generalized minimum residual method (GMRES) [15] and a simple
implementation ofthe quasi-minimum residual method (QMR) [8] based on coupled two-term
recurrences without look-ahead. GMRES demonstrates the performance of the precondition-
ers with the optimal (with respect to the residual norm) Krylov subspace solver. This method
is impractical for large problems because its work and storage requirements grow with the
iteration count; QMR is a nonoptimal alternative that avoids this difficulty. Some additional
experiments with restarted GMRES are presented in 4. In all cases we use right-oriented
preconditioning, and our convergence criterion is a reduction of 10-6 in the 12-norm of the
residual. The action of F-1 and F-t is computed using the LU-factorization in MATLAB.
We start from a zero initial guess. Using random initial guesses gave comparable iteration
counts in all cases.

We first discuss the performance of GMRES. Table 2 shows the iteration counts obtained
for three values of v using the block triangular preconditioner (2.12) in the case of Galerkin ap-
proximation on the quasi-uniform grid sequence, and Table 3 shows the iteration counts for uni-
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TABLE 2
GMRES iteration countsfor Galerkin discretization with block triangular preconditioner.

Grid
v=l

v 1/10
v 1/50

16 x 16
18
25
45

32 x 32 64 x 64 128 x 128
19 17 14
31 32 31
69 93 110

TABLE 3
GMRES iteration countsfor streamline-upwind discretization with block triangular preconditioner.

Grid 16 x 16 32 x 32 64 x 64 128 x 128
v 21 22 21 19

v--- 1/10 32 36 35 33
v 1/50 48 72 97 111

TABLE 4
QMR iteration countsfor Galerkin discretization with block triangular (diagonal) preconditioner.

Grid 16 x 16
v 22 (43) 22 (43)

v 1/10 28(51) 36(68)
v 1/50 51 (100) 78 (155)
v 1/100 73(143) 126(246)

32 x 32 64 x 64 128 x 128
22(41)
39(78)
112(223)
189(375)

16
36
127
253

form grids with streamline-upwind discretization. The results suggest that grid-independent
convergence is observed even on relatively coarse grids if the flow is diffusion dominated, that
is, eigenvalues are indeed predictive of performance. If convection dominates (as v tends to
zero), then the iteration counts increase, as might be expected from the analytic bounds of 2.
For the smallest value of v considered here, 1/50, the iteration counts grow as the mesh is
refined; although for fine enough grids the counts become close to constant. We believe that
for "small" v, the asymptotic grid independence will be visible only for sufficiently fine grids.

GMRES with the block diagonal preconditioner (2.5) gives an identical picture. Indeed,
we find that for the grid sizes and values of v in Tables 2 and 3 (only n < 64 was tested),
GMRES requires precisely 2k 1 iterations to reach the tolerance where k is the iteration
count from Table 2 or 3. Moreover, the behavior of GMRES using (2.5) mirrors its behavior
with the triangular preconditioning, in the sense that the odd iterates at step 2i 1 are close
to those obtained in the triangular case at step i, and the norms of the even iterates stagnate.
A rigorous explanation for this behavior can be given by relating the optimal polynomials
implicitly generated by GMRES. In particular, it follows from the analysis in [6] that for
a particular starting guess (not zero), the th GMRES polynomial for the triangular case is
identical to the (2i 1)st GMRES polynomial for the diagonal case.

Tables 4 and 5 show analogous iteration counts for QMR. The tables contain data for
both the triangular and (in parentheses for n < 64) diagonal preconditioners. Note that the
iteration counts in the first three rows of Tables 4 and 5 are close to the corresponding entries
of Tables 2 and 3, respectively; i.e., the performance in QMR is close to optimal. Results for
v 1 ! 100 are included to get a sense of the behavior of the preconditioners as v becomes
small; it appears that the asymptotic behavior is not seen for the grid sizes used.

Note that the cost per step of the block triangular preconditioner is only slightly higher
than that of the block diagonal preconditioner (only an extra multiplication by B is needed);
hence (2.12) is more efficient. However, for the Stokes problem (v -- cx), the preferred
choice of preconditioner is less obvious since the inherent symmetry is destroyed if (2.12) is
used in place of (2.5).



PRECONDITIONING FOR NAVIER-STOKES EQUATIONS 43

TABLE 5
QMR iteration countsfor streamline-upwind discretization with block triangular (diagonal) preconditioner.

Grid 16 x 16
v 25 (49) 27 (51)

v 1/10 36(78) 44(91)
v 1/50 61 (127) 91 (175)
v 1/100 76(157) 133(249)

32 x 32 64 x 64 128 x 128
25 (47)
42 (80)
117 (234)
190(382)

22
37
130
229

Remark 3. In addition to the implementation of QMR with a coupled two-term recur-
rence (QMR2) discussed above, we tested a version without look-ahead based on a three-term
recurrence (QMR3) [7], and the definitive (Fortran) implementation of a two-term QMR with
look-ahead (QMRz) from the QMRPAK directory in Netlib. For the preconditioners dis-
cussed above, the performances of the three variants were virtually identical. However, with
the inexact preconditioners of the next section, we found QMR2 to be much more robust than
QMR3.

4. Numerical results II: Inexact convection-diffusion solves. The dominant costs of
the preconditioners of2 and 3 come from applying the action of F-1 and for QMR, F-t, to
some vector v at each step of the iteration. In this section, we show that this operation can be
replaced by an inexpensive one derived from an approximation to F-1, with little degradation
of performance of the Krylov subspace methods. The idea is to replace the preconditioning
operators (2.5) and (2.12) with

(4.1) and
0 a 0-Q

respectively, where/ F. Our choice of f will be implicitly determined by the use of
iterative methods to compute approximate solutions to the systems Fw v and Ftw v,
although the methodology is not restricted to this choice. We will refer to the preconditioners
that use the exact action of F-1 as the exact versions, and those based on approximations as
in (4.1) as inexact versions.

Some insight into the effects of the inexact preconditioners is derived from matrix per-
turbation theory. Let Q Q. The preconditioned matrix for the exact block diagonal
preconditioner (2.5) is

AD ( Bt -1 t [ BtQ-I)
and that derived from the inexact version is

( )_1AD (Fn nt) P 0 -"4D-D0 0 Q

where, with E =/ F,

go=-
BF 1El-1

0
0

Similarly, the preconditioned matrices for the exact and inexact block tridiagonal precondi-
tioners (2.12) satisfy .At Ar + $r, where

(I 0 ) (E-1 E-IBtQ- ),AT BF-1 BF-1BtQ-I gr
BF-1E-1 BF-1E-IBtQ-
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We have the following bounds on the eigenvalues of the preconditioned systems using inexact
preconditioners.

THEOREM 3. If4o )2DAD)2 is diagonalizable, thenfor any eigenvalue lz E cr(o),

min I)-/zl _< IIE-lllco0) max(l, llnF-Xllo).

If.AT ’)TAT)} is diagonalizable, thenfor any eigenvalue lz tr(eT),

min I;-/z] _< IlE/-lllco(;7-)(1 + ]lntQ-11l)max(1, IInF-1llo).

Proof. The result is an immediate consequence of the Bauer-Fike theorem [9, p. 342],
which states that for diagonalizable 4 )2A)2-1, any/z 6 cr(4 + ) satisfies minxes(at) IX
zl _< c 0;)I111, where I1" is any lp-norm.

Thus, if/ is a good enough approximation to F, i.e., if enough inner iterations are used,
then E/-1 will be small and the eigenvalues ofD and T will be close to those of
and 4T, respectively. We state the result in terms of the/-norm only because the bounds
then have a simple form.

Remark 4. We have computed the condition numbers c (;) for .AT and found them to be
large, on the order of 103 or higher, for the three values of v, with streamline upwinding and
h 1/16. However, the presence of K (V) in these bounds is an artifact of the proof of the
Bauer-Fike theorem; there are more subtle analyses ([9, pp. 344ff]), as well as bounds that
do not require diagonalizable matrices [11]. We have observed that the eigenvalues of 4T
are insensitive to perturbations, and we believe that the presence of K ()2) is pessimistic. This
supposition is supported by the experimental results described below.

To demonstrate that inexact preconditioning is effective, we consider versions of it based
on two line-oriented splittings of F. The first uses a horizontal line Gauss-Seidel relaxation:
Let F H R denote a horizontal line Gauss-Seidel splitting of the block convection-
diffusion operator F derived from the one-line natural left-to-right, bottom-to-top ordering of
the velocity grid. Thus, H is a block lower triangular matrix consisting of the block diagonal
of F (a tridiagonal matrix) together with the strict block lower triangular part of F. (See 18],
[22] for further details.) The horizontal line Gauss-Seidel method for Fw v performs the
iteration

1/30 --0, W + 11)i "JI- H v Fw

For k steps of this iteration, the approximating matrix is/ F(I (H-1R)k)- 1.
It has been observed that the performance of relaxation methods of this type can be im-

proved if the sweep direction follows the underlying direction of flow [4]. Our benchmark
problem has a circular flow, so that no simple line relaxation can mimic the flow direction
throughout ft. A slightly more sophisticated idea is to use an alternating line relaxation.
For this, let F V T denote a vertical line Gauss-Seidel splitting of F; that is, if P
is a permutation matrix associated with the mapping from the natural horizontal line or-
dering of grid points to the natural vertical line ordering, then pTvP is the block lower
triangular part of pTFp. One iteration of alternating line relaxation consists of two line
Gauss-Seidel steps, one using the horizontal splitting, followed by one using the vertical
splitting:

W0 0, 1/)i+1/2 11)i "- n-l(v Fwi), Wi+l Wi+l/2 + v-l(u FWi+l/2).
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FIG. 6. Performance ofblock tridiagonal inexact preconditionersfor 32 x 32 grid.

Figure 6 shows results of using the inexact block tridiagonal preconditioners with a ver-
sion of GMRES with restarts every ten steps (denoted GMRES(10)) and with QMR. The
test problem is discretized by streamline upwinding on a 32 x 32 grid. Results for inexact
block diagonal preconditioners were similar, except that, as with the exact preconditioners,
convergence was slower. We used four steps of horizontal line relaxation or two steps of alter-
nating line relaxation, so that both inexact preconditioners perform four sweeps. The figure
also shows the performance of the exact preconditioner, whose cost per step is significantly
more expensive. For example, with an n x n velocity grid, direct solution using a bandsolver
requires O(n4) operations, whereas each inner iteration is an O(n2) computation. We see that
the use of inexact preconditioners in place of the exact versions leads to little degradation of
performance ofthe Krylov subspace methods. For example, in the convection-dominated case
v 1/100, QMR with alternating line relaxation requires roughly 25% more iterations than
with the exact preconditioner. For the diffusion dominated case v 1, roughly three times as
many outer iterations are required with the inexact preconditioners, which still leads to a less
costly computation. Not surprisingly, alternating relaxation is more effective than horizontal
relaxation, especially for convection-dominated problems. We remark that our goal here is
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only to demonstrate "proof-of-concept"; many other techniques for approximating the action
of F-1 are possible, for both diffusion-dominated and convection-dominated flow. See, for
example, 1], [4], 14], 16], [20].

Remark 5. Although we do not make a detailed comparison of Krylov subspace methods,
we briefly comment on the behavior of the two choices used here. QMR requires twice as
many preconditioned matrix-vector products per step as GMRES(10), and since matrix-vector
products are the dominant cost, each QMR step is roughly twice as expensive. Thus, these
results indicate that GMRES(10) is more efficient than QMR for large v, but QMR becomes
more effective as convection becomes dominant. The storage requirements ofthe two methods
are comparable.

Acknowledgments. We thank Oliver Ernst, Roland Freund, and Marlis Hochbruck for
providing us with Matlab versions of QMR.
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Abstract. A semi-Toeplitz preconditioner for nonsymmetric, nondiagonally dominant systems of equations
is studied. The preconditioner solve is based on a fast modified sine transform. As a model problem we study a

system of equations arising from an implicit time discretization of a scalar hyperbolic partial differential equation
(PDE). Analytical formulas for the eigenvalues and the eigenvectors of the preconditioned system are derived. The
convergence of a minimal residual iteration is shown to depend only on the spatial grid ratio and not on the number
of unknowns.
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1. Introduction. We are interested in solving systems of first-order partial differential
equations (PDEs) such as the Euler equations and the Maxwell equations. For the Euler
equations, we are mainly interested in the case when there are different time scales present in
the problem, and the fastest time scale does not have to be resolved. An important application
is almost incompressible flow [4], [5], where the sound waves in the medium are much faster
than the motion of the fluid. For an explicit discretization in time, the restriction on the time
step due to the Courant-Friedrichs-Lewy criterion becomes too severe. For the Maxwell
equations, we intend to consider complicated geometries such that the smallest grid cell in
the space discretization restricts the time step considerably in an explicit time discretization.
Therefore, we use an implicit time discretization. This leads to a system of equations

(1) Au b,

which has to be solved at each time step. A is nonsymmetric, and since the time step is large
compared to the space step, it is also strongly nondiagonally dominant.

In this paper we examine theoretically the convergence properties when we apply a min-
imal residual iteration to (1), utilizing a semi-Toeplitz preconditioner. Such preconditioners
have been shown to be well suited in a domain decomposition setting of the problem [8].

2. The model problem.

2.1. The differential equation. In [7] we consider a scalar two-dimensional equation
with variable coefficients. Here we will restrict our presentation to constant coefficients in
order to be able to derive theoretical properties of the preconditioned system.

Ou Ou Ou
(2) -7-1--:--- =g, O<Xl < 1, O<x2_< 1, t>O.

Ot OXl OX2

Problem (2) is well posed if we prescribe u(0, x2, t), U(X1, 0, t), and U(X1, X2, 0).

2.2. Discretization. Introduce a uniform grid as

Xd,j jhd, j 0 md, hd 1/md, d 1, 2.
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the Swedish National Board for Industrial and Technical Development (NUTEK) under contract No. 9303806.

tDepartment of Scientific Computing, Uppsala University, Box 120, S-751 04 Uppsala, Sweden
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Let uj,k denote the approximate solution at the point (XI,j, X2,k)o Now we discretize equation
(2) in time using the trapezoidal rule with time step At"

+

For the spatial derivatives, we use second-order centered differences in the interior of the do-
main and one-sided first-order differences at the outflow boundaries. We define the following
quantities:

At
x,-- d 1,2,

ha

un ( Un U Un Un T1,1 2,1 Uml,1 1,2 m,m2 !

and finally write the equations as

(3) Aun+l (Imz A1 + tc2A2 ) Im)Un+l b,

where b contains known quantities, and A1 and Az are defined by

(4)

4

--K’I 4 K"

AI’-- o o o
--K1 4

4+ 2tel

0 1
-1 0 1

A2 Oo o o
-1 0

-2 2

3. Iterative methods. The matrix A defined in (3) is extremely sparse, with five nonzero
diagonals and semibandwidth m l. Modem CG-like iterative methods are well suited for
nonsymmetric systems of equations. In this paper we consider minimal residual iterations [3],
which in each iteration satisfy

IIri 119. min Ilpi(M-1A)rlle,
Pi -79i, Pi (0)=1

where 7:’i is the set of all polynomials of degree i, M is the left preconditioner, r (i)

M-1 (Au (i) b), and ui denotes the approximation of u obtained at iteration i. If M-1A is
diagonalizable we obtain

IIr<i) lle(5) < cond2(Wg-A)
Ilr()lle

min max Ipi(.e)l cond2(WM-1A) i,
Pi E79i, Pi (0)-- <<n

where WM-A is the eigenvector matrix and .e are the eigenvalues of M-1A. From (5) we
conclude that we will have finite termination in n iterations, where n is the number of distinct
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eigenvalues to the preconditioned system. Moreover, if we can precondition our system in
such a way that the eigenvalues of M-1A are contained in k dense clusters, we have a good
approximation to the solution in k iterations. Clustering of the eigenvalues may be even
more important than a condition number improvement [1], [2], and [12]. In 4 we define a
preconditioner that yields a highly clustered spectrum. Since the iterative method includes
the solution of

(6) Mx y

in each step, we must have a fast solver for this system. The preconditioner solve defined in
this paper is based on a fast modified sine transform developed in [6].

4. Preconditioning. Consider the semi-Toeplitz preconditioner M defined by

(7) M Ira2 @/1 -[- K2A2 @ Iml, t1

4

--K1 4

In [7] it is shown that M can be decomposed as

M (lm2 Sml)T(Im2 (R) SI-I
ml

where T is block tridiagonal with diagonal blocks

T Im (R) A1 q-tc2A2 (R) Imp,

where

(8) Al=diag(,l /l,m), ,,j=4+2ixcos(-2L-)m+l

Sm, is the modified sine matrix defined by

(9) Sm(j,k) V
/ 2 j+k+l (’k_j)---i sin

\m+ j, k 1 ml.

By rearranging the unknowns, the solution of

Tx--y

decouples into m independent tridiagonal systems of order mz. In [6] it is shown how the

modified sine transforms can be evaluated using Fourier transforms of vectors y 6 cm--.
By symmetry we can also reduce the intermediate solution of the tridiagonal systems to the
solution of only the first systems.

To sum up this section we present the different steps in the solution of (6):

rn2 Fourier transforms of vectors y Cm_,
ml.+.......l solutions of tridiagonal systems of order m2,

m2 Fourier transforms of vectors y C-.
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5. Spectral analysis. By defining

where E1 is defined by

E=A-M=Im2(R)E1,

0 0 0 0

E
0 0 0 0

0 0 -x 2

we get

(10) M-1A I + M-(Im2 (R) El).

Otto [9] shows how to compute the eigenvalues and the eigenvectors of (10) when M is a
semicirculant preconditioner, i.e., each block is circulant. We use a similar technique here.
We will make use of a lemma in [9], which we restate for readability. Let 8(a, b) denote the
closed ellipse centered at the origin with semimajor axis b oriented along the imaginary axis
and semiminor axis a. Also, let 8+ (a, b) denote the region {zlz 8(a, b) and 9e(z) > 0}.

LEMMA 5.1 The eigenvalues .2,k, k 1 m2, of A2 satisfy
)2,k 2,j, k j,

-3/23o )2,/ ’+(4m-3/4 2 + 4m2

From Lemma 5.1 we conclude that there exists a nonsingular matrix V2 such that

By defining

V-IA2V2 A2 diag(.2,1 2,m2)"

D (V2-1 (R) S" )M(V2 (R) Sm,)ml

where Sm, is the modified sine matrix of order m defined in (9), we get

D (V2-1 () S" )(Im2 ()/1 + K2A2 Iml)(V2 Sml)ml

Im SH lSm + K2vfflA2v2 Im Imz A1 + K2A2 @ Imm

where A is defined in (8). From Lemma 5.1 we get that

e(l,j + KZZ,k) 4 + Kze(Z,k) 4,

which implies that Im @ A1 + K2A2 @ Ira, is nonsingular, i.e., M-1 exists. Hence,

D Im @ A1 + K2A2 @ Im diag(D1 Dmz),

where

Dk diag(d),

(11) jyr ) _+_K22k,d 4 + 2itcl COS rn +

v=(k-1)ml+j,
k-

j=l ml,
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and the spectral decomposition of M-1 becomes

M-1 (V2 (R) Sml)O-l(vff @ s2H1 ).

Now consider the matrix W given by

W (Va (R) lml)-IM-1E(Va (R) lml)

(Im (R) Sm,)diag(D{ Dnl)(Im SH El)
ml

--diag(Sm, D-1SH E1 Sm,DSH El) ----diag(W1 Wm2ml ml

As W is a similarity transformation of M-1E and W is block diagonal, the eigenvalues of
M-1E are equal to the eigenvalues of Wk, k m2. Due to the sparse structure of El,
Wk only has two nonzero columns,

(12)

0 0 W:(1, ml 1) Wk(1, ml)
0 0 Wk(2, ml 1) Wk(2, ml)

0 0 Wk(ml, ml 1) Wk(ml, ml)

where

ml

Wk(e, ml 1) --Klaml (e, j)d1Saml (J’ ml)
j=l

4+tc2L2,k--Klie-ml dPm’ ,e( 2 ,K1),

Wk(e, ml) 2K1ml(, j)d S (j, m)
j=l

4+x22,k2xlie-mm,e" 2 Xl),

where v (k 1)m + j, d. is defined in (11) and

(14) dPk,e(ot, fl)
ml + 1

j=l
ml+l

sin (kO) sin (e0)
(15) F,e(O)

2c + 2ifl cos (0)"
k, e 1 ml,

where c is a complex .number with 9te(c0 > 0, and/5 > 0 is real. We now show how to
evaluate the sums in (14). Using this result we can then compute the sums defined in (13).

LEMMA 5.2. dPk,e(ot, fl) defined in (14) can be evaluated by

i(zi+e-z’k-e’ (z-z-k)(ze-z-e) Z2m+2 )(I)k,g(, /)
Z-

-I"
Z-- Z-1 1- Z2m1+2

where

z=i-1+
and the principal branch ofthe square rootfunction is employed.
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Proof. By periodicity we get

,e(c,/)
2m1+11 _Fk,g.(m.t_l),J:rrml+l j=0

k, 1 ml.

Fk,e is C and 2r-periodic, implying

1 fo
2zr

e-iqO fk,e (O)dO.fk,e(O) Cqe
iqO

Cq -q=--x

The Poisson summation formula yields

k,e(Ot, fl) Z 2Cq(2rn+2) 2C0 + 2C-q(2tn+2) -+" 2Cq(2m+2).
q=-o q=l

Using the Euler identities in (15) gives

F,e(O)
1 (eikO e-ik)(eie e-leO)
4 2or -+- i(eiOnt- e-iO)

ei(k-e) -t- ei(e-) ei(k+e) e-i(k+e)

8or nt- 4i(eiO nt- e-iO)

By making the substitution z eiO we get

(16) fc zk-’-q + ze-k-q zk+g’-q z-k-g’-q
Cq [ 27ri (Z Zl)(Z Z2)

dz,

where C is the positively oriented unit circle and

(17) ( (Zl =i - 1+ z2--i -+ 1+

where IZll < 1 and Izzl > 1. Hence, Zl is within C while z2 is not. Note that Z2 Z-1.
TWO types of integrals arise, which can be evaluated using the residue theorem.

z. Zl" zfp >_ O, I1 L (Z Zl)(Z z2)
dz=

Zl -z2 Zl -z-1’

1 a( z-P z-pp > 1, /2 /c (z Zl)(Z z2)
dz go(P-1)(O)"

Zl Z (p 1)!

Here go(P-I)(0) denotes the (p 1)th derivative of go(z) at z 0, where go(z) is
defined by

((Z Zl) -1 (Z Z2)-1) yieldinggo(Z) (Z--Zl)(Z--Z2) ZlZ2

go(p- 1) (Z) z_-?(p 1) (-1)P-I ((z Zl)-p (z z2)-P), and hence

12 zP -t-
(-- 1)p-1 (() Zf

-1 -1 x"-zl’-p "--Z2"-P, -1"
Zl --Z Zl --Z Zl --Z
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Using this result in (16) yields

t k/e Ik-el\

CO-- "fl zl zl
Zl--Z? ]’

( k+-- -k-e k- e-k )C-q(2ml+2) 4 zl -t-zl -zl -Zl Z(2ml+2),
Zl -Z

Cq(2m +2) C_q(2m +2).

Since Izll < 1, we get

which gives

2m1+2
(Z ml+2)q Zl

2m1+2’
q=l Z

Z 2C-q(2ml+2) "l- 2Cq(2m+2)
q=l

Summing up, we conclude that

(Zkl+___ --Zlg-el’(’ - \ za z?

k, 1 ml,

Zkl +e + Z-{h-e- Z-e- Z-g Ztnl+2

Zl Z-1 1 Zml+2"

_2m+2(Zf zk)(zf Z-e) Z,

_2m+2z z 1 z
where Z is defined in (17), which completes the proof. [3

Thus, by Lemma 5.2 and the facts that 9e(4 + x2.2,g) > 0 and Xl > 0, we can find
analytical expressions for Wg(e, ml 1) and Wk(g., ml) defined in (13). The characteristic
equation for Wk defined in (12) is

0 det(,Iml Wg)

,- Wk(ml- 1, ml- 1)
--Wk(ml, ml 1)

-Wg(ml 1, ml). Wg(ml, ml)

4+tC2’2,k,,/1--1 ( item (ml,ml 1,, 2 K1) 2tc1 ml,ml (4+tc2X2,k K1))
Hence, Wg only has one nonzero eigenvalue .g, given by

4+tc2Z2,k 4+tc2L2,k)k iK1 diIm,m-I Z K1) "t" 2K1 m,ml 2 K1)

_2ml-2 _2ml

-z 1 z,k 1 zk
_2m1+2 -- 2izk 2m1+21 zg 1 zk

where

(18) Zk (4+K2X2’k2K

We summarize this result in a theorem.
THEOREM 5.3. The matrix M-1A, where M and A are defined in (7) and (3), has

(ml 1)m2 eigenvalues that are identically one. The remaining m2 eigenvalues lzg are
given by

_2m --2 1 Zmzg
+2izg _2m1+2’ k 1 m2,(19) /zg 1 z2

Zk
2m1+2 1 Zk

where Zk is defined in (18).
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As the dimension of the nullspace of E is (ml 1)m2, it is clear that the eigenvalue zero
ofM-1E has (ml 1)m2 linearly independent eigenvectors. Hence, we know that a minimal
residual iteration will converge in at most m. + iterations. We now derive the eigenvectors
of M-1A.

THEOREM 5.4. Assume that the nontrivial eigenvalues )k, k 1 m, defined in (18),
are nonzero. Then the matrix M-1A has a nonsingular eigenvector matrix

WM-1A (V2 () Iml)diag(U1 Um2).

Here V2 is the eigenvector matrix ofAa and Uk is given by

Uk [el eml-2, (2em-I

where ej denotes the jth canonical column vector and

uk e(z ze), =1 ml,

where zk is defined in (18).
Proof. In the proof of Theorem 5.3 we derived the formula

(V2 (R) Iml)-IM-1E(Va (R) Im) diag(W1 Wm2),

where the eigenvalues of Wk are )k and zero with multiplicity m 1. The first m 2 columns
of W are identically zero, and combining (13) and Lemma 5.2 yields

i-ml+lzTl+lWk(e, ml 1) ie(z ze)
1 zml+2 1 ml,

W(, ml) --2Wk(e, ml 1).

We now investigate the eigenvector matrix U of W. Due to the structure of Wk we conclude
that {{eJ xml-Jj=l (2em-I + em)/f} null(W). Consequently, those ml 1 orthonormal
vectors are eigenvectors of Wk corresponding to the eigenvalue zero. The assumption .k
0 implies that the corresponding eigenvector u( null(W). Thus, W has ml linearly
independent eigenvectors. From 0 < Izkl < it follows that column m 1 of Wk is nonzero.
Furthermore, the structure of W implies that column m 1 is an eigenvector corresponding
to .. By rescaling the column we can choose

u =i (z -z), e=l ml,

as the nontrivial eigenvector to W. We then obtain

U1WkUg A diag(0 0, .), k 1

Now the matrix WM-1A =-- (Va (R) lml)diag(U1 Um2) is nonsingular and

-1 M-1AWM_IA
M-A

I -+- (diag(U1 Um))-I(v2 (R) Im)-IM-1E(V2 (R) Im)diag(U1 Um:)

I -b diag(U-1,..., U21)diag(W1, Wm)diag(U1, Um:)

I q- diag(A1 Am2),

i.e., WM-1a is the eigenvector matrix of M- A.
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From Theorem 5.6 it is easy to establish that the assumption in Theorem 5.4 is valid,
when m and m2 are sufficiently large. To compare the condition of the eigenvectors for A
and M-1A, we define the condition number reduction

(20) =-- cond2(WM-1A)/Cond2(WA),
where WA is the eigenvector matrix of A. Following the technique in [9] can be estimated.
Under the same assumption as in Theorem 5.4 we obtain

(21)
/

k _< 0 max U 112" max U-I I1/cond2 Vl ),
l<k<m2 l<k<m2 /

where V1 is the eigenvect0r matrix of A1 defined in (4). Therefore, we determine Uk I1= and
IIU-1112.

THEOREM 5.5. Under the same assumption as in Theorem 5.4,

IIUkll2 (1 + /1 --ak) 1/2

iiv/-1
k 1 m2,

where

1 ml--1 -m1+1 2 4 ml 112 45[Zk Zk + s[Zk Zk
rn sm((zl-1 z-ml+l)(nl Zk 1))

ak

[Zk[2--1 [Zkl2ml+2[Zk [2 " [Zk[-2--1 iZk[_2[Zk[-2ml-2 29e (zk-l (Zk-l)ml+l )Zk-

Proof. To derive the results we examine the eigenvalues ofUUk. Using the notation in
Theorem 5.4, we define the auxiliary vectors w(), k 1 m2

v:k uk>/llu (k> I1=, e 1 m 2,

w(k) (k) u(k) u(k)
rnl-1 (55"m1-1 + ml)/ll 112.

Exploiting the orthonormality of the first m 1 columns of Uk yields

( Iml-1 w(k) )UUg (wg))I 1

The characteristic polynomial Pk(.) ofUUk satisfies

(1 .)Pk()) (1 .)det(UffUi )Llml

Iml_ 0
-(w(g))H 1-,

w(k)
1-- )

(1 ’)/m1-1 w(k)
0 (1 .)2 (w(*))nw(t)

Thus,

(1 A)ml-I ((1 ,k)2 -IIw(k>ll).

Pk(.) (1 ))ml-2((1 ,)2 iiw()ll2).
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Consequently, the eigenvalues of UUk are one with multiplicity m 2 and

We obtain

IIUgll2 (max(l,)g,1, )g,2)) 1/ (1 + IIw()ll=) 1/=

iis;_lll= (max(l, Z,11, ,,))1/2 (1- IIw()ll=) -1/=
k- 1 m2.

It now remains to derive a formula for IIw<ll. From the definition of w(k) and Theorem 5.4
it follows that

m-I ml-2
u( 12IIw(k) l122 Z Iwk) 12 Ilu(k)II2(1/21ZUm1-1 + ml

.ql_ luk)l 2)
e=l e=l

1 ilu<gll-U(1/2, (k) 2 4 2 49e- (k)lUml-ll + 51UI S [Uml--1 ml

ml-1 -ml-bl 2 4 ml -m1121 Ilu< I1-= Iz z + Iz z
_4m((znl-1 Z;ml+I)(I ;ml)))5

By contradiction one can derive that zk . This and Iz, 1 makes Ilu<)ll computable
from the geometric series

ml

e=l e=l

Izl + Iz2l (Zkl) (,kzl)
e=l

Izl=- Izl2m1+2 Izl-=- Izl-2m1-2+
1 Izk 12 1 Izl -= 29te(ZZ

1- (Zk;1)ml+l )1 Zk;

which completes the proof. D
From Theorem 5.3 we derive the following asymptotic result.
THEOREM 5.6. Assume that

(22) At=ch, 0<c < 1, c>0,

and

Im2(l+em; 1 0< <(23) ml
b

awhere denotes the closest integer greater than or equal to -. In the limit m -+ o, the
m2 eigenvalues ofM-1A that are differentfrom one all reside on a curve Iz(?’)

(24) /z(y) 2- 2:1,, 2 + 2v/1 y2 2iy(1 + v/i y2), _4 < y _< 4"
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Proof. Define (k as

4"+’tC2’2’k k 1, m2.------ 2tel

By (22) we get

2hi 22 a-1(k
ch----l -+- )V2,k 2c-lml -+- Wk

where

(25) Wk m__z_X2 k.2ml

Lemma 5.1 together with (25) yields

w: g+(2’n m-z(1 + 2m))ml ml
k 1 m2.

By (23) m2 < m and m__z (1 + 2m < 4 yielding
ml

wt 6 g+(2 q) 6 g+(2m-z
ml

’(/))"

Now define

6 C-1 a-I -a 0 < &: < 1m + (km

which gives

(26) (k=26+i?’, -_<g<b.

For m >> 1 we have 0 < 6 << 1, and (26) combined with (18) and a Taylor expansion yields

z/ i(’/ V/1 + #) 2i6 ,/ -iv/1 ,ff + -- 0(62).

We obtain

(27) z/,oo lim z/ -// -iv/1- l/if,

For m sufficiently large there is a positive constant ct such that

Iz12 1-
46 -- 0(62) < ckm-1

Thus, we get IZkl 2ml ---, O, which together with (19) gives

(28) lim /x, 1 2z:, + 2izk,, k 1 m2.
m oo

By inserting (27) in (28) and exploiting the fact that -4) < ’t < 4), we conclude that
the eigenvalues of M-1A that are different from one all lie on the curve /z(y) defined
by (24).
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FIG. 1. Asymptotic spectrum (solid line) and eigenvalues (stars)for c 0.99, c 100, 4 0.99, and m2 505.

3

0.5 1.5 2 2.5 3 3.5 4

Fro. 2. Asymptotic spectrum (solid line) and eigenvalues (stars) for c 0.1, c 10, tp 0.99, and m2 505.

From Theorem 5.6 we see that when At is defined by (22), the eigenvalues stay bounded
and are well separated from the origin as the problem size increases. If time accuracy is
not required, as in steady-state computations, it is preferable to choose the time step almost
independently of the space step, i.e., c , 0. For time-accurate computations, the time step
should be almost proportional to the space step, i.e., c 1. In Figs. 1 and 2 we show how
well the asymptotic formula (24) agrees with the eigenvalues for large problems.

Numerical experiments show that cond2(WM-1A) grows rapidly with m2. However, in
Figs. 3 and 4 we note that the upper bound 0 of the condition number reduction is favorable.
For all values ofc and the spatial grid ratio tp examined, aP0 is less than 0.1 and decreases when
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FI6. 3. The bound Pofor c 0.99 and c 100. The solid line represents q 0.99, the dashed line b 0.75,
and the dash-dot line b 0.5.
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FI6. 4. The bound aPo for c 0.1 and c 10. The solid line represents q 0.99, the dashed line 0.75,
and the dash-dot line b 0.5.

the problem size increases. The conclusion is that the semi-Toeplitz preconditioner improves
the condition of the eigenvectors to the iteration matrix.

6. Convergence properties. In this section we determine the asymptotic convergence
factor p defined by

(29) p lim e/i
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where si is defined in (5). We enclose the asymptotic spectrum IX, defined in (24), in a circle
C(4, R) and use the general result from [10]. Here C(c, R) denotes the circle with center c
and radius R.

LEMMA 6.1. The circle (7(4, R), where R is defined by

R IIx(q-q)- 41 V/8 + 1242- 8v/1- 4,
encloses the asymptotic spectrum tx defined in (24).

Proof. Define r(y) as the distance between 4 and Ix(V). Then

r2 (- 2- 2yz + 2V/1 y2) :z + (2y(1 + v/1 y2))2

8 + 12yz 8v/1 ,2

and

d2rz 8
=24-t-

dy2 (1 /2)3/2

Hence, r2 obtains its maximum value at the endpoints, yielding r (?’) < R, which proves
the lemma. E]

< c < 4 the asymptotic convergencefactor p satisfiesTHEOREM 6.2. For 0

V/2 + 32 2V/1
p< <1.

2

Proof. For0 < 4 < we obtain8+ 1242 < 8+ 12. 8V/1- + 16 <

8v/1 4z + 16, and consequently /8 + 12q2 8v/1 4z < 4. Using Lemma 6.1 and the
general result in 10] yields

R V/2 + 3qz_ 2v/1 2
p<--= <1 13
-4 2

In Figs. 5 and 6 we display the asymptotic convergence factor as a function of q. In the
same figures we present the residual reduction/5, defined by

IIr(i)ll2
(30) p

llr() 2
for different problem sizes using generalized minimal residual (GMRES) 11 with 20.

Figs. 7 and 8 show the actual number of iterations obtained from rested GMRES(20)
for different problem sizes. The iteration has converged when llr(i)llz/llM-lbl 2 is less than
10-6"

From Figs. 5-8 we obsee that the convergence seems to depend only on the spatial
grid ratio and not on the number of uowns. Finally, in Figs. 9 and 10 we present the
thmetic speedup using GMRES(20) and the semi-Toeplitz preconditioner compared to the
unpreconditioned system (3). Clely, the speedup is lge for large problems, and it is also
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FIG. 5. The solid line represents the asymptotic convergence factorfor ct 0.99 and c 100. The residual
reduction is plottedfor ml 127 (dashed), ml 255 (dotted), and ml 511 (dash-dot).

FIG. 6. The solid line represents the asymptotic convergence factor for ct 0.1 and c 10. The residual
reduction is plottedfor ml 127 (dashed), ml 255 (dotted), and ml 511 (dash-dot).

greater than one for small problems. Notice that lowering @ yields a gain in speedup. We
conclude that the semi-Toeplitz preconditioner results in a significant improvement.

7. Conclusions. We have studied semi-Toeplitz preconditioners and minimal residual
iterations to solve block tridiagonal systems of equations. Analytical formulas for the eigen-
values and the eigenvectors ofthe preconditioned system are derived. It is numerically verified
that the eigenvector matrix to the preconditioned system is better conditioned than its unpre-
conditioned counterpart. We have also shown that in the limit rnd oo, the .eigenvalues ofthe
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FIG. 7. Number of iterationsfor a 0.99 and c 100. The solid line represents 4) 0.99, the dashed line
0.75, and the dash-dot line 4) 0.5.
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FIG. 8. Number of iterations for e 0.1 and c 10. The solid line represents 4) 0.99, the dashed line
0.75, and the dash-dot line 4) 0.5.

preconditioned system all lie on a curve. The eigenvalues stay bounded and are well separated
from the origin, independently ofthe problem size. From this eigenvalue distribution we derive
upper bounds of the asymptotic convergence factor. These bounds have been corroborated
numerically. Finally, we show empirically that the number of iterations does not grow when
we increase the number ofunknowns. This leads to a substantial arithmetic speedup compared
to the unpreconditioned system.
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7
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FIG. 9. Arithmetic speedup for t 0.99 and c 100. The solid line represents b 0.99, the dashed line
0.75, and the dash-dot line 0.5.
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FIG. 10. Arithmetic speedup for t 0.1 and c 10. The solid line represents 0.99, the dashed line
0.75, and the dash-dot line 0.5.
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ODE RECURSIONS AND ITERATIVE
SOLVERS FOR LINEAR EQUATIONS*

ALFRED A. LORBERt, GRAHAM E CAREYt, AND WAYNE D. JOUBERT

Abstract. Timestepping to a steady-state solution is increasingly applied in engineering and scientific applications
as a means for solving equilibrium problems. In the present work we examine the relation between the recursion
in timestepping algorithms for semidiscrete systems of ODEs and certain types of iterative methods for solving
discretized systems of equilibrium PDEs. We consider, in particular, the possibility of accelerating the ODE approach
using recursions that are not time accurate together with parameter selection based on the theory of iterative methods.
As one example, we take the parameters arising from the Chebyshev-type iterative methods anduse them in a two-stage
Runge-Kutta scheme. A comparison study for a representative steady-state diffusion problem indicates a dramatic
improvement in convergence and efficiency. We remark that this approach can be trivially incorporated into existing
time-integration codes to significant advantage. This yields a hybrid adaptive approach in a single code.

Key words, iterative methods, ODE solvers, Runge-Kutta, time-accurate solutions, steady-state solutions

AMS subject classifications. 65F10, 65L06

1. Introduction. It is well known that certain simple explicit integrators may be identified
with corresponding iterative methods in certain applications. For example, the forward Euler
integration scheme for unsteady diffusion can be easily related to the point Jacobi iteration
for the steady-state problem. The purpose of this study is twofold: first to investigate the
connection between the solution of systems of linear equations by iterative methods and the
steady-state integration of a related class of evolution PDEs by timestepping methods, and
second to exploit this relationship to accelerate the ODE approach by improved parameter
selection. This then permits an adaptive hybrid strategy in which either time accurate solutions
or steady solutions can be computed efficiently by changing parameters in a single algorithm
and code.

In engineering applications ODE integrators are increasingly being used to timestep a
linear or nonlinear ODE system to steady state. This may be done in two ways: values of
the solution may be obtained for intermediate time values that correspond to the actual phys-
ical solution at those intermediate times (time-accurate); alternatively, intermediate solution
approximations may be obtained that have no relation to the physical solution at actual inter-
mediate times (non-time-accurate). This strategy is not only convenient in the sense that the
same algorithm or code is used for both classes of problems, but, particularly for nonlinear
problems, the time-iterative algorithms may exploit the physics of the evolution problem to
produce a more robust algorithm 1].

The preceding remarks notwithstanding, it is more common tO obtain the steady-state
solution directly using a linear system solver. Iterative solvers are particularly attractive for
large-scale systems arising from discretized PDEs. The iterates produced by such solvers can
be compared with intermediate solution approximations produced by the ODE recursion. Of
course, usually the iterates do not correspond to time-accurate solutions, though they may for
some iterative methods and problem classes. For nonlinear ODE problems, iterative linear
solvers may be used to solve linearizations of the ODE problem at incremental steps toward
the steady-state solution (see, e.g., [3]). Similarly, continuation techniques may be applied to
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part by the Department of Energy through grant W-7405-ENG-36, with Los Alamos National Laboratory.

tCFD Lab, WRW 111, The University of Texas at Austin, Austin, TX 78712 (aal@cfdlab. ae. utexas.
edu).

tLos Alamos National Laboratory, Los Alamos, NM 87545 (wd @ lanl. gov).

65



66 ALFRED A. LORBER, GRAHAM E CAREY, AND WAYNE D. JOUBERT

general nonlinear (or linear) problems by embedding them within a nonlinear ODE problem
and applying ODE solvers. In such cases, the continuation parameter can be interpreted as a
"time-like variable" for the associated nonlinear ODE.

The theory of ODE solvers has mainly focused on issues of accuracy (with respect to
time), stiffness, and stability. The interest in timestepping the transient problem to get a
steady-state solution is relatively little studied in its own right, but is being increasingly used
(particularly in engineering computations for nonlinear problems with complex physics where
different rate processes may occur and this feature can be exploited [5]). On the other hand,
there is an extensive theoretical foundation on iterative methods (see, e.g., [17], [18], [20]).
This includes analysis of convergence behavior, stopping tests, and other properties of the
various iterative methods. More importantly, in the present context, it provides an analysis of
parameter selection for"parameter-dependent" methods such as Chebyshev and for adaptively
selecting relaxation factors. These analytical results can be exploited to derive improved ODE
recursions as shown later. Moreover, an existing ODE scheme can be easily modified to a
hybrid form that permits faster steady-state solutions through appropriate parameter selection.
These ideas are similar to those used with ODE exponential fitting methods. This also implies
that in a given calculation the parameters can be adapted so that, for instance, the early transient
is computed time-accurately, then the steady state is computed using a local time-inaccurate
scheme with appropriate parameters, and finally the transient "off-design" behavior can be
examined time-accurately.

The outline of the present paper is as follows: in 2 we consider a simple class of linear
evolution equations and give the exact integral solution involving the exponential matrix.
This motivates the discussion of time-accurate and steady-state behavior. The problem of
integrating semidiscrete ODE systems of this form is then introduced and several standard
ODE methods are listed together with a brief discussion of approximations of the exponential.
Using these properties, the relationship between the ODE recursion and iterative schemes is
examined in 4 and 5. In particular, we list here a number of different iterative methods and
identify corresponding ODE recursions. The special case of polynomial preconditioners and
Chebyshev-type methods follow in 6. A modified Runge-Kutta scheme is then developed
using the Chebyshev iterative parameters and applied to a diffusion problem in 7 and 8.
This demonstrates the main ideas and indicates the value of this new hybrid approach.

2. Evolution equations. To motivate the approach let us begin with the simple time-
dependent problem

(1) u’(t) f (t) A(t)(u(t)) =_ R(t, u(t)), > O, u(O) uo.
Here, u lI+ V, and A + x V V is a linear or nonlinear operator for some linear
space V (see [14]). When f and A are independent of t, then the steady-state solution of (1)
is defined by u’ R (., u) 0.

In the case when A is linear and satisfies certain standard conditions, the solution to (1)
is given uniquely by

(2) u(t) e-Atuo -t- e-As f(t s)ds.

If furthermore f is independent of time and the integration.is successful, then the solution can
be simply expressed as

(3) u(t) uo -1- A-I[I e-at](f Auo).

If we introduce the residual r(t) =_ R(t, u(t)) in (1), then (3) can be rewritten equivalently as

(4) u(t) uo -1- A-l[1 -e-at]r(O),
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which implies

(5) r(t) e-Atr(O).

For this case, when A is nonsingular with eigenvalues having positive real part, then as
--> X), e-at ----> O. Thus u(t) ---> uo + A-lr(0) u0 -+- e(0) u, where u denotes the

solution to the steady-state problem and e() denotes the initial error e() u0 u measured
relative to the steady-state solution. Furthermore, setting tn and Atn tn tn-1 for a
timestep in (3) and (5), we obtain

(6) U(tn) U(tn-1) 21- A-i[I e-AZXt"](f Au(tn-))

and

(7) r(tn) e-AZXt"r(tn_l).

Hence a discrete set of values {U(tn)} can be computed using (6). As n --+ cx the sequence
converges to the steady-state solution u. Similarly, the residual sequence {r(tn)} converges
to zero. For illustrative purposes we have selected a problem that can be integrated exactly
(although in computation the exponential operator would still need to be evaluated, possibly
by a Pad6 approximation), and A- appears on the right side. This result serves to motivate
our approach.

Thus, the incremental time-stepping recursion (6) may be viewed as a form of iterative
method that converges to the steady-state solution "u A-if as n ---> cxz. Obviously, the
process is "time exact" in the sense that computed intermediate values {u (tn)} are precisely the
transient solution of the evolution problem at corresponding times {t’, }. In practice, the system
(1) is integrated approximately in which case the ODE integrator generates a sequence of
approximations Un to u(t’,) with corresponding residuals r’,. If the timestep At,, is sufficiently
small, then u’, u(t’,) with u(t’,) u’, + O((At)p) where p is the order (p 1 for a
first-order-in-time scheme, etc.). Different numerical schemes may be used and these would
lead to different classes of recursions for an iteration to compute an approximation to u. Of
particular interest is the case where V is finite dimensional, so A is a matrix. This is frequently
the case for approximate solution of PDEs.

The convergence of these integration schemes toward u may be improved by relaxing
the requirement of time-accuracy and increasing the size of the timestep. Certain stability
conditions on the timestep still may apply, but even these may be "occasionally" violated
during the recursion without destroying convergence. In fact, different local timesteps may be
taken for the components of a vector u(t). The method is no longer an ODE integrator in the
usual sense but can still be viewed as an iteration for u. Standard iterative methods for solving
systems are not developed in this way. Nevertheless, the approach of time-stepping to a steady
state and related ideas in continuation theory are extensively used in engineering practice with
considerable success. Part of the focus of the present work is the relationship between the
corresponding iterative recursions obtained by these approaches. From this relationship we
show by means of an example with RK integration how iteration theory can be exploited to
obtain faster convergence from the time-stepping recursion.

3. ODE solvers. Let us now consider some specific classes of methods for solving (1).
We construct approximations {ui of u at the times {ti }, where 0 to < tl < in"" 0.

Standard ODE solvers attempt to determine ui by using approximate values of u at previous
times, as well as evaluations of R(., .). ODE solvers may be classified as follows (e.g., [19]).
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by
First, set Ati At as a constant "parameter." The linear multistep methods are defined

(8)
kl k2

ZOliUn_i AtZie(tn_i, Un_i

i=0 i=0

for some kl, k2, and for t0 0. The method is an explicit method if and only if/30 0. This
method can be easily generalized to cases where not all Ati are the same. If all ci are zero
except ct0 and one other, then numerical quadrature rules may be used in order to construct
a specific method, such as the forward Euler scheme u,, u,,-1 + (At)rn-1 or, in terms of
residuals, rn (I AtA)rn_l. On the other hand, if only one/i is nonzero, numerical
differentiation formulas may be employed. Note that in order for the method to be exact when
u is (pointwise) constant independent of time, we must have Ct 0.

A second well known class of methods, which we consider in more detail later, is the
Runge-Kutta (RK) family, which can be expressed in the form

(9a) un Un-1 -- biKi,
i=1

with

(9b) Ki AtR tn_ -[-C At, Un_ -1- aijgj
j=l

where ci j-11 aij (cl 0), and s is the number of stages in the method. The coefficients
bi and aij are chosen so that the coefficients of the increasing powers of At in a Taylor series
expansion of the fight- and left-hand sides of (9a) agree exactly up to a desired order. Under
reasonable assumptions, this means that a certain order of accuracy is obtained as At $ 0.
Other properties are of interest as well, such as the behavior of the method if At is too large:
a method is said to be unconditionally stable if ui -- u as o, for any u0, regardless of
the size of At.

Now let us briefly review some familiar forms of these methods for the case where f
and A are constant (for later convenient comparison with corresponding iterative methods, we
express these directly in terms of the residuals):

(10)

forward Euler rn [I (AtA)]rn- 1,

backward Euler rn [I + (AtA)]-lrn_l,
Crank-Nicolson rn [I (-A)][I + (__At A)]-lrn_l

(AtA)2]rn_Runge-Kutta second order rn [I (AtA) +
(AtA)2 (AtA)3]rn_l,Runge-Kutta third order r [I (AtA) +

(AtA)3Runge-Kutta fourth order rn [I (AtA) + 1/2(AtA)2 g
-t-4 (AtA)4lrn_l.

It is common to investigate these schemes from the standpoint of stability: if rn
g(AtA)rn-1, then r 0 as n o is assured if Ig(AtZi)l < 1 for each eigenvalue
.i tr(A). This analysis is valid as long as g is a rational function. Instead of beginning

1Here, we give RK methods in which the order p is equal to the number of stages s. In general, p < s.
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with a method and then determining where Igl < 1, an alternate approach is to use the
spectral properties of A to determine better coefficients for the method. This approach will be
considered later in this study.

Each of the above examples in (10) can be identified as an approximation of the form
rn "-- e-Atarn-1 for (7). Specifically, we seek approximations of the exponential of the form

(11) e-AAt I AGzxt

(or GAt A-I[I e-AAt]) for some computable operator GAt. Then

(12a) rn [I AGAt]rn-

or

(12b) Un Un-1 + GAtrn-1.

These ideas can also be related to the Pad6 approximations of the exponential by rational
functions. Similar concepts arise in semigroup theory (e.g., see [14]).

The backward Euler and Crank-Nicolson schemes in (10) are implicit and unconditionally
stable for all At: in this case we can consider At --+ cxz in (11) and (12) so that GAt then
approximates A-1 The other schemes are explicit and there is a maximum possible stepsize
At for stability. Usually, the approximation Gzxt is constructed to give the highest possible
accuracy in the sense ofasymptotic rate with respect to At, and within a given class ofmethods.
However, the size of the stability region will also vary with the GAt form chosen.

4. Iterative solvers and ODE integrators. Iterative linear solvers involve recursions
and hence have a similar structure to the ODE recursions above. When solving linear equa-
tions directly by iterative methods, an approximation of zero in (11) is sought instead of an
approximation to the exponential. That is, for linear iterative solvers an operator Fn analogous
to Gzxt in (12) is needed such that the approximation I AFn "-- 0 holds in some sense. In
this case, since rn [I AFn]rn- and rn _< I AFn I[" rn_ II, making III AFn small
in turn makes IIr small. We then obtain an iteration process defined by

(13) Un Un-1 -t- Fnrn-1,

which can be compared with (12). An alternate formulation is obtained by writing Un
u,-I + K,,c, where the columns of Kn are a basis for some space and c,, is chosen so that u
is as close to u as possible [8].

It is clearly desirable that Fn be an approximation of A-1 in some sense. The most simple
choice is Fn I, leading to the basic iterative method

(14) u, Un-1 -1" rn-1.

Clearly, the more A departs from the identity, the worse the choice of F I, so while
this choice is simple and obviously inexpensive, we anticipate that convergence of (14) may
be slow. Other choices of Fn that lead to faster iterative schemes are possible, leading to
various combinations of preconditioners with iterative acceleration techniques. Examples of
these will be discussed in the next section. In fact, an important issue is the selection of
parameters to accelerate convergence, and this is central to the current work. In fact, drawing
a relationship between ODE solvers in (12) and iterative solvers in (13) immediately suggests
two avenues for the development ofimproved methods. First, ODE solvers may be modified to
give the steady-state solution faster by abandoning time-accuracy and making the best choice
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ofparameters for accelerating convergence to the steady state rather than embracing accuracy.
Second, iterative linear solvers may be modified to give time-accurate intermediate solutions
by modifying the given solver to approximate the exponential instead of approximating zero.
In each case, the result is a "hybrid" solver with software that can provide both time-accurate
evolution solutions and efficient steady-state solutions.

WhenA is linear and independent oftime, a linear solvermaybe preferable for determining
the steady-state solution. However, when A is nonlinear or dependent on t, it may be more
desirable to use ODE recursions to get the steady-state solution, since the predictability of the
solution based on a linearization of A ht the current time is more tenuous. In fact, in some
applications an artificial transient term is added to convert the problem to a time-dependent
ODE form that can then be integrated to steady state.

5. Polynomial methods and recursion equivalence. In this section we describe some
specific relationships between iterative linear solvers for matrix A and ODE solvers that lead
to an approach for parameter selection. This discussion is loosely based on the summary of
iterative linear solvers in [8]. We remark, however, that our analysis applies to more general
operators A.

An effective choice of the operators F or G is given by a polynomial in the matrix
A. Linear solvers of this class are known as polynomial or Krylov subspace methods. A
generalization of this is the class of preconditioned polynomial methods: for some matrix
Q that approximates A, we let F qn- (Q- A) Q- 1, Likewise, left, right, or two-sided
preconditioning could be considered by using F Q- qn- Q- AQ Q- for appropriate
QL and QR where Q-IAQI [.

The most fundamental polynomial method for solving linear equations is the extrapolated
basic iterative method, for which F cI, for some c. Typically, ot is chosen to minimize the
spectral radius of I AF I cA. The recursion for this iterative linear solver is identical
to that for Euler’s ODE scheme, where F G with the timestep given by At or. The
method with ot 1 is simply referred to as the (unextrapolated) basic iterative method.

The extrapolated basic iterative method may be coupled with preconditioning by writing
F ot Q-. Of course, the resulting iterative method does not generally now yield time-
accurate solutions. It can be interpreted as yielding time-accurate solutions with Euler’s
method for a modified ODE where the operator A is replaced by the operator A Q-1 with f
replaced by Q-if and again At c. For example, let us decompose A into diagonal and
strictly lower and upper triangular parts as A Ao + AL + Au, and set Q Ao. For
ot 1, Jacobi’s method for solving linear equations is obtained. When ot is varied from
1, then a relaxation form of the Jacobi iteration is obtained. More generally, if Q f2
where f2 is diagonal, the iterative method can be interpreted as corresponding to the use of a
modified Euler method in which different timesteps are used at different points in the physical
domain.

When the basic iterative method is applied with a preconditioning of Q Ao + Az,

then the SOR method is obtained, with the special case of w being the Gauss-Seidel
method. As pointed out in 17], this method also is equivalent to a first-order, time-accurate
method for the operator A1A, where w is interpreted as the timestep and is chosen to be near
zero. The ad hoc SOR method [4] employs different values of o9 at different grid points in
the mesh. This can be expressed in the form Q f2-Ao + A where f2 is diagonal and
can also be seen to give time-accurate solutions for the operator (f2/At)A91A, where At is
the timestep. Conversely, this scheme can be interpreted as an ODE-type method that is not
time-accurate for operator A and that uses varying timesteps for different components; i.e.,
for the PDE problem this would correspond to local timesteps at different parts of the physical
domain. Similarly, chaotic relaxation techniques [2] may be viewed as an extreme form of
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ODE scheme that applies timesteps at various locations in the physical domain according to
some ordering, yielding solutions, which, in general, are not time-accurate.

The SSOR preconditioner a _(ao + aL)a91(ao av) used with the basic
iterative method also corresponds to a first-order, time-accurate method applied to operator
AIA, using timestep a(2 o); again, a must be chosen near zero to give good time-
accuracy. Furthelxnore, when A is a property-A matrix [18], the incomplete Cholesky and
modified incomplete Cholesky preconditioners have the same form for Q, except that Az
is replaced with a diagonal matrix of the pivots; this preconditioner with the basic iterative
method may again be interpreted equivalently as an ODE solver that uses different timesteps
over a spatial discretization of a physical domain.

Other preconditioners can be interpreted similarly in the context of ODE solvers; for
example, 17] describes the relationship between the Peaceman-Rachford preconditioner and
the Crank-Nicolson method. Similarly, the ADI solvers may be related to operator-split ODE
integration schemes. Finally,. multigrid methods may be used as linear solvers by seeking
appropriate multigrid approximations of zero, while the work by Jesperson [7] may be seen as
an attempt to form multigrid approximations to the exponential. Pardhanani 11 has developed
similar multigrid schemes for semidiscrete ODE systems.

6. Polynomial methods to enhance ODE solvers. The purpose of this section is to
explore new ODE-type methods that may be derived using known results on polynomial ap-
proximations. Following [8], polynomial methods for solving linear equations may be divided
into two categories" Chebyshev-type methods, for which the polynomial qn-1 is independent
of r0 and is usually based on the theory of polynomials in the complex plane, and conju-
gate gradient-type methods, for which q,,_l is based on r0, typically through inner-product
information. A third class of hybrid or adaptive methods mixes the approaches, usually to
supplement the Chebyshev-type method with spectral estimates for A from the conjugate
gradient component of the algorithm.

Chebyshev-type methods generally attempt to make P(z) 1 zqn-1 (z), for z complex,
approximate zero on some E tr(A) (the spectrum of A), or alternatively on its boundary
0 E. The approximation is usually done either in the norm (preferable) or the 2 norm. A
wide range ofmethods has been developed for this problem. Ofparticular interest are those for
which E is an ellipse. Here, if an ellipse containing tr (A) can be described, a corresponding
P (z) may be determined that is parameterized by variables that describe the ellipse. This is
done in 7.

Similarly, many Chebyshev-type methods may be modified immediately to approximate
e-tz instead of zero on E or 0 E, yielding new methods for obtaining time-accurate ODE

le-ZXtzsolutions. In particular, we may minimize supzez (I zF(z))[, where F is a poly-
nomial and tr(A)

___
E c_C_ \ {0}. This approach corresponds to constructing iterative linear

equation solvers of the Chebyshev type for which SUpzez I(I zF(z))[ is minimized. This
technique has the advantage over conjugate gradient-type methods in that it requires fewer
inner products, which may be advantageous on certain parallel computers. A more general
Chebyshev-type approach is to minimize some other norm of the function e-Atz (I zF(z))
over E, such as a least-squares norm.

On the other hand, conjugate gradient-type methods for solving Au f can be viewed
as a special case ofprojection methods, defined by the relations

(15) Un E Uo d- Rn, en Un U .J.. L
for some linear spaces Ln and Rn. When L,, BRn for some matrix B and, furthermore,
if B is Hermitian positive definite (HPD), then the orthogonality condition causes Ile Ila to
be minimized, where o I1 /o*Bo. To find time-accurate solutions to the ODE problem,
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(15) may be generalized to

(16) Un E uo + Rn Un u(t) -A-l[rn e-Atro] _]_ Ln.

Again, if Ln BRn for HPD B, then IlA-l[rn r(t)]llB is minimized
Letting Ln and R,, be matrices whose columns form a basis for L and R, respectively,

we obtain from (16) and (4)

(17) Un Uo q" Rn[LRn]-ILA-I[I e-at]ro

Unfortunately, the quantity L,]*A- e-atro typically is notknown; thus, it mustbe approximated,
e.g., by replacing A in e-at with a projection of A available from the method.

When the method is a polynomial method, Rn K(ro, A) =- span{Airo}i=o,n-1 which is
the Krylov space. Two important choices of Ln are Ln A*AKn (ro, A), which gives rise
to the GMRES linear solver and related methods, and Ln A* gn(O, A*), (0 r0), which
gives rise to the biconjugate gradient method and related methods.

We now derive a time-accurate ODE solver based on the biconjugate gradient approach.
The biconjugate gradient method generates matrices Rn and Rn A-*Ln whose columns
form bases for K,,(ro, A) and Kn (0, A*), respectively, such that RARn D is diagonal and
~, 2RnA R,, T, is tridiagonal. Let us assume that R, Rn_l v and/ [/n--1 n
for each n. Using the approximation D-1 A(A) Rn (D-1Tn)i, > 0 (which is exact

when < 2 or when R,, and/n are square and nonsingular), we obtain

Un uo + RnD ~* -1 z-le-ztRnA[Z ]z=aRne
(18)

uo + R[z-1 z-le-zt]z=O;r,el

for some/3 0, since R,el is proportional to r0. This algorithm may be implemented
by evaluating the analytic function [z-1 z-le-zt] applied to the matrix D;IT,, using, for
example, a Jordan decomposition ofthe matrix. The result is a biconjugate gradient-type ODE
solver for obtaining time-accurate solutions. Similarly, in [6] a time-accurate ODE solver is
developed based on the GMRES approach.

It should be noted that these different approaches, whether Chebyshev-type or CG-type,
can be modified so that the polynomials generated yield higher-order ODE solvers. This can
be done by putting constraints on the derivatives of the polynomial P, at zero. The inverse
problem of adapting a time-accurate ODE integrator to an improved iterative recursion may
also be addressed. In the next section we consider this approach for the RK ODE schemes
and then apply the resulting scheme in a numerical experiment.

7. A modified RK scheme. In this section we construct a RK ODE recursion based
on applying ideas from iterative linear system solvers to the problem of finding steady-state
solutions to a (possibly nonlinear) ODE. Using the notation introduced in (10), the two-stage
RK methods for constants A and f can be conveniently expressed as the residual recursion

(19) rn g(AtA)rn-1,

where

(20) g(AtA) I ,I(AtA) + ,2(AtA)2.

Comparing (19) and (20) with (9) for s 2, we have 1 bl -+- b2 and y2/b2 c2 a2 (see
also 13]).
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FIG. 1. Stability region." second-order, two-stage RK, and the associated boundary of (elliptical region)

respectively,Second-order accuracy is obtained when ?’1 and ?’2 are set equal to 1 and ,
and the RK2 scheme in (10) is recovered. If instead we set only ?’1 1 and allow ?’2 to be free,
the resulting scheme is only first-order accurate. However, ?’2 can now be chosen to enhance
convergence to the steady state and thereby create an improved iterative recursion. The idea
extends immediately to higher-order RK formulas and. to other methods.

For a method of given order, the size of the timestep, and hence the effectiveness of an
ODE integrator, can be measured by analyzing the stability domain of the method. In 3, we
saw that stability is assured if Ig(At,ki)l < for each eigenvalue )i or(A). That is, the
stability domain corresponds to the region in the complex plane (Re (At)), ilm (Ate.)) for
which Ig(At))l < 1.

The stability domain for the second-order scheme above (?’1 1, ?’2 ) is shown in
Fig. 1. Here, we have plotted the contours Ig(()l .1, .2 1 in the upper-half complex
plane. If instead only ?’1 is specified, then ?’2 can be chosen to increase the size of the stability
domain. This, in turn, may lead to a larger stepsize and accelerate "convergence" of the
recursion to the steady state. Moreover, in view of the correspondence noted in 5, we can
appeal to parametric selection criteria from the theory of iterative methods to determine an
optimal value of ?’2.

Here, we investigate selecting values for ?’z based on the properties of Chebyshev-type
polynomial iterative methods discussed in 6. These methods were seen to maximize residual
reduction per iteration on E or(A) as measured by a suitable norm. To produce iteration
polynomials Pn (z) with characteristics similar to those of the RK methods being considered,
we choose Chebyshev-based iteration polynomials for which E is an ellipse passing through
the origin and centered at coordinate (d, 0) with foci at (d 4- c, 0). These iteration polynomials
are given by

(21) P,,(z)
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FIG. 2. Boundaries ofelliptical domains E and corresponding }/2 for representative values ofd and c.

where c can be either pure real or pure imaginary 10]. Here n is the degree of the polynomial
and Tn are Chebyshev polynomials of the first kind. For the two-stage RK example considered
here, the quadratic Chebyshev polynomial is

(22) Tz(z) -1 + 2z2,

so that in (21)

4dz 2z2
(23) P2(z) 1- +

-c2 -]-- 2d2 -c2 -k- 2d2"

Since we want the polynomial g in (20) to correspond to the iteration polynomial in (23),
this implies

4d 2
(24) ],1

-c2 -!-- 2d2
and ],2

-c2

__
2d2

in (24),For instance, for the second-order scheme (10) with ],1 and ],2

(25) d 1, c +i

Obviously, substituting for c and d in (23) and sketching the level contours of P2(z) again
yields the plot in Fig. 1. Note that as expected, the stability domain contains the elliptical
domain E with center and foci defined by (25) and sketched in Fig. 1.

If, instead, the desired accuracy is relaxed to first order by setting ]’1 1, then (24)
generates an alternative method for selecting ],2. We then have

1
(26) c -l-v/2d (d 2) and ],2

where d may be chosen based on knowledge of cr (A). A set of ellipses corresponding to
representative values of d and c are sketched in Fig. 2. The ellipses are defined for values of
d between 0 and 4 and, in general, as d increases the ellipses become increasingly elongated
in the positive real direction. At d 0, c 0 and the ellipse degenerates to a point. For
0 < d < 2, c is imaginary and the semimajor axes are parallel to the imaginary axis. At
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d 2, c 0 and the ellipse is a circle. For 2 < d < 4, c is real and the semimajor axes are
parallel to the real axis. At d c 4, the ellipse degenerates to a slit of length 8. Increasing
d beyond 4 generates ?’2 values for which the stability regions have a detached lobe. Hence d
(and therefore ?’2) can be selected to accelerate convergence for a given class ofproblems. This
is illustrated in the next section for a representative diffusion problem. Since the eigenvalues
are real and positive for this problem, the coefficients c, d may be chosen so that the ellipse
is stretched along the real axis. For example, let us choose d 3.97 for which c 3.95. This
should produce a stability region enclosing a highly elongated ellipse centered at (3.97, 0),
extending to (7.93, 0). The resulting stability region is indicated in Fig. 3, and we see the
expected shape is obtained. Since the domain is significantly extended in the x-direction,
these coefficients should give excellent convergence results for systems whose eigenvalues
are purely real. Indeed, since the domain is nearly four times longer along the x-axis than that
for the second-order scheme in Fig. 1, we can increase the timestep accordingly and would
expect a near fourfold acceleration in convergence to the steady state for such problems. Note
that in order to produce stability regions that extend in the imaginary direction, imaginary
values of c can be used, as was seen in Fig. 2 for 0 < d < 2. If there are pure imaginary
eigenvalues, then part of the imaginary axis should be contained in the stability region. This
can be accomplished by selecting parameters ?’1, ?’9‘ based on the Van der Houwen polynomials
rather than the Chebyshev polynomials 12], [16]. Finally, Faber polynomials can be used to
enclose domains of arbitrary shape 15]. Next we demonstrate the effectiveness ofthe stability
region shown in Fig. 3 for a representative diffusion problem.

8. Numerical example: Diffusion to steady state. As a numerical example, we use the
two-stage RK scheme to solve the model diffusion problem

U
(27) --=-Au on f2 [0,1] x [0,1]

Ot

with u 0 on sides x 0, 1, y 0 and u 100 on side y 1. The RK scheme used is given
by (9) with s 2, bl 0, b2 1, and c2 a21 ?’9. where the values of bi have been chosen
to enhance vector computations [9]. For spatial discretization we use second-order, central
differences over a regular, uniform 41 x41 grid. The initial iterate corresponds to u 0 in
the interior. The timestep is determined using a linear von Neumann stability analysis, which
gives Atmax .5d/(- + +), where Ax Ay .025 for this problem and (d, 0) is the
coordinate of the center of the associated ellipse.

The convergence histories for the residual iterates are compared in Fig. 4 for the second-
order accurate scheme and the first-order accurate scheme with d 3.97 (?’2 .1260) in
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FIG. 4. Convergence historyfor a diffusion equation. Standard and modified two-stage RK 41 x 41 grid.

the Chebyshev-based method. It is seen that the Chebyshev-based parameters provide the
expected fourfold improvement in the convergence rate.

9. Concluding remarks. As the above diffusion example indicates, the use ofparameters
chosen from iterative theory for Chebyshev-type methods produces a dramatic improvement
in the convergence behavior for a representative two-stage RK scheme. These ideas are
currently being extended and applied to nonlinear viscous flow applications and preliminary
results have been excellent [9]. We remark, however, that some care should be exercised
with regard to the nonlinear problem when multiple steady-state solutions arise. Clearly,
choice of a scheme that is not time-accurate does correspond simply to an iterative recursion
and there is no guarantee that a specific desired steady state will be obtained rather than
another valid solution state. There are now numerous instances in engineering analysis where
timestepping to a steady state is being advocated over other solution strategies. The present
approach exploits parameter selection based on the equivalence to iterative recursion and the
choice of best iteration parameters. This may accelerate the convergence of the recursion
significantly as seen here. It is easy to "retrofit" the timestepping code to this form. Moreover,
simply by use of a logical flag the algorithms may be selected for time-accurate analysis
or faster convergence to steady state. In some situations it may even be desirable to use a
hybrid scheme in which the early transient behavior is first monitored using the parameters
corresponding to the high-order time-accurate scheme and then the parameters adaptively
changed to correspond to the time-inaccurate recursion for fast steady-state solution. Of
course, it is also tacitly assumed that a steady-state solution exists. Problems with periodic
unsteady solutions must be accommodated using time-accurate integration. Finally, we remark
that the approach here can be applied by introducing artificial transient terms for equilibrium
equations and in conjunction with nonlinear continuation techniques. Conversely, in some
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instances it may be possible to modify an iterative solver and code to generate time-accurate
transient solutions.
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SOLUTION OF DENSE SYSTEMS OF LINEAR EQUATIONS
IN THE DISCRETE-DIPOLE APPROXIMATION*

JUSSI RAHOLAt

Abstract. The discrete-dipole approximation (DDA) is a method for calculating the scattering of light by an
irregular particle. The DDA has been used, for example, in calculations of optical properties of cosmic dust. In
this method the particle is approximated by interacting electromagnetic dipoles. Computationally the DDA method
includes the solution of large dense systems of linear equations where the coefficient matrix is complex symmetric.
In this work, the linear systems of equations are solved by various iterative methods. QMR was found to be the best
iterative method in this application. It converged in only a few more iterations than the full generalized minimal
residual (GMRES) method. When the discretization of the particle was refined, the number of iterations remained
constant even without preconditioning. The matrix-vector product in the iterative methods can be computed with
the fast Fourier transform or the fast multipole algorithm. These algorithms make it feasible to solve dense linear
systems of hundreds of thousands of unknowns.

Key words, electromagnetic scattering, system of linear equations, iterative methods, fast multipole method
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1. Introduction. Light scattering calculations are widely applied in the astrophysics
community. In many applications, it is necessary to be able to compute how an irregular dust
grain scatters light. The scattering of light by individual dust grains seems to explain the
optical properties of atmosphereless solar system bodies, such as the moon. This application
of scattering calculations is described, for example, in Lumme and Rahola [20].

Purcell and Pennypacker [22] developed a method to compute the scattering of light by
a particle of any shape. This method was later refined by Draine [7], who also called it
the discrete-dipole approximation (DDA). The DDA is a rather crude way to discretize the
integral equations that govern scattering. However, the DDA seems to work well in practice.
The considerations for solving linear systems given here are not limited to the DDA, but apply
also to other formulations of scattering calculations.

TheDDA leads to a system oflinear equations with a dense complex symmetric coefficient
matrix. In previous studies, this system was usually solved by the conjugate gradient method
applied to the normal equations. Lumme and Rahola [20] applied the quasi-minimal residual
(QMR) method [13] to this problem and obtained a gain in performance.

The most time-consuming part in any iterative method for dense linear systems is the
matrix-vector product. In the DDA algorithm, Goodman, Draine, and Flatau [16] showed
how the fast Fourier transform (FFT) can be used in computing the matrix-vector product
in some regular cubical geometries. Another fast method for computing the matrix-vector
product is the fast multipole method [23], 17], [4], which we will apply to the DDA problem.

In 2, we will give the equations governing scattering and will review some of the prop-
erties of the coefficient matrix. In 3, several iterative methods will be tested. Section 4
describes various methods of computing the matrix-vector product. Section 5 shows how the
fast multipole algorithm can be applied to the DDA problem.

2. The scattering equations. In the DDA, the scatterer is approximated by interacting
electric dipoles in an incident electromagnetic plane wave field that propagates with wave
vector k and wave number k Ikl. A harmonic time dependence exp(-icot) is assumed. The
dipole moments Pi and thus the electric fields Ei radiated by the dipoles are unknown.

*Received by the editors May 20, 1994; accepted for publication (in revised form) December 15, 1994.
Center for Scientific Computing, P.O. Box 405, FIN-02101 Espoo, Finland (Juss +/-. Iaho_a@csc. f+/-).
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FIG. 1. An example ofa pseudosphere where a number ofparticles have been removed.

At each dipole position ri, the electric field is determined by the incoming field E/
E exp(ik, ri) plus the field radiated by the other dipoles. Thus the electric field at the dipoles
can be solved from

Ndip

(1) Ei E/ + k3ot Tij" Ej, 1 Ndip,
ji

where c is the polarizability of a single dipole. Each dipole is thought to represent a spherical
volume of radius r0. The polarizability of the dipole is connected to the index of refraction
of the particle rn and the dimensionless size parameter xo kro as given in [20]. The dipole
interaction tensor (or dyadic) is given by

eipiJ
2

eipiJ
Tij + ipij 1)1 + (-Pi 3ipij + 3)

(2). p3ij toij rijrij,

Dij klri rj l,

where I is the unit dyadic and fijfij is the symmetric dyadic formed from the interdipole unit
vectors fij (ri rj)/lri rjl.

The DDA is also called the coupled dipole method or the digitized Green function method.
It can also be derived from a volume integral equation describing scattering. In 19], the DDA
is compared with another computational technique, the method of moments, which better
estimates the effect of the singularity of the free space dyadic Green function.

In our calculations, the two main geometries for the dipoles were a pseudospherical
cluster of dipoles or a particle generated by the diffusion-limited aggregation process. The
pseudospheres are generated by taking all the dipoles in a regular lattice that are within a
given radius from the origin. An example of a pseudosphere from which a number of particles
have been removed is given in Fig. 1. The diffusion-limited aggregation process builds fractal
clusters by a three-dimensional random walk. A sample particle is given in Fig. 2.
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FIG. 2. A particle generated by the diffusion-limited aggregation process.

The equations (1) form a system of linear equations in the unknowns Ei where the coef-
ficient matrix is complex symmetric. The right-hand side vector is given by the incident field
E/. The coefficient matrix is full as each dipole interacts with all the other dipoles.

If we have Ndip dipoles, the system of linear equations has 3Ndip unknowns, because we
need to determine the components of the electric field in the x, y, and z directions. When
calculating the scattering of light by particles a few microns across, we typically need 1000-
100,000 dipoles, giving rise to huge linear systems.

The spectrum of the matrix is shown in Fig. 3. Note that most of the eigenvalues lie on a
line segment. This fact will be important in analyzing the convergence of iterative solvers.

3. Comparison of iterative solvers. A modem recipe for solving dense linear algebra
systems is given by Edelman in his survey [8]: use a preconditioned iterative method that ac-
cesses the matrix only by matrix-vector multiplication and look for fast approximate methods
for computing the matrix-vector product. Thus iterative methods can be used not only with
sparse matrices but also with dense matrices. Actually, for very large dense problems, iterative
methods are the only plausible solution methods. For an introduction to iterative methods,
see 14].

In this work, several iterative methods were implemented and tested. The convergence of
these methods depends on the geometry of the dipoles, the index of refraction m, and the size
parameter x0. The following methods are used: QMR, GMRES, conjugate gradient applied
to the normal equations (CGNR), biconjugate gradient (BCG), conjugate gradient squared
(CGS), and biconjugate gradient stabilized (BiCGStab). These methods belong to the family
of Krylov-subspace methods, which access the matrix, ttu’ough matrix-vector multiplications.
For a description of the methods, see 1 ]. We used the complex symmetric versions of QMR
and BCG, which only need one matrix-vector multiplication per iteration 13]. Figure 4 shows
the convergence of these methods in a typical small problem. The horizontal axis shows the
number of matrix-vector products so it is roughly proportional to the CPU time. In the figure,
the memory length of GMRES was 20.
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FIG. 4. Convergence ofvarious iterative methods.

In bigger systems, CGS had trouble converging, and the residuals of BCG started to
oscillate. CGNR was slower than the most efficient methods roughly by a factor of four.
Figure 5 shows a comparison of QMR with GMRES using several memory lengths and with
full GMRES. The different GMRES versions are converging with a linear rate after an initial
sublinear phase. The full GMRES and QMR seem to find a superlinear rate of convergence,
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FIG. 5. A comparison ofQMR and GMRES with different memory lengths and withfull GMRES.

TABLE
The table shows the number of iterationsfor QMR (Niter) and the elapsed CPU time in seconds (t) needed to

reduce the initial residual by 10-5 when the same particle is discretized with different number ofdipoles (Ndip) and
with different size parameters (xo) associated with each dipole. The number ofunknowns is three times the number
ofdipoles Ndip.

Idip Ix0 Nir It 1
’32 0.3 6 0.23
136 0.188 7 0.46

304 10.144 7 1.52
1064 0.0947 7 3.3

2330 10.0731 7 10

5232 10.0555 7 21
10048 0.0448 7 37
20336 0.0355 7 91
13737610.01875 7 562

but this may be just a better adaptation to the spectrum. The three iteration phases, sublinear,
linear, and superlinear, are typically found when using Krylov-subspace methods [21 ].

QMR converges with only a few more iterations that full GMRES, which is optimal in
the sense that it computes a minimal residual solution. However, full GMRES needs all the
previously computed iterates and can thus be time and memory consuming. QMR is based
on short recurrences and can be implemented efficiently. QMR was chosen to be the iterative
method in the production version of this code.

Table 1 shows the number of QMR iterations needed to reduce the initial residual by a
factor of 10-5 when the same particle is discretized with increasing resolution. This means
that each dipole corresponds to a smaller volume, whose radius is given by the size parameter
x0. The geometry is a filled pseudosphere. The reported CPU time is on a Convex C3840 at
the Center for Scientific Computing. The FFT was used to compute the matrix-vector product.
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The number of iterations was remarkably constant. Note that in this simulation the index of
refraction was smaller than in the earlier figures, resulting in faster convergence.

In the astrophysical calculations, the interest is in the scattering of light by micron-
scale particles, leading to dipole configurations of tens or hundreds of thousands of dipoles.
In practical calculations even smaller accuracies in the solution of the linear systems are
acceptable because orientational averages of the results are taken.

An ideal iterative method for non-Hermitian matrices would have some minimization
property and could be implemented using only a few ofthe latest iterates. Faber and Manteuffel
have proved an important theorem for unsymmetric iterations 11 ], 12], which we state here
in the form given in [14].

THEOREM 3.1. Except for a few anomalies, ideal CG-like methods whose iterates are
characterized by a minimal residual or an orthogonal residual property and that can be
implemented based on short vector recursions exist onlyfor matrices of the specialform

(3) A eiO (T + tr I),

where T is Hermitian, 0 E , tr C.
In the DDA case, the spectrum of the coefficient matrix lies on a line except for a few

eigenvalues, as visualized in Fig. 3. This structure of the spectrum probably accounts for
the good performance of QMR. We plan to analyze the convergence of QMR and relate
the spectrum of the coefficient matrix to the spectrum of the underlying continuous integral
operator.

4. Calculating the matrix-vector product. The performance of iterative solvers for
dense linear equations is determined by the number of iterations and the time it takes to
multiply the coefficient matrix by a vector.

There are two evident ways to compute the matrix-vector product. The first one is simply
to form the coefficient matrix and to keep it in memory. This is indeed the fastest way to
calculate the matrix-vector product for small to medium-size matrices. For example, if half
a gigabyte of central storage is available, dense matrices up to 7000 x 7000 elements can be
stored using single precision. The second method, used for larger matrices, is to either store
the matrix in the disk ("out of core") or recompute the matrix elements whenever necessary.

In order to be able to solve large dense linear systems one has to make use of the "all
large dense matrices are structured" hypothesis [8], according to which nature does not just
randomly throw n2 numbers at us. Instead, there is some structure in most dense coefficient
matrices and we must find an algorithm that exploits this structure.

In this paper, we have applied two fast methods, the FFT and the fast multipole method
to compute the matrix-vector product.

Goodman, Draine, and Flatau 16] showed how to use the FFT in conjunction with the
DDA. If the dipoles occupy positions in a regular cubical lattice and the lattice dimensions are
doubled in each dimension, the matrix-vector multiplication reduces into a 3-D convolution.
This convolution can be calculated using a 3-D FFT.

The use ofFFT is not limited to cubical arrays of dipoles. The lattice spacings and extents
can be different in different dimensions. Not all the lattice positions need to be occupied; the
artificial dipoles affect only the performance of the Fourier transform. The size of the FFT
is determined by first finding a lattice so that all the dipoles sit on that lattice. The smallest
rectangular part of the lattice containing all the dipoles is taken as the computational lattice.

The use of the Fourier transform is very efficient if the dipoles are packed together in a
dense and regular way. On the other hand, if the dipoles form a sparse dendrite-like particle
generated, for example, by the diffusion-limited aggregation process, many artificial dipoles
are needed in order to be able to use the FFT and the method slows down [20].
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5. The fast multipole algorithm. The fast multipole method [23], 17], [4] is an efficient
method to compute the electric potential of a system of N charges or multipoles. It can also
be used in the solution of integral equations of potential theory [23], [24]. The fast multipole
method was initially used in simulations where Coulomb or gravitational potential is used. In
this paper we will apply the fast multipole method to compute the matrix-vector multiplication
in electromagnetic scattering in three dimensions.

The brute force method of computing the interactions of N particles or the evaluation
of a full matrix in integral equation computations requires O(N2) operations. The full fast
multipole method is a rather complicated algorithm that can achieve O(N) complexity in
the solution of the Laplace equation or with the Coulomb or gravitational potential, and
O(N log N) complexity in the electromagnetic scattering case, i.e., in the solution of the
Helmholz equation. For 2-D systems, the break-even point between the direct method and the
fast multipole algorithm can be as low as 100 particles. In 3-D calculations, the break-even
point is much larger, typically in the range 1000-10,000. An example of 3-D fast multipole
computations using the Coulomb potential was given in [26].

For 2-D electromagnetic scattering problems, the fast multipole method was given in [9].
The 3-D version was given in [5], which formulates the scattering problem using a boundary
integral equation. The DDA is related to a volume-integral equation. Thus we use different
expansions of the potential than those found in [5].

5.1. The multipole and local expansions. Here we shall develop the multipole and local
expansions for the dipole potential and show how the electric field and thus the matrix-vector
product can be computed from these potentials. Here the matrix-vector product should be
viewed as follows: given x, the current guess for the electric field caused by the dipoles, Ax
gives the combined field of all the other dipoles at all the dipole positions. The electric field
and the dipole moment of a dipole are related by Pi k3otEi.

The vector potential generated by an oscillating electric dipole at position ri with dipole
moment Pi is given by [18]

(4) q(r) -ikpi

The electric field due to this potential is given by

eiklr-ril
Ir ril

(5) E(r) -iv (V b(r)).
k

The expansion ofthe Green function occurring in the potential (4) in spherical coordinates
is [18]

(6)
eiklr-ril
[r ril

OO n
-(1) rn *4yriky hn (kr)jn(kri)Y (0, ) [Ynm(Oi, i)]

n=O m=-n

4:rik h(nl)(kri)a(kr)Ynm(O, dp) [Ynm(Oi, i)]*
n:0 m:-n

r>ri,

r <ri.

The function h(n1) is the spherical Hankel function of the first kind, jn is the spherical Bessel
function, and Ynm are the spherical harmonics.

In the fast multipole algorithm we need a multipole expansion, which can be used if we
are evaluating the potential in a point that is further away from the origin than any of the
dipoles. We also need a local expansion that is valid when all the dipoles are further away
from the origin than the evaluation point.
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The multipole coefficients of a collection of Ndip dipoles are given by

(7)
Ndip

Mnm pijn(kri) [Ynm(Oi, i)]*
i=1

The multipole expansion of the potential in terms of the multipole coefficients is

(8) q(r) 4zrk
nm

The local coefficients of a collection of Ndip dipoles are given by

(9)
Ndip

Lnm pih(nl)(kri) [Ynm(Oi, ti)]*.
i=1

The local expansion of the potential is

(10) (r) 4zrk
nm

When we are using the potential expansions in practice, the summations over n are
truncated at a value N, while the summation over rn is from -n to n. For the expansion
(8), N must be greater than kR, where R max ri. For the expansion (10), N must be greater
than kR1, where R1 is the maximum distance where b(r) is going to be evaluated [25].

When given a potential (8) or (10) in terms of the multipole or local coefficients, we must
be able to compute the electric field caused by this potential. For the multipole potential case,
let us mark

(11) y h(n1) (kr) Ynm (0, dp).

Now the electric field due to the multipole potential is given by

(12) E(r) 4rcik {Mnm VV/ -]- k2/Mnm },
nm

where VVy is a symmetric second-rank tensor whose representation is given in spherical
coordinates by

(13)

The electric field due to the local potential is computed similarly.

5.2. Translations. In the fast multipole algorithm we need to translate the origin of a
multipole or a local expansion and also to switch between multipole and local expansions.
The translation formulas are based on the addition theorems for spherical wave functions 15],
[27], [6]. They are stated here in a form that uses the Clebsch-Gordan or Wigner coefficients

rnltn2m [2].
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In the translation formulas, we use coefficients c’p defined by

(14) crnlzp (_l)min-v+p4:rr(2n + 1)(2V + 1) f,,vnp(-,.vnp
n 2p "- 1 "000 Iz m tz m

The first transformation is used to translate the origin of a multipole expansion. The new
origin is given in spherical coordinates by (r0, 00, 40),

(15)
(:x) p

,v=O lZ=-v p

The second transformation is used to switch between a multipole and a local expansion

(16) Ltnm E Mv/z E CvtZPh(p1) (kro)y;-m (00, qbO).
v=O /z=-v p

Finally, this transformation is used to translate the origin of a local expansion

(17) L’nm E L, ,,,mtzp (kro) y;-m (0 0)"nv JP
v=O /x=-v p

In the above formulas, the summation over p takes the values n+v, n+v-2 max(Im-
/zl, In vl). The translations are exact, but in practice they are truncated in a similar way as
the potential expansions.

The above transformations are quite expensive to compute, especially when the order of
the multipole expansion is high. Rokhlin [25] and Epton and Dembart 10] have developed a
theory for the diagonal forms of the translation operators. The principal tool is the far-field
signature function defined by

(18) a(S) lim [q(a + rs)e-ikrkr],

where a is the center of the expansion and s is a unit vector. This function can be directly
constructed for the field of a collection of dipoles. On the other hand, given an expansion of
the form (8), the truncated far-field signature function is given by

(19)
N n

a’N(S) 4zrk2 E E MnmYnm(O’ qb)/in+l
n=O m=-n

where 0 and b are the spherical coordinates of s.
The translation formula for the far-field signature function is 10]

(20) b(S) eik(b-a) sca (S),

where b is the new origin.
A truncated function describing the far-field behavior of the local expansion (r) is

defined by

(21)
N

a,N’(S) 4rckz E E LnmYnm(O’ qb)/in+l
n=O m=-n
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The far-field signature function can be transformed into bc,N,(S) by

(22) c,N’(S) Mr(s, c b)qb,N(S),

where

(23)
L

ML (S, r) (2n + 1)in h(n1) (kr) Pn (s" f).
n--O

Here L > N / N’, Pn is the Legendre polynomial, and f is the unit vector in the direction r.
The function c(S) obeys the translation theorem

(24) lim a,L(S) eik(a-c)’Spc,lv(s).

In practice, the functions ta(s) andb(S) are represented by a discrete set of K2 points on
the unit ball, where K , kRmax and Rmax is the largest computational box in the fast multipole
algorithm whose multipole and local expansions are used [25].

5.3. The fast multipole algorithm. The fast multipole algorithm describes an econom-
ical way of computing the electromagnetic interactions between the dipoles. The interactions
between nearby dipoles are computed directly; the distant interactions are computed using
truncated multipole and local expansions. In the algorithm, the computational domain is
adaptively divided into boxes. The interaction between dipoles in two distant boxes is com-
puted by forming the multipole expansions of the dipoles in the boxes, transforming the
expansions into local expansions with respect to the origin of the other box, and evaluating
the local expansions at the dipole positions.

The fast multipole algorithm organizes the evaluation of the dipole interactions so that the
computations are made using the coarsest refinement level possible and maintaining a rigorous
error bound. The number of terms used in the multipole calculations is determined by the size
of the particle and is practically independent of the precision of the computations [25].

We will review the fast multipole algorithm as given in [4]. We shall be working with
computational boxes b containing some number of dipoles. Each box is either a parent box if
it is further divided in the algorithm or a childless box. Colleagues are adjacent boxes at the
same refinement level. Each box has at most 26 colleagues.

The algorithm is given here in terms of the translation formulas (15)-(17). In an actual
implementation, the diagonal forms of the translation theorems should be used.

ALGORITHM 5.1 (the fast multipole algorithm).
1. Refine the computational domain adaptively into boxes. If a box contains more than

s dipoles, it is subdivided into eight child boxes.
2. Form the multipole coefficients (7) for each childless box. For each parent box, use

(15) to translate the origin of the multipole expansions of each child to the center of the parent
box and add the expansions to get the multipole expansion of the parent box.

3. For each childless box b, compute directly the interactions between the dipoles in b
with the other dipoles in b and with the dipoles in the childless boxes that are adjacent to b.

4. For each box b, convert the multipole expansions of those children of colleagues of
b’s parent that are well separated from b into a local expansion about b’s center using (16) and
adding them up.

5. For each childless box b, using (12) at each dipole position calculate the electric
field due to the multipole expansion of all descendants of b’s colleagues whose parents are
adjacent to b but who are not adjacent to b themselves.
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6. If the multipole expansion of box b’ was used at box b during stage 5, form the local
expansion coefficients (9) of b at the center of b’.

7. For each parent box b, shift the center of the local expansion obtained in stages 4
and 6 to the center of b’s children using (17).

8. For each childless box, calculate at all dipole positions the electric field due to the
local expansion from stage 7 and add the contributions from stages 3 and 5 to get the full
electric field caused by all the other dipoles.

At this point, we have limited practical experiences with the fast multipole methods. The
current version that does not use the diagonal forms of the translation formulas becomes faster
than direct calculations when using on the order of 10,000 dipoles. The calculations can
be optimized by tabulating the values of the special functions. A lot of computing time is
spent calculating the transformations (15)-(17) or their corresponding diagonal forms. There
are only a fixed number of possible translations. The multipole-to-multipole translations are
always from the child boxes to their parent box; the local-to-local translations are from a parent
box to its children. There are 189 possible multipole-to-local translations in each refinement
level, as indicated in [26]. These can be precomputed and tabulated.

6. Conclusion. We have presented an efficient way to solve the dense systems of linear
equations arising in the discrete-dipole approximation. The recipe consists ofusing an efficient
iterative method and calculating the matrix-vector products using a fast algorithm. In this
project we chose QMR as the iterative method and showed how to apply the FFT and fast
multipole techniques in this setting.

The same procedure can be applied in other electromagnetic scattering calculations where
the physics are described by a volume integral equation.

The FFT gives by far the best method when the computational geometry is dense so that
not very many artificial dipoles need to be used in the FFT algorithm. We plan to optimize
the fast multipole method and compare its performance with the direct method and the FFT
algorithm in a forthcoming study.

As the iterative methods converged in relatively few iterations, no preconditioning was
considered necessary. A preconditioner could be built by running some inner iteration and
computing the matrix-vector multiplication with the fast multipole algorithm using fewer
terms in the multipole and local expansions.

In the scattering calculations, the same system of linear equations is solved many, maybe
over one hundred, times. The convergence of the iterative solver could be speeded up by using
a block version of QMR, as described in [3].
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EQUIVARIANT PRECONDITIONERS FOR BOUNDARY ELEMENT METHODS*
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Abstract. In this paper we propose and discuss two preconditioners for boundary integral equations on domains
that are nearly symmetric. The preonditioners under consideration are equivariant; that is, they commute with a
group of permutation matrices. Numerical experiments demonstrate their efficiency for the GMRES method.
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1. Introduction. In the past few years symmetry-exploiting methods have become a
popular topic in numerical linear algebra. Of special interest are linear systems that come
from discretizing an integral equation defined on a domain with geometrical symmetries.
These problems inherit the structure of the underlying group of symmetry transformations
when the discretization is done in an appropriate way. By making use of this structure, it is
possible to significantly reduce the amount of work involved in solving these systems.

Ofcourse, this method will fail when the symmetry is destroyed by perturbing the domain
slightly. Figures 1 and 2 show what kind of domains we have in mind. However, we expect
that the symmetric and the perturbed problems are somewhat close to each other and that it is
possible to take advantage of this situation as well.

Here we present an approach to how this can be achieved. We propose two preconditioners
for the iterative solution of the discretized equation that have the structure of the related
symmetry.

Now let us outline this paper. After a brief overview of boundary element methods and
iterative methods for the linear system associated with the integral equation in 2 and 3,
we discuss in 4 symmetry reduction methods. In the following we will describe the pre-
conditioners used. In 5 a preconditioner is constructed by discretizing the integral equation
on a nearby symmetric surface. Section 6 contains a preconditioner that is the solution of a
minimization problem. Some results of numerical experiments are presented in 7.

2. Boundary integral methods. Consider the linear integral equation

(1) Zp(x) + Ep(x) g(x), x s S,

with the boundary integral operator

(2) 1Cp(x) fu k(x, y)p(y) dl(y)

defined on a linear space of functions on/3, which is denoted by X.
We are interested in the case when/3 is a closed and compact surface in the three-space

/3 C 3. Equations like (1) arise from solving Laplace’s equation on a domain with boundary
/3, in which case the kernel k(x, y) is weakly singular.

One ofthe standard approaches for solving (1) numerically is the collocation method. The
idea here is to seek an approximation of the solution p in an n-dimensional linear subspace
X, C X spanned by basis functions {dPi}ie, where A/" {1 n}.

*Received by the editors May 18, 1994; accepted for publication (in revised form) February 2, 1995. This work
was supported by the National Science Foundation grant DMS-9403392.

tDepartment of Mathematics, Colorado State University, Fort Collins, CO 80523 (Tausch@Math.
Colostate. Edu).
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In general, the solution of the integral equation (1) will not be a member of Xn, and
therefore a function in this subspace cannot solve the equation at all points on the surface.
Instead, one forces the unknown function Pn to satisfy (1) at least at points {Pi}ieAf C ]3,
which are called collocation points.

If pn is written as a linear combination of the basis functions p ci$i, then the col-
location method yields a linear system for the coefficients x (Cl c)r of the following
form:

(3) Ax b,

where the entries of the matrix are given by

(4) A(i, j) )j(Pi) + (1Cdpj)(pi)

and the right-hand side is given by

b(i) g(pi).

If the collocation points are chosen in a way such that the interpolation problem

find Pn X,, such that P(Pi) #n(Pi) for . .A/"

is uniquely solvable for all functions p e X, then the system (3) is nonsingular.
Typically, the subspace Xn consists of functions that are piecewise polynomial on a

triangulation of B; this has been extensively studied by Atkinson [3]. For estimates of the
discretization error P P we refer to the vast literature on numerical methods for integral
equations; see, e.g., [4] or [13].

3. GMRES. The matrix of the collocation method in (3) is, in general, dense and non-
symmetric. A classic approach for solving (3) is the multigrid method; see, for instance,
[12] or [13]. This technique works well when the operator/C in the integral equation (1) is
compact. If the boundary is only piecewise smooth, then this assumption is often violated and
the multigrid iteration may perform poorly or may even diverge [5].

Only recently other iterative methods, like conjugate gradients and Krylov suospace meth-
ods, have been studied in connection with boundary integral equations; see, e.g., [8] and 19].
One of these methods is the GMRES method of Saad and Schultz 14].

A well-known technique to improve the convergence of iterative methods is precondi-
tioning; see, e.g., [11]. The idea here is to multiply the linear system Ax b, with the
inverse of a nonsingular matrix L, the preconditioner, and to solve the equivalent linear sys-
tem L-lAx L-lb. Alternatively, one can transform the unknown x to Lx y and solve
AL-ly b. Note that the products L-1A or AL-1 are actually never formedmthis would be
too costly. Instead, in each step of the iteration an additional linear system with the precon-
ditioner has to be solved. Hence it should be possible to do this efficiently. To get an overall
saving, the preconditioner should also decrease the number of steps involved in solving the
proposed problem.

A good choice for a preconditioner is a matrix that factors A in the form L-1A I + B
where the norm of the remainder B 112 is small. Then the eigenvalues of the preconditioned
matrix L-1A cluster around unity and yield a small condition number.

Another suitable preconditioner is a matrix L that factors A to a low-rank perturbation of
the identity; i.e., L-1A I + R. Here R denotes a low-rank matrix: rk(R) p << n and
no assumption must be made about the norm of R. In this case the preconditioned GMRES
iteration terminates after at most p steps with the exact solution.
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4. Equivariance. We are interested in the structure of the system matrix in (3) when the
surface/3, on which the integral equation (1) is to be solved, has symmetries. That is,/3 is left
invariant under a group F of isometries such as rotations and reflections. Each isometry 9/ F
gives rise to a linear operator He X --, X mapping the function f X on f o }/-1 e X.
The operators He ?, e F defined in this way form a group under the usual multiplication
of operators, which is isomorphic to the group of isometries. Henceforth we will use the same
symbol for both groups.

Moreover, suppose the kernel ofthe integral operator/C in (2) depends only on the distance
of the two points x and y; i.e.,

k(x, y) k(Ix Yl).

This situation is typical when equation (1) comes from an integral reformulation of a boundary
value problem. Using a change of variables, it is straightforward that such an integral operator
commutes with the action of an element in F; i.e.,

(5) /CI-I I-IrK:.
In general, an operator/C with the property (5) is called equivariant with respect to the group
action F, or simply F-equivariant.

In order to be able to exploit the structure of the continuous problem, the discretization
must not destroy the symmetry. It is required that the basis functions and the collocation points
remain invariant under the action of the group. This is the content of our assumption.

ASSUMPTION 4.1. The group F defines a group ofpermutations on the indices

?," (1 n) (?, 1 ,n),

where the action ofthe group element y on the index is defined by

rlei yi

and

YPi Pei"

Moreover, the group ofpermutations is isomorphic to F.
The permutations on the indices in turn induce permutation matrices P in the usual way:

(Pb)(i) b(1/-1i)

for a vector b e 1Rn. Using the equivariance of/C and the above-defined group actions we
obtain for the matrix entries in (4):

A(?’-li, j) (1Cj)(pe-,i) (l-IelCj)(Pi) (1CFleqbj)(Pi) (1Cdpej)(pi) A(i, ?,j).

Hence we see that the matrix A has the three equivalent properties:

(6) A(,-li, j) A(i, ,j) i, j A/’, , F,
(7) A(i, j) A(yi, },j) Vi, j .A/’, ?’ F,
(8) PeA APe ?, F.

Equation (8) is the discrete analogue to equation (5), and, consequently, a matrixwith property
(8) is called F-equivadant. For the following, let us denote an equivariant matrix by L.
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The mostprominent examples ofthis class are the circulant matrices, which are equivariant
with respect to the cyclic group Zn. In this case the group action is given by Fi (F + i)
mod n for ), Zn and A/" [7]. It is well known that linear systems with circulant matrices
can be solved efficiently by means of the discrete Fourier transform.

It is possible to generalize this idea to arbitrary equivariant matrices. The key here lies in
the irreducible representations of the group F; for an introduction to representation theory we
refer to 15]. The irreducible representations determine a sparse and unitary matrix F--the
generalized Fourier matrixmwhich factors L in the form L Ft-I’F, with being a block
diagonal matrix. Since F is a unitary matrix, its inverse is given by the Hermitian trag.spose].
i.e., F-1 Fn. Instead of solving the linear system Lx b, the equivalent system L" b
with right-hand side b Fb and unknown x Fx is solved and then the solution x is
recovered from " via the inverse transformation x Fn’.

The dia.gonal blocks of can be computed with n2 floating point operations, the trans-
formations b Fb, and x FH can be done in #(F)n flops. Thus the overhead compares
to one matrix-vector multiplication and is negligible, considering that L is a full matrix. The
major savings in computational effort comes from the fact that a number of small systems
are solved as opposed to one big system in the unreduced case. The size of these systems
decreases with the order of the group.

For more details about this generalization of the Fourier transform we refer to 16]. An
earlier description of symmetry reduction using projections can be found in 1 and 10]. The
approach presented there yields equivalent subsystems. Applications to boundary element
methods with numerical results are in [2] and in [20].

5. Preconditioner derived from a nearby symmetric surface. In the next two sections
we describe two preconditioners to handle problems defined on domains that are close to a
domain with geometrical symmetries.

The first preconditioner is obtained by discretizing the integral equation on the symmetric
surface. As it was pointed out in the previous section, this yields an equivariant matrix, which
can be inverted efficiently.

Let us briefly discuss how this preconditioner is constructed. Usually surfaces are repre-
sented via parameterizations. Since we want to include piecewise smooth surfaces, it is con-
venient to use a piecewise linear (PL) manifold for the domain of the parameterization. Here
we recall the definition found in Georg [9]: A PL-manifold is a finite collection Spt of closed
triangles in 3, each having affinely independent vertices T/ [v, v, v], 1 J. In
addition, we require the following.

1. The intersection of two triangles in SpI is empty or a vertex or an edge.
2. Each edge is common to exactly two triangles.

We assume that it is possible to parameterize the symmetric as well as the perturbed surface
with the same PL-manifold. Then our discretization scheme can be described as follows:

1. Find a symmetry-respecting PL-manifold SpI and parameterizations (i.e., piecewise
smooth isomorphisms) rn ,SpL -- 13 and n SpL -- 13 of the symmetric and the perturbed
surface, respectively.

2. Define a set of basis functions {1 ap,,} on SpI. Lifting them to the surfaces/
and/ via lr i om and lt i O/ produces basis functions {tl n and {1 n }.
Note that the basis on/3 must respect the symmetry in the sense of our assumption.

3. Define collocation points {ql qn} on ,SpI and map them to the two surfaces:
Pi rn (qi) and/3i r(qi).

Applying the collocation method, we obtain the two nonsingular matrices L and A arising
from the symmetric and the unsymmetric problem, respectively. The matrix L is only a good
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preconditioner when the quantity A L is small. In 17] it is shown that this is in fact true
when the parameterizations and their first few derivatives are close to each other.

The use of the above preconditioner has a significant drawback. Usually the assembly
of the system matrix is the most costly part of a boundary element technique. Our method
requires two matrices--one for the symmetric and one for the perturbed problem. Even though
only a fraction of matrix entries have to be determined in the equivariant case, the savings in
the iteration may not justify the extra calculation of the preconditioner.

This objection, however, does not apply for situations where the perturbed surface differs
from the symmetric surface only on a small piece. In this case the respective basis functions
and the collocation points are identical except for a few, which implies that only a few rows
and columns of A have to be updated to obtain the preconditioner. In other words, A is a
low-rank perturbation of L or L-1A is a low-rank perturbation of the identity. This in turn
implies that the number of steps in the GMRES iteration of L-1A is bounded by this rank.

In the next section we introduce a preconditioner that does not depend on additional
surface integrations.

6. An optimal preconditioner. Our next goal is to find an equivariant matrix L so that
the product L-1A is as close to the identity as possible. In other words, the preconditioner
has to minimize the quantity L-I(A L) in a consistent matrix norm. An upper bound for
this number can be obtained easily. Setting B A L, we estimate

Ilz-lnll II(A- B)-IB[[ II(l- a-ln)-la-lnl[ <
1 A-in I1"

Since the fight-hand side of this inequality is monotonically increasing with IIa-ln II, it is
straightforward to minimize B A L II, Thus we require that our preconditioner solves
the following minimization problem:

(9) L min A L L is F-equivariant}

We will show that this problem is trivially solvable in the Frobenius norm: to obtain the
optimal preconditioner, one has to average over the orbits of the group action on the indices.
This construction can be viewed as a generalization of T. Chan’s circulant preconditioner for
Toeplitz systems [6]. Here this idea is extended to any finite group. More formally, we have
Theorem 6.1.

THEOREM 6.1. The matrix defined by

(I0) L(i, j) a(?,i, yj)

is F-equivariant and is the optimal solution ofthe minimization problem (9) in the Frobenius
norm. In matrix notation, the optimal preconditioner has theform

1
(11) Z #-- P-IAP.

Before we give the proof of the above theorem, we need some simple notions of a group
acting on a set of integers.

Consider the index in the index set A/’. We denote the set Orb(i) := {yi: y 1-’} the
orbit of the group action on the index i. The set A/" can be viewed as the disjoint union of its
orbits. A subset S c A/" that contains exactly one element from each orbit is called a selection
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of indices. The isotropy subgroup of the index consists of the group elements that leave
fixed; i.e.,

Fix(i)={yer: yi=i}.

If the isotropy subgroup of an index is trivial, i.e., Fix(i) {e}, then the size of the orbit
containing is equal to the group order. If there are fixed points in the group action then the
size of the orbit is given by #Orb(i) #1-’/#Fix(i).

Now we are able to prove the above theorem.
Proof. Let L be an arbitrary 1-’-equivariant matrix. The main idea of the proof is to

rearrange the summation in the Frobenius norm

IIA LII Z (A(i’, j’)- L(i’,
i’ e.Af j’

so that the orbits of L(i, j) stand together. We write the index j’ as the product of a group
element and an index from a selection, i.e., j’ yj for a y 1-’ and j e S. When summing
up over all y e 1" and j S there might be repetitions due to fixed points in the group action.
To account for that we have to divide by the order of the isotropy subgroup. Thus we obtain

(A(i’,IIA LII2 Y #Fix(j)
yj)- L(i’, yj))2

i’JV" yF jS

1EEE #Fix<j)iJkf y.F jS
(A(yi, yj) L(yi, yj))2.

In the last step we have set y-li,, which changes only the sequence of the summation.
Finally, using the equivariance of L, we get

ig (A(yi yj) L(i, j))2.A L [I2F E #Fix(jjS

The above expression consists ofuncoupled optimization problems forthe L (i, j ). The optimal
solution can be obtained by minimizing each term

(A(yi, yj) L(i, j))2.
y_P

This yields equation (10):

1
L(i, j) A(yi, yj).

It is easy to see that L is equivariant. Equation (11) can be verified by pre- and postmultiplying
with canonical basis vectors. [3

Computing one entry L(i, j) by formula (10) takes #P additions. Since the matrix L is
determined by the indices e S and j 6 .N" this adds up to n2 floating point operations for the
whole matrix. Thus the calculation of the optimal preconditioner costs approximately about
as much as one single matrix-vector multiplication. This is clearly an advantage over the
preconditioner of the previous section, because no costly surface integrations have to be done.
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TABLE
Iteration resultsfor the second kind equation on the ellipsoid.

No precond.
N its

48 11 .050
192 10 .042
768 11 .048

Opt. precond.
its
5 .0055
5 .0095
6 .0083

Note that the matrix constructed in the above theorem is not always nonsingular. However,
if A is positive, i.e., (Ax, x) > 0 for x g: 0, then the preconditioner is positive as well, as it is
shown in the following calculation:

1 1 (APr,x,(Zx, x) - (Py-1AP,x, x)
yF

Here we have used that the permutations P form a group of orthogonal matrices; thus P-I
p-I pf. The last expression is positive when x 0 by the positivity of A.

This generalizes an analogous result for circulant matrices 18].

7. Some numerical results.

7.1. Second kind equations. In the following we present some numerical results using
the optimal preconditioner described above. The first examples deal with the integral equation

2rx + Ix 1 (yat(y + 2rr xx e,x,

which comes from solving Laplace’s equation on a domain with boundary surface/3. Here
(x) denotes the solid angle of/3 at the point x, which is 2zr when the surface is smooth at

x. The linear systems come from collocating with functions that are piecewise constant on a
triangulation of the parameter space.

The GMRES iteration was continued until the 2-norm of the residual was reduced by the
factor 10-15 The tables show the number of iterations (its) as well as the average reduction
factor of the residual in each step (3) for various refinements of the grid (N denotes the number
of triangles). The parameters its and 3 are compared for the original and the preconditioned
system.

The domain in the first example is the ellipsoid (x/1.1)2 + (y/1.05)2 + z2 1. The
parameterizing SeL-manifold is the unit cube, which induces a group action of order 48 on
the indices. This group action was used to construct the preconditioner as in our theorem (10).
The results of the experiments are shown in Table 1. In the middle column are the results of
the iteration applied on the original system; in the right column are the respective numbers for
the preconditioned system.

The second domain is a cube, with one side perturbed by a quadratic surface; see
Fig. 1. Due to the edges, the number of steps of the unpreconditioned iteration is higher
than in the previous example with a smooth surface. Note, however, that the increase of steps
in the preconditioned method is not so significant. The numerical results are displayed in
Table 2.

In the third example (a cube with a small cube removed in one comer, cf. Fig. 2) the
preconditioner performed poorly. This is due to the fact that the derivatives of the parameter-
izations are not nearby, yielding boundary integral operators that are not close in some norm.
The results are shown in Table 3.
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FIG. 1. The perturbed cube.

TABLE 2
Iteration resultsfor the second kind equation on the perturbed cube.

No precond.
N its
48 19 .176
192 22 .219
768 22 .235

Opt. precond.
its
6 .014
7 .028
7 .033

FIG. 2. The cube with a small cube removed in one corner.

TABLE 3
Iteration resultsfor the second kind equation on the domain ofFig. 2.

No precond.
N its

384 22 .24
1152 23 .26

Opt. precond.
its
16 .20
18 .23

The same experiments with a preconditioner that comes from a surface with symmetries
did not reveal noticeable differences. The optimal preconditioner performed only slightly
better.
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TABLE 4
Iteration resultsfor the first kind equation on the perturbed cube.

N

48
192
768

No precond.
its

23 .250
33 .373
44 .495

Opt. precond.
its

8 .039
10 .068
10 .084

TABLE 5
Iteration resultsfor the first kind equation On the domain ofFig. 2.

No precond.
N its

384 39 .450
1152 49 .541

Opt. precond.
its

9 .064
10 .087

7.2. First kind equations. In the above numerical examples the preconditioner reduced
the number of steps in the iteration significantly; however, the unpreconditioned iteration
converges reasonably fast as well, especially in the case of the ellipsoid. This is due to the
well-posed nature of second kind equations (1) with compact operators.

This picture changes when first kind equations are to be solved. Equations of this type are
of great importance for boundary element methods. We experimented with the single layer
operator from potential theory, which is defined by

Sp(x)
Ix y[

p(y) dB(y).

Since this operator is compact, its inverse is not bounded and the equation Sp g is ill posed.
When a discretization technique is applied then the number ofGMRES iterations will increase
with the refinement of the mesh.

The experiments suggest that our preconditioners work well especially for first kind
equations. Compare with the results of Table 4, which were obtained by discretizing the
perturbed cube of Fig. 1 in the same way as for the double layer equation.

As expected, the number of iterations increases as the grid is refined. This is also the case
when the preconditioner is used; however, the increase is much slower. The two precondi-
tioners that we have discussed perform almost equally well as in the case of the double layer
equation.

Surprisingly, we obtained good performance for the single layer equation even on the
domain of Fig. 2, where preconditioning of the double layer equation failed; see Table 5. This
behaviormay be attributed to the higher sensitivity ofthe double layer operator to perturbations
of the surface. We will investigate this in our future work 17].
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PERFORMANCE ISSUES FOR ITERATIVE SOLVERS
IN DEVICE SIMULATION*

QING FANt, P. A. FORSYTHt, J. R. E MCMACKEN, AND WEI-PAI TANG

Abstract. Due to memory limitations, iterative methods have become the method of choice for large scale
semiconductor device simulation. However, it is well known that these methods suffer from reliability problems. The
linear systems that appear in numerical simulation of semiconductor devices are notoriously ill conditioned. In order
to produce robust algorithms for practical problems, careful attention must be given to many implementation issues.
This paper concentrates on strategies for developing robust preconditioners. In addition, effective data structures and
convergence check issues are also discussed. These algorithms are compared with a standard direct sparse matrix
solver on a variety of problems.

Key words, device simulation, iterative solver, preconditioning, ordering, drop tolerance, fill level
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1. Introduction. The increasing demands for more accurate semiconductor device mod-
eling have pushed the development of numerical methods into a new era. One of these new
developments is the study of techniques for the solutions of very large ill-conditioned sparse
linear systems. In the past, software developers favored the use of sparse direct methods.
These solvers could be treated as black box modules, since a reliable solution could (almost)
always be obtained. However, the memory requirements of these direct methods make them
impractical for large scale simulations. Consequently, attention has shifted to the use of
iterative methods.

During the past decade, there has been considerable interest in Krylov subspace acceler-
ation coupled with various preconditioning techniques. A great deal of effort [2], [26], [34],
[36], [39], [19] has been devoted to developing iterative acceleration methods, while robust
preconditioners have received less attention, mainly because ofinherent theoretical difficulties.
However, a good preconditioner is necessary for a robust iterative algorithm. Many workers
have observed that a superior preconditioner can boost performance by an order of magnitude
[5], [40], while a better acceleration technique may only improve the performance by 10-30%.
In [5] and [34], various new developments in iterative methods for device simulation have been
summarized.

Although iterative methods seem to be the only practical choice for large scale simulations,
direct methods are still used in many situations. This is because many existing iterative methods
may fail to converge when the matrix is very ill conditioned and careful attention is not given
to many implementation issues.

The objective of this article is to investigate several issues which are important for the
performance of iterative methods in device simulation. In particular, our emphasis will be
on construction of an effective preconditioner. Both level-based and drop tolerance precondi-
tioners 16] will be tested. A new two-step preconditioner, which treats the electric potential
terms in the Jacobian in a very accurate manner, will also be developed. The alternate block
factorization (ABF) technique, which will be shown to be equivalent to block scaling, has been
suggested as a preconditioner for device simulation problems. The ABF preconditioner will
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be compared to the above methods. Some other issues which will also be addressed include
the ordering of the unknowns [14], [16], [12], the choice of acceleration method, and the
convergence check criteria. All these methods were tested in a commercially available drift-
diffusion device simulator [31 which uses full Newton iteration for solution of the nonlinear
algebraic equations.

2. CI-IORDV and test problems. CHORD System V [31] is a semiconductor device
simulator which uses fully coupled Newton iteration to solve a variety of carrier transport
models. In this paper, we are concerned with the traditional two-carrier, drift-diffusion equa-
tions: Poisson’s equation and the electron and hole current continuity equations.

V2 -47
q
(p n + ND NA) O,

On 1
-V. Jn-R,

Ot q

p 1
=-V.Jp-R.

Ot q

Here, is the electrostatic potential, p, n the hole and electron concentrations, Jn, Jp the
corresponding current densities, ND, NA the ionized donor and acceptor concentrations, and
R the net recombination. Using the drift-diffusion approximation, we can write the electron
and hole currents as

Jn =-qlznnVap + qDnVn,

Jp -qtxppV qDpVp,

where/z,,,/Zp and Dn, Dp are the carder mobility and diffusion coefficients. These expressions
are combined to yield a system of three equations in three unknowns (,n,p). Our carder
mobility models are taken from Nishida and Sah [32] and include components due to lattice
vibration, ionized impurities, surface scattering, and velocity saturation. The recombination
term includes Shockley-Read-Hall, Auger, and impact ionization. We convert the diffusion
coefficients to effective mobilities using the Einstein relation.

The three equations are discretized across a two-dimensional (2D) domain using box
integration [35] applied to a nonorthogonal grid. Box integration can also be viewed as a finite
volume-type method [3]. In the finite volume approach, the differential equations are integrated
over finite volumes, and the volume integrals are converted to surface integrals. Consider the
grid node and its neighbors j. We begin by constructing perpendicular bisectors of the grid
to develop a control volume. Note that this approach restricts us to using grid meshes which
are Delauney triangulations.

Next we assume that the electric field and current are constant across each face of the
polygon as well as all physical properties. Using a finite volume method, the discrete Poisson
equation is

j lhf +h- ] [J i] +
q

[Pi ni + NDi NAi] Z [a-J- +a-J-]lj .
j

where lj is the distance from node to node j (see Fig. 2.1).
Backward Euler timestepping is used, and consequently, the discrete electron continuity

equation becomes
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FIG. 2.1. Box integration schemefor discretization.
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where ij is the outward pointing normal to "i along the face between node and node j.
The Scharfetter-Gummel approximation for current density [37] is given by

where

/(x)
expx 1’

[tj ltj f

and 4)r is the thermal voltage. Thus, the resulting discrete form of the electron continuity
equation is

j.
q/’/Zn [n/k+l __(jk-t-1 k+ln((jk-F1

1 [hj+.+h;]_ q B( /qbT) n,q lj

ni+l--At ni]Zj [af +a] =0.

A similar expression may be developed for the hole continuity equation.
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FIG. 2.2. An n-channel MOSFET.
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FIG. 2.3. A bipolarjunction transistor.

In CHORD, the transport model is solved using Newton iteration. Given a set ofequations
with residuals rk, associated with unknowns xk, we linearize the system about a point x and
solve the linear system J(x+l x) JkAx --r(x) where J, is the Jacobian matrix
formed by computing partial derivatives of r. In our case, xk is typically the vector of
unknowns (, n, p). Our solution estimate is then updated by the Newton step Ax and
the process repeated until the system is converged. In this paper, we will focus on iterative
methods for solving the linear system.

Two typical semiconductor models, metal-oxide-semiconductor field-effect transistor
(MOSFET) and bipolarjunction transistor (BJT), are used for testing purposes. The n-channel
MOSFET device is a simplified self-aligned n-channel MOSFET with a 2um drawn channel
length and a 25nm thick gate insulator (see Fig. 2.2). The source and drain are 0.25um abrupt
junctions in a lightly doped p-type substrate (5.0e + 15 cm-3). There is no channel implant.
We assume an ideal structure with no oxide charge or interface charge. The MOSFET problem
has 15587 unknowns.

The second device is a bipolar junction transistor (see Fig. 2.3) that is an active three-
terminal device which can be used as an amplifier or switch. There are areas of applications
in which the bipolar transistor is superior to MOSFET, such as in high-power devices and
in high-speed logics for high-performance computers. This device is a simple vertical npn
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transistor formed by two ion-implant steps and a thermal anneal, an n+ buried layer is used
to reduce the parasitic collector resistance. The BJT problem has 13758 unknowns.

Three sets of test problems were developed based on the two device structures. In the
MOSA test set, the MOSFET source and substrate were grounded and the drain held at 5.0V
while the gate bias was swept from 0.0V to 10.0V in 0.5V increments. In MOSB, the gate
was fixed at 1.0V while the drain was swept from 0.0V to 10.0V, again in 0.5V steps. In the
final problem, BJT, a single bias point (zero on emitter, base, and collector) was applied to the
bipolar junction transistor.

Each of these subproblems requires many Newton steps, which in turn requires many
Newton solves. Consequently, each test problem exercises the matrix solution algorithm over
many different Newton iterations and values of the source-drain voltage. Consequently, the
total time for the entire test problem is a good indication of the robustness and reliability of
the matrix solver over a wide range of situations.

The Newton iteration convergence criteria used in these problems was a relative one.
Given the Newton step Axi and solution estimate xi, the iteration was stopped when the
relative error Axi/Xi] was less than 0.001 for all variables. To avoid numerical inaccuracies,
this test was skipped if Ixil < 10-7. This situation is most often found with minority carrier
concentrations. For our problems, values of this magnitude do not contribute to the solution.

3. Inner iteration convergence criteria. The complete solution process in a device
simulation consists of an inner and an outer iteration. The outer iteration is the nonlinear
Newton method. If the Jacobian is solved using an iterative method, then the convergence
tolerance must be specified. For the first few Newton steps, the nonlinear residual in (4.2)
is quite large. Therefore, a large residual reduction in the linear iteration is needed for an
accurate Ax (where x is the vector of unknowns). After the Newton iteration reaches a certain
accuracy, the nonlinear residual becomes smaller. The update Ax only affects the last few
digits of the final solution. As a result, the relative residual reduction requirement for the
solution of the Jacobian can be lowered.

Although at first sight this seems to be contrary to the usual approach suggested in, for
example, [18], where a loose tolerance is used at the initial stages of the Newton iteration,
and a tighter tolerance is used at the final stages, this can be understood as follows. An inner
iteration convergence tolerance of reducing the 12 residual by 10-3 is sufficient, at least in
our experience, to ensure quadratic convergence of the Newton iteration, as convergence is
approached. Therefore, this tolerance is to be considered quite tight. However, we have found
that a loose tolerance for the initial Newton iterations, which are far away from the solution,
often results in divergence of the Newton iteration. This problem can sometimes be cured
by using an even tighter inner iteration tolerance for the initial Newton iterations. A similar
effect has been observed when using Newton iteration for the incompressible Navier-Stokes
equations [11 ]. In the fluid dynamics case, it can be argued that a loose tolerance will result in
large mass balance errors (the mass balance equation is linear for incompressible flow), and
hence makes the iteration unstable. We suspect that in the device simulation case, the electric
potential equation must be solved quite accurately, or else the iteration will tend to diverge.

In this work, a dynamic switch of the linear convergence criteria is implemented in the
linear solver. Initially, the convergence requirement is that the initial 12 residual be reduced by
10-6. After the nonlinear residual is reduced below 10-3 (compared to the initial nonlinear
residual), the linear residual reduction switches to 10-3. This dynamic switch can generally
save 10-15% of the CPU time.

4. Block data structure and scaling. Since device simulation involves a system of cou-
pled partial differential equations, it is natural to exploit the block structure of the Jacobian in
order to obtain a good preconditioner. Two methods that use this concept are the ABF [4] and
the modified singular perturbation (MSP) [41 ].
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For the purposes of illustration, assume that the device model in question is a drift-
diffusion model having three coupled partial differential equations. If the Jacobian equations
are ordered so that all the electric potential equations are grouped first, followed by the elec-
tron conservation equations, and then the hole conservation equations, and the unknowns are
ordered so that all the electric potentials are first, then the electron concentrations, and finally
the hole concentrations, then the Jacobian matrix can be partitioned as

(4.1) J-- Jndp Jnn Jnp
Jp4 Jpn Jpp

where Jij, i, j , n, p denotes the block of derivatives of the equation for electric potential,
electron conservation, or hole conservation, with respect to the electric potential, electron
concentration, or hole concentration. Then the ABF preconditioner is

Dml
D44 D4n D4p l-Dn4 Dnn Dnp
Dpcb Dpn Dpp

where Dij is the diagonal matrix of Jij. More recently, the approximate block elimination
(ABE) has been proposed which uses an incomplete 3 x 3 block factorization of the original
block structured Jacobian [40].

In this paper, another kind ofblock structure ofthe Jacobian matrix is used. The unknown
variables at each physical grid node are grouped together to form an rn x rn block matrix,
where rn is the number of grid nodes. In general, the diagonal block elements of this block
Jacobian may have different sizes since the number of unknowns for each node varies. This
is due to the fact that different models are used in different device materials and at the device
contacts. The motivation for explicitly considering the block structure is the following.

All the nonzero blocks are regarded as dense. Consequently, we need only to specify the
sparsity pattern for the nonzero blocks. As a result, the integer space needed for specifying
the structure of the block sparse matrix is an order of magnitude less compared to the original
scalar sparse matrix (assuming that the average number of unknowns per node is at least
three). This block structure will be more attractive when the semiconductor model becomes
more sophisticated, since typically, more detailed physics requires more equations per node.
Our study [9] indicates that one of the basic operations in iterative methods, namely matrix
vector multiplication, takes less time if a block data structure is used compared to the scalar
case. It is. clear that the cache hit ratio will be higher in the block case.

More importantly, the new block structure can allow us to reduce the strong coupling
between unknowns associated with a single grid node before the iterative process and other
preconditioning steps begin. If we order the unknowns and equations so that all equations and
unknowns associated with a node are ordered consecutively, then

Jll J12 Jln
J21 J22 J2n

Jnl Jn2 Jnn

where Jii are typically 1 x 1, 2 x 2 7 x 7 block matrices. For drift-diffusion models, the
number of unknowns in each block may vary. Usually, there are three unknowns (ap, n, p),
but if the computational domain contains an oxide, then only the electric potential equation
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TABLE 4.1
Block scaling at ground bias point, where N is the number ofunknowns.

Test Methods
(N) applied

MOSA ABF
(15583) Two step
BJT ABF

(13758) Two step

Total linear Total linear
iterations CPU time

1723 1697.67
73 465.04

Not converged
117 523.54

is solved (with p as an unknown) in the oxide region, since it is assumed that there are no
charge carriers in an oxide. Some of the examples in this work contain oxides. In addition,
at contacts, it is sometimes convenient to impose an additional boundary condition in terms
of the total current. This total current is added to the list of unknowns at a contact node.
However, in this paper, none of the examples have this additional electric current unknown.
The maximum size of Jii is then usually four, with minimum size being 1 x 1. Recall that at
each Newton step we need to solve the equation

(4.2) JAx --r

where J is the Jacobian, Ax is the vector of updates, and r is the residual vector.
First, a block scaling is applied to equation (4.2). The scaling matrix

0 0 Jn
is multiplied on both sides of equation (4.2). The preconditioned Krylov space method is then
applied to the scaled matrix equation

SJAx Sr.

Note that this scaling step is equivalent to applying the ABF preconditioner if a permutation
is applied. The difference here is that a further preconditioning process will be applied to the
scaled system. The improvement in using a block scaling followed by further preconditioning
is significant compared to using block scaling alone.

Table 4.1 shows the difference in performance if a further preconditioning step is taken.
Two Jacobian matrices were generated at intermediate Newton iterations from MOSA and
BJT. The two-step preconditioner uses a block scaling followed by the best preconditioned
BI-CGSTAB method which will be described in more detail in following sections. Table 4.1
shows the total number of solver iterations for all Newton iterations, as well as the total number
of unknowns N. Clearly, block scaling (ABF) alone is not sufficient for a robust technique.

5. Preconditioning issues. Preconditioned Krylov subspace methods are the standard
iterative methods for device simulation. However, much of the past research has concentrated
on the behavior of different acceleration methods [1], [5], [7], [22], [25], [28], [29], [34].
Many authors have observed that GMRES, CGS, and Bi-CGSTAB are the relatively robust
choices among the many. Both CGS and Bi-CGSTAB are BCG-type methods, but are now
more widely used than the original BCG algorithm. Bi-CGSTAB seems to be a good choice
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FIG. 5.1. Comparison ofvarious acceleration methods (5.1).

from among the BCG methods, since convergence is rapid and less prone to the wild residual
oscillations of CGS. QMR [26] is a newly developed Krylov subspace method which has very
smooth convergence behavior. Thusfar, we have carded out only limited testing using the
QMR method, and it is too soon to draw firm conclusions about the performance of QMR
compared to Bi-CGSTAB or GMRES.

In particular, we found that Bi-CGSTAB is generally the most robust method. For ex-
ample, Fig. 5.1 shows the total CPU times for the MOSB problem with an ILU(1) precondi-
tioner at various values of the drain-source voltage. Clearly, Bi-CGSTAB is the most efficient
acceleration method. Tests for other problems showed a similar trend. Consequently, all
computations will be carded out using Bi-CGSTAB for the remainder of this paper.

For completeness, we give the preconditioned Bi-CGSTAB algorithm below.
(LU represents the incomplete factorization of matrix A, and Aq is a vector.)

Aqo

For

b- Axo
fl=a0= 1

q0=0

i=1,2

1 (ro, re-l); o)i (/i)(()i_l/Oli_l)

qi ri-1 q- ooi(qi-1 oti-lAqi_ 1)

i (LU)-lqi
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End

Aq Ai
(Oi / (ro, Aqi

s ri- ()i Aqi-- (LU)-Is
t=A

oti (L-it, L-Is)/(L-It, L-it)
X X -- () " Ol

if xi accurate enough, then quit

ri s otit

In this paper, we will concentrate on the issues related to incomplete LU preconditioners,
since these are regarded as among the most robust for semiconductor simulations [5], [29].

Before we pursue the different issues in constructing a good preconditioner, a block
graph representation of the Jacobian is useful. If we view the grid node vi as the node of a
graph representing the block sparse matrix and map the nonzero block element Jij to an edge
connecting the two nodes vi, vj, the block sparse Jacobian

(5.1)

Jll J12 Jln
J21 J22 J2n

Jnl ]n2 Jnn

can be represented by a graph form. During the factorization process, new nonzero block
elements will be introduced. A notion of "fill level" can be introduced to each position of the
block matrix. We initially define

0, if Jij : 0,
(5.2) leveli( cx, otherwise.

The nonzero block elements then have a fill level 0. As the elimination proceeds, fill will be
introduced. At the kth step of the elimination, the fill levels are given by 16]

( level(i-I)leveli( min level-l) + lj + 1, levelij

In other words, the fill level of a fill is the length of the shortest path between nodes vi and vj
through the nodes eliminated before vi and vj [27]. The fill level is commonly used to decide
the sparsity pattern of an ILU factorization.

5.1. Ordering. The matrix ordering affects the computational efficiency of a matrix
solver in many ways. For direct methods, a good ordering technique is essential in order
to minimize the amount of fill. In parallel (or vector) processing, ordering again plays a
crucial rule. A number of studies have examined the effect of matrix ordering on the quality of
preconditioners for iterative methods based on an incomplete factorization [8], 14], 16], [23],
[24], [33], [21]. In [14], [16], and [17] evidence was presented to demonstrate that matrix
ordering can have a profound effect on the quality of preconditioners. A heuristic method
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was developed that was shown to produce good matrix ordering. Unfortunately, some of the
techniques for an effective ordering developed in 14], 16], and 17] can only be applied to
scalar sparse matrices. The ordering generated by these new algorithms may destroy the block
pattern we employed here. However, the graph-based orderings (where we view each block
of the Jacobian as a node in the graph) can handle the block matrix (5.1) naturally.

The algorithm for generating a scalar ILU preconditioner can be directly extended to
the block case. The block incomplete LU factorization can then be interpreted as a graph
elimination process [27]. The graph representation of (5.1) is in fact the graph of the grid used
to discretize the device. Note that most of the grid generation algorithms in semiconductor
simulation involve some kind of refinement process. Consequently, the ordering of the grid
nodes can be very scattered. In addition, after the refinement the resulting grid is usually
unstructured. Consequently, there is no obvious, natural way to order the grid nodes. The
reverse Cuthill-McKee (RCM) ordering [27] originally was proposed as a good technique for
reducing the profile of a sparse matrix. The basic idea of this ordering algorithm is to construct
the level set from a starting node of the graph representing the sparse matrix. The reverse
order of the level set will produce a small profile. We can also view the RCM ordering as a
generalized natural ordering of an unstructured grid. For a rectangular grid, RCM ordering
is the diagonal ordering of the mesh, if a comer node is chosen as the starting node. This
ordering algorithm can be generalized to the block Jacobian case, in an obvious way.

RCM ordering is known as an effective ordering [23], [24] for ILU preconditioning in
many applications. The standard RCM ordering can produce a poor ordering (for an iterative
solver) if the problem is anisotropic. A revised version for a weighted graph can alleviate this
problem 12]. A comparison of an ILU method which uses the original ordering and the RCM
ordering was carried out for MOSA test set. Figure 5.2 gives the total CPU time required
to obtain the steady state solution for various values of the drain-source voltage for MOSA,
using the original ordering (ORI), RCM ordering (RCM), and, for comparison, the time for
a direct solver (SPARSPAK) 10] is also shown. Here an ILU(0) preconditioner is used with
Bi-CGSTAB acceleration. On average, RCM ordering reduces the total CPU time by about
30-40% compared to the original ordering. Consequently, in the following, RCM ordering
will be used unless otherwise noted.

5.2. Sparsity pattern. The key step during the incomplete LU factorization process is to
determine the sparsity pattern of the L and U. To find the optimal sparsity pattern for the ILU
factorization is a much more difficult task than the solution of the Jacobian itself. Typically,
some simple heuristics are used to determine if a fill element will be discarded. The common
strategies are the following.

1. By a drop tolerance, ILU(e). A drop tolerance method discards numerically "small"
values of fills. There are many possible drop tolerance criteria 16]. Let a be the (scalar)

of the original Jacobian matrix and ai be the element of the submatrix that remainsentry
after (k 1) steps of the incomplete factorization. A possible drop tolerance method is

_(/) /. (0) (0)(5.3) luij < F,/laii ajj I.

For symmetric systems, this is the same criteria as in [42]. Note that since the Jacobian matrix
is not symmetric positive definite, we do not use the diagonal modification suggested in [30].
Even for symmetric positive definite problems, the diagonal modification usually results in a
slow method [20].

It is probably not a good idea to extend the drop tolerance approach to the block case. The
elements in each of the small block matrices of the Jacobian in device simulation often vary
by many orders of magnitude (101 1016). One large entry in a block element may result
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FIG. 5.2. Comparison ofdirect solver (Sparspak) and iterative solver, RCM ordering (RCM) and ORI ordering
(ORI). ILU(O) preconditioner and Bi-CGSTAB acceleration were used in the iterative solver.

in keeping the entire fill block, which may not be desirable. Consequently, the drop tolerance
method will be applied to each individual element in the Jacobian matrix in the following. A
similar approach was used in [42].

In general, we have found that a drop tolerance incomplete factorization is not an effective
technique for semiconductor device simulations. The characteristics of the Jacobian in this
particular application cause problems for a drop tolerance approach. As we mentioned earlier,
the elements in the Jacobian matrix can differ by a factor of 1014. Several variables with very
different scales coexist in the same submatrix. A small element may not imply insignificant
influence on the solution. This effect has also been seen when applying a drop tolerance
incomplete factorization to incompressible Navier-Stokes problems [13]. In this case, the
drop tolerance worked well for small Reynolds numbers, but was very poor for high Reynolds
numbers. This indicates that at high Reynolds numbers, the fluid flow problem is inherently
poorly scaled, and so it becomes difficult to determine appropriate drop tolerance criteria.
We believe that a similar effect occurs in device simulation. Of course, since the Jacobian
itself is very ill conditioned, we can expect that dropping terms in an incomplete factorization
(whatever drop strategy is used) may cause large changes in the solution, and hence result in
a poor preconditioner.

The drop tolerance method (applied with criteria (5.3) to each element of the Jacobian)
was compared with use of a two-stage method (to be described in the following section).
Table 5.1 shows the total CPU time required for the matrix solve, the number of iterations,
and the storage required (for a single value of the source-drain voltage), for various values of
the drop tolerance e. Both incomplete factorization and preconditioning cost are increasing
as e decreases.
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TABLE 5.1
Drop tolerance compared to two step. Device MOSFET is tested at one representative bias pointfrom MOSB

test set. Device BJT is tested at the ground state.

Test
(N)

MOSB

(15583)

BJT

(13758)

Methods Total linear Total linear
applied iterations CPU time
Two step 131 820.52
e 0.5 1099 3195.84
e 0.1 999 3638.57
e 0.01 570 3951.03
e 0.001 391 6273.49
Two step 117 523.54
e 0.5 1439 3700.06
e 0.1 1226 3320.64
e 0.01 1029 3505.31
e 0.001 579 2980.67

Kilo
bytes
8702
5281
5838
9130
14273
7897
4280
4580
6177
8867

Table 5.1 indicates that decreasing e further for the MOSB problem will result in an
increase in total CPU cost due to the expensive incomplete factorization stage. For problem
BJT, the total CPU cost is still decreasing as e decreases, but the final entry in Table 5.1
(e .001 indicates that the storage required for the drop tolerance incomplete factorization
is larger than the storage required for the two-step method, and the drop tolerance approach
is more than five times slower than the two-step method.

In general, the drop tolerance preconditioner is between six and ten times slower than the
two-step preconditioner. It is clear that, for the same amount of storage, the two-step method
is far superior to the drop tolerance approach.

2. By fill level, ILU(). The fill block Ji at the kth step of the factorization will be
discarded if

leveli( > .
It is clear that the larger the level the better the preconditioner. When n, a complete
factorization is obtained. However, large values of will be too expensive in terms of storage
for 3D problems. Our experiments indicate that the performance (in terms of total CPU time)
stops improving after 2 even for 2D problems.

For the level approach, only one symbolic factorization is needed for the entire simulation
as long as the grid does not change. The sparsity patterns of the incomplete factorization are
the same for different Newton steps or timesteps. As a result, the numerical and symbolic
factorization can be separated to make the factorization process more efficient. This contrasts
with the drop tolerance incomplete factorization, since a different sparsity pattern will result
when the Jacobian changes. Therefore, the incomplete factorization process is more expensive
for a drop tolerance preconditioner. The level approach is not only easy to implement, it is
even more efficient for the block Jacobian case. Indeed, the symbolic factorization phase in
this case costs only a very small fraction of symbolic factorization cost if the Jacobian was
not considered as a block matrix.

Table 5.2 shows the total CPU times for the MOSA test set at various levels of fill of the
ILU. The improvement from level zero to level one is significant. However, the improvement
in going to levels higher than one is marginal. We also list a detailed record of a typical
simulation in Fig. 5.3 (for a single value of the source-drain voltage). We can see that the
number of iterations is monotone decreasing as the level increases. However, the amount of
fill for the preconditioner becomes larger as the level of fill increases. Therefore, the higher
cost for each iteration will eventually outweigh the reduction in number of iterations. Note
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TABLE 5.2
Comparison oflevels 0, 1, 2, 3, and 4, MOSA test.

Method Newton Linear
iter # iter #

Level(0) 13 178
-Level(I) 12 111

Level(2) 12 85

Level(3) 12 83
Level(4) 12 70

Sparspak 12 12

Total cPU Total CPU
linear time time

701.33 898.18
510.02 681.79
485.42 670.90
558.10 729.52
580.68 768.87
1658.10 1852.57

Kilo
bytes
6648
7391
8702
10’116’
11498
2)23’"

CPU seconds

2000 "Level(I)"
"Level(2)" -x--

1500

1000

5O0

0 2 4 6 8 10

drain-source voltage (V)

FIG. 5.3. Comparison of levels O, 1, 2, and 3 using one-step preconditioner in Bi-CGSTAB acceleration and
RCM ordering, MOSA test.

from Table 5.2 the level(0) test requires one more Newton iteration than other tests. This is
because the Jacobian iterations are not precisely the same for all the tests, due to the finite
convergence tolerance for the inner iteration. In the case of the level(0) tests, this results in an
extra Newton iteration before the nonlinear convergence test is satisfied.

3. By the combination of both, ILU(g., e). A fill entry is dropped if

leveli > or Jijl < e..

This is a useful heuristic for many applications [16]. However, since the drop tolerance
approach by itself does not appear to be very useful in this application, we will not pursue this
method further.
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5.3. Two-step preconditioner. As we can see from the experiments of the previous
sections, when the accuracy of the factorization (by using a higher level fill or a smaller drop
tolerance) improves, the number of iterations required for convergence decreases. However,
the improvement in the number of iterations will not compensate for the higher cost of each
iteration after a certain point. The best combination of the strategies thus far is to use RCM
ordering plus ILU(1) or ILU(2). For a 3D problem, the ILU(2) approach may require too
much storage. In the following, we will use an ILU(1) factorization unless otherwise noted.

Let Lj and Uj be the incomplete factorization of the Jacobian matrix J. The techniques
used in the previous sections attempt to reduce the difference

IIJ LUII.

The basic assumption of this method is that if this difference is small, then the solution y of
the preconditioning step

(5.4) LUy p

will be close to the solution of

Jx--p.

Alternatively, we can use the following criteria for producing an effective preconditioner.
Denote Mj a preconditioner of J and y the solution of

A better preconditioner Mj means a smaller residual of

(5.5) r Jy- p.

When r 0, a perfect preconditioner is obtained. Therefore a refined preconditioner or a
two-step preconditioner can be developed as follows.

For the purposes of illustration, assume that the variables are ordered as in (4.1). After
we solve the equation (5.4), the residual r in (5.5) is calculated. Let J be the diagonal block
element for the potential variable in (4.1) and r be the part of residual in (5.5) corresponding
to the electric potential equations. The equation

(5.6) JAy r,

is solved. This problem is much smaller and better conditioned. Let Ay [Aye, 0, 0]r, i.e.,
only the potential variables become updated. Then, the refined solution y Ay is used
as the solution for the new two-step preconditioner Mt such that

Mt=p.

It is easy to see that the new residual

?=J-p

will have
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TABLE 5.3
Comparison ofone-step and two-step preconditioners with Bi-CGSTAB acceleration at two representative bias

pointsfrom MOSA. Here (1:1) indicates ILU(1) and (1:2) indicates ILU(1) and two-step preconditioner.

Test Bi-CGSTAB Newton Linear
situation (level:step) iter # iter #

Bi-CGSTAB(I: 1) 20 459
Bias point Bi-CGSTAB(1:2) 20 260

SPARSPAK 20

Bi-CGSTAB 1:1 31 1468
Bias point 2 Bi-CGSTAB(1:2) 31 729

SPARSPAK 31

Total CPU Total CPU
linear time time

1121.90 1360.44
1114.53 1346.76
2720.84, 2959.65
3152.43 3507.59
2741.86 3107.96
4295.57 4656.91

TABLE 5.4
A performance comparison between different implementations. Device MOSFET is tested at one representative

bias pointfrom MOSB. Device BJT is tested at the ground state.

Test Methods Linear
(N) applied iter #

MOSB Two-stgp 217
ILU(2) 352
ILU(1) 483

(15583) ABF
ILU(0.5)+ 1672
ILU(0.1) + 1417
ILU(0.01)+ 863
ILU(0.001)+ 666

BJT Two-step* 142
ILU(2) 242
ILU(1) 322

(13758) ABF
ILU(0.5)+ 1439
ILU(0.1)+ 1226
ILU(0.01)+ 1029
ILU(0.001)+ 579

Total CPU Total CPU
linear time time

1081.55 1373.43
1165.90 1460.94
1227.65 1514.86

notconverged
4794.89 5111.91
5193.31 5502.08
5734.76 6057.82
9217.64 9536.28
544.58 696.00
612.72 764.00
652.69 827.00

notconverged
3700.06 3847.00
3320.64 3465.00
3505.31 3645.00
2980.67 3123.00

Kilo
bytes
7391
5930
4618
3875
5281
5838
9130
14273
6699
5384
4186
3498
4280
4580
6177
8867

Two-step preconditioner with ILU(1).
+ Drop tolerance ILU(e), where e drop tolerance.

In other words, the two-step preconditioner has more accurate electric potential solution.
Consider a case where the drift flow of holes and electrons dominates the diffusion flux.
In this case, as the mesh size is reduced, the electric potential derivatives in the Jacobian
will dominate the hole and electron concentration derivatives. Essentially, this is because in
this situation, the electric potential is an elliptic-type variable, while the hole and electron
concentrations are hyperbolic-type variables.

For the range of2D problems we have tested so far, we have found that use of a direct solve
of equation (5.6) is quite efficient. In other words, J,0 is factored once, and equation (5.6)
is solved by a forward and back solve each iteration. We use minimum degree ordering 10]
for the initial complete factorization of J0o (this system is much smaller than the original
Jacobian). Of course, for larger 3D problems, it may be more efficient to use an iterative
method to solve equation (5.6).

Note that the two-step method is similar to the combinative technique used in [6]. Tables
5.3 and 5.4 present some detailed comparisons between the one-step and two-step precondi-
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FIG. 5.4. Comparison ofone-step and two-step preconditioners.

tioners for MOSA, MOSB, and BJT. We can see that the total number of linear iterations is
reduced significantly with the two-step preconditioner. Figure 5.4 lists the CPU time compar-
ison for a complete test run for test MOSA. The ILU(1) with Bi-CGSTAB acceleration is used
for both one-step and two-step preconditioners. Block RCM ordering is applied. Of course,
the new preconditioner is more expensive than the single step preconditioner. However, the
larger reduction in the number of iterations compensates for the extra cost in each iteration.

In Table 5.4, we present a detailed performance comparison between many different
techniques. (Note that the CPU clock is only accurate to within 5%.) It is clear that a careful
implementation ofthe preconditioned Krylov space method is very important for performance.
Although some extra memory is needed for the small system (5.6) (see the comparison in Table
5.3), the total memory requirement for the two-step preconditioner is still competitive with a
direct method.

6. Conclusion. We emphasize that these conclusions are based on many different test
cases, with widely varying bias voltages. In the course of our tests, we have solved several
thousand device simulation Jacobians. Consequently, we are concerned with the best overall
performance, not just isolated cases.

In agreement with previous work, we have found Bi-CGSTAB acceleration to be generally
superior to either CGS or GMRES methods for device simulation Jacobians.

A generally robust iterative method for a wide range of tests used
block scaling of the Jacobian and fight-hand side,
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a block RCM ordering of the unknowns,
block ILU preconditioning (level(I) or level(2) appeared to be a good choice),
Bi-CGSTAB acceleration.

We found that it was important to treat the Jacobian as a block system, i.e., all the unknowns
associated with a node remain tightly coupled together during the ordering and preconditioning
steps. A similar effect has been observed in petroleum reservoir simulation [38]. In particular,
if block scaling is not used, we have found that convergence is problematic in many cases.

Use of a two-step preconditioner which uses the usual block ILU as a first stage, followed
by a more accurate treatment ofthe electric potential terms was slightly faster (in terms ofCPU
time) than the block ILU factorization by itself. More importantly, the two-step preconditioner
typically reduced the numberofiterations required for a solve by about one-half. Consequently,
if we measure robustness by the number of iterations required, the two-stage preconditioner
is more robust than the block ILU factorization by itself. If the matrix is very ill conditioned,
the two-step preconditioner is more reliable than the one-step technique.

Tests using a drop tolerance method based on the scalar values of the Jacobian matrix
indicated that this approach was not very robust. This is likely due to the large variation in
the magnitudes of the Jacobian entries typical of device simulation. In this case, it becomes
difficult to define small in terms of fill entry size in a meaningful way. A similar effect was
observed for high Reynolds number Navier-Stokes flows [13]. However, it may be that a
different choice for drop tolerance criteria would produce better results.
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A MULTIGRID PRECONDITIONER FOR THE SEMICONDUCTOR EQUATIONS*
JUAN C. MEZA AND RAY S. TUMINARO

Abstract. A multigrid preconditioned conjugate gradient algorithm is introduced into a semiconductor device
modeling code DANCIR. This code simulates a wide variety of semiconductor devices by numerically solving
the drift-diffusion equations. The most time-consuming aspect of the simulation is the solution of three linear
systems within each iteration of the Gummel method. The original version of DANCIR uses a conjugate gradient
iteration preconditioned by an incomplete Cholesky factorization. In this paper, we consider the replacement of
the Cholesky preconditioner by a multigrid preconditioner. To adapt the multigrid method to the drift-diffusion
equations, interpolation, projection, and coarse grid discretization operators need to be developed. These operators
must take into account a number of physical aspects that are present in typical devices: wide-scale variation in the
partial differential equation (PDE) coefficients, small-scale phenomena such as contact points, and an oxide layer.
Additionally, suitable relaxation procedures must be designed that give good smoothing numbers in the presence of
anisotropic behavior. The resulting method is compared with the Cholesky preconditioner on a variety of devices in
terms of iterations, storage, and run time.

Key words, multigrid, semiconductors, drift-diffusion
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1. Introduction. Currently most integrated circuits are designed in a "trial and error"
fashion. That is, prototypes are built and improved via experimentation and testing. In the
near future it may be possible to significantly reduce the cost of building new devices by
using computer simulations to shorten the design cycle. To accurately perform these complex
simulations in three dimensions, however, new algorithms and high performance computers
are necessary.

In this paper we discuss the use of multigfid preconditioning in conjunction with a conju-
gate gradient algorithm inside a semiconductor device modeling code DANCIR [7]. DANCIR
is a three-dimensional semiconductor device simulator capable ofcomputing the solution ofthe
steady-state, drift-diffusion equations. The solution of the drift-diffusion equations involves
the solution of a large nonlinear set of equations that arise from the spatial discretization of
the drift-diffusion equations on a rectangular grid. These nonlinear equations are solved using
Gummel’s method, which requires three symmetric linear systems to be solved within each
Gummel iteration. It is the solution of these linear systems that comprises the dominant com-
putational cost of a simulation. The original version ofDANCIR uses an incomplete Cholesky
preconditioned conjugate gradient algorithm to solve these linear systems. Unfortunately, this
algorithm has a number of disadvantages: (1) it can take many iterations to converge or it may
not converge at all in some cases, (2) it can require a significant amount of computing time,
and (3) it is not very parallelizable.

In this study we consider an alternate solution method based on a multigrid preconditioner.
The multigrid method uses iterations on a hierarchy of grids to accelerate the convergence on
the finest grid. The method requires interpolation, projection, and discretization operators for
the different grids to be defined. Developing these operators in the context ofthe drift-diffusion
equations requires some care due to the presence of greatly varying physical phenomena
including wide-scale variation in PDE coefficients and small-scale phenomena such as contact
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points. In both cases, the development of operator-dependent interpolation and projection is
essential for improving the performance. Further, the presence ofcertain device characteristics
such as oxide layers requires some care to ensure that the different operators and the grid
hierarchy adequately approximate the PDE on all levels. Finally, the presence of a severely
stretched grid gives rise to anisotropic phenomena that requires a suitable relaxation procedure.

The paper is organized as follows. Section 2 describes the drift-diffusion equations that are
most commonly used to model semiconductor devices. We also present the numerical methods
currently used in a particular simulation code developed at Sandia National Laboratories. In 3
we describe the multigrid preconditioner as well as some ofthe choices necessary to implement
this algorithm for the drift-diffusion equations. In 4, the resulting method is compared with
the incomplete Cholesky preconditioner on a variety of devices in terms of iterations, storage,
and run time. We conclude in 5 with a summary of our results.

2. The drift-diffusion equations. The drift-diffusion model for semiconductor device
modeling consists of a set of three coupled, nonlinear PDEs: the potential equation plus two
continuity equations, one each for the electron and hole current densities. For a complete
derivation of the equations the reader can consult a variety of references, for example, [9],
[11],[13].

The potential or Poisson equation is given by

(2.1) eV.E =-eV2 p,

where e is the scalar permittivity of the semiconductor, is the electric potential, and E
-Vp is the electric field. The total electric charge density p is given by

(2.2) p q(p- n + No NA),

where q is the elementary charge, n is the density of free electrons, p is the density of holes,
No is the density of donor impurities, and NA is the density of acceptors.

The continuity equations for the electron and hole currents can be stated as

(2.3)
On
Ot

7 znnE -+- D,, ’Wn R 0,

(2.4)
Op
Ot

-t- 7.(lzppE DpVp) R 0,

where/xn and/Zp are the electron and hole mobilities, respectively, Dn and Dp are the diffusion
coefficients, and R is a term that accounts for the recombination and generation ofelectrons and
holes. The mobilities and the recombination-generation term are functions of various physical
and semi-empirical parameters and are usually modeled through a variety of sophisticated
methods (see, .for example, 11 ]).

2.1. Scaling of variables. The wide range in magnitude of both the dependent and inde-
pendent variables creates difficulties in the numerical solution process. Independent variables
such as the concentrations of impurity dopings No and NA range from 1013 to 1019 carriers
per cubic centimeter. Dependent variables such as the carder densities n and p can range
from 103 to 1019 carders per cubic centimeter. The difficulties associated with the wide range
in the magnitude of the dependent variables can be circumvented to a certain extent by em-
ploying, different variables. However it has been noted by Polak 12] that changing variables
amounts to trading high variability in the dependent variables for increased nonlinearity in the
equations.
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In the DANCIR code, the carrier concentrations are scaledby using the Slotboom variables
u and v:

(q)n nie exp u,

(2.6) p =nie exp
kT

v,

where rtie is the effective intrinsic carrier concentration, k is the Boltzmann constant, and T
is the bulk material temperature.

One of the advantages of using the Slotboom variables is that the current continuity
equations assume the form of Poisson equations facilitating the numerical solution process.
Using the Slotboom scaling the current densities can be written as

Jn kTlznnie exp(qap/kT)’Tu,

(2.8) Jp -kTlzpnie exp(-qap/ kT)’7v.

The resulting steady-state, drift-diffusion equations can then be expressed as

(2.9) fl(, u, v) 72 "b q niee k:’rv nieekT U W ND NA :0,

(2.10) f2(, u, v) ’7. [kTlznniee’7u] -+- R --O,

(2.11) f3(r, u, v) ’7 kTlzpn e " ’7v -t- R --O.

2.2. Nonlinear equations. If the functions fl, f2, and f3 are defined by equations (2.9)-
(2.11) then the nonlinear system of equations arising from the spatial discretization of the
drift-diffusion equations can be written more compactly as FOP, u, v) [fl, f2, f3]T O.
The DANCIR code uses Gummel’s method [6] (also known as nonlinear block Gauss-Seidel)
to solve this nonlinear equation. One Gummel iteration consists of solving f2 for u, f3 for v,
and then fl for p. Gummel’s method has the advantage of only having to solve three linear
systems at each iteration. The disadvantage is that convergence can be quite slow in certain
circumstances, for example in high voltage situations.

In practice, the solution of the steady-state, drift-diffusion equations is accomplished by
solving a series of continuation steps where each continuation step is in turn a steady-state
problem. The initial steady-state or equilibrium problem solved is that of the device with no
external voltages applied. The potential at the contacts is then incremented until the desired
voltage is reached at the contacts. The initial estimate for the potential is computed by solving
a nonlinear potential equation. The DANCIR code uses a Newton method for this calculation
because the Jacobian is symmetric in this special case, thereby not incurring any extra expense
for storage over the Gummel iteration.

2.3. Linear equations. Within each Gummel iteration, three linear systems of equations
must be solved. As we mentioned above, the use of the Slotboom variables transforms the
continuity equations for the electron and hole currents into a set of self-adjoint PDEs. The
linear systems resulting from the discretization are therefore symmetric and positive definite.
The particular method used in the original version of the DANCIR code is a preconditioned
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Procedure MG(b, u, level)
-1if (level COARSEST then u <-- Alevelb

else
u <--relax(b, u, level)
r <--b-Au

Rr /* R is a projection operator */
v--O
v -- MG(?, v, level + 1)
u +-- u + Pv /* P is an interpolation operator */
u +-relax2(b, u, level)

endif

FIG. 1. Multigrid algorithmfor AlevelU b.

conjugate gradient method with an incomplete Cholesky factorization used as the precondi-
tioner [4]. The solution of these linear systems usually constitutes the dominant amount of
work, so any improvement in this part of the code would have a significant effect on the overall
performance.

In the remainder of this paper, we discuss the replacement of this preconditioner by a
multigrid preconditioner and make comparisons between the two preconditioners.

3. Multigrid preconditioner. The multigrid algorithm is a fast and efficient method for
solving the systems of equations that arise from many PDE applications. We give only a brief
sketch of one type of multigrid algorithm. Detailed descriptions of more general multigrid
algorithms can be found in [3], [5].

One iteration of a simple multigrid "V" cycle consists of smoothing the error using a
relaxation technique (such as Gauss-Seidel), "solving" an approximation to the smooth error
equation on a coarse grid, interpolating the error correction to the fine grid, and finally adding
the error correction into the approximation (and perhaps performing some additional relaxation
steps). An important aspect of the multigrid method is that the coarse grid solution can be
approximated by recursively using the multigrid idea. That is, on the coarse grid, relaxation is
performed to reduce high frequency errors followed by the projection of a correction equation
on yet.a coarser grid, and so on. Thus, the multigrid method corresponds to a series of
relaxation iterations on a hierarchy of grids with different mesh sizes followed by the use of
a direct solver on the coarsest grid (which is usually a fairly small grid). We summarize one
iteration of this procedure in Fig. 1.

It is important to note that when the multigrid method is used as a preconditioner within
the conjugate gradient method, it is necessary that the preconditioner be symmetric. This can
be accomplished in the above procedure by choosing the postrelaxation ("relax2" in Fig. 1) as
the transpose of the prerelaxation ("relax" in Fig. 1) [8]. The Jacobi iteration is one smoother
that has this property when it is used for prerelaxation and postrelaxation. Another smoother
combination with this property consists of using red-black Gauss-Seidel for prerelaxation and
black-red Gauss-Seidel for postrelaxation.

To complete the definition of the above method, we will define a grid hierarchy, grid
transfer operators, a coarse grid discretization scheme, and a specific relaxation method.

3.1. Grid hierarchy. In the DANCIR code, the discretization mesh used consists of a
tensor product grid of one-dimensional arrays. In defining a grid hierarchy for the multigrid
method, we consider only coarsening by a factor of 2 to facilitate code development. It should
be noted that in order to carry out this procedure it is necessary to restrict the size ofthe fine grid.
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Specifically, for two-dimensional simulations, the fine grid must contain (2km + 1) x (2jn + 1)
points where max(k, j) defines the number of levels in the hierarchy and (m + 1) x (n + 1)
is the size of the coarsest grid. For the case k > j, the grid hierarchy is defined as follows"

0 2km+ 1 2in+ 1,

1 2(k-1)m + 1 X 2(J-1)n -k- 1,

] 2(t-Jm+l x n+l,

t m+l x n+l.

Though this scheme is straightforward, some care must be taken due to certain device charac-
teristics such as the presence of an oxide layer as well as the contacts. This difficulty will be
discussed after defining the grid transfer operators and the coarse grid discretization.

3.2. Grid transfer operators. In simple multigrid codes it is quite common to use linear
interpolation for second-orderproblems and full weighting or halfweighting for projection [3].
In most cases these simple grid transfer operators are sufficient and the resulting multigrid
scheme works quite well. However, when the PDE coefficients vary greatly (or contain a
discontinuity), these choices for the grid transfer operators may not be sufficient. To illustrate
this point consider the simple PDE

(3.1) (w(x) Ux )x f(x), 0 < x < 1,

with Dirichlet boundary conditions at x 0 and x and

w(x)= { e x <.5,
1 x >.5.

If linear interpolation (or even higher-order interpolation) is used to obtain the value of u at
x .5, the resulting quantity w(X)Ux will in general be discontinuous. Since this term is
differentiated, it is quite clear that this discontinuity is undesirable. That is, interpolating such
that u is smooth (i.e., Ux is constant) at the interpolation point is not the fight criterion. Instead,
we need to take into account the function w(x). One possibility (see [14] or [1]) is to require
that the term w(x)Ux be constant at the interpolated points. This results in an interpolation
formula of the form

h hw(x -)u(x h) + w(x + -)u(x + h)
(3.:z) u(x) hw(x + -}) + w(x )
for the above example on a uniform grid (with mesh spacing h on the fine grid). This formula
can be verified by observing that when it is used, the central difference approximations to
w(x)u at x and x + g are equal. It should be noted that the above interpolation operator
could have been defined in simply algebraic terms. Specifically, when (3.1) is discretized in a
standard way the resulting difference operator is tridiagonal. To solve this tridiagonal system,
a procedure called cyclic reduction can be used [4]. This procedure is essentially Gaussian
elimination with a special elimination ordering of the points. The first step corresponds to
eliminating all the even numbered points (where the points are numbered sequentially along
the line). If we make an analogy between the multigrid algorithm and cyclic reduction, the
interpolation algorithm corresponds to one step in the back solve of cyclic reduction.

Generalization of the interpolation procedure given above to two- or three-dimensional
PDEs is not obvious because the exact analogy with cyclic reduction is no longer possible.

In this work we consider the following interpolation procedure in two dimensions.
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1. Split the finite difference operator on l, Al, into matrices corresponding to the x
and y derivatives as well as the 0th order terms:

Al A -F A -F Gl.

2. Average the derivative operators in the direction orthogonal to the derivative

1
A(j) A(j 1) + -AT(j) + -AT(j + 1),

where A(j) is the x derivative operator for level on horizontal line j of the grid.
3. Interpolate in the x direction. For points where the coarse and fine grid coincide,

use injection. For points in between two coarse grid points use the one-dimensional
procedure outlined above in conjunction withA (i). Specifically, set the interpolated
value at (i, j) such that

{A: (j)u}i O,

where u is the vector of interpolated values corresponding to line j of the grid. This
essentially corresponds to the back solve step of cyclic reduction applied to A (j). It
is important to note that at this point the operator u is defined on every other horizontal
line.

4. Repeat the procedure in the y direction for the horizontal lines that have not yet
been defined in the previous x interpolation. In particular, for fine grid points that
are surrounded by four coarse grid points, use the interpolated values from the x
interpolation.

Effectively, this procedure corresponds to performing the interpolation in one direction
after another using one-dimensional difference operators defined from the original difference
operator. The overall procedure is similar to that in 1], where they use an arithmetic average
of the harmonic averages (as opposed to the harmonic average of the arithmetic averages) to
define the interpolation operator.

For the projection operator we simply use the transpose ofthe interpolation scheme. Given
that the difference operator is symmetric, this is a quite natural way to define a weighted
projection operator. Using this projection on a one-dimensional problem corresponds to
performing the forward elimination step of a cyclic reduction procedure on the tridiagonal
discretization matrix.

3.3. Coarse grid discretizations. In typical multigrid codes, there are two ways of ob-
taining PDE discretizations for the coarser grids. One reliable technique, Galerkin coarsening,
uses the interpolation and projection operators.

While this procedure works well for two- and three-dimensional problems, it has several
disadvantages. For example, when standard interpolation and projection operators are used
the Galerkin procedure may result in a larger difference stencil on coarser grids. Thus the
programmer would have to write new codes for the coarse grid discretization as well as incur
an extra storage penalty.

An alternative to the Galerkin procedure is to use an averaging procedure to generate PDE
coefficients in conjunction with the differencing scheme used on the fine grid. There are many
possible averaging procedures. In this work, we use a scheme based on the one-dimensional
Galerkin operator. Specifically, when a Galerkin procedure is used in conjunction with the
operator-dependent interpolation and projection on (3.1), the resulting coarse grid operator is
equivalent to the reduced operator obtained with one step of cyclic reduction. For (3.1), this
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FIG. 2. Grid obtained by keeping every elghth linefrom a typical MOSFET grid.

coarse grid operator is equivalent to a three-point difference operator that corresponds to using
the fine grid difference scheme on the coarse grid in conjunction with the PDE coefficients

2 w(x + h) w(x h)
Co(x)

w(x + h) + w(x h)

For higher-dimensional problems we first split the finite difference operator into different
terms. A standard averaging procedure is used to approximate the constant term Gl on the
coarse grid. For the derivative terms, we first form averages (e.g., A (i)) as for the interpo-
lation. Then, we use a cyclic reduction procedure on the one-dimensional problems in each
of the different coordinate directions to generate approximations to the PDE coefficients on
the coarser grid. Overall, the resulting procedure can be viewed as an approximation to the
reduced equations of cyclic reduction (or the Galerkin coarsening) where the operator has first
been split into component terms, the cyclic reduction procedure has been applied, and then
the terms are regrouped to form the coarse grid discretization.

3.4. Relaxation method. There are two major possibilities for the relaxation method:
point relaxation and line relaxation. It is well known in the multigrid community that line
relaxation (or semicoarsening) should be adopted when the method is applied to anisotropic
problems. That is, while standard point relaxation methods sufficiently smooth the error for
the Poisson equation, their performance is quite poor for severely anisotropic problems. If,
however, line relaxation is used instead of the point relaxation, it is once again possible to
obtain good multigrid convergence rates even for anisotropic problems. We omit the details and
refer the reader to [3], where a Fourier analysis is given illustrating this phenomenon. In our
case, the highly stretched grid (e.g., Fig. 2) is a source of anisotropic phenomena. Thus, we
have implemented red-black Gauss-Seidel as well as red-black alternating line Gauss-Seidel
for prerelaxation and black-red point and line Gauss-Seidel for postrelaxation. Additionally,
we have implemented local Gauss-Seidel procedures to take into account the physics of the
simulation. In particular, the majority of the difficulties for the smoother are caused by the

lit is not clear whether line relaxation would be necessary with another grid structure. That is, if the sole source
of the anisotropic behavior is the grid, it may not be necessary to use line relaxation.
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FIG. 3. One-dimensional grid hierarchy.

top of the device (near the contacts, oxide layer, and doped regions). The local Gauss-Seidel
procedures consist of performing red-black (point or alternating line) Gauss-Seidel on the
residual equation restricted to the domain coveting the upper one-fourth of the device. This
local procedure is usually used after the standard relaxation procedure to improve the smoother
in the upper part of the device (at only one-fourth the cost of the global procedure).

3.5. Contact points and oxide layer. In defining the grid hierarchy no particular atten-
tion has been given to device characteristics such as the oxide layer and the contact points
present in many devices. It is entirely possible that the location of the boundary between the
oxide and the interior or the boundary between a contact point and the interior could differ
between the fine and coarse grids. For example, consider the one-dimensional hierarchy of
three grids shown in Fig. 3. Ifwe have a contact region (denoted in bold) that covers two points
on the fine grid, then it effectively becomes smaller on the next coarser grid. To prevent this
phenomenon, there are two possible solutions. One option is to choose the grid hierarchy in
conjunction with the contacts (and oxide) such that the boundaries of these regions remain in
place. The other possibility, which we consider, is to keep the grid hierarchy but to modify the
discretization and the right-hand side on the coarse grid such that the location of the contact
boundary is maintained. Forexample, the matrix equation corresponding to the fine grid above

-2
1

1
-2

1
1

-2
1 -2 1

1 -2
lJ

’Ul ’ (’bl ’
u2 b2
u3 b3
u4 b4
u5 b5
u6 b6
u7 b7
u8 b8

\U9 ,) b9J
has the same solution at the odd points as

1 Ul bl
-3 1 u3 263 "k- b4

-2 1 u5 b4 + 2b5 + b6
1 -2 u7 b6 q" 2b7 q- b8

1 u9 b9

Notice that the main change is the second equation (discretization and right-hand side projec-
tion). This procedure corresponds to cyclic reduction and can also be motivated by truncation
error arguments. The main point is that the operator-dependent schemes automatically take
care of these situations to maintain a proper coarse grid approximation. Of course, this ex-
ample is one dimensional and in higher dimensions it will not be possible to have an exact
representation on the coarse grid. However, by using the operator-dependent grid transfers and
discretizations we need not worry too much about the grid hierarchy with respect to the oxide
and the contacts. Further, any small degradations in the coarse discretization (for example,
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FIG. 4. JFET device.
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near the comers of an oxide region) will in general not cause great difficulties for a conjugate
gradient routine (because the problem areas will be of very low rank).

4. Algorithm summary. To summarize, the numerical algorithm used for the nonlinear
equations is the Gummel iteration. Gummel’s method requires three linear system solutions.
For these a conjugate gradient algorithm is used in conjunction with a multigrid preconditioner.
Finally, within the multigrid preconditioner, Gauss-Seidel is used as a smoother with red-black
sweeps for prerelaxation and black-red for postrelaxation. It should be noted that it is possible
to use multigrid as a solver instead of a preconditioner (i.e., without the conjugate gradient
iterations). However, in our experiments we found that the multigrid preconditioned conjugate
gradient code outperformed the use of just multigrid. We believe that there are two primary
reasons for this:

The presence of small-scale effects such as small contacts and doping regions that
disappear on the coarse grid degrade the multigrid coarse grid operator.
The interpolation, projection, and coarse grid scheme used are a bit simplistic. These
choices were made partially because they were easy to incorporate into a large
already-existing program with fairly complicated data structures and a simplistic
scheme for handling nonrectangular grids (resulting from the oxide region). Unfor-
tunately these procedures do not handle the comers of the oxide very well.

While these low-rank degradations can make the multigrid convergence slower, they do not
greatly affect the conjugate gradient procedure.

5. Numerical results. A two-dimensional version of the multigrid algorithm described
in the previous section was incorporated into the DANCIR code. To evaluate the multigrid
scheme, a number of experiments have been performed on a variety of devices. Before
illustrating these results we briefly describe the devices used in the comparison.

5.1. Junction field effect transistor (JFET). The first model used consists of a JFET
depicted in Fig. 4. The simulation is started with zero volts on all of the contacts. Once
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the equilibrium solution is computed, the voltage on the bottom and top contacts is gradually
incremented (and the corresponding steady-state solutions are computed) until the final con-
tact voltage is reached (1.0 volts). After this stage the drain contact voltage is incremented
until it attains a value of 1.0 volts. The current-voltage characteristics (computed with the
DANCIR/MG code) are displayed in Fig. 5.

5.2. MOSFETI. The second test problem consists of a simple MOSFET device depicted
in Fig. 6. In this case the simulation starts at equilibrium. The gate contact is first incremented
to 5.5 volts and finally the drain value is incremented to 2.5 volts.
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The current-voltage characteristics (computed with the DANCIR/MG code) are displayed
in Fig. 7.

5.3. MOSFET2. This final device is our most complex device and corresponds to a
1.25/z N-channel MOSFET that has been used at Sandia for testing purposes. This device is
depicted in Fig. 8. In this case the simulation starts at equilibrium. The gate contact is first
incremented to 5.5 volts and finally the drain value is incremented to 2.5 volts.

The current-voltage characteristics (computed with the DANCIR/MG code) are displayed
in Fig. 9. These characteristics are standard for this device.

In Tables 1-3 we illustrate the total number ofiterations for the conjugate gradient method
and the CPU time corresponding to an entire simulation where the conjugate gradient iterations
for each linear solve terminate when the residual is reduced by. 10-9. In parenthesis we indi-
cate the average number of conjugate gradient iterations per linear solve. It should be noted
that a less strict convergence criterion for the linear subiterations is not considered in this paper.
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TABLE
JFET results: iterations and time (in minutes) for 23 Gummel iterations.

Preconditioner

ILU
MG(1L,0L,4)
MG(1L,1L,4)
MG(2L,2L,4)
MG(1L,3L,4)
MG(3P,0P,4)
MG(5P,5P,4)
MG(1L,2L,4)
MG(1L,2L,5)
MG(1L,2L,6)
MG(1L,0L,5)
MG(1L,0L,6)

49 x 33 321 x 97
Poisson Continuity Poisson Continuity

its time its time its time its time
1499 (13) .4 11351 (48) 2.9 5243 (42) 25.0 49635 (199) 231.1
726 6) 0.7 1959 8) 1.9 1270 (10) 29.2 2182 9) 50.4
562 (5) 0.7 1750 (7) 2.3 1008 (8) 30.3 1750 (7) 52.9
437 (4) 1.0 1499 (6) 3.3 840 (7) 41.0 i502 (6) 73.4
456 (4) 0.9 1589 (7) 3.0 815 (7) 36.0 1488 (6) 65.9
963 8) 0.8 4133 (18) 3.3 1192 (10) 23.5 1827 (’ 7) 36.5
626(5) 1.0 2650(11) 4.1 973(8) 34.6 1555(6) 55.9
503 (4) 0.8 1682(7) 2.7 887 (7) 33.0 1543 (6) 57.6
503 4) 0.8 1682( 7) 2.7 887 7) 31.5 1550( 6) 55.1
503 4) 0.8 1682 7) 2.7 887 7) 31.3 1606 6) 56.7
726 6) 0.6 1959 8) 1.7 1273 (10) 23.7 2191 9) 40.9
726 (6) 0.6 1959 (8) 1.7 1273 (10) 23.7 2214 (, 9) 41.3

TABLE 2
MOSFET1 results: iterations and time (in minutes) for 20 Gummel iterations.

129 x 129
Preconditioner Poisson

its time
Continuity
its time

ILU
MG(1L,0L,4)
MG(1L,1L,4)
MG(2L,2L,4)
MG(1L,3L,4)
MG(5P,5P,4)
MG(1L,2L,4)
MG(1L,2L,5)
MG(1L,2L,6)
MG(1L,0L,5)
MG(1L,0L,6)

21703 (139) 53.9 61504 (197) 152.6
1635 10) 17.4 3755 12) 39.7
1523 10) 20.8 3369 11) 45.9
1485 10) 33.4 2876’( 9) 64.5
1440 9) 28.5 3165 10) 62.4

No convergence
1494 10) 25.0 3261 10) 54.4
1511 10) 25.0 3292 (11) 54.5
1510( 10) 25.0 3311 11) 54.8’
1691 11) 15.5 3827 12) 35.0
1704 11) 15.5 3883 12) 35.2
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TABLE 3
MOSFET2 results: iterations and time (in minutes) for 352 Gummel iterations.

Preconditioner
321 x 97

Poisson
its time

Continuity
its time

ILU 21339 (61) 97.0 171015 (243) 770.2
MG(1L,0L,4) 3202 (9) 69.3 13774 (20) 287.9
MG(1L,1L,4) 2643 8) 71.7 11212 16) 295.5
MG(2L,2L,4) 2231 6) 95.1 9336 13) 389.3
MG(IL,3L,4) 2204 (6) 81.2 i056 (15) 392.6
MG(5P,5P,4) No convergence
MG(1L,2L,4) 2446 7) 79.0 10352 15) 325.6
MG(IL,2L,5) 2446 7) 74.0 11961 17) 359.0
MG(1L,2L,6) 2446 7) 74.0 11024 16) 331.8
MG(1L,0L,5) 3208 9) 59.8 15593 22) 289.0
MG(1L,0L,6) 3208(9) 59.8 14390(20) 267.0

TABLE 4
Total simulation time.

JFET
Preconditioner 49 x 33 321 x 97
ILU 5.1 321.7
MG(1L,0L,4)
MG(1L,0L,5)
MG(1L,0L,6)
MG(1L,iL,4)
MG(2L,2L,4)
MG(1L,3L,4)
MG(1L,2L,4)
MG(1L,2L,5)
MG(1L,2L,6)
MG(3P,0P,4)
MG(5P,5P,4)

MOSFET1
129 x 129

231.5
4.3 114.4 75.1
4.3 99.5 68.3
4.3 100.1 68.5
4.8 142.2 85.4
6.1 153.1 118:0
512 ’13911 110.6
5.3 126.8 98.6
5.3 122.7 98.6
5.6 124.1 99.1
5.9 92.5 nc
7.1 126.3 nc

MOSFET2
321 x 97

945.8
424.0
406.5
391.1
432.5
555.2
54.2
470.9
499.7
472.5

nc
nc

While a milder criteria may be more efficient for the overall nonlinear problem,2 our focus is to
compare linear solvers where it is best if both simulations (multigrid and incomplete Cholesky
preconditioned) follow the same nonlinear path. In Tables 1-4 the notation MG(#1 X, #2Y, #3)
indicates that the multigrid preconditioner uses #1 pre- and postrelaxation iterations3 ofthe "X"
(P for point or L for alternating line) Gauss-Seidel procedure and #2 pre- and postrelaxation
iterations of the "Y" (P for point or L for alternating line) local Gauss-Seidel procedure on
each grid in the #3 level hierarchy. All of the ILU results correspond to ILU(0), which has
the samesparsity pattern as the original finite difference matrix.4 As Tables 1-4 illustrate, the
multigrid code with point relaxation is ineffective for the harder problems (though it works
quite well on the JFET problem). On the other hand, the multigrid with line relaxation can
be a very effective solver because it requires far fewer iterations than.the corresponding ILU
preconditioned code and because the overall run time is much better than the ILU code even

2In our experience, we have found that it can often be more efficient to perform just a few multigrid sweeps
for the two carrier equations. However, it is necessary to solve somewhat accurately the Poisson equation for the
potential. This is due to the fact that the potential is exponentiated in the Gummel iteration. Thus, if the potential is
not accurate (and these inaccuracies are amplified due to exponentiation), the nonlinear path taken by the Gummel
iteration can be suboptimal.

3Actually, the postrelaxation operator is the transpose of the prerelaxation operator. Thus, the prerelaxation
operator uses red-black Gauss-Seidel while the postrelaxation operator uses black-red Gauss-Seidel.

4The original DANCIR code allows for ILU(1), ILU(2), etc. Over a wide variety of numerical experiments, we
have found that the total run time is usually about the same using ILU(1) as opposed to ILU(0) (though the number
of iterations is less using ILU(1)).
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though the cost per iteration is greater. Specifically, for the larger grid JFET problem and the
smaller grid MOSFET1 and MOSFET2 problems the multigrid code is between a factor of
two and four times faster than the ILU code. More importantly, the number of iterations per
linear solve is relatively independent of the grid size when using the multigrid preconditioner
while it grows for the ILU scheme.5 Thus, the savings associated with multigrid are even
greater for larger grids.

In terms of storage, our multigrid scheme requires slightly more storage than the ILU
method. Specifically, the ILU scheme requires the storage of the ILU preconditioner (3n
for five-point symmetric difference operators where n is the number of grid points). In the
multigrid scheme, we need additional storage for the coarse grid versions of the matrix,
the solution, and the right-hand side ( 3n/4 for the coarse matrices and 2n/4 for the
coarse solutions and right-hand sides). Thus, the ILU requires an additional 3n values while
multigrid requires an additional 5n/4 values. However, in our multigrid implementation we
also store 2(4n/3) intermediate values for interpolation and projection operators and 2(4n/3)
intermediate values for the factorization of the line solver.

We conclude this section by illustrating the total CPU time for each device simulation
in Table 4. By comparison with the earlier tables, the reader can verify that the conjugate
gradient iteration dominates the calculation and thus the multigrid savings are significant with
respect to the entire simulation time.

6. Conclusions. We have incorporated a multigrid preconditioner into a semiconductor
device modeling code. To do this, a multigrid scheme was developed that could be used in
cases that exhibited highly variable PDE coefficients and anisotropic behavior. In addition,
special consideration had to be taken with respect to certain device characteristics such. as
oxide layers and small contact regions. The resulting scheme is fast, parallel, and requires far
fewer iterations than the ILU scheme that it replaced. In our sample problems we improved
the performance by a factor of between 2 and 4 over the ILU preconditioner. Extensions to
the three-dimensional case are straightforward and planned for the future.

Finally, we note that while we have used a.multigrid solver for the linear equations that
arise within Gummel’s method, there are potentially much greater savings if the Gummel
technique can be replaced by a nonlinear multigrid iteration. We have not pursued this, but
we hope that this study will give insight into this possibility.
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MULTIGRID WAVEFORM RELAXATION ON SPATIAL FINITE ELEMENT
MESHES: THE DISCRETE-TIME CASE*

JAN JANSSEN AND STEFAN VANDEWALLE*

Abstract. The efficiency ofnumerically solving time-dependent partial differential equations on parallel comput-
ers can be greatly improved by computing the solution on many time levels simultaneously. The theoretical properties
of one such method, namely the discrete-time multigrid waveform relaxation method, are investigated for systems
of ordinary differential equations obtained by spatial finite-element discretisation of linear parabolic initial-boundary
value problems. The results are compared to the corresponding continuous-time results. The theory is illustrated
for a one-dimensional and a two-dimensional model problem and checked against results obtained by numerical
experiments.
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1. Introduction. We consider the numerical solution of a linear parabolic initial-
boundary value problem, spatially discretised by a conforming Galerkin finite-element method.
This leads to a linear system of ordinary differential equations (ODEs), see e.g. 10], [20],

(1.1) B + Au f u(O) uo >0,

with B the symmetric positive definite mass matrix, A the stiffness matrix, and u(t)
(Ul (t), u2(t) Ud(t)) the unknown solution.vector.

In 10] we considered solving (1.1) with the continuous-time multigrid waveform relax-
ation method. This method is based on waveform relaxation, a highly parallel technique for
solving very large systems of ODEs [12], [15]. It is accelerated by using multigrid, a very
efficient method for solving elliptic partial differential equations, see e.g. 1 ], [4], [24]. The
continuous-time waveform relaxation method differs from standard ODE solvers in that it com-
putes a solution along a continuous time interval. It requires the analytical solution of certain
ODEs and the exact continuous representation of certain functions. The method is therefore
mainly of theoretical interest. In an actual implementation of the method, the algorithm is
replaced by a discrete-time algorithm. That is, functions are represented discretely as vectors
defined on successive time levels, and the ODEs are solved by using standard time-stepping
techniques.

The resulting discrete-time multigrid waveform relaxation method belongs to the class
of parabolic multigrid methods. These are multigrid methods for time-dependent problems
designed to operate on grids extending in space and time. Other examples of such meth-
ods are the time:parallel multigrid method [3], [7] and the space-time multigrid method [8].
These methods are highly efficient oa parallel computers, possibly outperforming parallel
implementations of standard time-stepping methods by orders of magnitude [9], [23]. Their
convergence characteristics as iterative solvers are often similar to the convergence charac-
teristics of multigrid methods for stationary problems, although different parabolic multigrid
methods may have very different robustness characteristics. The waveform method, in par-
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ticular, was shown to be very robust across a wide range of time-discretisation schemes. We
refer to [8], [22] for a further discussion.

In this paper, we continue our study of the multigrid waveform relaxation method for
systems of the form (1.1). In particular, we analyse the effect of time discretisation when
linear multistep formulae are used. The structure of this paper is similar to the structure of
10]. In 2, we analyse the spectral properties of certain operators that arise in the formulation
of the waveform relaxation methods. After a brief review of some definitions and properties
of linear multistep methods in 3, we investigate the convergence of the discrete-time standard
waveform relaxation method (4) and of its two-grid acceleration (5), both on finite and
infinite time intervals. For systems of the form (1.1) with B I, the discrete-time waveform
method and its multigrid variant have been investigated in 14], 16], 17], [21 ]. Our results
are qualitatively very similar, and generalise the ones found in these references. In 6, we
perform a model problem analysis for a one-dimensional and two-dimensional model problem.
Finally, in 7, extensive numerical results are reported.

2. Spectral properties ofa special operator. We will show in4and 5 that the discrete-
time waveform relaxation method and its two-grid acceleration can be written as successive
approximation schemes of the form

(2.1) (v-l) _[_ (t9ru3 Hu

We use subscript r-notation to denote vectors or sequences, e.g. u(3 () v-1
/Ui }i=0 where

N is the (possibly infinite) number of components. Each component is a d-vector, and will
typically approximate the solution of the system of d differential equations (1.1) at a given
time level. Operator 7-/r is a linear discrete convolution operator with matrix-valued kernel
hr,

(7-[rur)j (hr * ur)j hj-iui j 0 N 1.
i=O

The convergence properties of operator 7-/r will be analysed in the spaces of Cd-valued p-
summable sequences of length N, lp(N; cd), or lp(N) for short. These are Banach spaces
with norms given by

N-1/-i=0 luill p < p <
(2.2) IIII,,ur,,p=

sup {lluill} p=o,
O<i<N

with I1" II any usual Ca vector norm. Recall that the iterative scheme (2.1) is convergent if and
only if the spectral radius of 7-/r, denoted by p (7-/r), is smaller than one. The spectral radius
is defined as the largest value p for which I1 > p implies that . 7-/r has a bounded inverse.
When N is finite, it equals the magnitude of the largest eigenvalue of

2.1. Spectral radius on finite time intervals.
LEMMA 2.1. Consider 7-It as an operator in lp(N), with 1 < p < x and Nfinite. Then,
is a bounded operator and

(2.3) p(’t[r) p(ho) p(Hr(cx))),

with Hr (z) Ni__O1 hi z-i the discrete Laplace transform ofhr.
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Proof. Since 7-/r is a linear operator in a finite-dimensional space, boundedness of
follows. The operation rur can be represented in standard linear algebra notation as a
matrix-vector product,

(2.4)

h0 u0
hi h0 Ul
h2 hi h0

h_ h h ho u_

The spectral radius of operator 7-/r equals the spectral radius of the N N-block lower
triangular Toeplitz matrix in (2.4). By consequence, p(7-/r) p(ho). The second equality
follows immediately. [3

2.2. Spectral radius on infinite time intervals.
LEMMA 2.2. Suppose hr ll(x), and consider 7-[ as an operator in lp(x), with

1 <_ p <_ x. Then, 7-[ is bounded and

(2.5) ,o(7-/r) max p(Hr(z))
Izl_>l

(2.6) max p(Hr(z)),

with Hr(z) EiC=o hiz-i the discrete Laplace transform ofhr.
The outline of our proof is very similar to the one given in 16, Thm. 3.1]. Yet, here, it

is phrased in terms of general convolution operators. A similar line of arguments is implied
in the proof of [14, Prop. 9]. The proof is based on the discrete version of the Paley-Wiener
theorem 13]. This theorem states that the solution of a discrete Volterra convolution equation
xr + hr * xr fr, with f lp(o) and hr 11 (O) is bounded in lp(O) if and only if
det(! + Hr (z)) 0 for [z[ >_ 1, with Hr(z) the discrete Laplace transform of hr.

Proof. The boundedness of 7-/ follows from the fact that l, lp C Ip. Indeed, applying
Young’s inequality for discrete convolution products [6, p. 198] yields

By definition, the spectral radius of 7-/ is the smallest value of p for which I.1 > /9
implies that ) 7-/r has a bounded inverse in lp(cX). Consider

)ur 7-/rut .ur hr * ur fr

with fr lp(). Suppose ) 0, then this can be rewritten as a convolution equation

ur -) hr
, ur -x fr

By the Paley-Wiener theorem, it follows that ur is bounded if and only if

det I Hr(z) 0 for Izl 1,

or, equivalently,

sup p(Hr (z)).
Izl>_l
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Note that Hr(z) is analytic for Izl > 1, including z cx, and, since hr 11(o), it is
continuous for IZl >_ 1. Also, the spectral radius satisfies the maximum principle. Hence, we
obtain (2.5) and (2.6). [3

Remark 2.1. In the case of d 1, this lemma corresponds to a well-known.spectral
property of semi-infinite Toeplitz operators 18, Thm. 2.1 ].

In 12(), an analogous result holds for the norm.
LEMMA 2.3. Suppose hr ll (<), and consider 7-It as an operator in 12(cx). Denote by

I1" 112 the 12-norm (2.2) with I1" II the standard Euclidean vector norm. Then,

(2.7) I1 112 max IH (z) ll
Izl>_l

(2.8) max IH (z) ll,

with Hr (z) the discrete Laplace transform ofhr.
Proof. The proof is based on Parseval’s relation for vector-valued/2-sequences,

Ilull= II{ui}i-o 12 UiZ
i=O Hz

where I1" I1= is the norm in the Hardy-Lebesgue space of square integrable functions analytic
outside the unit disk,

ilf(z)ll sup ( 1 f0 )1/2r>l
IIf(rei)lldO

The Parseval relation for the scalar case can be found, e.g., in [25, p. 41]. By definition of
operator norm and by Parseval’s relation, we have

IIull= IIH(z)(z)IIH=
117 112 sup sup

lu I1= I1 (z) IH=
with tr(z) the discrete Laplace transform of Ill= can be seen to be equal to

suPlzl>_l IH(z)ll (For the technical details of this last step, we refer to the proof of a
very similar theorem, [2, Thm. 2.2], which deals with operator norms of Fourier multipliers.)
Consideration of the analyticity and continuity of Hr (z) leads to (2.7) and (2.8). [3

Remark 2.2. From (2.3) and (2.5), it follows that the spectral radius of 7-/r on finite time
intervals is smaller than the spectral radius of 7-/r on infinite time intervals.

3. Some linear multistep formulae. For the reader’s convenience, we recall the general
linear multistep formula for calculating the solution to the ODE f(t, y) with y(0) Y0,
see e.g. [11, p. 11],

1 k k

(3.1) -12 j..o j=0Y[Jfn+J"
In this formula, cj and ely are real constants, and r denotes a constant step size. We shall
assume that k starting values Yo, Yl Yk-1 are given.

DEFINITION 3.1. The characteristic polynomials ofthe linear multistep method are given
by

k k

a(z)= otjzj and b(z)= ejzj

j=0 j=0
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Throughout this paper we adhere to some common assumptions. The linear multistep method
is irreducible: a(z) and b(z) have no common roots; the linear multistep method is consistent:
a(1) 0 and a’(1) b(1); the linear multistep method is zero-stable: all roots of a(z) are
inside the closed unit disk and every root with modulus one is simple. For future reference,
we also define the stability region of a linear multistep method, and the related notion of
A(t)-stability, see e.g. [5], 11 ].

DEFINITION 3.2. The stability region S consists ofthose lz .for which the polynomial
a(z) Izb(z) (around lz o: lz-la(z) b(z)) satisfies the root condition: all roots satisfy
Izyl _< 1 and those ofmodulus one are simple.

DEFINITION 3.3. A multistep method is called
(i) A(t)-stable, 0 < t < , if S Z {z IArg(-z)l < c, z # 0}
(ii) A-stable if S contains the left-halfcomplex plane.

4. Thewaveform relaxation method. The continuous-time waveform relaxation method
for solving initial value problem (1.1) is definedby the splittings B MB NB, A MA NA,
and the iteration scheme

(4.1) MBfi(v) + MAu(v) NBfi(v-1) + NAU(v-l) + f,

with u(v) (0) u0. We assume the splitting is such that MB is invertible. This iterative scheme
can be written in explicit form as u (v) =/Cu(v-l) + tp. The convergence properties of iteration
operator/C, the continuous-time waveform relaxation operator, have been studied in [10].
They are expressed in terms of the matrix

(4.2) K(z) (zMB + MA)-1 (zNB + NA)

It was shown on finite and infinite time intervals, respectively, and with ", that

(4.3) p(/C) p(K(o)) and p(/C) sup p(K(z)) sup p(K(i)).
Re(z)>0

4.1. The discrete-time waveform relaxation operator. Application of linear multistep
formula (3.1) to the continuous-time iteration scheme (4.1) leads to

k k1 UymBU(nv)+j + jMAUn+jZ’ j=0(4.4) j=0

1 k
.(v-l)

k k
(v-l)oljNBUn+j + [JjNAUn+j + [Jjfn+j, n>O.

"t"
j=0 j=0 j=0

(v) (v- 1)We do not iterate on the k starting values, i.e., uj uj uj, for j < k. In the remainder
of the text we shall concentrate on the use of implicit methods, i.e., k 0. Equation (4.4)
can then be solved uniquely for every n if and only if the following condition is satisfied:

(4.5) -- o" (-rMIMA)

where tr (.) denotes the spectrum. Further on we shall refer to this condition as the discrete
solvability condition.

Iteration (4.4) can be rewritten as u(v) =/Cru(-1) + tpr. Because we do not iterate on the
starting values, we use a slightly different subscript r-notation here than the one in (2.1), that
is,

}N-1(4.6) u {Uk+i i=0
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(Alternatively, we could have used negative indices to denote the time levels associated with
the k starting values, as is done in [13], [14]. This, however, would require some shifting
in the indices of formulae (3.1) and (4.4).) The precise expression for 9r can be calculated
following the lines of [17, p. 536-537]. It depends on the values of fn, n > 0 and on the
starting values Un, n < k, In order to determine the nature of/Er, the discrete-time waveform
relaxation operator, we rewrite (4.4) using e(v) U(nv) u,,. Here, un is the exact solution of
ODE (1.1) when discretised using the linear multistep method. This gives

E (v) E "-(v) 1 (n’- E r "(v-l)ot)Maen+j + fly otjNe 1)

__
jVAen+j n > 0ZWAe,n+jZ"

j=0 j=0 " j=0 j=0

With Cj -OljMB "k ijMA and Dj -b-otjNn jNA this becomes

k k

(4.7) n+j E Djc:n+J n >_ O
j=0 j=0

Note that ev) ev’) 0, j < k. When we combine the first N equations, i.e., the
equations for the unknowns on time steps k N + k 1, and after introducing vector

ek+ eN+k_l It, we get

(4.8) E(v). C-1D E(v-l)

Matrices C and D are N x N-block lower triangular matrices withk+ 1 constant diagonals. The
blocks onthe jth diagonal are given respectively by Ck-j and Dk-j. It follows immediately that
matrix C-1D is a N x N-block lower triangular Toeplitz matrix. Hence,/Er is a discrete linear
convolution operator on the/p-space of vectors or sequences of length N. The jth component
of the matrix-valued discrete convolution kemel kr equals the (constant) submatrix on the jth
lower block diagonal of C-1D.

In the theory we shall need the discrete Laplace transform of the convolution kernel. It
can be found by discrete Laplace-transforming equation (4.7). If j(v) (z) denotes the transform
of _(v) we obtain

,V)(Z K(z),(v-1)(z)
with the discrete-time waveform relaxation matrix given by

(4.9) K(z) (a(Z)MB -b "cb(z)MA)-I(a(z)NB -b rb(z)NA)

By comparison to (4.2) the following relation results:

(4.10) Kr (z) K (z)

aNote that (4.10) still holds when (z) is set to o in the case of b(z) 0. (In this case
a(z) O, since the characteristic polynomials have no common roots.)

4.2. Convergence analysis.

4.2.1. Convergence on finite time intervals.
THEOREM 4.1. Assume that condition (4.5) is satisfied, and consider 1E as an operator

in l,(N), with 1 < p < o and Nfinite. Then, 1 is bounded and

(4.11, p(/Er,



WAVEFORM RELAXATION ON FINITE ELEMENT MESHES 139

Proof. The theorem follows from Lemma 2.1 and the observation that

lim K (z) lim K ( a

z- z (z) =K kk 13

4.2.2. Convergence on infinite time intervals. The following lemma deals with the
boundedness of the discrete-time waveform relaxation operator/C. It is proved using a
matrix-valued version of Wiener’s inversion theorem [13, p. 446] and [16, p. 577], which is
stated here for the reader’s convenience.

THEOREM 4.2 (WIENER’S INVERSIONTHEOREM). Given a matrix-valued sequence A such
that A Ell o assume that

detZ Aiz-i 0
i=o

for Izl _> 1. Setting o Z_ x )-1Yi=0 Bi (-i=0 Aiz-i we have Br ll (o).
LEMMA 4.3. Ifr (-- M1MA) C int S, then 1Cr is bounded in lp(o)
Proof. It is sufficient to prove that the kernel k of the discrete convolution operator

is an/1-sequence. To this end, consider first the li-sequence

OtkMB d- "flkMA, Otk-lMB d- Zflk-lMA toMs d- "floMA, 0, 0

Its discrete Laplace transform equals the matrix function z-k (a(z)Ms + :b(z)MA). By
Wiener’s theorem, we have that the inverse, (a(z)Ms + zb(z)MA)-1 zk, is the transform of
another/i-sequence, say rr, if

(4.12) det (a(z)Ms / "cb(z)MA) 0 for Izl > 1.

Next, consider the/1-sequence

Sr OlkNB -Jr" flkNA, Olk-1NB -- "t’k-1NA OloNB -- "oNA, 0, 0

the discrete Laplace transform ofwhich is given by z-k(a(z)Ns + rb(z)Na). The convolution
of rr and sr is another/1-sequence, which can be seen to be equal to the kernel kr. Indeed,
the discrete Laplace transform of rr, sr is identical to Kr (z). As a result, it follows that/Cr
is bounded if (4.12) is satisfied.

Suppose there is a z with Izl >_ 1 such that

(4.13) det (a(z)Ms + :b(z)MA) --O.

Then necessarily b(z) : O. (If b(z) 0 then a(z) :/: O, because a(z) and b(z) have no
common roots. Since Ms is assumed to be invertible, equality (4.13) cannot hold.) Hence,
we obtain

(a )det -l(Z)Ms + "CMA --O,

and therefore (z) 6 tr(-JM-IMA). Since Izl >_ 1, it follows that -:MIMA has an
eigenvaiue which is not an interior point of S. This contradicts the assumption of the lemma.
Hence, (4.12) is satisfied. D

Remark 4.1. Condition tr(-’rM-IMA) C intS implies the discrete solvability
condition (4.5). Indeed, since a, (o) it follows that ’ int S, and, therefore,
k . ty(_M’IMA).
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Remark 4.2. Condition o’(-’rM-IMA) C_ int S implies that all poles of K(z) are in the
interior of the scaled stability region 7 S.

THEOREM 4.4. Assumeo’(-M/I/a) (2 int S, and consider1 as an operator in lp(X),
with 1 <_ p <_ . Then,

(4.14) p(/C) sup{p(K(z))lrz E C \ int S}
(4.15) sup p(K(z)).

rzOS

Proof. As r(-M-IMA) C int S, it follows that kr /l(CX). Lemma 2.2 yields

p(1C) max p(K(z)) max p (K ( a- ))Izl>_l Izl>_l .(z)
By definition of the stability region,

C \ int S g(z) "lzl _> 1

and thereby (4.14) follows. Equality (4.15) is obtained by the maximum principle. Note that
we write "sup" instead of "max," since, the maximum may be approached at infinity.

In/2(x), a similar result holds for the norm by application of Lemma 2.3.
THEOREM 4.5. Assume (7(-vM1MA) C int S, and consider lC as an operator in/2((:x:)).

Denote by I1" 112 the 12-norm (2.2) with I1" II the standard Euclidetn vector norm. Then,

(4.16) IIKrll2 sup{llK(z)ll rz 6 C \ int S}
(4.17) sup IlK(z)ll.

rzOS

Analogous to the discussion in 17, Thm. 4.2], we can make the following note.
Remark 4.3. When the assumption in the above theorems is violated, a weaker condition

may be satisfied: r(-rM-1MA) C int Srr, where Sr consists of all/x for which a(e-rz)
lzb(e-rrz) (around/x x: iz-la(e-z) b(e-rz)) satisfies the root condition. The
analysis then can be redone using an exponentially scaled norm,

(4.18) Ilulle --II{ui}lle -II{e-riui}l[.

The norm in the right-hand side is a standard p-norm (2.2). With this change of norm, the
suprema in Theorems 4.4 and 4.5 have to be taken over all rz in C \ int Srr, or, after application
of the maximum principle, over 0 S,r.

4.3. Discrete-time versus continuous-time results. The continuous-time results (4.3)
are regained when we let r --+ 0 in the convergence formulae for operator/C. For finite time
intervals, we have

lim p(/Cr)= lim p (K (Ck))r0 r0
p(K(ocO) p(/C).

A similar result is found for infinite time intervals. Note that the tangent to 0 S in the origin of
the complex plane is the imaginary axis, for any consistent linear multistep method. As such,

S) tends to the imaginary axis when --+ O.the boundary of the scaled stability region 0(7
Consequently,

lim p(/Cr) lim sup p(K(z)) sup p(K(i)) p(/C).
-0 -0zaS R
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Furthermore, for a fixed time step r, we can prove the following theorem for A(ct)-stable
linear multistep methods (see Definition 3.3). The theorem is closely related to 14, Prop. 9],
where multigrid waveform relaxation on finite-difference grids is analysed. We reformulate
the proof, using our notations, for completeness.

THEOREM 4.6. Assume tr(-lM1MA) C ,. Consider 1E as an operator in Ip(o) and
1C as an operator in Lp(0, o), with 1 <_ p.<_ o. Then,

(i) if the linear multistep method is A-stable, then p(1Cr) <_ p(/C);
(ii) ifthe linear multistep method is A(a)-stable, then

(4.19) p(/Er) _< sup p(K(z)) sup p(K(z)),
zr zar

with Eac C \ Ea {z" IArg(z)l _< zr- c}.
Proof. Part (i) is a special case of (ii) with ot zr/2, combined with the second equality of

(4.3). For part (ii), we notice that we may apply Theorem 4.4 since tr(-zMIMA) C C
int S. Therefore,

(4.20) p(1C) =maxp(K( a ))[z[>l (Z)
a (Z) E cIf the multistep method is A(c0-stable, then E for Izl _> 1. Combining the lat-

ter with (4.20) yields the inequality of (4.19). The equality is obtained by the maximum
principle.

5. The multigrid waveform relaxation method. The splittings ofmatrices B and A used
in actual computations typically correspond to Gauss-Seidel or weighted Jacobi splittings.
Each iteration defined by (4:1) can then be computed as the solution of d ordinary differential
equations, each in a single unknown. The resulting iteration can be accelerated by using the
multigrid principle, in a very similar way as the standard pointwise relaxation methods are
accelerated when solving elliptic partial differential equations.

The continuous-time two-grid waveform relaxation scheme is sketched below. We refer
to 10] for a more elaborate description. The algorithm uses two nested grids, a coarsegrid
and a fine grid f2h. Grid functions are mapped from the one grid to the other by a prolongation
(or interpolation) operator (p f2n --> flh) and a restriction operator (r "h -"> ’H). The
discretisation on the fine grid is defined by the matrices Bh and Ah, the discretisation on the
coarse grid by B/and An. One iteration transforms iterate u(-1) into u() in three steps.

(i) Presmoothing. Set Xh
() u(’1) and perform Vl fine-grid waveform relaxation

steps" for v 1, 2 v, solve

r =(v-l) (v-l) (v)(5.1) MBhJC(hv) -- MahX(hv) IVBhAh "Jr- NAhXh "4- fh, with Xh (0) UO.

(ii) Coarse-grid correction. Calculate the defect

dh BJC(hv’) -4- ZahXh fh
Solve the coarse-grid defect equation

Bni)n +AnVtl rdh, with vn(O) O,

and correct,
h X(hv) pVH

(iii) Postsmoothing. Set Xh
) .h and perform v2 fine-grid waveform relaxation steps

(5.1). Set u) Xhv).
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This two-grid cycle can be written as u (v) .Mu(v-l) + qg, where is called the
continuous-time two-grid waveform relaxation operator. The convergence formulae of
as an iteration operator resemble those of the standard waveform relaxation method. More
precisely, in [10] we find for the finite and for the infinite time-interval case, respectively,

(5.2) p(.Ad) p(M(c)) and p(.A//) sup p(M(z)) sup p(M(i)).
Re(z)_>0

M(z), the continuous-time two-grid waveform relaxation matrix, is given by

M(z) KV2(z)(l p(ZBl -}- AH)-lr(zBh + Ah))KVl(z)

with K(z) the fine-grid matrix given in (4.2). We recall from [10, Rem. 4.1] the following
important remark.

Remark 5.1. In the case of a Gauss-Seidel (or weighted Jacobi) splitting of Ah and Bh,
K(z) and M(z) are respectively the Gauss-Seidel (or weighted Jacobi) iteration matrix and
the two-grid iteration matrix for the system (ZBh "k- Ah)Uh fh.

In the following, the discrete-time variant of this two-grid waveform relaxation method
is theoretically investigated. We refer to the Appendix for a similar convergence study of the
multigrid waveform relaxation method. The latter is defined by solving the coarse-grid defect
equation using one or more similar two-grid waveform relaxation cycles, and applying this
idea recursively.

5.1. The discrete-time two-gridwaveform relaxation operator. We discretise the equa-
tions of the continuous-time two-grid cycle using a linear multistep method with a fixed time
step . As before, we assume that we do not iterate on the k given starting values. The
discrete-time two-grid cycle defines a linear operator A4, which satisfies

_(v) j (v-l)(5.3) u(v) ./zUv-l) -" qg and % rer
where e") is the error of the vth iterate. Our notation is again similar to (4.6). is called
the discrete-time two-grid waveform relaxation operator..

The second equation of (5.3) can be reformulated similar to how we arrived at (4.8),

(5.4) E) (ClDh)V(l pFIRFh)(CIDh)vl E(v-l)

Here, E() tek ek+l...N+k_l]t. Matrices Ch, Dh, F and Fh are N x N-block lower
triangular matrices with k + 1 constant diagonals. The blocks of the jth diagonal equal
(Ch)k-j, (Dh)k-j, (FH)k-j, and (Fh)k-j, respectively, with

1 1
(Ch)j -otjM + jMA (Dh)j -otjNn + jNah

and

1 1
FH)j -olj BH q- jAH Fh)j -olj nh -}- [jAh

Matrices P and R are block diagonal with constant diagonal blocks equal to matrices p and r,
respectively. I is the identity matrix ofdimension d x N. The resulting discrete-time two-grid
cycle is well defined, if and only if the following conditions hold:

0k Ok(5.5) --- [ cr ( MB MA and -k q r Bh AH

We shall refer to (5.5) as the discrete solvability conditions for the two-grid algorithm.
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It can be seen that the matrix premultiplying E(v-l) in (5.4) is a lower triangular block
Toeplitz matrix. This implies that .A4r is a discrete linear convolution operator. The discrete
Laplace transform of its matrix-valued kernel can be found by transforming the equations of
the discrete-time two-grid cycle. It is denoted by Mr (z), the discrete-time two-grid waveform
relaxation matrix, and equals

Mr (z) Kr (z) Cr (z) Kr (z),

with Kr (z) given by (4.9) and Cr (z) given by

I p (a(z)BH -b rb(z)A)- r (a(z)Bh + rb(z)Ah).

Matrix Mr (z) satisfies a similar relation as Kr (z) does in (4.10):

(a)(5.6) Mr (z) M (z)

5.2. Convergence analysis. The convergence analysis of operatorr is very similar to
the convergence analysis of the standard waveform relaxation operator/Cr.

5.2.1. Convergence on finite time intervals.
THEOREM 5.1. Assume that conditions (5.5) are satisfied, andconsider.Mr as an operator

in lp(N), with 1 < p < o and Nfinite. Then, .Mr is bounded and

(5.7> p(/,> p (M (Ctk))
Proof. The theorem follows from Lemma 2.1 and (5.6):

( (a )) ((rl___a_))P(Jlr) p(Mr(cx)) p M (x) p M

5.2.2. Convergence on infinite time intervals. We first prove the boundedness of A4r,
i.e., we prove the two-grid equivalent of Lemma 4.3.

LEMMA 5.2. Assume ff(--zgB-l gAh) t.Jr(-rBAn) C int S. Then, Air is bounded in
lp(oO).

Proof. It is sufficient to prove that the kernel of Nlr belongs to I (oo). We shall analyse
each of the factors in the formula for Mr (z) separately

We have, from the proof of Lemma 4.3, that K (z) is the discrete Laplace transform of
an l-sequence, say qr, if

(5.8) det (a(z)MB, / b(z)MA,) : 0, Izl > I.

Consider the l-sequence

ceiBn + r/31An, ce_Bn + r/3_An ce0Bn + r/30An, 0, 0

Its transform is given by z-i(a(z)Bi +rb(z)An). By Wiener’s inversion theorem, (a(z)Bn +
rb(z)An)-z is the transform of an l-sequence, say wr, if

(5.9) det(a(z)Bi + rb(z)A,) :/: 0, Izl _> 1.

Next, consider the l-sequences

ir =I, 0 0,0,0

v ceiBh + r/31Ah, ce_Bh + r/3_Ah ce0Bh + r/30Ah, 0, 0
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I is the d x d identity matrix. Their transforms are given, respectively, by

1 and z-k (a(Z)Bh d- vb(z)Ah).

Now, consider the sequence

(5.10) qr*qr*’"*qr*(ir-PWr * rvr) *qr*qr*"’*qr

v2 times vl times

Ifconditions (5.8) and (5.9) are satisfied, it follows that this sequence is in l. (/1 is closed under
convolution and addition. The multiplication of an/1-sequence by a matrix is an/1-sequence.)
The discrete Laplace transform of sequence (5.10) equals Mr(z), hence the sequence equals
the kernel of A//r. To conclude, .Mr is bounded under conditions (5.8) and (5.9).

Suppose one of these conditions is violated. That is to say, there is a z with Izl _> 1 such
that det(a(z)MBh + rb(z)NBh) 0 or det(a(z)Bn + rb(z)An) 0. That would mean that

(Z) E tr(-M’:MAn) LI tr(-zB_llAl.1). Since Izl >_ 1 this violates the assumption of the
lemma. [3

Remark 5.2. The assumption of Lemma 5.2 implies the two-grid discrete solvability
conditions (5.5).

Remark 5.3. The assumption of Lemma 5.2 implies that all poles of M(z) are inside the
scaled stability region S.

THEOREM 5.3. Assume a(-rMhlMa) t.J a(-vBlAn) C int S, and consider A4r as
an operator in lp(c), with 1 < p < c. Then,

(5.11) p(.Mr) sup{p(M(z))lrz E C \ int S}

(5.12) sup p(M(z)).

Proof. The proof is a direct consequence of Lemma 2.2, and is similar to the proof of
Theorem 4.4.

Application of Lemma 2.3 yields the following result for the 12-norm of
THEOREM 5.4. Assume a(-ZMhMa) t_)o’(-z’BlAn) C intS, and consider A4r as

an operator in/2(o). Denote by I1" 112 the 12-norm (2.2) with I1" II the standard Euclidean
vector norm. Then,

(5.13) 11112 sup{llM(z)ll rz C \ int S}
(5.14) sup IIM(z)ll.

Remark 5.4. If the assumption of the former theorems is violated, but the weaker
condition a (--:Mn-’h1MAh) t.J a(--vB An) C int Sr holds, then we can formulate a remark
analogous to Remark 4.3.

5.3. Discrete-time versus continuous-time results. The relation between the two-grid
operators .A4 r and .A//is similar to the relation between/Cr and/C. More precisely, for both
finite and infinite intervals,

lim p(.A4r) p(.A//).

We also state the two-grid equivalent of Theorem 4.6, without proof.
THEOREM 5.5. Assume a(--r.M-lh MAh) U tr(-rBlAn)C Ea. Consider .Mr as an

operator in lp(O) and .All as an operator in Lp(0, o), with 1 <_ p <_ o. Then,



WAVEFORM RELAXATION ON HNITE ELEMENT MESHES 145

TABLE 6.1
Theoretical and measured values ofp(1Cr) for (6.1) (h 1/16, r 1/100).

CN BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)

finite length 0.458 0.658 0.548 0.486 0.445 0.414
infinite length 0.962 0.962 0.962 0.976 1.149 1.865
measured 0.960 0.961 0.961 0.974 1.147 1.858

TABLE 6.2
Theoretical and measured values of p(.A/lr) for (6.1) (h 1/16, r 1/100).

CN BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)

finite length 0.050 0.050 0.052 0.051 0.049 0.047
infinite length 0.264 0.069 0.106 0.170 0.343 1.184
measured 0.255 0.064 0.099 0.161 0.335 1.166

(i) if the linear multistep method is A-stable, then p(A4) < p(/);
(ii) if the linear multistep method is A(oe)-stable, then

(5.15) p(Adr) < sup p(M(z)) sup p(M(z)),
z z0

with E C E {z" IArg(z)l - }.

6. Model problem analysis.

6.1. A one-dimensional model problem. In order to clify the convergence behaviour
ofthe waveforelaxation methods, we shallstwith avew simple and small model problem,
the one-dimensional heat equation on the unit inteal,

(6.1)
0u O2u

=0, x[0,1].
Ot Ox2

Difichlet bound and initial conditions are chosen such that the solution equals u(x, t)
sin(x) exp(-2t). The problem is discretised using linear finite elements on a mesh h
with mesh size h 1 / 16.

We consider the Gauss-Seidel wavefo relaxation algorithm and the two-level method,
with one red&lack Gauss-Seidel presmoothing step, a simil postsmoothing step, standard
cosening (H 2h), and linear inteolation. The restriction is defined in the standard
way for finite-element multigrid methods, i.e., r pt. For both wavefo algorithms,
we analyse the use of different time-discretisation foulae, with a constant time step r
1/100. In paicul, we consider the trapezoidal le or Cra-Nicolson (CN) method, and
the backward differentiation foulae (BDF) of order 1 up to 5. The spectral radii of the
finite and infinite time-inteal operators for the standard and for the two-level algorithm are
reposed in Tables 6.1 and 6.2, respectively. The results were computed by direct numerical
evaluation of foulae (4.11) and (4.15), and (5.7) and (5.12). The tables also present values
of convergence factors, obseed with an implementation of the methods, using 1000 time
steps. An oscillatow initial approximation to the solution was chosen in order to excite all
possible eor frequencies. The measured values coespond vew well to the theoretical,
infinite-inteal spectral radii. is effect is explained in more detail in 7.1.

These results can be understood by looking at the spectral picture [21, p. 107], which
facilitates a graphical inspection of convergence. In the spectral picture a set of contour lines
of the function p(K(z)) or p(M(z)) is plotted for z in a region of the complex plane close to
the complex origin. On top of this picture, the scaled stability bounda of the linear multistep
methods can be plotted. Figures 6.1 and 6.2 display contour lines of p (K(z)) and p (M(z)) (for
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Fit3. 6.1. Spectral picture and graphical convergence testfor (6.1) (p(K(z)), h 1/16, r 1/100).
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FIG. 6.2. Spectral picture and graphical convergence testfor (6.1) (p(M(z)), h 1/16, r 1/100).
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values 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 and for values 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, respectively) for
the model problem, together with the scaled stability region boundaries of the CN and BDF
methods.

The values of the finite-interval spectral radii can be estimated by checking the values of. (which are not shown in the picture).the functions at the points on the real axis given by &
With increasing order of the BDF methods, these points move to the right. Indeed, equals
1 (BDF(1)), 3/2 (BDF(2)), 11/6 (BDF(3)), 25/12 (BDF(4)), and 137/60 (BDF(5)). A value of
2 is found for the CN method.

The values of the infinite-interval spectral radii can be estimated by taking the maximum
of p(K(z)) or p(M(z)) over the plotted scaled stability region boundaries. The infinite-length
discrete-time waveform methods are convergent for the CN method and the low-order BDF
methods. Divergence is observed for some high-order methods. In general, the spectral radius
increases with increasing order of the BDF method. This was to be expected from Theorems
4.6 and 5.5, and the knowledge that the BDF methods are A(c)-stable with c 90 (BDF(1),
BDF(2)), c 88 (BDF(3)), c 73 (BDF(4)), and c 51 (BDF(5)). Note also that the
maximum of p(K(z)) over 78S is found at the origin for CN, BDF(1), and BDF(2). Hence,
the equality of the corresponding values in Table 6.1.

6.2. A two-dimensional model problem. Next, we study the two-dimensional heat
equation on the unit square,

(6.2)
011 82U 0211
8t 8X2 8y2

0, (x, y) 6 [0, 1] [0, 1],

completed with Dirichlet boundary conditions and an initial condition. The analytical solution
equals u(x, y, t) 1 + sin(zrx/2) sin(zry/2) exp(-zr2t/2). The problem is discretised on a
regular triangular mesh with linear elements, and on a regular rectangular mesh with bilinear
elements. We will analyse convergence of the two-level method, with one four-colour Gauss-
Seidel presmoothing step, a similar postsmoothing step, standard coarsening (H 2h), and
linear interpolation. The restriction is again defined by r pt, which leads to a seven-point
formula in the linear element case, and a nine-point formula in the bilinear element case.

It is no longer practical to use a direct numerical evaluation of p(M(z)) to study con-
vergence characteristics. Instead, we can resort to Remark 5.1, which relates p(M(z)) to
the analysis of a standard two-grid method for a simple elliptic problem. The latter can be
analysed efficiently using a classical Fourier mode analysis as introduced by Brandt in 1 ].
Fourier analysis shows that, under certain conditions, matrix M(z) is spectrally equivalent to
a block-diagonal matrix whose diagonal blocks are matrices of size at most four by four. The
general form of these four-by-four matrices can be derived by studying the action of the differ-
ent multigrid operators on certain sets of four related exponential or sinusoidal Fourier modes.
The spectral properties of M(z) are then calculated easily. We refer to the above reference,
and to 19] and [24] for an in-depth discussion of the classical Fourier mode analysis. In the
present paper we have closely followed the guidelines laid out in [24, Chap. 7].

Figure 6.3 shows the spectral picture for linear finite elements with h=1/32. In the com-
putation we used exponential Fourier modes. They led to an exact value of the spectral radius
in the case of periodic boundary conditions. A slight modification to the standard exponential
mode analysis was applied to cater for the Dirichlet boundary conditions, a modification de-
scribed in [24, p. 111]. Figure 6.4 shows a similar picture for bilinear elements on a grid with
h=1/32. The nature of the stencil in the bilinear element case is such that a sinusoidal Fourier
mode analysis is possible, see [19, 7.1]. The sinusoidal mode analysis leads automatically
to the correct value of the spectral radius in the case of a problem with Dirichlet boundary
conditions.
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FIG. 6.3. Spectral picturefor (6.2) (p(M(z)), linear elements, h 1/32).

3 0.5

FIG. 6.4. Spectral picturefor (6.2) (p(M(z)), bilinear elements, h 1/32).
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TABLE 6.3
Theoretical and measured values ofp(JVlr for (6.2) (linear elements, h 1/32, r 1/100).

CN BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)

finite length 0.102 0.120 0.110 0.104 0.100 0.097
infinite length 0.374 0.148 0.148 0.150 0.170 0.233
measured 0.329 0.135 0.137 0.138 0.150 0.198

TABLE 6.4
Theoretical and measured values of p(.A/lr) for (6.2) (bilinear elements, h 1/32, r 1/100).

CN BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)

finite length 0.038 0.042 0.040 0.038 0.037 0.036
infinite length 0.356 0.052 0.058 0.068 0.087 0.132
measured 0.313 0.039 0.044 0.049 0.067 0.118

In Tables 6.3 and 6.4 we present two-grid spectral radii for the finite-length and infinite-
length waveform operators, together with two-grid convergence factors computed numerically
using an oscillatory initial approximation and 1000 time steps. As for the one-dimensional
problem, there is again a good agreement between the theoretical infinite-length spectral radii
and the experimental convergence factors.

7. Numerical experiments.

7.1. The one-dimensional model problem. In this section, we shall clarify the relation
between the finite and infinite time-interval spectral radii. To this end, we solve (6.1) using the
Gauss-Seidel waveform method with BDF(2) and BDF(5) time discretisation, with constant
time step 1/100 on 100 time levels (N 100). (Note that a similar analysis could be done
for the two-level method and/or for larger values of N. It would lead to similar conclusions
and insights.)

Let d) denote the discrete defect or residual in the vth iteration. The convergence factor
of the vth iteration is then defined by

(7.1) p(V)= IIdll2/lld"-lll.
In Fig. 7.1 successive convergence factors are plotted for the first 400 waveform Gauss-Seidel
iterations, when BDF(2) discretisation is used. These factors appear to remain more or less
constant for a large number of iterations. The height of the plateau matches the value obtained
in Table 6.1 for infinite time intervals, i.e., 0.962. Eventually, the plateau in Fig. 7.1 is left,
and the factors start to decrease. Ultimately, they start to rise again and reach the value 1.
This is for purely technical reasons, because at that time the solution has converged within
the finite-precision arithmetic of the implementation. A similar plot is given in Fig. 7.2 for
the BDF(5) discretisation. Here, the evolution is much more erratic. The results clearly
indicate divergence for a large number of iterations. After a sufficient number of iterations,
the convergence factors decrease below 1, and the iteration starts to converge rapidly.

This behaviour can be explained by examining the time-level convergencefactors. These
factors are similar to the standard convergence factors (7.1), but are evaluated for each time
level separately,

p(,,) id(V) (v-l)
k --I k II=/lldk II:z.

In Fig. 7.3, we plotted such time-level convergence factors for the BDF(2) method (for
v 10, v 100, v 200, and v 300). The factor measured at the first time level equals
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FIG. 7.1. Convergencefactors p(u) as afunction of v (BDF(2) method).
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FIG. 7.2. Convergencefactors p(v) as afunction of v (BDF(5) method).
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0.548, exactly equal to the value predicted by the finite time-interval analysis in Table 6.1.
The convergence factors at the next time levels increase, and eventually become constant. The
height of the plateau matches the spectral radius value for infinite time intervals. As more
iterations are applied, the plateau is forced out of the time window and the corresponding
convergence factors decrease.

In Fig. 7.4, we have plotted time-level convergence factors for the BDF(5) method (for
v 1, v 5, v 50, and v 100). Again, we observe that the factor at the first time level
corresponds to the value predicted by the finite time-interval analysis (0.414). The pictures
illustrate the onset of oscillations which rapidly explode. As more iterations are applied, the
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FIG. 7.4. Time-level convergencefactors pv) as afunction ofk (BDF(5) method).

TABLE 7.1
Averaged convergencefactorsfor (6.2) (linear basisfunctions, h 1/32, r 1/200).

CN BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)

Gauss-Seidel 0.990 0.990 0.990 0.997
V-cycle 0.438 0.177 0.177 0.275 0.844
W-cycle 0.307 0.124 0.124 0.124 0.381

TABLE 7.2
Averaged convergencefactorsfor (6.2) (bilinear basisfunctions, h 1/32, 1/200).

CN BDF(1) BDF(2) BDF(3) BDF(4) BDF(5)

Gauss-Seidel 0.985 0.985 0.985 0.996
V-cycle 0.446 0.046 0.132 0.332
W-cycle 0.295 0.041 0.041 0.052 0.538

region of divergent behaviour moves to the fight, and is forced out of the time window. From
then on, the iteration converges rapidly.

7.2. The two-dimensional problem. We discretise (6.2) using linear basis functions
(triangular elements) or bilinear basis functions (rectangular elements) on a mesh with equal
mesh size in x- and y-direction. The resulting system of ODEs is solved using Gauss-Seidel
and multigrid waveform relaxation for [0, 1]. In the latter we applied V-cycles and W-
cycles, with one presmoothing and one postsmoothing step of four-colour Gauss-Seidel type.
We use standard coarsening down to a mesh with size h 1/2, seven-point prolongation
(linear basis functions), and nine-point prolongation (bilinear basis functions). The restriction
operator is defined as r pt.

In Tables 7.1 and 7.2 we report averaged convergence factors. These are defined as the
average of p over the region of nearly constant behaviour. The dashes ("-") in the tables
indicate that the corresponding method showed divergence over a large number of iterations.
Both tables illustrate the dependence ofthe convergence on the nature ofthe time-discretisation
method.
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In Tables 7.3-7.8, we report averaged convergence factors obtained with W-cycles for
different values of the mesh-size parameters, and for different discretisation schemes. We
observe a dependence of the actual convergence factors on h and r. For the Crank-Nicolson
and BDF(2) methods, these factors appear to be bounded by a constant, smaller than one,
independent of the mesh size.

For a constant value ofh, we expect the convergence factors to converge to the continuous-
time results when r decreases, see 4.3 and 5.3. This behaviour is recognised clearly for the
CN method in Tables 7.3 and 7.6. Due to the shape of the stability regions of the BDF(2)
and BDF(4) methods, it takes a much smaller value of r before the discrete-time convergence
factors tend to the continuous-time ones, see Tables 7.4, 7.5, 7.7, and 7.8. For a constant
value of r, we observe an initial increase of the convergence factor when h decreases. For
sufficiently small h the convergence factor starts to decrease again. This behaviour is similar
to what is observed when the multigrid waveform relaxation method is used to solve the ODEs
obtained by spatial finite-difference discretisation of a parabolic problem. We refer to [21,
3.5] for an intuitive explanation, and to [22] for a discussion based on an exponential Fourier
mode analysis.

Appendix. Analysis of the multigrid waveform relaxation operators. We consider
the case where we have a hierarchy of grids, f2h0 C f2hl C C g2h, a set of prolongation

hi+loperators Ph 2h - f2h/l, 0 < < 1, a set of restriction operators, rh+lhg
h/l f2h, 0 < < 1, and discretisation matrices Bhg and Ah, 0 <_ < I. The
multigrid algorithm differs from the two-grid cycle in that the coarse-grid defect equation is
approximately solved by an application of ?, two-grid cycles, an idea that is further extended
recursively. (The classical V- and W-cycles correspond to t’ and F 2, respectively.)
In the continuous-time case this leads to an iteration of the form u(v .MhU-1 + qg. In
the discrete-time case we end up with an iteration operator which we denote by (Mhl).

Both iterative schemes can be analysed in exactly the same way as the two-grid cycles have
been analysed. A Laplace-transform argument is used in the continuous-time case, whereas
the discrete-time case is treated by using a discrete Laplace-transform method. Proceeding
as before, we can derive the symbol of the continuous-time multigrid waveform relaxation
method, Mat (z). The latter takes a particularly simple form under the natural assumption that
the semidiscretised PDE operators are invertible. In that case we can apply the following
Lemma.

LEMMA A.1. Let Bit -t- Au f have a unique solution, and let it be solved approximately
by Y steps of a consistent waveform method: U (k) dbt(k-l) -t" 0 with u(O)(t) O. Then,
the t’th iterate can be represented as u() (I .M)u

Under the above assumption, the multigrid symbol becomes

K(Z) (I hI (I MI_I(z))Llll "\hll
Phi-1 (Z)rh- Lh

Mh, (Z) 7 1,

hlLl rhL(z))K;(z) lK,,1 (Z) \I Pho (Z) hi Ill

where Lhi (Z) ZBh "Jr" Ah and Kh, (Z) (ZMBhi + MAh )-1 (ZNBhi -Jr- NAhi ). Note that Mh, (Z)
is technically more complicated when the assumption is violated. In that case, it does not
involve the factor L11 (z).

Remark A.1. Let Khi(z) correspond to a Gauss-Seidel or weighted Jacobi splitting.
Then, Mh (z) is the multigrid iteration operator for the elliptic problem (Znhl -Jl" Ahl)Uh fhl’
compare [4, p. 162] and [19, p. 46].
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TABLE 7.3
Averaged convergencefactorsfor (6.2) (linear basisfunctions, CN method, W-cycle).

h, 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.103 0.135 0.134 0.135 0.134 0.135
1/8 0.126 0.256 0.305 0.304 0.304 0.304
1/16 0.117 0.135 0.282 0.359 0.358 0.357
1/32 0.123 0.125 0.140 0.307 0.372 0.371

TABLE 7.4
Averaged convergencefactorsfor (6.2) (linear basisfunctions, BDF(2) method, W-cycle).

h, r 0.04 0.02 0.01 0.005 0.0025 0.001

1/4 0.051 0.070 0.111 0.128 0.133 0.134
1/8 0.086 0.086 0.108 0.194 0.247 0.291
1/16 0.118 0.118 0.118 0.118 0.124 0.266
1/32 0.124 0.124 0.124 0.124 0.124 0.125

TABLE 7.5
Averaged convergencefactorsfor (6.2) (linear basisfunctions, BDF(4) method, W-cycle).

h, 0.04 0.0 0.01 0.005 0.0025 0.001

1/4 0.173 0.320 0.290 0.171 0.135 0.134
1/8 0.141 0.324 0.525 0.766 0.666 0.311
1/16 0.121 0.154 0.358 0.653 0.807 0.948
1/32 0.124 0.124 0.124 0.381 0.726 1.091

TABLE 7.6
Averaged convergencefactorsfor (6.2) (bilinear basisfunctions, CN method, W-cycle).

h, 0.04 0.02 0.01 0.005 0.0025 0.001

1/4
1/8
1/16
1/32

0.102 0.133 0.136 0.137 0.137 0.137
0.150 0.231 0.285 0.293 0.294 0.294
0.080 0.179 0.268 0.330 0.343 0.344
0.042 0.086 0.184 0.295 0.343 0.355

TABLE 7.7
Averaged convergencefactorsfor (6.2) (bilinear basisfunctions, BDF(2) method, W-cycle).

h, 0.04 0.0= 0.01 0.005 0.0025 0.001

1/4 0.049 0.072 0.085 0.088 0.106 0.125
1/8 0.063 0.088 0.130 0.178 0.224 0.241
1/16 0.045 0.046 0.047 0.104 0.167 0.246
1/32 0.041 0.041 0.041 0.041 0.042 0.132

TABLE 7.8
Averaged convergencefactorsfor (6.2) (bilinear basisfunctions, BDF(4) method, W-cycle).

h, 0.04 0.02 0.0a 0.00 0.002 0.001

1/4 0.124 0.217 0.161 0.148 0.139 0.135
1/8 0.158 0.319 0.600 0.661 0.405 0.324
1/16 0.069 0.147 0.377 0.735 0.892 0.770
1/32 0.042 0.048 0.112 0.538 0.646 0.937
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As in 10], the continuous-time convergence theorems can be formulated in terms of this
symbol. The ideas behind the proofs are identical to the ones behind the corresponding proofs
in the above reference, and therefore omitted.

THEOREM A.2. The multigrid waveform relaxation operator dhl is a bounded operator
in C[0, T] and

P(JMht) P (Mh,(O))
THEOREM A.3. Assume that all eigenvalues ofM- MAhi < < 1, and Bo Aho have

positive real parts, and consider Mhl aS an operator in Lp(O, oo) with 1 < p < oo. Then,

Jh is a bounded operator with spectral radius

(A.3) sup p (Mh,(Z)) sup p (Mh,(i))
Re(z)>0 ]i

Following the line of arguments of 5.1, we can derive the discrete-time symbol

(a)(M,)(z) M, (z)
The discrete-time convergence theorems are immediate extensions of Theorems 5.1 and 5.3.
The proofs are very similar.

THEOREM A.4. Assume [,.it or(-zM-1Mahi) I..J O" (-’Cnolaho), and considerk Bhi
(./hl): aS an operator in lp(N), with 1 < p < oo and N finite. Then, (Mhl)z is a bounded
operator and

(A.4) P((JMh)r) p Mh,

M-1MAhi) tO cr(-znolAho) C int S, and considerTHEOREM A.5. Assume Ui=I O’(--Z" Bh
(dhl) aS an operator in lp(oO), with < p < oo. Then,

(A.5) P((’/hl)Z) sup{p(Mh,(Z))lrz C \ int S} sup p(Mh,(z)).
rzOS
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IMPLICIT EXTRAPOLATION METHODS FOR MULTILEVEL FINITE
ELEMENT COMPUTATIONS*

MICHAEL JUNGt AND ULRICH RODE

Abstract. Extrapolation methods for the solution of partial differential equations are commonly based on the
existence of error expansions for the approximate solution. Implicit extrapolation, by contrast, is based on applying
extrapolation indirectly, by using it on quantities like the residual. In the context of multigrid methods, a special
technique of this type is known as r-extrapolation. For finite element systems this algorithm can be shown to
be equivalent to higher order finite elements. The analysis is local and does not use global expansions, so that
the implicit extrapolation technique may be used on unstructured meshes and in cases where the solution fails to

be globally smooth. Furthermore, the natural multilevel structure can be used to construct efficient multigrid and
multilevel preconditioning techniques. The effectivity of the method is demonstrated for heat conduction problems
and problems from elasticity theory.

Key words, finite elements, extrapolation, multigrid, elasticity

AMS subject classifications. 65F10, 65F50, 65N22, 65N50, 65N55

1. Introduction. Multigrid methods have been shown to be very efficient solvers for
elliptic partial differential equations (PDE). In this paper we are concerned with the so-called
z-extrapolation multigrid method (see Brandt [6] and Hackbusch [7]), which is an extension
of conventional multigrid that can improve the accuracy of the numerical result by implicitly
using higher order approximations.

In contrast to conventional extrapolation methods for partial differential equations, as de-
scribed in Marchuk and Shaidurov 15] and Blum, Lin, and Rannacher [4], the z-extrapolati0n
algorithm is based on an implicit application of Richardson’s deferred approach to the limit.
We do not take linear combinations of computed approximations, but extrapolate the residuals
of different levels. This is equivalent to forming a linear combination of the stiffness matrices
and right-hand sides. The precise meaning of this will be explained in detail later.

We show that one step of multigrid z-extrapolation for piecewise linear CO finite element
(FE) methods is equivalent to using quadratic elements. This can be derived as a consequence
of asymptotic error expansions for the numerical integration of the FE stiffness matrices, as
shown in Rtide [20]. Here we will follow a different approach and show that the quadratic
stiffness matrix and the stiffness matrix which is implicitly constructed by z-extrapolation
for linear elements coincide. Therefore the system solved by z-extrapolation is equivalent to
using quadratic elements. Furthermore, we show the asymptotically optimal convergence of
a multigrid solution of the extrapolated system.

Our experimental framework is the Finite Element Multi-Grid Package (FEMGP) (see
Steidten and Jung [22]) developed at the Technische Universitit Chemnitz-Zwickau for the
solution of elliptic and parabolic problems arising in the computation of magnetic and ther-
momechanical fields. We focus on self-adjoint second-order linear elliptic partial differential
equations, using the heat conduction equation and the equations of elasticity as typical model
problems. The equivalence of z-extrapolation to higher order finite elements justifies its use
even for unstructured meshes as produced with FEMGP; see also the results on z-extrapolation-
based higher order adaptive methods by McCormick and Rtide 16].
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2. Finite element discretizations of the boundary value problem. We consider two-
dimensional second-order elliptic boundary value problems:

(1) Find u V0 such that a(u, v) (F, v) for all v V0,

with a symmetric, V0 -elliptic, and V0 -bounded bilinear form a(., .); (., .) V0* x V0 ---> ]1

is the duality pairing, V0* denotes the space which is dual to V0 and F V0* is a linear and
bounded functional on Vo Later we will describe more precisely which bilinear forms we
want to investigate.

Let us first describe some finite element discretizations of. problem (1). The start-
ing point of the discretization process is a coarse triangular mesh T1. Then we generate
a sequence of nested triangular meshes Tk {(k(r) r ffk }, k 1, 2 1, ffk
1, 2 Rk}, where Rk denotes the number of triangles of the triangulation T. We sup-

pose that we obtain the triangulation T/ by dividing all triangles 8r)1, r fl//-1, into four

congruent subtriangles 8r). The nodes of the triangulations are numbered hierarchically,
i.e., p(1) p(2) p(N1) p(N+l) p(N) p(Nk_+l) p(Nk! p(Nl-l+l)

p(U/), where p(N_+l) p(Nk) are the nodes of T that do not belong to T-I (but are
naturally also nodes of T+I T/).

Corresponding to each triangulation T, k l, 2 1, we define the finite element
subspaces Vk C V0 as

(2) Vk V’N span{-(i) 1 2, Nk}lk

where the trial functions _(i)
t’k are piecewise linear functions such that p(i)k is linear in all

triangles of Tk they are continuous, and they satisfy the relations Pk-(i)(xj), x(2j)) 1 for

J, Pk-(i)(xj), x(J))2 0 for - j, i, j 2, Nk. Here (x[j), x(j)) denotes the
coordinates of the node P(J), and Nk is the number of nodes belonging to 2 t_J FN, where FN
is the part of the boundary 0fl on which natural boundary conditions are given.

The finite element subspace corresponding to the finest triangulation T/we define, only
formally for now, by

(3) V/ span{/3i), 1, 2, Nt}.

For the specific choice of the functions /)I we consider four possibilities. The first one is the
_(i)=(i) _(i) where the functions/t are defined in the same wayusual nodal basis, i.e., we set/ b’

as the functions _(i) k 1 2, 1 Consequently, we obtain the FE subspace-Pk

(4) V VlL’N span{p}i) 1, 2 N

As a second possibility we use the two-level h-hierarchical basis, i.e.,

(5) V/ VlL’H span{p}i)1_ 1,..., Nl_l} t2 span{p}/), Nl_ q- 1,... N }.

Additionally, to these two approaches we also introduce FE subspaces spanned by piecewise
quadratic functions _(i These functions are polynomials of degree 2 in all triangles of/l-

T/-1, they are continuous, and they satisfy the relations _(i (xj x(zj)e/l_l lfori j,

qi} (xj xj) 0 for j j 1 2, N Using these functions we can define thel-1 2
usual quadratic nodal basis as

(6) V vIQ’N= span{q/__)1, i= 1, 2 N },
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and the two-level p-hierarchical basis as

span{p 1, Nt_l} U span{q 1, NI_ + 1 N }.

The sequence of FE subspaces Vk k 1, 2 l, where V stands for glL’N, glL’H, glQ’N

or V/e’14, respectively, results in a sequence of finite element schemes:

(8) Find Uk Vk such that a(uk, v) (F, v) for all vg Vk.

The determination of the unknown function u is equivalent to the solution of the system

(9) K,Nuk f,sv
of the algebraic finite element equations, where for k 1, 2 1,

(10) u [U(ki)]i=l,2 Nk llk Z ui,pi)’
i=1

(11) L,N L N (ij)]t L,N,(ij) (j) p(i)) andK [K’ =1,2 Nk K akpk

(12) ff,U [f?,N,(i)] f, (F, _(i))i=1,2 N
’N’(i)

-Pk

For k the stiffness matrix Kt and the load vector f_./are defined in the same way, and we
_(i) Depending on the concrete choiceset only the functions =(i) instead of the functions Pl/)l

of the functions/-)l--(i) (see the possibilities (4)-(7)), we get the stiffness matrices K g’N,
Kf’I, KIQ’N, or K/Q’14 and the load vectors --f LL’N, f__lL’14, f__lQ’N, or f__/a’14 respectively.

Next we specify the bilinear form a(., .). In the following we will consider bilinear forms
which are defined by

(13) a(u, v) fa (AVxu, Vx v) dx,

where A is a symmetric, positive definite (2 2)-matrix,

O O)
r

(14) Vx
aXl Ox2

and (., .) denotes the Euclidian scalar product in the space N2. Such bilinear forms arise from
the derivation of the weak formulation of heat conduction problems. Let us suppose that the
entries of the matrix A are piecewise constant functions, i.e., constant in each triangle 3}r)1,
r 6 J/_ 1" In this paper we will not discuss the variable coefficient case.

Next we prove an interesting relation among the matrices K/L__’IN, K/L’14, and K/Q’14, which
is useful for the investigation of the convergence properties of a multigrid algorithm with
extrapolation.

L,N 14 KIQ’14 be defined by the bilinearform (13) as describedLEMMA 2.1. Let Kl_ K’ and
above, where the entries ofthe matrix A(x) in the bilinearform are constant in each triangle
}r) tE "f)’/-l" Then the relation

(lS) K/Q,n 4 1-K’H Kl_3



IMPLICIT EXTRAPOLATION METHODS 159

holds, where

Kl- 0 0

(16)

Proof. Recall the definition of the stiffness matrices

g’ [g’’(iJ)]i,j=l,2 Nl-1, g’’(ij)
al,

(j) /)/-1),-(i)

(17) K’n [g’H’(iJ)]i,j=l,2 NI,

(j) _(i)
al,Pl-1, l:l-1)

(j) _(i)a I,p Pl-1)
(j) _(i)a pl_ Pl
(j) _(i)

al,Pl ,Pl

for i,j 1,2 Nl_l,
for j NI_I + I, NI_I +2 NI i: 1,2 NI_I,
for j 1,2 NI_, NI_I + I, NI_ +2 Nl,

for i,j-’Nl_ + 1, Nl_ +2 Nl

(18) KlQ’H --[KIQ’H’(iJ)]i,j=l,2 Nl,

(iJ)

(j) (i) foral,Pl_l, [3l_
(j) _(i) foratql_, b’l-)
(j) (i) fora(Pl-1, ql-1)

(j) (i) foratql_, ql-)

i,j 1,2 NI_I,
j Nl_l+l, Nl_l+2 Nl, i= 1,2 Nl_,
j 1,2 NI_ 1, i: NI_I+I, NI_I+2 Nl,
i, j Nl- + 1, Nl-1 +2 Nl.

All these stiffness matrices have the structure

gl,vv gl,vm )(19) g-- gl,m gl,mm

where Kl,vv corresponds to the nodes of the triangulation T/_ 1, gl,mm corresponds to the new
nodes in the triangulation T/, and KI,mv, KI,om are the coupling blocks.

From the definitions (16)-(18) of the matrix elements we see that

3

1~ ( K_’
3 Kl-1 t,,taKl,mv

4 L,H

)K,om
4 L,H
5 Kl,mm

and

(21) KIQ,U K
KQ,H Q,H

l,mv Kl,mm

Taking into account that these matrices are symmetric, we have to prove that

4 L,H KQ,H-Kl,vm l,vm and
4 L,H Q,H-gl,mm gl,mm.
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X2
arbitrary triangle 8[)1 e T//_I

p(r,3)

p(, p(r,5)

p(r,4) " p(r,2)

(x)

x x()

p(3)

p(6)

p(1)

p(r,1) p(r,1) (xr,1) X2 I)),
(r,2) (r,2)p (r, 2) p (r, 2) (X ,2 ),

(r,3)p(r,3) p(r,3)(x Xr,3))

reference element A

(3)p(5)
p(4) p(2)

p(1) p(1) (0, 0),

p(2) p(2) (1, 0),

p(3) p(3) (0, 1)

FIG. 1. The mapping between the reference element A and an arbitrary element 8r)

To do this we introduce some notation. The transformation x x (),

() ((r,2) (r,a).(r,3) (r,a))() ((r,1))X1 X1 X1 "a’l X1 1 Xl
(r,2) (r, 1) (r,3) (r, 1) "+" (r, 1)

X2 z2 X2 "2 X2 2 X2
(22)

< (r, 1)

realizes the mapping of the reference element A {(1, 2) 0 5 1, 0 2 5 1,
1 + 2 1} onto an element 8[3 of the triangulation

_
(see Fig. 1).

On the reference element A we define six shape functions ff, a 1, 2 6. In the
case of the h-hierchical basis we have

(23)
21 in
2 21 22 in34(1, 2) o4(1, 2) 0 in

22 in

0 in
2’2 intP5(I, 2) tPS(l, 2) 21 in
21 + 22- in

22 in

6(1 2)"--6(1 2)=
0 in
2- 21 22 in
1 21 in

A(1),
A(2),
A(3),
A(4),

A(1),
A(2),
A(3),
A(4),

A(1),
A(2),
A(3),
A(4),
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A(1)

A(2)

A(3)

A(4)

TABLE
The partial derivatives of the piecewise linear shapefunctions.

Ol 02
02
01

03 0tp3 04 0q94

Ol 82
06
01

-1 -1 0 0 2 0 0 0 0 2

-1 -1 0 0 -2 -2 0 2 0 0

-1 -1 0 0 0 0 2 0 -2 -2

-1 -1 0 0 0 -2 2 2 -2 0

TABLE 2
The partial derivatives of the quadratic shapefunctions.

01

(0.5, O) 0 -2 0 2 0 2

(0, 0.5) 2 0 2 0 -2 0

(0.5,0.5) -2 -2 2 2 -2 -2

and in the case of the p-hierarchical basis,

(24)

q3(l, 21 993(1, 21,

In order to calculate the elements of the stiffness matrices we need the derivatives of the shape
functions. For the h-hierarchical functions we get the partial derivatives given in Table 1.

For the computation of the matrix elements in the case of the p-hierarchical basis we use
the following quadrature rule"

3 1
(25/ lP(I, :21 d E g ’l/r(:(k)) g ((0.5, O) -+- 1//’(0, 0.5 -]- 1//’(0.5, 0.511,

k=l

which is exact for quadratic polynomials on A. Therefore we present in Table 2 the values
of the partial derivatives of the functions 4, aP5, and 1/r6 in the quadrature points (0.5, 0),
(0, 0.51, and (0.5, 0.5).

4 L,H Q,HFirst we prove g gl,mm gl,mm. We have

f( ~(j) -_(i)) dx,-(j) -_(i)x A VxPl Vxl3(26) a(Pl Pl

AVxp VxPl ) dx,
r)

Eo) j)

where

(.O(ij) r . l-1 el 0 and 0 on r)
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Obviously, the index sets O)(ij) are the same for both the h-hierarchical functions _-(i) (i)
11l Pl

=(i) _(i) Nand the p-hierarchical functions 11 ql-1, -4- N Using the mapping to
the reference element, it follows that

with B (Jl(r_)-lA(Jl)-TldetJl(r I. Note that the entries of A, Jl(r__, and Idet Jl(r_l are
constants.

=(i) _(i) that is, for the h-hierarchical basis, we haveFor j and/31 /)l

(27) (i) _(i) [/k (BV(00(r)’ V(90(r)) d

1

ro)(ii) kEl (ot(r))

where O/(r) is the local number of the node p(i)(xi), x(2i)) in the triangle 8}/), i.e.,

a (r) =4,5, or 6, and I(ot (r)) {k E {1,2,3,4}" (O/(r) 0onA(k)}.
Obviously, I (4) 1, 2, 4}, I (5) {2, 3, 4}, and I (6) 1, 3, 4}. Therefore, in all the
cases, we have exactly three terms.

If we use quadrature rule (25), we obtain for the case of the p-hierarchical basis

(28)

where (k) are the quadrature nodes of formula (25)..
Now we compare the summands in the sums over k in (27) and (28). If we examine the

values of the partial derivatives 00,)/01, 0q)()/0 in the triangles A(*) and the values of
the derivatives 0ap,(,/01, 0p)/0 in the quadrature nodes (see Tables 1 and 2) then we
can see that these summands differ only by the factor . Therefore, we have

4a, (i) _(i)x (i) _(i)
Pl a (ql-tPl ,ql-1 for Nl_l + l N

For # j, i, j NI-1 + 1 NI, we obtain

(29) (j) _(i) /a(ql-,, ql-1) (BVqgl3,r,, Vo(r, d,
rEog(iJ)

where /(r) and 12 (r) are the local numbers of the nodes P(J) and p(i) in the triangle 8}r_)1,
respectively. Using again the quadrature formula (25) and the results from Table 2 we have
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1(
(30) (q}-)l _(i), 2 o

2 fora ql-1) -rEo)(.j)-n@, for

For the h-hierarchical basis we get, with I (/(r), ct(r)) I (/(r)) -) I (o(r)),

(j) _(i)
al,Pl Pl

rEo)(iJ) kI (f(r),ot(r))

rog(iJ) kl(f(r),ot(r))

fa(k (BVqgf(r,, Vqg(r,) d

I(BV V90t(r’ )0f(r) IA(k) IA(k)

--1 (B( 20),( )) forrg’ (B( 20),(02 )) forrgJ’ (B(22)()) for

/(r) 4, if(r) 5,
/(r) 5, 0(r) --4,

/(r) 4, O/(r) 6,
/(r) 6, (r) 4,

/(r) 5, Ct (r) 6,
/(r) 6, 0(r) --5.

4 (j) _(i)x (j) (i) Consequently, we haveComparing (30) and (31) we see that 5atpl t’l atql_l, ql-l).
shown that

4 L,H Q,H(32) - Kl,mm gl,mm

4 L,H a,nIt remains to prove g Ki,vm KI,vm For j NI_ + 1, NI_ + 2 N 1, 2 Nl_
we have

(33)

and

(34)

From Tables 1 and 2 we see again that the summands in the sums over k differ only by the
4 (j) _(i) (j) ..(i) i.e.,factor 34-. Hence, gal,p ,/1-1) "-atql_l, t’l-lJ,

4 L,H Q,H(35) - gl,vm Kl,vm
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and in an analogous way

4 L,H Q,H(36) - Kl,mv Kl,mv

Combining the relations (20), (21), (32), (35), and (36) we obtain the statement of the
lemma.

In Lemma 2.2 we formulate the corresponding property for the right-hand side.
LEMMA 2.2. Let

(F, v) fa fv dx + fr g2v ds
N

where f is a piecewise constant function, i.e., constant over all triangles r) TI_ 1, and

g2 a piecewise constantfunction, i.e., constant over or) fq f2. Then thefollowing relation
holds:

3e-I 3 fl-1 l--1

Proof. We have defined

flL_’lN [f/L-’IN’(i)]i=I,2 Nl-,, f/L_,(g,(i) (F, pti)l-1)’

L H (i) / (F, _(i)/Jl-1) for 1 NI_I,
/ _(i)fl (F, Pl for Nl_ +1 N

lQ’H --[flQ’H’(i)]i=l,2 Nl’
Q H (i) / (F’ p(i) for 1, 2, Nl-1f/ / (F, -i’l

tll_l for NI_ + 1 N

Consequently,

(38) sf_a’ sf_J-1 and
--./,rn

First we prove

(39)
4 far (i) f (i)

Jql-1- JPl dx dx

for NI-1 + 1 Nl. Using the notation from the proof of Lemma 2.1 we have

where

_(i)oi {r -1 t’l 0 on r},
I(o[, (r)) {k {1, 2, 3, 4} (/90(r) 0 on A(k)},
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edge of a triangle tr) reference interval [0,

X2
(X[e,2), a’2"

(e, 2)

Xe’3)
"’2""

(e,3)

x 0 0.5

pO p(3) p2

FIG. 2. The mapping between an edge ofa triangle and the reference interval [0, ].

and O(r) is the local number of the node p(i) in the triangle r) Computing the integrals over
Ak) we obtain

(40)
redo(i) kEl(r))

1 1fldetJ/(rl Z fldetJtfrl
o(i)

and using the quadrature formula (25) it follows that

(41)
3

i) 1 ) idetJ/(r 1
:ql-1 dx fa<,,( fldetJl(r-)ll,

oa(i) k= oJ(i)

i.e., the integrals in (40) and (41) differ by the factor 4
3"

Next we show that

(42) 4 (i) (i)
g2Pt ds ds

3 N

g2qt-1

for/= Nl_ " 1 NI. We have

p(i) fp g p(i) dsg2 ds--- 2 (e) 2
N eEl-1 N,I-1

where -’(e) is an edge of a triangle r) r 6 -1 which is a part of the boundary I’v WeN,I-1
transform the last integral into an integral over the reference interval [0, 1].

This transformation is described by

X X

(e,2)
X2 X2

Xl Xl
(e,1) 1 q"

(e,1)x2 X2

(see Fig. 2). On the reference interval the piecewise linear shape function (P3 (1) is defined as
follows:

2 in [0, 1/2),
o3(1)

2- 2 in [1/2, 1],

and for the quadratic shape function 1/r3(l we have 1/t3(l -41 + 41
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(e, 1))2 (e,2) (e,1))2]0.5With tr [(xe’2) x + x2 x2 we obtain

N eEt-1

(43) g22lcr dl -+- g2(2 21)o" dl
eeEt_ .5

and

(44)

1 1} 1
+

eeEt_l eEt_

(i) fP (i).g2ql-1 ds Z ,)
g2ql- ds

N eEl-1 N,l-1

2Z g2(--412+4l)crds Z -g2
eEl_ eE_l

Again, both integrals differ only by the factor 34- Combining the relations (38), (39), and (42)
we get the statement of the lemma, rq

THEOREM 2.3. Under the assumptions ofLemmas 2.1 and 2.2 the FE systems ofalgebraic
equations

(K/L,n 1~ ) (4 L"Kl-1 _U_l
H 5L ,H l and K?’Hu LQ,H

have the same solution.

Proof. The proof follows immediately from Lemmas 2.1 and 2.2. U
An analogous result can be proved for the FE systems in the nodal basis. Before we show

this property, we state a lemma.
LEMMA 2.4. Between the p-hierarchical and the quadratic nodal shapefunctions on the

reference element it holds that

(45) ,H ,SA,
where

SA [S(At/)]ot,/3=l 6,

for ct =/5,

for (or ]3) (4, 1), (4 2)
(t,/5) (5, 2), (5, 3),
(or,/) (6, 3), (6, 1),

otherwise;

with

(46)

(I)AH (fll(:l, 2), q92(:1, :2), P3(:1, :2), 1/t4(:l, 2), 1/t’5(:l, :2), 1/t6(l, :2)),

(I)AN (lPl(I, 2), 1/t2(l, 2), 1/t3(l, 2), 1/t4(l, 2), 1/r5(l, 2), 1/t6(l, 2)),

1(1, Z) 1 :1 2, q92(:1, 2) 1, q93(:1, 2) 2,

(, 2) 21 +2 31 32 + 412 + 1,

7,2(1, 2) 2? 1, 7,3(1, ) 2 2,
lP4(l, :2) 41(1 1 :2), 1/t5(:l, :2) 4:12
1/r6(:l, be2) 4’2(1 :1 :2).
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Proof. A simple calculation leads to

and therefore (45) holds. [3

LEMMA 2.5. For the p-hierarchical and the quadratic nodal basis the relation

(47) /4 vSt
holds, where

(48) / (1) _(2) p(Nt-) _(Nt-l+l) (NI)
Pl-1, DI-1 l-1 ql-1 ql-1 ),

(49) d (ql) q) _(Nl)x
ql-1 )’

(50) S [siJ)li,j=l,2 N,,

(51)

1

:iJ)

0

fori--j, i,j 1,2 NI,

for j il and j i2, NI-1 < < NI, where e(i) is the
midpoint ofthat edge which is given by the vertices
p(i) and pq2) ofa triangle of TI-1,
otherwise.

Proof. The FE functions are defined element by element, i.e.,

~(i) (X) /3a (X) a((X)),
Pl 0

X . ’-’1’ r Bi,

otherwise,

where _(i) stands for one function from (48) or (49), q3 stands for the corresponding shape/31
function on the reference element A, i.e., for the corresponding function of (46), and ni

p(i) r)_{r ff/-1 I}. Thus the statement of the lemma follows from Lemma 2.4
immediately. [3

THEOREM 2.6. Under the assumptions ofLemmas 2.1 and 2.2 the FE systems ofalgebraic
equations

4K,N 1(. .I_I)_IN__(LL,N 1~
and KIQ’N_u_IN =f_.lQ’N

have the same solution.

Proof. Using Lemma 2.5 we get for arbitrary vectors ul, v_/ N

(K?’H 1) a(dP_U_ dPt/_V4 a(r/S u S 131 (Sf K?’N S -UM

and

(LQ’H, F, t)[’lO_.l
Therefore we have

(52) KlQ’H SKQ’N Sl

(F, S U_. (VLQ’N, U_. ).

K?,N S;T K?,Hs-I,

(53)
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Furthermore, from Yserentant [24] we know that

(54) K’n SfK’1 S and T L,N=Sift
From (52), (54), Lemma 2.1, and Lemma 2.2 it follows that

4 4KL’NI 1
(55) 5 S-r(SK’iv S )S?

1

" S
-T l-1 S-1 Kt-3 3

and

(56)
4 4 LN 1~

S1 L "s-TL-1 "L’si-r r ,,_
3. Multilevel algorithms with extrapolation. In this section we analyze a multigrid

(MG) algorithm using FE discretizations with piecewise linear functions and an implicit
extrapolation step. The iterates of this algorithm converge to the solution which we get by an
FE discretization ofproblem (1) with piecewise quadratic functions. Additionally, we will use
this algorithm as a preconditioner in the preconditioned conjugate gradient (PCCG) method.

First we introduce some notation.
Smoothing procedure. Presmoothing G" N (j) K/,NI,=_i LL’N
Let the initial guess u_u.u ’(j) (ulV,(j), N,(j)T

t-/,v -U-/,m be given.
Set ,vUN’(J+1) --l,,,ulV’(J) and compute an approximate solution -l,m of the system

L,N L,N ..L,N N,(j+I) ..L,N N,(j)KI,mmZl,m L,m ll,mv-g-l,v li,mm’g-’l,m

by means of an iterative method, starting with the zero-vector. We suppose that the
error transmission operator of the method is of the type MI,m (II,m Bl,mmKl,mm).-1L,N

N (j+l) uN,(j)Set u_.u.u ’(j+l) t,> ,--l,m -Jr" _l,m) T

Postsmoothing Gv (u__u_’(j), K/L’v, L,N).
We use the same algorithm; however, we suppose that the error transmission operator
of the iterative method for solving the system (57) is of the type MI,m (It,m

e.L,lVl,mm"l,mm)’ SO that the overall multigrid iteration operator becomes symmetric.

Interpolation.

(57)

where

(58)

(59) (Ii_ 1)(iJ

for/=j, i,j 1,2 NI-1,

for j il and j i2, NI-1 < _< Nl, where p(i) is the

midpoint of that edge which is given by the vertices
p(il) and p(iz) of a triangle from Tt-1,
otherwise.
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Restrictions.

(60)

(61)

Now we formulate the multigrid algorithm.

ALGORITHM 1. Let an initial guess _uN’(k’) be given.
1. Presmoothing:

(62) U,(k,1) ,.-,,V N (k O)
tdl ,U K?’N, LL’N).

2. Coarse-grid correction.
(a) Computation of the defect:

(63) 41l-l(f,lvd--l(k-)l--
3

1 1,injd,(k,1)K?,Nu_u_N,q,I))_ (f__/L_, KI]- ).

(b) Solution of the system:

(64) (k)
-1 .-W--/-1 a--i-l

by means of/z iteration steps of a usual multigrid ((l 1)-grid) algorithm (see,
e.g., [7]) which starts with the zero-vector and returns an approximate solution

(c) Computation of the correction:

(65) -I ~(k)d,(k,2) d,(k, 1) + li_lWl_

3. Postsmoothing:

(66)

Setd’(k+l’0) U’(k’3)

Before we present an alternative formulation of this algorithm, we analyze the smoothing
step and the computation of the defect.

The essential operation in the smoothing step is the approximate solution ofsystem (57).
Obviously, we can replace equation (57) by

4 L,N 4 1eL,N 4ldL,N N,(j+I) 4 ....L,N N,(j)(67/ - gl’mml m 3 -l,m " ,mv --l v l ,mmUl,m

Using the relations (55) and (56) in the proof of Theorem 2.6 we get the equivalence
of relation (67) to

Q,N KQ,N, N,(j+I) rIQ,N N,(j)(68) gl,rnmZl,m LQ,N- l,mvl,v Ikl,mrnUl,m

Step 2(a) in Algorithm 1 can be formulated in terms of the quadratic nodal basis. We
have
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4 1 1,inj,(k,1))K,N.’(k’l,) -(LL’_I[- KIL_’NI I]-

(69) I]_I [(LL,N N (k,1)--L_I)--(K/L’ --//_I)U ]

Because of the equivalence of the relations (57) and (68) we can replace in Algorithm the
smoothing steps (62) and (66) by the equivalent steps

U_
N’(k’l) G[(’(k’), K?’N,LQ’N) and _U_/’(k’3) Gv’Nt’ ’(t2), KIQ,N, LQ,N).

Furthermore, we can see from equation (69) that the computation of the defect (63) is
equivalent to

K?,Nu_N’(k’I)).
Therefore, Algorithm 1 can be interpreted as a multigrid algorithm for solving the system
K/Q,N_u_/ Q,N of algebraic finite element equations resulting from a discretization with
piecewise quadratic functions.

We can also formulate Algorithm 1 in terms of the h- or p-hierarchical basis. Because of

’(J) S un’(j), i.e., u N’(j) n,(j) uN,(j) n,(j) uH,(j)
l-l --.l,v ---l,v --l,m "’l,mvUl,v "" -.l,m

with S defined in (50), f__L,nU L,N L,U L,Nf--/,m and Kl,mm gl,mm it follows from (67) that

4 L U 4 4 ..L,N H,(j+I) 4 L,N U (j) uH,(j)).-Kl,’ml,m -LL,’mH ll,mv-l,v 3Kl,mm(l,mvUl, P-.l,m

H,(j)Taking into account that we set ,n(j+l) _U_l,v in the smoothing procedure defined at the
L,H L,N L,N Sl,mv is valid (see also relation (54))beginning of this section and that Kl,mv Kl,mv "4- KI,mm

we get

4 L,H 4fL,H 4 ..L,H H,(j+I) 4 ..L,H H,(j)(70) - Kl’mmZl’m 3 Y.l,m - ll,mv -..l, v 3
ll’mm-N"l’m

or the equivalent relation,

(71) e.Q’uQ’u KQ,n, n,(j+l) ,,a,n n,<j)
""l,mm:..l,m l,mv--..l,v --lkl,mm-N-.l,m

Using the relation (54) a simple calculation leads to the equivalence of the coarse-grid correc-
tion step in Algorithm 1,

--’(k’2)=-’(k’l)+ll-l(II-l-M-l)(K-’)-lI[-l[(4LLI,N__ L-11- )

to the coarse-grid correction step

U,(k,2) u_uH,(k, 1)

(72)

-(K’NI~ ) 1gl-1 U_U
N’(k’l)

~l (KL,N _I [LL,N (K__,N. H,(k,1)+ II-l(II-1- M-I) l-1 -1 l--l,
4 ,,L,H H,(k,1)) ]3 ll’vm ul’m
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~l
in the h-hierarchical basis, where Ii_ll_ (1)/_ 0) T for all l-1 E [NI-1, Ii_l is the
identity operator in the space Vl_l, and MI-1 denotes the error transmission operator of the
(l 1)-grid method for solving the coarse-grid system (64). In the p-hierarchical basis this
becomes

U_4
H,(k,2,

=U_U_
H,(k, 1,

~l
(ii_ M//z_I)(K/L_,)_ [fiL,_ {,.,.L N H,(k,1) r.,..Q,H H,(k,(73) + Ii_ ll_. __.l, v li, vm --l,m 1))].

Instead of using the initial guessu’(k’), we set uff’(k’) S/- u_u_u ’(g’) and replace the smooth-
ing steps by the equivalent steps

G[ (u_u_u’(j,, K’u, _f/,H), G(u_u_u’(j,, K/’, f__/,H) or

as well as the coarse-grid correction step by the step (72) or (73), respectively. Thus we obtain
the formulation of Algorithm in the h- and p-hierarchical basis.

According to these interpretations we can formulate Algorithm 1 in a more abstract form.
If we use a decomposition of the FE space , i.e.,

(74) V VlQ N Vlo n Vl -.t.- T T/ span{qi)1_ Nl-1 -[- 1, Nl}

we get the following equivalent algorithm.

ALGORITHM 1’. Let an initial guess uk’)
E V/ be given.

1. Presmoothing.

(75)

(76)

(77)

Determine u}k’
where U

(k’l)
l,*

. uk,O).ji TI iluk,1) (k,1) (k 0)_ Ul)Ul,, _< plllUl
(t,1) v)=(F,v) for all vT/.u’) + T "atul,.

2. Coarse-grid correction.

Determine ug’2) uk’l) + V/_ Ilug’2) "l,*"
(k,2) _</9211lu(k’l)l "l,,

(k,2)

where Ul,,(k,2) E uk,1) ._[_ Vl_l "al,ul,,"(k,2), v) (F, v) for all v e V/_ 1.

3. Postsmoothing.

Determine uk’3) u’9)+ T Ilu’3) --"l,*"
(k,3) < p3i, u(’>l -"l,,

(,3>

(k,3) uk,2) (k,3) 1)) (F, v) for all v .where Ul, , + a[ul, ,

Set u+1’) uk,3).
Depending on the choice ofthe basis in the space V/we get from Algorithm 1’ the multigrid

algorithm for solving the FE system of algebraic equations in terms of the piecewise quadratic
nodal basis or the p-hierarchical basis.

In [21 ], Schieweck has proved the following convergence result for this type of multigrid
algorithm:

(78) ilu(g/l,O) (k o)
Ul _< r/Ilu Ul II,
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where

(79) r/-- ,o2 -+- (1 P2)[Pl -+- (1 Pl)F][P3 + (1 P3)F],

I1.112 a(., .), and Ul is the solution of the problem

find Ul - Vl a(ul, Vl) (F, 1)l) for all 1)

and F is the constant in the strengthened Cauchy inequality

(80) la(vl, w/-1)l < FIIo/ll IIw/-lll for all 1) E T/, for all Wl-1 - VI-1.

Using this result we can prove the following convergence theorem for Algorithm 1.
THEOREM 3.1. Let the smoothing procedures, the restriction, and the interpolation oper-

ators be defined as at the beginning ofthis section and let the assumptions ofLemmas 2.1 and
2.2 befulfilled. Then thefollowing occur

(i) The iterates ofAlgorithm 1 converge to the solution which we get by an FE discretiza-
tion ofproblem (1) with piecewise quadraticfunctions.

(ii) The convergence estimate

(81) (k+l,O) ilu,,o)IlUl U II. _< II.
4holds, where I1.112 ((g K/’N. KI_ )’’ and _U_I is the solution ofthe system of

algebraic FE equations

3gl-1 --l: f,N
1

The convergence rate depends on the number of iteration steps for solving the
systems (57), on the convergence rate ofthe (I 1)-grid algorithm used in step 2(b),
and on the constant in the strengthened Cauchy inequality (80).

Proof.
(i) This follows from the interpretation of Algorithm 1 as a multigrid algorithm for

solving the FE system K/Q,V/ f/Q,V, immediately.
(ii) The convergence estimate (81) follows from estimate (79), because Algorithm 1 is

equivalent to Algorithm 1.
L,N KQ’N have a condition number whichFrom 1 we know that the matrices gl,mm and l,mm

is independent of the discretization parameter. Therefore /91 and /93 in (75) and
(77), respectively, do not depend on the discretization parameter. If additionally
the convergence rate of the (1 1)-grid algorithm for solving the system (64) is
independent of the discretization parameter hi-l, then we get an h/-independent
convergence rate of Algorithm 1.

Remark 3.1. The strengthened Cauchy inequality (80) for various bilinear forms a(., .)
was analyzed by many authors [1], [2], [5], [9], [12], [14], [21], [23]. Maitre and Musy [14]
calculated the constant F for bilinear forms corresponding to scalar partial differential equa-
tions of second order. Jung [9] and Jung, Langer, and Semmler 12] studied the dependence
of F on the Poisson ratio for linear elasticity problems in two and three dimensions.

Remark 3.2. For different bilinear forms, the dependence of pl and/93 on problem-
specific parameters is studied in [9], [12], and [21].

Remark 3.3. The statements of Theorem 3.1 can also be proved for Algorithm 1 applied
to FE equations resulting from the discretization of plane linear elasticity problems. To get
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these results we must prove the statements of Lemmas 2.1 and 2.2 for the related matrices
K/L’/, K/L_’, and K/a’/4. These proofs are similar to the proofs given in 2. In 4 we will
show some numerical experiments for plane linear elasticity problems.

Remark 3.4. We can also use Algorithm 1 as a preconditioner. The starting point is the
PCCG method for solving the system of algebraic equations

(4K’N 1 ) (4 l’N-- 1 )(82) 5 3 Kl-1 Ul-- L L-1
Since the matrix ofthe system ofequations (82) is only used for matrix by vectormultiplications

within the PCCG method it is not necessary to assemble the matrix ( K/L,V 1- )- KI_Also, the fight-hand side is needed for the computation of the defect in the initial step of the
PCCG method only. Therefore, we can perform all operations of the PCCG method using the
matrices K’N, KN1 and the fight-hand sides _f/L,N and f__/L_,. A priori we choose the matrix

-’l (K’N 1~ )KI_ as preconditioner and solve the preconditioning systems lW.. ./

within the PCCG algorithm by means of Algorithm 1. This approach we can interpret as a
preconditioning with the matrix

(4K/L,N 1- ) )-1(83) Cl - 3
gl-1 (II M’t"

where M/n is the error transmission operator of Algorithm 1. We have to check whether
the matrix Cl is symmetric and positive definite. In 11] some conditions for the smoothing
procedures, the restriction, and the interpolation operators are given, which guarantee these
properties. It is easy to verify these conditions for our case.

4. Numerical results. In this section we want to demonstrate that the iterates of Algo-
rithm 1 converge to the FE solution which we would obtain by a discretization of problem (1)
with piecewise quadratic functions. Furthermore, we show that the convergence rate of Al-
gorithm 1 is independent of the discretization parameter. We compare Algorithm 1 with a
multigrid algorithm applied to FE equations resulting from a discretization with quadratic
elements.

The primary purpose of these experiments is to demonstrate the validity of our previous
analysis and to show that it leads to efficient algorithms. This, however, means that the
algorithms are not necessarily optimal from a more pragmatic point of view. For example,
our stopping criterion (see (85) below) forces the algorithm to compute solutions much better
than truncation error accuracy. Our goal is not to compute an acceptable solution at minimal
cost, but to show the numerical equivalence of the algorithmic variants discussed above.

For the same reason we have introduced the smoothing procedure (62) which is restricted
to the fine-grid nodes excluding nodes belonging to the coarser grid. With this smoother
the different algorithms converge to exactly the same result. In practice, a r-extrapolation
algorithm may be more efficient when used with regular multigrid smoothing. This, how-
ever, would introduce perturbations that change the solution and is therefore not studied here,
because a careful analysis similar to Hackbusch [7] or Rtide 17] is beyond the scope of the
present paper. For an analysis of various multigrid r-extrapolation algorithms and interest-
ing numerical experiments with different smoothing procedures we also refer the reader to
Bernert [3].

Finally, we remark that our full multigrid strategy could be improved by using r-extrapol-
ation to compute the coarser level solutions and then use higher order interpolation to find a
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Level

TABLE 3
Comparison ofthe CPU time neededfor the generation ofthe FE systems.

Number of degrees

of freedom

3 49
4 225
5 961
6 3969
7 16129

Number of

triangles of 7_

32
128
512

2048
8192

CPU time for the generation of

L,N LL,NL-l’
0.007 sec
0.029 sec
0.118 sec
0.473 sec
1.892 sec

K?’H, L,H
0.011 sec
0.044 sec
0.178 sec
0.713 sec
2.851 sec

more accurate initial guess for each new level. This has not been implemented for reasons of
simplicity.

All algorithms have been implemented within the multigrid package FEMGP 10], [22].
The computations were performed on a PC 80486 (33 MHz) using the LAHEY-Fortran com-
piler.

Let us first consider the problem: find u 6 H01(f2) such that

(84) Vxv) dx fa fv dx
holds for all v e Hd (fl), where f2 (0, 1) x (0, 1), A ( ), and f yr 2 (9 sin zrx sin zry
8 cos zrx cos zry). The exact solution of this problem is u sin zrx sin zry..

In 3 we have seen that we can give equivalent formulations ofAlgorithm 1 in terms ofthe
quadratic nodal basis, the h-hierarchical basis, and the p-hierarchical basis, respectively. A
detailed analysis ofthe arithmetical workneeded for the generation ofthe stiffness matrices and
right-hand sides as well as for a matrix by vector multiplication shows that the implementation
ofAlgorithm 1 in terms ofthe linearnodal basis orthe equivalent algorithm in the p-hierarchical
basis will lead to the best algorithms with respect to the necessary CPU-time (see also 13]).
For example, for the generation of the matrices and right-hand sides, we need

67 Rl- additions and 51 Rl- multiplications,

105 Rl- additions and 169 R_ multiplications,

111 RI- additions and 146 RI- multiplications,

81 Rl- additions and 120 RI- multiplications,

where Rl-1 denotes the number of triangles in the triangulation T/_ 1. Table 3 demonstrates
this for the linear nodal basis and the p-hierarchical basis.

Now we compare Algorithm with the equivalent Algorithm 1’ in terms of the p-
hierarchical basis, in the following, which is called Algorithm I’(H, Q). Within Algorithm
and Algorithm I’(H, Q) we used for the presmoothing (62) two iteration steps of the lexico-
graphically forward Gauss-Seidel method, one iteration step of an (l 1)-grid algorithm for
solving the coarse-grid system (64), and two iteration steps of the lexicographically backward
Gauss-Seidel method for the postsmoothing (66). The initial guess was obtained by a full
multigrid strategy using, on the levels k 1, 2 1, a usual multigrid algorithm for solv-
ing the corresponding FE equations in the linear nodal basis, i.e., we performed within these
k-grid algorithms two W-cycles with two Gauss-Seidel steps lexicographically forward in the
presmoothing step and two Gauss-Seidel steps lexicographically backward in the postsmooth-
ing step. For the k-grid algorithms, k 1, 2 1, we observed a convergence rate of
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TABLE 4
Comparison ofAlgorithm 1, Algorithm I’(H, Q), and the MG(1)-PCCG method.

Algorithm
Number of CPU time
iterations

13 0.11 sec
14 0.54 sec
14 2.36 sec
14 9.83 sec
14 41.58 sec

Al’godthm 1’ (H, Q)
Number of CPU time
iterations

13 0.11 sec
14 0.55 sec
14 2.41 sec
14 10.48 sec
14 44.33 sec

MG(1)-PCCG method
Number of CPU time
iterations

5 0.06 sec
6 0.28 sec
6 1.15 sec
6 4.83 sec
6 19.83 sec

0.085. The iteration of Algorithm or Algorithm I’(H, Q) is terminated when the defect
criterion

(4f/,/v 1 )(4K/,u 1

3 TM 5L-1 5 5 gl-1 <- 10-4

(85) fL,U 1 4

3Z-l --fl-I )-(-K’N
or

(86) f_.la’g glQ’Nu-4
N’ (k+l,0, 10-4  0,0,

is fulfilled, where II. denotes the Euclidian norm in the space Rul, and where u.u_N’(’) is the
initial guess. In Table 4 the number of iterations and the CPU time needed by the application of
Algorithm 1 and Algorithm 1’ (H, Q) are given. The results show that the number of iterations
is independent ofthe discretization parameter. In this example the constant in the strengthened
Cauchy inequality (80) is 0.98. With the observed convergence rate of 0.085 ofthe (l 1)-grid
method and this constant in the strengthened Cauchy inequality we conclude that the bound
on the convergence rate of Algorithm 1 cannot be better than 0.96. Note that for the Laplace
operator the constant would be ,-/3 (see Maitre and Musy 14]) and would therefore lead to
much less pessimistic and obviously also more realistic convergence estimates.

If we use one iteration step of Algorithm 1 as preconditioner in the PCCG method for
solving the system

(87) (KIL,N ll )ttl (f__.,N 1,-)3 fl-1
we get an algorithm with better convergence, the so-called MG(1)-PCCG method (see also
Remark 3.4). The iteration of the MG(1)-PCCG method is again terminated when the crite-
rion (85) is fulfilled.

Finally, we compare the discretization errors Ilu ulll and Ilu u/Qlll in the H1-

norm (see Table 5). Here u denotes the FE solution obtained by means of Algorithm 1,
and u/Q the FE solution by a discretization with piecewise quadratic functions. We remark
that in our example the right-hand side f is not constant on triangles r)1, which we had
assumed in the proof of Theorems 2.3 and 2.6. Therefore, in our example the right-hand sides

(4 L,N1- )gfl gf--/-1 and f_./a,N are not identical. But the discretization errors are almost the
same.

As a second example we consider a linear elasticity problem: find the displacement field
U (U l, U2)T - V0, such that
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TABIE 5
Comparison ofthe discretization errors.

Level Ilu ulll Ilu u/a II1

3 0.1306
4 0.3347-01
5 0.8426-02
6 0.2110-02
7 0.5278-03

0.1426
0.3481-01
0.8539-02
0.2118-02
0.5283-03

E 196 GPa
v 0.3

g2,1 0

I F 1000 N
g2,2 I 0

FIG. 3. Shape ofthe domain and datafor the test problem.

on the upper part
of the boundary
otherwise

E 1’ OUl 01)1 Ou2 01)2 p

L I - divu divv
1 + v 0Xl 0Xl Ox2 Oxz v

(88)

+
OX2

+} + dx g2,101 + g2,2P2 ds
N

holds for all test functions v 6 V0.
Here g2 (g2,1, g2,2) T denotes the surface tractions, E is Young’s elasticity modulus,

and v is the Poisson ratio. The space V0 is defined by V0 {v 6 [HI()]2 Vl(X)
v2 (x) 0 on Fo and 0 o u, Fo Fu . The domain is given in Fig. 3 and
Fig. 4 shows the triangulation and the contour of the domain with its derogation.

Again we compare the CPU time needed for the generation of the FE systems in the nodal
basis of piecewise linear functions and in the p-hierarchical basis.

Fuheore, we give results concerning the application of Algorithm 1 and its use as a
preconditioner in the PCCG method. In the algorithms we use the same components as in the
first example. We mention here that the constant in the strengthened Cauchy inequality (80) is
relatively lge, namely V 0.94 (see 12]), d therefore the convergence of Algorithm 1 is
poor. For the (l 1)-grid method, which is used to solve the cose-grid problem, we obseed
a convergence rate of 0.371. Therefore the bound on the convergence rate for Algorithm 1
cnot be better than 0.93.

In Tables 6 and 7 we summarize some results for Algorithm 1, Algorithm I’(H, Q), and
the MG(1)-PCCG method for the systems (87).

Finally, we compe the energy of the FE solutions obtained by the application of Algo-
rithm 1 and Algorithm I’(H, Q). From Table 8 we see that we have in both cases the same
FE solution.
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FIG. 4. The triangulation (level 4) and the contour ofthe domain with its deformation.

TABLE 6
Comparison ofthe CPU time neededfor the generation ofthe FE systems.

Level

Number of degrees

of freedom

3 586
4 2194
5 8492

Number of

triangles of 7_

128
512

2048

CPU time for the generation of

0.27 sec 0.24 sec
0.99 sec 0.96 sec
4.01 sec 3.89 sec

TABLE 7
Comparison ofAlgorithm 1, Algorithm I’(H, Q), and the MG(1)-PCCG method.

Algorithm
Number of CPU time
iterations

25 3.51 sec
26 15.37 sec
25 63.11 sec

Algorithm 1’(H, Q)
Number of CPU time
iterations

25 3.81 sec
26 16.88 sec
25 70.24 sec

MG(1)-PCCG method
Number of CPU time
iterations

9 1.32 sec
9 5.87 sec
9 23.40 sec

TABLE 8
Energy norm ofthe solution.

Level Energy norm of the solution obtained from
Algorithm Algorithm 1’(H, Q)

6.34388 6.34386
6.41933 6.41931
6.45374 6.45378

5. Conclusions. We have shown that multigrid z-extrapolation can be interpreted as an
implicit method to form higher order FE stiffness matrices. This is not only of theoretical
interest, but leads to an efficient higher order multilevel solution technique for PDEs. In
particular, this extrapolation technique can be used on unstructured meshes.

The resulting algorithm is competitive with multilevel methods that use higher order
elements directly. The convergence rate and numerical work per iteration are comparable,
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but the algorithm has the advantage of a possibly simpler structure. In particular, the r-
extrapolation method is easy to incorporate into existing low-order methods, because it differs
from the basic algorithm for linear elements only by a slight modification of the fine-to-coarse
restriction process.

The alternative analysis for r-extrapolation given in Rtide [20] is based on asymptotic
expansions for quadrature rules over the triangle, and shows that the method can be generalized
when the coefficients are not piecewise constant. In this case the linear combination of the
stiffness matrices constitute an appropriate numerical quadrature formula for the quadratic
stiffness matrix. This analysis also opens up the possibility of generalizing this technique for
more than one extrapolation step. These methods would then be equivalent to polynomial
finite elements of degree p > 2. Some preliminary results for these extensions are contained
in Rtide [17], [18], [19].

Acknowledgment. We would like to thank the referees for many helpful comments.
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ON RED-BLACK SOR SMOOTHING IN MULTIGRID*
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Abstract. Optimal relaxation parameters are obtained for red-black Gauss-Seidel relaxation in multigrid solvers
of a family of elliptic equations. The resulting relaxation schemes are found to retain very high efficiency over
an appreciable range of coefficients of the elliptic differential operator, yielding simple, inexpensive, and fully
parallelizable smoothers in many situations where less cost-effective block- and alternating-direction schemes are
commonly used.

Key words, multigrid, SOR, red-black Gauss-Seidel
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1. Introduction. An important part ofmultigrid algorithms for the solution ofdiscretized
elliptic boundary-value problems is relaxation, whose purpose is to smooth the current error
in the approximation, i.e., to efficiently reduce all error Fourier components that cannot be
approximated on the coarser grids employed. For definite elliptic operators, the smoothing
factor (defined below) normally provides an excellent prediction of the convergence factor
that the two-grid cycle can achieve.

A well-known technique for improving the convergence properties of relaxation, when
it is used as an iterative solver, is relaxation parameters (over- or under-relaxation). In the
context of multigrid solution, where the main role of relaxation is to smooth the error rather
than reduce it, it has been observed that such modifications are not cost-effective in many
situations, particularly when applied to Gauss-Seidel relaxation (e.g., 1, 3.4], [5, 9.2]). (Of
course, in other relaxation schemes a relaxation parameter may be essential for smoothing,
such as the necessary damping in Jacobi relaxation.) For example, some improvement in the
smoothing properties of Gauss-Seidel relaxation has been shown with slight over-relaxation
in the case of the two-dimensional Laplace operator, but the two additional floating-point
operations required rendered this modification ineffective [5].

It is a fundamental observation that any local relaxation process must lose its efficiency
as the operator becomes anisotropic. Standard treatments of this problem are global methods,
such as incomplete LU decomposition and line (or plane) relaxation or semi coarsening (or
both), sometimes together with alternating-direction relaxation [2], [5], [7], [9], [10]. Fre-
quently, the resulting solver is far more expensive (per relaxation sweep) than the usual solver
which employs point relaxation and standard coarsening. This is especially true in parallel
computation, where the more elaborate methods cannot always be implemented efficiently.

In making the analyses that led to the conclusions that (a) over-relaxation is inefficient, and
(b) elaborate methods are necessary for anisotropic operators, a significant "middle ground"
has often been neglected. Thus, while it is true that over-relaxation is not particularly helpful
for the two-dimensional (2D) Poisson problem, and also that special measures are required
when the ratio of coefficients differs from 1 by several orders of magnitude, it will be shown
that relaxation parameters are quite useful when the anisotropy is moderate. This is also true
in the case of isotropic operators in higher dimensions.

*Received by the editors May 20, 1994; accepted for publication (in revised form) December 5, 1994. This
research was supported by the U.S.-Israel Binational Science Foundation, and also in part by the Loewengart Research
Fund and by the Fund for the Promotion of Research at the Technion.

Department of Computer Science, Technion--Israel Institute of Technology, Haifa 32000, Israel (5.radocs.
technion, ac. il).
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We consider scalar elliptic partial differential operators of the type

 -Ec,0; c,-1
i=1 i=1

on a rectangular periodic domain, where ci (i 1 n) are real positive constants. The
discretization of L is assumed to be the usual second-order accurate central differences involv-
ing only nearest neighbors (producing a 2n + 1-point "star"). Throughout this study, n > 2
is assumed. We denote the set of coordinate indices by 2- 1 n }, the position labels
by a vector of integers k (kl kn), and the meshsize by h. A square mesh is assumed
for simplicity, but rectangular-mesh problems are trivially reduced to equivalent square-mesh

2,problems by replacing the coefficients ci with i Ci (’i) where hi is the meshsize corre-

sponding to ci, and t is chosen such that -in__l i 1. For the square mesh,

Xi hki 2-.

We compute optimal relaxation parameters for Gauss-Seidel relaxation in red-black or-
dering. In 2 we analyze the case where only one relaxation sweep is performed between
coarse-grid corrections. In 3 we consider the case of several relaxation sweeps. In 4 results
of two-level analyses are obtained and compared to the smoothing-factor values, and numer-
ical tests are reported for problems with varying coefficients and varying grid-spacing. The
results are summarized and conclusions are drawn in 5.

2. Single relaxation sweep.

2.1. Smoothing analysis. "Pattern" relaxation methods, such as red-black Gauss-Seidel
have been studied and analyzed extensively in the context of multigrid algorithms. (See
especially [5], and also, e.g., [1], [3], [7], [8], and [10].) We describe the smoothing analysis
here briefly.

It is a well-known observation for Gauss-Seidel relaxation of five-point star operators
(in two dimensions) in red-black order, that two-dimensional subspaces of error Fourier com-
ponents are invariant. This result immediately generalizes to 2n-+- 1-point star operators in
n dimensions. Specifically, this relaxation couples each Fourier component exp(ik. 0) only
with exp(ik. ), where

(2) 19 (191 19n), (1 n),

(3)

and

(4) i 19i sign(19i)rr,

2-. Here sign(0) is defined as -1. Oi can really assume discrete values only, but, for
convenience in obtaining h-independent upper bounds, below we assume that 19i can take on
any value in (-zr, zr ].

DEFINITION 1. An element 0i ofmode 19 is smooth if it satisfies

Otherwise it is rough.
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DEFINITION 2. A Fourier mode 0 is smooth ifall its elements 0 are smooth. Otherwise it
is rough.

We shall denote the set of smooth 0’s by (R)s and the set of rough 0’s by Or.
Fourier modes that are rough on the fine grid cannot be approximated on the twice-

coarser grid that is assumed to provide the coarse-grid correction, since they alias with other
components. Hence, they need to be treated efficiently by relaxation on the fine grid. Evidently,
all pairs (0, ) consist of either two rough modes or one rough and one smooth mode. Without
loss of generality, it will be our convention that 0 is always rough.

The relaxation operator, S(O, O) {sij }, is a two-by-two matrix which gives the amplitude
of error Fourier components (exp(i0 k), exp(i k))r after one full relaxation sweep, when
multiplied by their amplitudes before the sweep. It can be obtainedby multiplying the operators
ofthe two weighted-Jacobi half-sweeps performed over the black points (defined as gridpoints
for which the sum ofthe indices ki is odd) and the redpoints (whose index-sums are even). Now,
a sweep over the black points amplifies components of black-point errors by the weighted-
Jacobi symbol So (see (6)-(7) below), without affecting the red-point errors, and vice versa.
And since red-point and black-point errorcomponents can be expressed as sums and differences
of the pairs of Fourier components, each half-sweep operator can be written as a two-by-two
matrix. These are given by- so(O)- 1 so(O)+ 1 - -so(O) + 1 so(O) + 1

for the red-point and black-point relaxation half-sweeps, respectively. Now, S is given by
their product:
(5)

1 [’[so(O) + 1]2 + [So(O) 1][1 so(O)] [so(O) + 1][1 so(O)] + sto(O)2 1 ’S "\[so() + 1][1 So(O)] + so(O)2 1 [so() + 1]2 + [So(O) 1][1 So(O)] ]
Here, the weighted Jacobi relaxation symbols are given by

(6) so(O) 1 w(1 C), So(6) 1 o9(1 + C),

where

(7) C cicosOi,
i=1

and o9 is the relaxation parameter. In the special case of o9 1, S1 (0) --S1 () C, and S
is simplified appreciably.

In relaxation operators for which the Fourier components are eigenfunctions (such as
damped Jacobi relaxation for the present problem), S is a scalar, and the smoothing factor/z is
naturally defined as the largest absolute value of S over the space ofrough modes./z must give
some information on the asymptotic reduction of rough error components by the relaxation,
but the other parts of the multigrid cycle are idealized. This motivation led to the following
highly successful extension to general S, introduced in [1] and [5] (see also [7], [8], and [10]):
apply S and then annihilate the smooth modes, while leaving the rough modes unchanged,
by projecting on the space of rough modes. When S is a two-by-two matrix, the projection
operator Q, which acts as the idealized coarse-grid operator, is given by

(8) Q ( q(O) 0)_0 q(O)
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where q 0 for a smooth argument and 1 otherwise. (Hence, our rough- convention implies
q(O) 1.) The smoothing factor/x, when a single relaxation sweep is performed between
successive coarse-grid corrections, is defined by

(9) /x sup moax p(Q S),
h

where p denotes spectral radius. The implication of the supremum is that 0 is allowed any
value in (-zr, zr]. This will henceforth be implicitly assumed, and suPh will be omitted for
brevity.

Let

and

/z
() max p(Q S)

OOs

](r) max p(QS).
O6(R)r

Note that/z max(/z(s), //,(r)). Our object is to find 09opt, the relaxation parameter which
minimizes/z, yielding/Zopt. In particular,/Zopt must obviously satisfy

(10)

where

/opt --< /(w=l) (1 -Cmin)2 < 1,

def
0 < Cmin min ci < 0.5.

iz

(/z(,o=l) is derived in, e.g., [5] and [7] for n 2 and in [10] for general n. The latter inequality
is due to the fact that we are only considering n > 2.)

2.2. Derivation of o9opt. For 0 (R)s, q (0) vanishes as noted, leaving

(11) /z
(s) max Is221

0Os

Now, 0 6 (R) implies by (7) that C can take on any value between 0 (when all components of
0 equal ) and 1 (when all components of 0 equal zero). Hence, (5), (6), and (11) yield after
rearrangement

(12) /x( 1
max Io2(C2 + C) 2o9(1 + C) + 212 c6[0,1]

In order to find the maximum of the right-hand side of (12) over C in the relevant range, we
must check the endpoints, C 0 and C 1, and the point at which the derivative with respect
to C vanishes. Setting C 0 yields Io9 1 I. This implies, by (10), 0 < ogopt < 2. Setting
C 1 yields (o9 1)2, which is smaller than Io9 11 in this range of o9. Equating the derivative
with respect to C to zero yields after rearrangement 0.1251o92 +4o9 -41, at C (2 -o9)/2o9.
This C is in [0, 1 so long as 2/3 _< o9 _< 2. Indeed, it will be established below (Observation
4) that we are only interested in the range 1 < o9 < 2. For this range of o9 we therefore have
the following observation.

OBSERVATION 1. For 1 < o9 < 2,

/z
() 0.125(o92 + 4o9 4),

and lz) is consequently a monotonically increasingfunction ofo9 in [1, 2).
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Proof.

0.1251092 + 409 41 109 11 0.125(09 2)2 > 0.

For 0 6 Or, Q is the identity matrix, so QS S, whose eigenvalues are given by

a(r) 1[(13) "1,2 $11 -t-$22 -t- V/(Sll --$22)2 --4S12S21

Substitution from (5) and (6) yields

092C2 2(09 1)Sll -}- $22

Sll $22 09C(2 09),

4S12S21 C2094(C2 1),

and hence

_r 2(09- 1)+09Cv/092C2 -4(09 -1)J(14) l(r).,.1,2
Now, 0 e (R)r implies that at least one of 0’s components is rough (by Definition 2), but also
that at least one of its components is smooth, else would be smooth, by (4), in contradiction
to our convention. Hence, by (7), the relevt range of C in (14) is given by

(15) [C[ Cm de 1 Cmin.

Here, C Cmu is obtained when all of 0’s components vanish, except that which coesponds
to Cmin, which equals -g. Note that

(16) 0.5 Cmax < 1.

Note also in (14) that 1(C) 2(-C), so it suffices to consider nonnegative values of C,
and this will be assumed hencefoh for convenience.

OBSERVATION 2. Denote

(17) D(C) w2C2 4(w 1),

and let Da(Cmax). Then,

(18) (r) Iw- II,

if O, and

Pro@ IfD < 0, then ,, e complex, and

1
(20) I1 I1
independently of C. And (20) clely holds also when D 0. On the other hand, whenever
D(C) 0 then, perforce, alsoC 2(m 1) 0. Hence, only the "+" sign in front of
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the square root in (14) needs to be considered when seeking the root that is larger in absolute
value. Moreover, in this case the corresponding root is evidently a monotonically increasing
function of C. By (15), this completes the proof.

This yields the following observation.
OBSERVATION 3. For o, > O, ](r) is a monotonically decreasingfunction ofo9.

Proof. Differentiation of (19) with respect to o9 yields after rearrangement

(21) [- 21 Ww(o9Cmax 1) + Cmax(/w + o9 2)

Evidently, a necessary condition for this derivative to vanish is

/w 2 2(o9Cmax 1)2 (/)to + w 2)2Cmax
which more algebra reduces to

(o9 1) 2(Cmax 1) O.

Now, substituting Cmax into (21) indeed makes the derivative vanish, but that is outside
the range of Cmax, by (16). On the other hand, putting w 1 yields for the derivative the
negative value of 22(Cmax 1). Hence, the derivative is negative for all relevant values of
Crnxo

Now we have the following observation.
OBSERVATION 4.

1 < 09op < 2.

That is,/opt is obtained by over-relaxation.

Proof. The obvious upper bound has already been established. To derive the lower bound
we first note that when 09 1,

/(r) 2 /(s)Cmax > 0.25 > O. 125

(See (16) and Observation 1.) Hence,/z ](r) at 09 1, and the proof follows now from
Observation 3 and the fact that/5o, is positive for o9 < 1.

We can now establish sharp bounds on ogopt and/Zopt, by choosing o9 such that/)o, 0.
THEOREM 2.1.

and

Hence,

ogopt < (Dub
1 + V/1 CEmax

def
/Zopt < tXub /Z(o,=o,,) 0.125 (ogu2b + 4ogub 4)

I+C2
max

2(1 + X/1 C2max)2"

/Zop

__
1 V/8Cmin -- O(Cmin)

Proof. When o9 (Dub if)o, 0 and [(r) ogub 1 < /z(s) (see Observations 1 and
2). The upper bounds now follow from Observations and 4. The final estimate is verified
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straightforwardly by substituting Cmin for Cmax, and finding that it applies to IZub. Indeed,
this estimate can easily be shown to be an equality. D

COROLLARY 2.2. Do > 0 when o9 ogopt
Note that the upper-bound values of 09, which are shown below to be nearly optimal, are

precisely of the form of the corresponding optimal values when SOR is used as a solver [6],
but with 2Cnax (the smoothing factor of red-black Gauss-Seidel) replacing the spectral radius
of the Gauss-Seidel iteration matrix. Furthermore, it can easily be shown that

v/1- C2max
1 + V/1 C2max

which is of the form of the optimal convergence factor for SOR when used as a solver (with
the same substitution), is a lower bound on/Xopt.

Comparing/Xopt to/z(,o=l) in (10), we find that the former grows far more slowly as Cmin
decreases than the latter. This implies that employing over-relaxation allows point Gauss-
Seidel relaxation in red-black ordering to retain high efficiency over a much larger range of
coefficients ci than the usual relaxation (see Fig. 2).

There seems to be no simple way to express ogopt and/Zopt explicitly, although some
implicit relations (whose simple proofs are omitted) are given below. However, Figs. and 2
compare the optimal and upper-bound values of o9 and/z, respectively, and demonstrate that
the upper-bound values provide excellent approximations (see also below). This is also tested
in numerical examples in 4.

Some implicit relations for ogopt and/Zopt are
ogopt is the only o9 [1, 2) which yields

/Z
(r)

/Z
(s) (__ /Zopt)

producing an equation for ogopt in terms of Cmax, obtained from (19) and Observa-
tion 1.
Let ogub and lZub be the upper-bound values corresponding to some particular Cmax
Then they are equal to the optimal values, ogopt and #opt, which correspond to

-2 2 (ogub 2)4
Cmax Cmax + 264ogublZub

The smallness of the last term (especially as Cmax tends to l, and ogub to 2) plus the
moderate sensitivity of ogopt (and/Zopt) to variations in Cmax, which is verified by
differentiation of the above-mentioned implicit equation, imply that the upper-bound
values are close to the optimal values. This derivation is omitted, as the result is more
clearly evident in Figs. 1 and 2.

3. Several relaxation sweeps. Unlike methods of relaxation for which Fourier compo-
nents are eigenfunctions, the smoothing factor of red-black Gauss-Seidel relaxation depends
on the number of sweeps performed between successive coarse-grid corrections. Let v denote
the number of sweeps. Then the smoothing factor is naturally defined by 1] and [5]

(22) /x sup m0ax p(Q S)h

Since, for 0 (R)r, Q is the identity matrix, we have the following observation.
OBSERVATION 5. tx{r) is independent of v.
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FIG. 1. O)op (solid) and Oul (dashes) as afunction ofCmin.

10

FIG. 2. //.opt (solid), tZub (dashes) and/z(o=l) (alternating dashes) as afunction ofCmin.
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Now denote

s= {s!.)}
Then, we have the following observation.

OBSERVATION 6.

(23) (s)= max Is (v)
C[O,1] 22 I"

As v is increased, s2( has more and more terms, and we resort to numerical calculation in
order to obtain/(s), and consequently/z. Figures 3 and 4 show Oopt and/opt for v 1, 2, 3.
It is seen that there is some deterioration in performance (per relaxation sweep) when the
number of sweeps performed between coarse-grid corrections is increased (as is generally the
case with no over-relaxation too). However, this effect diminishes as Cmin becomes small.
Also, optimal co is smaller for larger v, but it is demonstrated below that this effect should be
ignored in practical use, and 09ub given in Theorem 2.1 is a very good working value.

4. Two-level analyses and numerical tests. The predictions of the smoothing analysis
were compared with two-level analyses (which here predict the two-level performance ex-
actly), and with results of numerical calculations. In all the examples, bi-linear interpolation
was used for prolongation and its adj0int full-weighting operator for residual-restriction, with
vertex-centered discretization and standard coarsening. Bi-ubic interpolation was also tested,
with results that were usually slightly better only in the more isotropic cases, and somewhat
worse otherwise.

Example 1. Analyses with the full two-level operator (two-level analyses, e.g., 1, 4.1],
10]) were carried out for the two-dimensional problem with several values of Cmin. The results

are summarized in Table 1, which shows two-level convergence factors per relaxation sweep,
denoted/zl. The values of co compared are (,Oub from Theorem 2.1, COopt (Fig. 3), and cobst,

which denotes the over-relaxation parameter that yielded the best two-level results obtained.
The sixth column shows the prediction of the smoothing analysis, using COopt (Fig. 4), and the
seventh column shows the usual co 1 performance. It is seen that there are only very minor
differences between the results with the different near-optimal over-relaxation parameters,
and that CO,b is a very good working value. Indeed, in some cases it yields even better results
than the optimum predicted by the smoothing analysis. In all cases over-relaxation yielded a
large improvement in performance, but of course the relative gain (measured by the ratios of
log/a is greater as Cmin is smaller. The last two columns show the asymptotic error-reduction
factor per cycle obtained by V cycles with two prerelaxation sweeps and one postrelaxation
sweep per level for the problem

Uxx + Uyy + 6Uzz 0,

on a triply-periodic cube. Here, e 2Cmin/(1 Cmin). The finest resolution was 643 and five
levels were employed. The initial field was random with uniform distribution. The fight-hand
side was set to 0, and 100 cycles were performed, renormalizing the solution after every cycle
so as to avoid roundoff errors. (Of course, due to the linearity of the problem, the asymptotic
convergence factors are independent ofthe choice offight-hand side function.) An appreciable
improvement in performance is obtained by using the over-relaxation parameter COub, which
becomes more marked for smaller Cmin. For example, convergence using COub is about twice
as fast for Cmin 0.2 and more than two and a half times as fast for Cm 0.1.

Example 2. V(1,1) cycles were implemented for the Poisson problem in three dimensions
with the same specifications as in Example 1. Asymptotic error-reduction factors per cycle
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FIG. 3. Oopt as a function of Cmin, with one (solid), two (dashes), and three (alternating dashes) relaxation
sweeps v between successive coarse-grid corrections.
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FIo. 4. /Xopt as a function of Cmin, with one (solid), two (dashes), and three (alternating dashes) relaxation
sweeps v between successive coarse-grid corrections.
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TABLE
Comparison oftwo-level analysis error-reductionfactors (per relaxation sweep) using several values ofover-

relaxation parameter o9: o9ub ofTheorem 2.1, o9opt ofFig. 3, and o9best---the over-relaxation parameter which yielded
the best two-level results. In the sixth column is the smoothing-analysis prediction ofFig. 4, and the seventh column
shows the usual o9 performance, v denotes the number of relaxation sweeps performed between successive
coarse-grid corrections. The last two columns show the error-reductionfactor per cycle obtained by V(2,1) cycles
using o9 ogub and co 1, respectively (see textfor details).

Cmin V lAgub opt I /-/opt /zI V<2’1> V(a’l)l

0.236 0.226 0.226 0.227 0.444

1/2 2 0.272 0.277 0.262 0.277 0.444 0.086 0.150
3 0.315 0.361 0.302 0.345 0.444

0.313 0.316 0.308 0.315 0.640

1/2 2 0.354 0.347 0.345 0.345 0.640 0.088 0.293
3 0.378 0.397 0.373 0.397 0.640

0.426 0.437 0.425 0.437 0.810

0 2 0.445 0.450 0.442 0.451 0.810 0.222 0.552
3 0.487 0.481 0.480 0.481 0.810

TABLE 2
Asymptotic error-reduction factors (E.R.F.) per V(1,1) cycle for the Poisson problem in three dimensions. In

comparison, a V(2,1) cycle with o9 yields an error-reductionfactor ofO.150 (see Table 1).

o E.R.F

1. 0.240
1.146 (ogub) 0.128
1.114 (ogopt) 0.147
1.164 (Wbest) 0.113

are compared in Table 2 for over-relaxation parameters 1, gOub, gOopt, and O.)best. Even in this
fully isotropic problem over-relaxation yields a significant improvement. Wub is slightly better
than Wopt, as O)best is somewhat larger than predicted (as was the case for Cmin 1/3 shown
in Table 1). In comparison, a V(2,1) cycle with w 1 (which is of course more expensive
then the over-relaxed V(1,1) cycles even in the case of the simple Poisson operator) yielded
an error-reduction factor 0.150 (see Table 1)mslightly worse than the 0.128 factor obtained
with (Dub which appears in Table 2.

Example 3. Since smoothing here is a local process, it seems natural to vary the over-
relaxation parameter in space as a function of Cmin, SO as to maintain locally-optimal smoothing
throughout the domain. We tested this approach in this and the next examples. V(2,1) and
V(2,2) cycles were implemented for the variable-coefficient two-dimensional (n 2) problem

(24) (1 + e sinx)uxx + (1 + e sin y)Uyy 0,

and three-dimensional (n 3) problem

(25) (1 + e sinx)uxx + (1 + e sin y)Uyy at- (1 + e sinZ)Uzz O.

The domain of solution was a square (cube) of side 2zr. In the three-dimensional problem the
same specifications as in Examples and 2 were used. In the two-dimensional problem we
solved both with periodic and Dirichlet boundary conditions. The latter were homogeneous,
to avoid roundoff errors, and again 100 cycles were implemented. The finest resolution in
the two-dimensional problem was 1282 (1272 not including boundary points in the Dirichlet
problem), and six levels were employed. The error-reduction factors per cycle are shown
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TABLE 3
Error reductionfactors of V(2,1) cycles.

Error Reduction Factors
n=2 n=3

Dirichlet
to toub o9=

0.50 0.053 0.190
0.80 0.159 0.513
0.90 0.297 0.712
0.95 0.443 0.837

0.50
0.80
0.90
0.95

Periodic Periodic

to=toub Io9=1 to=toub w=l

0.057 0.191 0.092 0.369
0.167 0.513 0.236 0.675
0.307 0.712 0.351 0.810
0.458 0.837 0.443 0.887

TABLE 4
Error reductionfactors ofV(2,2) cycles.

Error Reduction Factors
n--3n=2

Dirichlet Periodic
to=Wub w=l w=toub to=l

0.041 0.120 0.039 0.120
0.075 0.410 0.075 0.410
0.155 0.634 0.165 0.634
0.358 0.788 0.279 0.788

Periodic
tO"-tO-" tOub

0.056 0.267
0.112 0.592
0.193 0.755
0.273 0.852

in Tables 3 and 4 for various values of e, which determine the anisotropy, with co 1
and co coub locally. Evidently, over-relaxation improves the usability of point relaxation
very significantly. Indeed, in three dimensions, even moderate anisotropy necessitates over-
relaxation for obtaining a useful algorithm.

Example 4. In a commonly used discretization for planetary flow simulations on the
sphere, the gridlines lie along lines of latitude and longitude, and the grid is thus anisotropic
near the poles. If the meshsizes in a two-dimensional problem are chosen to be equal at the
equator, then their ratio elsewhere is approximately cos b, where b is the latitude (ranging
from 0 at the equator to 4-zr/2 at the poles) For the two-dimensional Poisson equation, this
implies an equivalent anisotropy of approximately

Cmin
1 + COS2

One can apply more relaxation sweeps in regions that are far from the equator, but at some
stage line relaxation (along latitude lines) is used. Over-relaxation can be employed to reduce
the region where line relaxation needs to be used, while also reducing the number of sweeps
that need to be performed where point relaxation is used. A particular example occurs in
the shallow-water equations, especially when semi-Lagrangian discretization is used. The
principal part of the matrix operator is then normally composed of three Laplace operators. In
[4], over-relaxation is introduced for this problem, with the result that the total work spent on
line relaxation is reduced to about 1/3, while the total work spent on point relaxation remains
about the same (with less sweeps per latitude-line on the average, but more lines to sweep
over). Here, V(v, v) cycles are employed, where v is varied according to latitude, given some
desired convergence factor. Line relaxation is used (with v 1) whenever point relaxation
would require v > 4 for the desired convergence rate. The relative gain quoted is not sensitive
to the required convergence factor. These tests were performed at a resolution of 128 by 65
points along lines of latitude and longitude, respectively.
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5. Concluding remarks. Optimal over-relaxation parameters for red-black Gauss-
Seidel in multigrid algorithms were calculated for (1), and an upper bound, which was shown
to provide a good working value, was established in Theorem 2.1. Employing over-relaxation
is always more cost-effective than the usual red-black Gauss-Seidel in three dimensions or
higher. In two dimensions over-relaxation is also better, unless the operator is very isotropic.

The extra cost required for over-relaxing, assuming that the optimal parameters are pre-
computed and stored, is about one or at most two operations per gridpoint. This may not be
negligible in the case of the Laplace operator in two dimensions, but is quite unimportant in
almost any relevant "real" problem.

The relative gain in using over-relaxation, compared to the usual relaxation, grows rapidly
as the problem becomes more anisotropic. But of course the overall efficiency of the solver
then decreases even when over-relaxation is used. Hence, full robustness can only be achieved
by more elaborate global techniques, which are also more expensive (sometimes much more
expensive on parallel machines). However, when the anisotropy is known to be moderate
(perhaps only in part of the domain, as in Example 4--solution on a sphere), SOR should
be employed. An example of this is large-scale, stably stratified planetary flows (e.g., quasi-
geostrophic equations), where Cmin will usually be about an order of magnitude smaller than

at worst.
Varying the relaxation parameter in space as a function of the anisotropy was found to

perform well, especially if the over-relaxation parameters are precomputed and stored. One
can then also use the prediction of lZub to choose the number of sweeps performed in various
regions, as was done in Example 4 [4].

Acknowledgment. The author would like to thank John Ruge for his valuable contri-
bution, and Bruno Welfert for pointing out the similarity of the present upper-bound over-
relaxation parameter to the classical value.
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MULTILEVEL IMAGE RECONSTRUCTION WITH NATURAL PIXELS*

VAN EMDEN HENSONt, MARK A. LIMBER*, STEPHEN E MCCORMICK, AND BRUCE T. ROBINSON

Abstract. The sampled Radon transform of a two-dimensional (2D) function can be represented as a continuous
linear map A L2(f2) --+ RN, where (Au)j (u, $j) and $j is the characteristic function of a strip through f2
approximating the set of line integrals in the sample. The image reconstruction problem is: given a vector b e RN,
find an image (or density function) u(x, y) such that Au b. In general there are infinitely many solutions; we
seek the solution with minimal 2-norm, which leads to a matrix equation Bw b, where B is a square dense matrix
with several convenient properties. We analyze the use of Gauss-Seidel iteration applied to the problem, observing
that while the iteration formally converges, there exists a near null space into which the error vectors migrate, after
which the iteration stalls. The null space and near null space of B are characterized in order to develop a multilevel
scheme. Based on the principles of the multilevel projection method (PML), this scheme leads to somewhat improved
performance. Its primary utility, however, is that it facilitates the development of a PML-based method for spotlight
tomography, that is, local grid refinement over a portion of the image in which features of interest can be resolved at

finer scale than is possible globally.

Key words, tomography, Radon transform, multigrid

AMS subject classifications. 92C55, 44A12, 65R10, 65N55

1. Introduction. In this paper, we consider a model of transmission and emission to-
mography and an associated image reconstruction technique. The reconstruction technique
approximates aminimum norm solution to an underdetermined linear inversion problem, based
on an infinite-dimensional formulation of the tomographic inversion problem. This formula-
tion of the problem avoids the traditional square pixel discretization of the image space and
leads to a smaller, but dense, matrix problem (compared to traditional algebraic reconstruction
techniques). This approach leads to what have been termed "natural pixels" in [1], and the
"optimal grid" in [10].

Following the development of the natural pixel discretization, we consider solution tech-
niques for the resulting linear system. In particular, we employ Gauss-Seidel iteration, analyze
its performance, and then introduce a multilevel projection method (PML) for accelerating
convergence.

2. Image reconstruction and the Radon transform. We formulate the image recon-
struction from projection problems in a general setting, but concentrate on a parallel beam
geometry, for which we have implemented our ideas. The basic idea in tomography is that an
object is subjected to a dose of radiation, either by passing X-rays through the object, or (if the
object is a living patient) by administering a radiopharmaceutical. The amount of radiation
leaving the object can be measured, compared with the original amount, and the difference is a
measurement of the attenuation (transmission tomography) or activity (emission tomography)
within the object. In parallel beam geometry, the data is collected in collimated bins, so that
any activity detected in a particular bin can be attributed to the strip emanating perpendicularly
out of the detector, with width equal to that of the bin.

To model this apparatus, let u (x, y) be a function ofthe spatial variables x and y describing
the activity in the object. Typically this is some physical quantity, such as the material density
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FIG. 1. The geometry ofthe Radon transform.

of the subject. The vector f represents the projection data. The data acquisition is modeled by

I fRu(x’Y)aPl(x’y)dxdy I ( fl )(1) Au f,

fR u(x, y)ap’u(x, y)dxdy
where the function lpk is the characteristic function of the kth strip through the image, within
which passes (or emanates) the energy collected by the kth detector. For this to be well defined,
we restrict our function space to be Lz(f2), where fl is a compact subset of R2, called the
image space. Thus,

(Au)j (j, u)

defines a continuous linear map A L2(2) --+ Rv. The basic problem of computer as-
sisted tomography is to reconstruct the image u(x, y) from a collection of measured strip
integrals, collected at various angles. When this problem can be solved, it is done through
some approximate inversion of the Radon transform, which is defined as follows.

Let u (x, y) be a function defined on the region f2 R2. Letting L denote any line in R2,
the set of line integrals of u (x, y), along all possible lines L, is a function of two variables,
and is known as the Radon transform of u (x, y), provided the integral exists. Formally,

[Ru](p, qb) f u(x, y)ds f .(x, y)6(x cosb + y sin b p)dxdy,

where 3 is the Dirac delta function. The line L is parametrized by

(2) p xcosp+ysin,

where p is the signed distance from the origin and is an angle measured counter-clockwise
from the positive x-axis. Thus, (2) determines the equation of a line in the xy-plane normal
to the unit vector ( (cos , sin )r. Figure shows the geometry of the Radon transform
of a function u(x, y) in terms of this parameterization.

Viewing the Radon transform as an operator, the image reconstruction problem can be
cast as Ru f, where f represents the collection of measured line integrals. Given f, a
finite sampling of f, we model the problem Ru f with Au f, since each of the strip
integrals (j, u) approximates a collection of line integrals, for those lines falling within the
strip. Hence, the data f forms a sampling of the continuous Radon transform. We will refer
to the set of strip integrals (1) as the strip averaged Radon transform.
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FIG. 2. A representative grid ofpolygons. The optimal solution is constant on each polygon. This particular
optimal grid corresponds to having 16 detector bins ofuniform widthfor each of20 angles, taken at regular angular
intervals between 0 and r.

3. Optimal grid discretization. Suppose there are M angles tpj for j 1 M, such that

1 0 < t2 < t3 < < tM < 7t’, and that at each angle tpj there are n (j) strips, or detector
bins. Then N )--=1 n (j) gives the total number of data points. Suppose the image space
f2 is some convex, compact region in R2, and assume that for the jth angle the n(j) strips are
parallel, nonoverlapping, and entirely cover f2. Let ape(x, y) be the characteristic function Of
the th strip. Then the discrete strip averaged Radon transform is the map A L2(f2) Rv
defined in equation (1).

Assuming the system Au f is consistent, it is underdetermined; that is, since A is a
linear mapping from an infinite-dimensional space L.(f2) to the finite-dimensional space Rv,
the null space of A, NS(A), is infinite-dimensional. If there are any solutions to Au f, there
are infinitely many. We must select some representative solution image u from the infinite
number of feasible images. The minimum norm solution to the equation Au f is given by
u (x, y) A’w, where w solves the N N system

AA*w f.

We write this system as Bw f and concentrate on efficient methods to solve it. Note that
forming A*w corresponds to backprojecting the vector w over the image space.

A simple formula can be used to construct the matrix B. Note that A* Rv L2([2) is
defined by

(3)
N

[A*w](x, y) E l/3i lri (X, y).
i=1

Since the lr are characteristic functions, we observe from equation (3) that the optimal image
u is piecewise constant on the set of polygons defined by the intersections of the strips, at all
angles. This set of polygons we term the optimal grid, as shown in Fig. 2.
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The (i, j)th entry of B can be determined by computing the jth entry of Bei where ei is
the ith standard basis vector in RN. Specifically,

(Bei)j (AA*ei)j (Ai(x, y))j .]i(x, y)j(x, y)dxdy (/i, /tj>.

Thus, B is an N x N matrix with entries

(4) bij ri lrj ).

We immediately have the following theorem.
THEOREM 1. The N x N matrix B is nonnegative, symmetric, positive semidefinite with

positive diagonal entries, bii > O.
Proof. This follows immediately since k > 0, B AA*, (u, AA*u) (A’u, A’u),

and big ([ri, lri). []

Since we will employ iterative methods, it is important to identify those vectors that may
cause difficulty in the iteration process. That is, we seek to characterize the eigenvectors ofRN
that are associated with small nonzero eigenvalues of B. Such eigenvectors have the property
that Bw is small (in norm) compared to w, and error vectors of this nature have residuals that
are small compared to the error. We refer to them as vectors in the near null space, and assert
that their presence in the error causes slow convergence. The near null space will be studied
in 4.2. For now, we are concerned with characterizing the null space of B, which is just the
null space of AA*:

(5) NS(B) NS(AA*) NS(A*).

For this characterization we need the following definition.
DEFINITION. A vector w Rs is said to be constant by angle if, upon writing

Vl
V2 0,

W Vj Rn(j), vj

VM J
Oln(j)

then or] ot[+l, n (j) 1, for j M.
Using this definition, we may show the following.
THEOREM 2. A vector w RN is in NS(B) ifandonly ifw is constant by angle and the

elements ofw sum to zero; that is, -V=l wi O.

Proof. Let {6k(x, y)[k M} be the set of strips that contain the point (x, y). There
is one such strip from each projection angle. Let {oklk 1 M} be the set of coefficients
associated with those strips. Clearly, ifw is constant by angle and sums to zero, it is in NS(B),
since

N M

[A*w](x, y) E Witi(X’ y) E vgi(x, y) O.
i=1 k=l

Conversely, suppose w NS(A*) so that

N

E ll)il[ri(x’ y) 0 V(x, y) .
i=1
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Writing w as in the definition of constant by angle, that is,

j TW [V V]T, Vj E Rn(j)
vj [ct Ctn(j)

then the objective is to show that for the jth projection angle, the subvector vj E Rn(/) is
constant. Without loss of generality, we show only that Vl is constant.

Denote the jth strip at the first angle as [2j. Consider the partitioning of the image space
2 into the set of polygons determined by the intersections of all strips at all angles except
the first. Clearly, for each j, the boundary between fj and f21+l intersects the interior of
at least one of these polygons. Hence, it is possible to select two points, (x, y) f2j and
(X2, Y2) ’j/l, such that the line segment joining (Xl, yl) and (x2, y2) lies entirely in one
strip emanating from each of the other angles. That is, the line segment lies entirely in each
of the strips k2 kM.

By construction,

0 [A*w](xl, Yl) [A*w](x2, Y2)
M

( --O)+1) q- E Wke (fke(Xl, Yl)- ke(X2, Y:))
e=2

since rj(Xl, Yl), rj+l(X2, Y2), rke(Xl, Yl), and k(X2, y2) all equal 1. It then follows that

t) a)+l. That is, w is constant by angle.
Finally, since w e NS(A*), it must be that the terms sum to zero, because

M

A*w(x, y) Z Okl O.
k=l

An immediate corollary is the following.
COROLLARY 1. The dimension ofthe nullspace ofB is M 1, where M is the number of

projection angles. A basisfor NS(B) is

Wl [1,-1, 0 0],

w2 [0, ,-1,0 0],

WM-1 [0 0, 1,-1],

where each constant vector Rn(j).

4. Gauss-Seidei relaxation on B w f. Many iterative methods are available for solv-
ing equations in B, and, indeed, many have been applied to the general image reconstruction
problem [1], [9], [18], [19], [20], [24]. Here we consider Gauss-Seidel iteration, one sweep
of which may be stated as" For j 1 N, modify the j th component of the vector w such
that the jth component of the resulting residual vanishes. The jth correction is given by

w - w +
bjj

(ej, f Bw)e/.

A more common formulation arises from splitting B in terms of its diagonal, upper
triangular, and lower triangular parts, giving B D L U. Then the (n + 1)st sweep may
be written as

w(n+l) PGw(n) -" g,
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where g (D L)-lf is a fixed vector and Po (D L)-Iu is known as the Gauss-
Seidel iteration matrix. Letting w* be any vector that solves Bw f, we may write an
error vector defined as z(n) w(n) w*. It is easy to see that Z(n+l) Pz(n and, hence,
z(n+l (P)nz(. Convergence of the iteration to w* is guaranteed if the spectral radius
p(P) is less than 1.

The matrix B, however, is rank deficient, so that if any solutions exist, then infinitely
many solutions exist, and the iteration does not converge under all initial guesses. However,
measured in the energy seminorm

IIIxlll (Bx, x)1/2,

Gauss-Seidel cannot diverge.
THEOREM 3. The energy seminorm of the error does not increase under Gauss-Seidel

iteration on Bw f. That is, IIIz(n/lll _<
Proof. A direct proof follows from the easily derived relation

(6) iiiz(+>lll iiiz(>lll_ (ej., nz(n))2 ["]

Gauss-Seidel applied to Bw f cannot diverge in the energy sense, but to understand
when it actually converges we first examine the related Kaczmarz iteration, applied to Au f.

Proof of the following may be found in [13], [18], and [25].
THEOREM 4. Let L H -- H2 be a continuous linear operator, where H1 is a Hilbert

space and H2 is an N-dimensional Hilbert space with orthonormal basis {Vl, v2 VN}.
Let g H2 be given, and suppose that Lu g has a solution. Suppose u() range(L*),
and define the sequence u (k) generated by the Kaczmarz iteration by

Set u +- u (k).
Forj= l"N,

Determine s such that (vj, L (u + sL* vj) g) O.
Set u -- u + sL*vj.

Set uk+l) +-- u.
Then uk converges, as k -, , to the minimum norm solution ofLu g.

Kaczmarz iteration applied to Au f uses HI L2(2), H2 Ru with orthonormal
basis {e, e2 eu}, and

(7) s
(ej, f Au)
(ej, AA*ej)

Proof of the following may be found in [20] or [25].
THEOREM 5. Let w() be any vector in RN, and let w(k’J),for j 1 N and k 1, 2

be the vector resultingfrom the j th step ofthe kth sweep ofGauss-Seidel iteration on Bw f,
using w() as the initial guess. Then the image A*w(k’j) is just the image u(k’j) resultingfrom
the j th step of the kth sweep of the Kaczmarz iteration applied to Au f with initial guess
u (0) A*w()

An immediate consequence of this theorem is the following.
COROLLARY 2. Let w() be any vector in RN, and let {w(’) be the sequence of vectors

produced by Gauss-Seidel iteration on Bw f. If Au f has a solution, then the sequence
A*w(’) converges, as k -- o, to the minimum norm solution ofAu f.

4.1. Numerical performance. We use the positron emission problem, as in PET and
SPECT, for our model problem in developing the iterative methods presented here. Such
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FIG. 3. An "exact" image is shown on the left, and a reconstructed image is shown on the right. The reconstruc-
tion geometry uses data collected in 64 bins ofuniform width along each of20 angles. The 20 angles are equispaced
at angular intervals of,4,4) zr/20 in the interval [0, 7r). Twenty-five sweeps ofGauss-Seidel iteration were used to
reconstruct the image.

101
Log of

Number of sweeps

FIG. 4. Performance of the Gauss-Seidel iteration on Bw f is displayed by plotting the logarithm of
If- Bw(n) 12 as afunction ofn, the number ofiteration sweeps. Twenty-five sweeps ofGauss-Seidel iteration were
used to reconstruct the image.

applications are characterized by relatively small values of N and M, so that we are dealing
with fairly small computational problems. Typically, the number of bins per angle, N, is
less than 100, as is the number of angles, M. Accordingly, our numerical experiments use
N 16, 32, 64, and M 10, 20, 64. Here we report on one such test, which is very
representative of the performance characteristics we have observed.

Figure 3 displays an "exact" image, the Shepp-Logan phantom [23], from which a set of
values for the right-hand side vector f is constructed. In generating the vector f we used N 64
and M 20. Twenty-five sweeps of Gauss-Seidel on Bw f produce the reconstructed
image shown in 3.

Qualitatively, one can argue that the procedure produces a good reconstruction, in that
most of the identifiable features of the original image are present. Since, in general, the
exact image is unknown, we use the residual f- Bw as a numerical indication of how
well the method solves the problem. Figure 4 displays the logarithm of If- nw(’0112 as
a function of n, the number of iteration sweeps. Noteworthy is the fact that the first few
sweeps result in significant reduction in the norm of the residual, but that the improvement per
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FIG. 5. Reconstructions ofthe imagefrom Fig. 3 using 1, 2, and 4 Gauss-Seidel sweeps are displayed clockwise
from the upper left. It is difficult to distinguish these reconstructions, and even more difficult to determine which is
"best."

sweep declines until (after approximately 10 sweeps) the residual norm remains essentially
unchanged.

This behavior, ofrapid improvement in the residual norm over the course ofseveral sweeps
followed by stagnation of the residual norm, is characteristic ofmany iteration methods. In the
field of partial differential equations, this numerical "stalling" often occurs because relaxation
eliminates the oscillatory components of the error rapidly, but is ineffectual on the remaining
smooth components of the error. The stalling phenomenon is often eliminated through the use
of multigrid algorithms. Shortly we will develop a multigrid method for the problem Bw f,
in an attempt to address the numerical stalling. Before doing so, however, we wish. to make
two observations.

First, the stalling phenomenon is often unrelated to the quality of the reconstructed image
when the quality is measured by the subjective standard of "looking good." While this measure
is hard to quantify, and therefore not so useful to the mathematician or engineer, it is the
ultimate measure applied by the end user, for example, the radiologist tasked with treating
a patient. It is important to note that the reconstructed images frequently look good after
only one or two iteration sweeps, while the numerical stalling is not apparent until much
later. Figure 5 shows reconstuctions of the "exact" image of Fig. 3 as they appear after 1, 2,
and 4 sweeps. While subtle differences are apparent in the reconstructions, all are "good."
Indeed, it is difficult to differentiate the reconstructions after 4 sweeps and 25 sweeps (Fig. 3).
For this reason, the residual norm may not be the appropriate indicator of reconstruction
quality.
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FIG. 6. The logarithms of the eigenvalues ofa typical matrix B are shown. M 20 angles are used, so that
the null space of B has dimension 15. The eigenvalues between index and index 325 are the "good" modes, while
those between 326 and 573 are the near null space eigenvalues.

4.2. Mode analysis. The second observation we make is that it is possible to examine
the performance of the Gauss-Seidel iteration on individual components of the error. For
numerical partial differential equations this is often done by way of Fourier analysis [4].
However, Fourier analysis is not particularly useful in this setting, because the Fourier modes
are not eigenfunctions of the continuum operator, nor are discrete Fourier modes eigenvectors
of either the matrix B or the iteration matrix

The approach we take. is somewhat empirical in nature: we examine the eigenvalues and
corresponding eigenvectors of the matrix B. Since B is singular with rank N M + 1, we
know that zero is an eigenvalue of multiplicity M 1. We are not concerned with eigenvectors
corresponding to the zero eigenvalues, as they have no impact on the norm of the residual or
on the reconstruction itself (their backprojections vanish).

Slow convergence of the iteration implies that the correction given by the iteration is
insufficient. Since the size of the correction to the jth unknown is determined by the jth
entry in the residual, then slow convergence implies that the residual is "small" compared
to the error. Indeed, this has been shown to be the case for many familiar iteration schemes
[3]. Since B applied to the error gives the residual, troublesome components are thus errors
consisting essentially of the eigenvectors associated with the small nonzero eigenvalues of B,
the near null space components.

Figure 6 displays a plot of the eigenvalues of a representative B matrix, which is typical
of the spectra of all matrices we have examined. The geometry for this case has M
20 angles and N j=l n(j) 592 total detectors. The set of.eigenvalues is divided
into three groups: the zero eigenvalues, the large nonzero eigenvalues, and the group of
small eigenvalues ) whose amplitudes decay rapidly with increasing index k. The last 19
eigenvalues, 574 through )592, are zero, and the associated eigenvectors form NS(B). The
vertical dashed line in the figure marks the division between the "good" eigenvalues ()1
through k325) and the eigenvalues with rapidly decaying magnitude ()326 through )573 ), whose
associated eigenvectors form the near null space. These near null space eigenvectors are the
"slow" modes that stall performance.

We show this empirically in the following way. Representative modes are selected from
the "good" and near null space segments ofthe spectrum. Each such mode is used as the right-
hand side of Bw f. Gauss-Seidel relaxation is then applied, with an initial guess of 0, to
solve the equation. Two important observations are obtained in this way. First, by computing
the norm of the residual at the end ofeach sweep, we may determine the convergence factor for
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Residual Norms Spectral plot, mode 15

Number of sweeps 100 200 300 400 500 600

Spectral plot, mode 540

100 200 300 400 500 600

FI6. 7. The residual norms are shown (top left) for Gauss-Seidel applied to Bw f using eigenvectors as the
right-hand side. Observe thatfor mode 15 (dashed line) the iteration converges well, whilefor mode 540 the iteration
stalls immediately. The spectral densities of the vectors resulting from one relaxation sweep is shownfor mode 15
(top right) and mode 540 (bottom).

each mode. Second, after one sweep ofGauss-Seidel, we compute the projection ofthe current
approximation in the directions of all the eigenvectors of B, and plot the resulting magnitudes
against the eigenvalue index. This results in a "power spectral density" of the latest iterate.
Since the initial error in such an experiment is in the direction of a single eigenvector (the
right-hand side), such a spectral density plot tells us to what extent the iteration mixes modes,
and if the iteration excites some of the modes, to which part of the spectrum they belong.

Figure 7 shows a typical set of results of these experiments. On the top left are residual
norms, as a function of iteration sweeps, for two eigenvectors. The dashed line shows the
residual norms for the eigenvector corresponding to .15, a typical "good" mode, while the
solid line gives the residual norms for the eigenvector corresponding to )540, a typical near
null space mode. In the top right is shown the power spectral density plot after one sweep with
the 15-mode as the right-hand side, while on the bottom is the corresponding spectral density
plot for the 540-mode.

The results shown in Figure 7 support our assertion regarding the modes. That is, the
iteration attenuates "good" error modes rapidly, while the iteration stalls on near null space
error modes. In addition, we see that there is mode mixing in the spectral density plots for both
cases, but that it is much more pronounced in the case of mode 540. In both cases, though,
the excitation of extraneous modes occurs predominantly in the near null space band.

Finally, the images resulting from backprojecting modes 15 and 540 are shown in Fig. 8,
and again they are typical cases. The backprojected "good" modes generally appear as smooth,
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FIG. 8. The images corresponding to backprojecting mode 15 (left) and mode 540 (right) are shown. The
"good" mode is a gently undulating surface, while the near null space mode is nearly black.

highly geometric structures in image space, often as gently undulating surfaces. The back-
projected near null space modes, as the name implies, are almost invisible. They often show
distinct geometric characteristics, such as narrow subparallel striping, or isolated spikes in
nearly flat images.

At this stage we have a good idea what the Gauss-Seidel method achieves. Further,
we have a fairly complete picture of where and why it stalls. We next develop multilevel
methods for solving Bw f. We do this for three reasons. First, we believe that if the
nature of the near null space modes can be accurately determined, it may be possible to design
a "coarse grid correction" to treat the bad modes of the error. That is, we may be able to
find a grid on which the bad modes can be annihilated efficiently. Hence, we may hope to
achieve multigrid acceleration on this problem. Since the bad modes are not characterized by
physical smoothness, like they are in model multigrid problems, standard coarsening is not

likely to be very effective. As with other applications that do not possess standard smoothness
properties, we must be careful to use what we know about these bad components to devise a
coarsening process that closely matches them. Our first attempt is based on the presumption
that, at certain scales (e.g., when the number of angles is small compared to the resolution
within projections), they must be smooth within projections. We base our multigrid scheme
on this idea. A second and equally important reason for using multigrid is our anticipation of
the spotlight tomography problem, introduced in the final section of this paper. Finally, the
correct isolation of these modes that occurs naturally and efficiently in multilevel processing
may pave the way for treating them by an individualized regularization process that is better
tailored to the computational objectives.

5. Multilevel image reconstruction.

5.1. Multilevel projection methods (PML). Designing a multigrid method for a new
problem is a difficult task, especially when the application is far removed from the classical
multigrid setting of elliptic PDEs. Multigrid has been extended to a wide variety of such
problems, with varying degrees of success [6], 17], [22]; multigrid design in such instances
is generally a lengthy and difficult process.

The multilevel projection methodology (PML) was developed to provide a simpler, sys-
tematic approach to multilevel algorithm design 15]. A basic tenet ofPML design is that only
the appropriate subspaces in which the problem is to be set need to be determined. The problem
is discretized by orthogonal projections, and the projection operators in turn lead to the correct
choices for intergrid transfer operators, relaxation techniques, and coarsening schemes.
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To briefly describe the fundamentals of PML, let H1 and H2 be Hilbert spaces and L
H1 ---> H2 be a linear operator. The continuum problem is to find u 6 H1 such that Lu f O.
Discretization by projections is accomplished as follows.

Let Sh be a finite-dimensional subspace of H1, and let P sh H1 Sh be an orthogonal
projection of H1 onto Sh, where the superscript h refers to a discretization parameter. We also
require a finite-dimensional subspace Th Q n2, and an orthogonal projection Prh H2 Th,
as well as mappings PS Sh "’> Hi and Prh Th ""> n2.

The projection operators are used to generate a discrete operator Lh Sh Th by
projecting the action of the continuum operator L onto the subspaces, that is, the discretized
problem becomes Prh L(Psh u) 0, for u 6 H1. This allows us to define the discrete operator
for the problem by

Lhuh fh 0, for uh Sh, where Lh PrhLPSh and fh pTh f.
We pause here to show that the strip pixel discretization developed earlier is in fact a

discretization by projection.
THEOREM 6. For each j 1 M, let be exactly partitioned into n(j) parallel

nonoverlapping strips and let N Y’=I n(j). Number the stripsfrom I:N and let j(x, y)
be the characteristic function of the jth strip. Let Sh be the subspace of the Hilbert space
H1 L2(2) spanned by the set

Then the matrix equation

Bw=f

is a discretization by projections ofthe problem Au f, where A is the strip-averagedRadon
transform (1) and B is the N x N matrix with entries bjk (j, k).

Proof. We define the various subspaces of the discretization as follows. H1 and Sh are
defined in the statement of the theorem. Note that (3) implies that Sh range {A*}. We
take H2 Rv and define the subspace Th to be H2. Since H Th RN, we may take
Prh Ilv, the N x N identity matrix. The discrete equation will then be AP Sh u f, where
pShu is the orthogonal projection of u(x, y) onto Sh, so

N

U Wkl[rk(X y) Ah*W

k=l

for some w e R. Since P sh is an orthogonal projection, we must have (u pSu) _1_ apj for
every j Sh. Hence, for j I’N,

0 (u-pShu,j)

u- o, j
k=l

N

k=l

Thus, if pShu Ah*w is an ohogonal projection of u(x, y) into Sh then the vector must
satisfy

(8) [(U, Ol) (U, 02) (U, ON)]T nw.
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But the left-hand side of (8) is just Au, so w must solve Au Bw, and the projection-
discretized form of Au f is just Bw f. [q

Henceforth, to keep track of the level we are examining, we use the notation Bhwh fh,
where Bh is the matrix defined by (4). We also adopt superscripts for use with the characteristic
functions of the strips, e.g., kh.

An important observation to be made here is that it is not necessary to know the projection
operators explicitly if the condition of orthogonal projection adequately defines the discrete
operator Lh.

Now we can examine how the PML method makes use of discretization by projections to
build a two-level solver. Let P S2h and Pr2h be projection operators mapping the continuum
spaces H1 and H2 into "coarse grid" subspaces S2h C Sh C H1 and T2h C Th C H2. The
coarse grid operator is given by L2h pr2h

LP s2h.
The two main components of any multigrid problem are relaxation and coarse grid cor-

rection. The PML approach defines relaxation by decomposing the spaces Sh and Th into
sums (which need not be direct sums) of m subspaces

tn m

Sh She and Th -.Te.
=1 e=l

Any element of Sh can be written as a linear combination (not necessarily unique!) of the
elements of seh:

uh ElU,, where uo she.

The th relaxation step is defined by adding to the current approximation uh an element of the
subspace Seh such that the projection of the residual into Teh vanishes. A relaxation sweep is
made by performing the relaxation step for all m subspaces. Hence, relaxation by projections
is defined by

Relaxation: Uh -- Gh (Uh)
Fore 1,2 rn

1. Determine ue S such that P Teh Lh(uh d- ue)) fh O.
2. Setuh -- uh + uh(e)

In standard multigrid, coarse grid correction is performed by restricting the residual
equation to the coarse grid, solving for the error, interpolating the error to the fine grid, and
adding it to the fine grid approximation. This basic process is also what PML does, though
in an abstract way that is guided by the discretization. Given the coarse level subspaces
S2h C Sh C H1 and T2h C Th C n2, together with the associated projection operators,
the aim is to determine an element of the coarse space S2h that, when added to the current
approximation uh, satisfies the projection of the residual equation onto T2h Thus, coarse grid
correction by projections is written as

Coarse grid correction: blh -- Ch (1,lh)
1. Determine u2h S2h such that

prh (L(pShuh @ pS2htl2h fh) O.

by

2. Set uh -- uh + uh.
Relaxation and coarse grid correction together form a two-level PML method that is given

Two-level PML method:
Uh <--- Gh (1,lh).
Uh Ch(tlh).

blh +.- PMLh(uh)
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The two-level PML algorithm can be converted into a multilevel scheme in just the same
way that standard multigrid schemes are developed from two-grid schemes: the exact solver
in the coarse grid correction is replaced by a recursive call u2h +- PML2h(u2h), leading to a
PML V-cycle, for example.

6. PML image reconstruction.

6.1. Discretization and intergrid transfers. Applying PML to equations in A is some-
what subtle 15], primarily because of the need to treat both projection (Radon transform)
and image spaces, but with the optimal pixel discretization, applying PML to equations in
B AA* may be more direct. We have already shown that Bhwh fh is a discretization by
projections of the problem Au f onto Sh and Th. It is easy to define coarse subspaces S2h

and T2h in a manner that leads to a useful multilevel algorithm.
Let Sh be the span of the N strip pixels pjh, where the h is some parameter that indicates

the level of the discretization (e.g., h may be the width of the widest strip pixel). Suppose for
simplicity that there is an even number of strip pixels for each of the M views, and that we
number the strips from 1h to p/ in a way so that two adjacent strips on any view are always
numbered consecutively. Then a useful subspace S2h can be constructed according to

u/z 7h 7h(9) S2h span {lrk2h}k=l where lrh
2k-1 -- 2k"

Thus, each strip pixel in the coarse subspace is the union oftwo adjacent fine space strip pixels.
This may be viewed in physical terms as widening the aperture of the detectors, or bins.

With these coarse space strip pixels, we find that A2h*w2h -,N/2_ 2h_,_2h
Z-,,j=I ’tOj crj ,fromwhich

we easily obtain A2h S2h --+ Rv/2 by (a2hu)i (2ih, U). This in turn leads us to

the projection discretized coarse level problem B2hw2h f2h, where B2h A2hA2h* is an
N/2 x N/2 matrix with entries bh (2ih, apfh).

The multilevel scheme requires interlevel transfer operators to map grid functions between
the coarse and fine levels, and a basic tenet ofPML is that these operators are defined implicitly.

--s2h. Sh S2h s s2h ShThat is, l’sh --’-> and PS2 are defined by

s p s2h S2h SPSh PShPs2h, and PSh P

Analogous transfers can be defined for the subspaces T2h Q Th C n2.
To determine the intergrid transfer operators PsSh2h and P, we begin with a simple

observation based on the definition of the coarse space strips 7t2h.
LEMMA 1. The operators Ah Sh --> Th and A2h S2h --+ T2h are related by

A2h S2h Ahes
s2hwhere Psh is an N/2 x N matrix given by

1 1

s2
1

Psh ". ..
1 1

Furthermore, the adjoint operators Ah* Th Sh and A2h* T2h S2h are related by

$2 ) TA2h * Ah* Psh
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Proof. Let the coarse grid strip pixel rh be the union of adjacent fine grid strip pixels
given by /r2hk lrh2k-1 lrh2k, for k 1 N/2. Then

1)
\laph u)

The first assertion of the lemma follows by partitioning the vector Ahu into blocks consisting
S2hof pairs of adjacent entries and forming the matrix Psh by placing, for k 1 N/2, the block

(1 1) in the (2k 1)st and (2k)th positions of the kth row of an N/2 x N zero matrix. Matrix
vector multiplication then yields Ahu.

The second assertion is established by

A2h *w2h

lphNI2 h ] w:h+ lV/

s2hThe second part ofthe lemma verifies that the operator Psh gives a consistent definition to

the adjoint of the coarse space operator A2h, showing that A2h* (PsSh2h Ah), Ah* (PsSh2h r.
Thus we may define Ps (PsSh2h) r" Combining this with the observation that B2h

A2hA2h * -ShAhAh* -s -SZhBh SPsh ’Sh Psh PSh’ we find that the standard variational conditions
of multigrid are satisfied by this discretization [5].

6.2. Relaxation. Following the principles ofPML, we select sets ofm subspaces Seh and
Teh whose unions equal Sh and Th, respectively. The most obvious choice is to select m N
and Seh span {eh }, that is, each subspace is the span of an individual strip pixel.

LEMMA 2. Let Seh span {eh and Teh span {ehe}for g. 1 N, where ehe is the
th standard basis vector in Th Then the PML relaxation on Ahuh fh is implemented by
performing point Gauss-Seidel iteration on the matrix equation Bhwh fh.

Proof. The eth step of PML relaxation consists of finding that value of ct satisfying

p{h (ApS (Uh "F Ol![th fh) 0,

where uh is the current approximation to the solution, and then modifying the approximation
by uh +- uh + t. Now !/Qh ah*eeh, and since P sh uh Sh then we know that P sh hU

Ah*wh for some wh 6 Th. Hence we seek ct such that

p{h (Ah(Ah,wh + otAh,e fh)

Noting that p{h is accomplished by forming the inner product with eeh, then t must satisfy

(ehl )T Bhwh at- otBhe) fe,

whose solution is given by

1
ot ee(feh b’wh),
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where bff is the th row of Bh. Hence, the th step of the PML relaxation is

1w weh + ee (feb --b’wh),

which is precisely the correction of the th step of Gauss-Seidel applied to Bhwh fh. ll

6.3. Coarse grid correction. Like relaxation, coarse grid correction in the PML ap-
proach is defined by the selection of the subspaces and the implicit intergrid transfer operators.
For the problem Au f, it is performed by finding the element uzh S2h that satisfies

(10) pT2h (A(pShh eS2hu2h fh)U + )-- =0,

where uh is the current approximation in the. fine space Sh. The correction is then given by
uh <--- uh + u2h. Note that

PT2h AP sh uh S2h S2hPSh pThAPshuh Psh Bhwh

where Ah*wh represents pShuh. We also know that since u2h S2h, there is a vector y2h T2h

such that u2h A2h*y2h. Hence, pT2h ApS2hu2h B2hy2h. Noting also that Pr2h f PshS2h f,
then (10) becomes

PsSh2h BhWh + B2hy2h PsSh2h fh O.

S 2hThe correction step is thus wh <-- wh+ Ps2h,,V Hence, withthe operators we have constructed,
the PML coarsening step for this problem is formally the same as conventional multigrid:

1. Set f2h s:hpS (fh Bhwh).
2. Solve B2hy2h f2h.
3. Correct the approximation by wh +-- wh + Pff2hhyh.

Of course, as with any multigrid algorithm, in practice the exact solve on the coarse grid
is replaced by a recursion, so that the only time an exact solution is computed is on the coarsest
subspace. To form such a recursion in the strip pixel PML setting, we need only continue
defining coarser spaces Sjh, for j 1, 2 This is done by taking the strip pixels that
generate the new subspace to be the pairwise union of strip pixels in the current subspace, just
as was done to produce S2h from Sh. Once this is done, a PML V-cycle can be defined in the
usual way.

PML V-cycle: wh <__. PMLV(wh, Bh, fh)
1. Relax Vl times on nhxh fh with initial guess wh.
2. If Sh represents the coarsest level, go to 3. Otherwise:

s2h fh(a) f2h
__

lsh Bhwh)
(b) w2h - 0.
(c) w2h <-- PMLV(w2h, B2h, f2h)

S w2h(d) wh -- wh + Ps2
3. Relax v times on Bhxh fh with initial guess wh.

6.4. Numerical performance. Figures 9 and 10 display two examples of the image
reconstructions obtained with the PMLV algorithm. The pair ofimages in Fig. 9 were obtained
using 20 views with 32 detectors per view, and restricting the image to lie in the unit square.
The data were generated by projecting the exact image on the left, while the reconstruction
of the image by PMLV is shown on the right. The reconstruction was made using 3 PMLV
cycles with 2 relaxation sweeps on the downward leg of the V and one relaxation sweep on



MULTILEVEL IMAGE RECONSTRUCTION WITH NATURAL PIXELS 209

FIG. 9. Theperformance ofthe PMLVmethod may be observed by comparing the actual (left) and reconstructed
(right) images ofa "brain phantom." The reconstruction was obtained using 3 PMLVcycles with 2 relaxation sweeps
on the downward leg ofthe Vand one relaxation sweep on the upward leg. The image on the left was used to generate
the data used in the reconstruction, with 20 angles and 32 detectors per angle.

FIG. 10. The reconstruction on the right was obtained using the multilevel methodfrom data generatedfrom
the image on the left, using 64 angles and 64 detectors per angle. The reconstruction was obtained using 3 PMLV
cycles with 2 relaxation sweeps on the downward leg ofthe V and. one relaxation sweep on the upward leg.

the upward leg. The Shepp-Logan phantom was used for the reconstruction in Fig. 10, which
was obtained from 64 views with 64 detectors per view. Again, the image on the left was
used to generate data for the multilevel reconstruction (right), which was made from 3 PMLV
(2,1)-cycles.

To compare the performance of PMLV and Gauss-Seidel, let the work entailed by one
sweep ofGauss-Seidel on the finest level be one work unit (WU), which is an O (N2) operation.
Computation of the residual requires approximately one WU. The work required for one
PMLV-cycle, using vl / v2 sweeps of Gauss-Seidel on each level, is then bounded by

PMLV was applied to several reconstruction problems, using several different geometries.
The performance ofthe algorithm in all tests was similar, and may be summarizedby examining
the results of a typical suite of experiments. In these tests the parameters vl 2 and v2 1
give the number of iteration.sweeps, respectively, descending and ascending through the
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FIG. 11. Comparison of the performance of Gauss-Seidel and PMLV. The logarithm of the residual norm is
plotted as afunction ofthe number ofwork units required to attain it.

V-cycle. Hence, one V-cycle requires approximately WUs. The problem was coarsened
to the coarsest possible level, giving one strip per view and a problem of size M x M at the
coarsest level. Figure 11 compares the typical performance of Gauss-Seidel to the PMLV
algorithm for a problem with 32 detectors over 20 angles.

It is clear from Fig. 11 that, even for this relatively small problem, PMLV initially out-
performs Gauss-Seidel. However, continued iteration of Gauss-Seidel eventually achieves
similar results at similar costs. We believe this is due largely to the fact that the bad modes do
not possess the physical smoothness characteristic of bad modes in elliptic PDE problems, so
that coarsening by row-lumping within projections does not entirely succeed at eliminating
the bad modes. We think that this may be caused by the problem entering a scale regime where
there is close coupling between the projections. This is likely to mean that a special lumping of
rows is needed, where the oscillatory but possibly regular pattern of these components across
angles is taken into account. Note that the slopes at the right end of the curves indicate that
further iteration may favor PMLV. However, it is important to recall that the ultimate goal
is quality image reconstruction, and that the residual norm may not be a reliable measure of
success. It is also important to recall the ill-posed nature of reconstruction. Consider the
problem Bw f, whose exact solution (in the least squares sense) is

w Btf,

where B is the pseudoinverse ofB. In terms ofthe singular value decomposition B UE Vr,
the solution w can be expressed as

W --Viu f --V (Ui, f),
/=10"i i=10"i

where the cri’s are the singular values, Ui and V (the left and right singular vectors of B) are
the columns of U and V, and r rank(B). If there is measurement noise in the data, so
that instead of f the data are f + e, then solution components corresponding to small singular
values will magnifythis noise. These are the components in the near null space that are
slow to be recovered. Thus, continued iteration after the procedure stalls in an attempt to
recover these slow components has the potential to corrupt the solution with magnified noise
[11], [19].



MULTILEVEL IMAGE RECONSTRUCTION WITH NATURAL PIXELS 211

FIG. 12. Exact image (top left), minimum norm solution (top right), and PMLV solution (bottom).

Experiments have shown, in fact, that it is possible to drive the residual norm to zero,
finding one of the solutions to the linear system, and have reconstructed images that are ofpoor
subjective quality, perhaps worse than that of early iterates. Figure 12, for example, displays
an exact image and two reconstructions of the data for that image. One reconstruction is made
by computing w B f, while the other is made by running three PMLV cycles. The residual
norms are 1.8 x 10-13 (pseudoinverse) and 4 10-4 (PMLV), but it can be seen that PMLV
has produced a somewhat better reconstruction.

Such problems require some form of regularization to prevent the ill-posedness from
completely corrupting the approximation. One way to do this [18] is to stop iterating when
the algorithm begins to stall. An ad hoc approach to this is to measure the difference between
successive residual norms, and stop iterating when a tolerance is achieved. A potentially more
effective stopping criterion exists [20], based on a newly developed convergence theory for
multilevel algorithms [7], but this is beyond the scope of interest here.

7. Spotlight image reconstruction. Often, one desires high resolution in a certain region
of the image, for example, where a tumor is suspected. Discretizing the entire image space at
a fine resolution may be impractical, as this leads to extremely large systems of equations. An
attractive alternative is to discretize the region of special interest at a fine resolution and the
remaining image space at a coarser resolution, leading to a composite grid problem. This is
called spotlighting the region of interest. Numerous multigrid methods have been developed
for handling composite grid problems [2], [16], [21]. One such method that we develop in the
next section is a consequence of PML methodology.
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7.1. Fast adaptive composite grid (FAC). The spotlight tomography problem is essen-
tially a composite grid problem, in which an operator equation Lu f must be solved on a
composite grid g2h- comprised of a global coarse grid f22h and one or more local refinement grid
f2h (the refinement grid may itself be a composite grid, which permits recursive refinement).
Fast adaptive composite grid methods (FAC) were developed [14], [16] in order to utilize
multigrid technology to treat such problems efficiently. It comes from the PML methodology
by simply restricting the fine grid subspaces to local collections of detectors.

FAC succeeds because it handles the composite grid as a nested sequence of regular
grids that can be treated independently using virtually any regular grid method. The key
ingredients lie in having appropriate representations of the operator and intergrid transfer
operators. Thus, grid functions u must be representable on the composite, global, and re-
finement grids (uh-, u2h uh), and operators must exist to transfer grid functions between these

grids (I f2h- -- f2h, Ih" f2h- -- g22h, I f2h -- f2h-, and I" f22h -- h_). Finally, it is

critical that the operator L be representable on these grids (Lh-, L2h, Lh). In general, the de-
tails of these operators and representations can be developed in a straightforward fashion once
the grids are defined; the details, however, are very technical and can be found in [12], 14],
and 16]. Once the operators and grids are defined, FAC proceeds in the following two-step
sequence:

Step 1: Set f2h 4-- Ih(fh Lh--uh--), u2h (L2h)-I f2h, tlh
__

uh _j_ Ihu2h.
Step 2: Set fh

__
I (fh___ Lh__uh__), Uh 4--- (Lh)-1 fh, Uh <’-" 1,1h -JI- I-l,l h

Despite this formal definition, FAC need not utilize exact solvers on the global coarse
grid or the refinement patch. Historically, FAC has been used predominantly with iterative
methods 14].

7.2. The spotlight grid. We utilize FAC methodology to devise a discretization for the
spotlight tomography problem. We begin with a global grid 2h generated by the natural pixels
j2h. We next add a refinement grid f2h by forming strips jh. For each view we choose pairs
of strips whose union conforms exactly to one of the global strips. As a very simple example,
consider the discretization given by three views, each consisting of four strip pixels (Fig. 1 3,
left). The resulting global (coarse grid) operator is the 12 12 matrix B2h,2h, the matrix whose
(j k)th entry is bj2 (rh 2hk )" The refinement grid f2h is formed by partitioning one strip
from each view into two strips. Hence h generates plh and h2. Similarly, strips 3 and
4 on the refinement grid are a partition of 7h, and aP121h generates refinement strips 5 and 6
(Fig. 13, fight). The refinement strips h generate a refinement patch operator nh,h, formed
in the usual manner by bjh (jh, zh), giving a 6 x 6 matrix in the simple example. The

composite grid f2h-- formed in this manner is shown at the bottom of Fig. 1 3.
The basic assumption ofthe discretization, that the unknown image is a linear combination

of the strip functions, is unchanged. The total number of strips is N N2h + Nh, the sum of
the number of strips on the global grid and the refinement patch. Hence, the image u Ah--*w
is given by (3) where lrj rj2h if 1 < j < N2h and lffj lrjh._N2h if N2h < j < N. We can

define the composite grid version of Ah-- by (Au)j (apj, u) using the same ordering of the
j ’s. The discretized composite grid operator Bh,h may then be computed in the standard way,
by Bh_,h__ Ah--Ah--*, and it has, as its (j, k)th entry, the element bk (j, ). This method
accounts for the interaction of the refinement grid with the global coarse grid, including
the inner products between the fine strips and coarse strips. In fact, this leads to a natural
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view view 3 viewview 2 view 2 view 3

Composite\" grid

global \\ Refined
grid grid

FIG. 13. The global grid f2h (bottom left) is generated by stripsfrom three views (top left), while the refinement
patch (bottom right) is generated byfiner stripsfrom the three views (top right). The union ofall strips generates the
composite grid (bottom center).

partitioning of the composite grid operator as

B2h,2h B2h,h )Bh,h Bh,2h Bh,h

We observe that by the ordering of the pj’s and the definition of Ah--* we are led to a
natural definition of the composite grid unknown, namely uh- (w2h wh)r. Naturally, we
must have a compatible composite grid data vector fh__ (f2h fh)r. Conceivably, the coarse
grid data and the refinement data could be acquired in separate recordings, but it is more likely
that a single data set be generated, from which the coarse and refinement data are derived.
The composite grid problem nh,hWh fh then becomes

(11)
B2h,2h
Bh,Eh

B2h’h ) (w2h
7.3. FAC implementation. It can be shown [14], [20] that FAC in this setting is equiv-

alent to applying two steps of block Gauss-Seidel iteration to the system (11). That is, FAC
takes the two-step form:

Step 1: Set

Step 2: Set

w2h <_._ B-1 (f2h B2h,hWh).2h,2h

Wh
__

Bh-,lh (fh nh,2hw2h).

These steps are formal, of course, since we know that B2h,2h is singular. In fact, we take w -B-if to mean "solve Bw f," which need not be done with exact solvers. In principle we
may apply any method to these subproblems: ART, filtered backprojection, Fourier methods.
A natural choice is an iterative method, such as Gauss-Seidel or multigrid. Noting that each
of the steps are solving a "residual" equation on one of the grids, this process may be viewed
as one of multilevel correction.

The composite grid operator Bh,h possesses a host ofuseful and interesting properties [20],
related to a family of useful properties generated by the discretization method and inherent
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FIG. 14. The "exact" image used to generate data for the spotlight tomography problem is shown on the top

left. In the top right is shown the PML reconstruction on the global coarse grid .h, using data generatedfor 20
angles with 32 strips per angle. On the bottom is the spotlight reconstruction, generated using datafor strips half
the width ofthe global coarse grid, over the central region ofthe image.

in the global and local operators B2h,2h and Bh,h. Space limitations do not permit elaboration
here, nor is there room for a performance analysis. A rigorous treatment of the method,
including a performance assessment, is forthcoming [8], [20].

We demonstrate the promise of the spotlight method with a simple example. A "brain"
phantom is generated, consisting of a uniform grey region within the skull (high-density
elliptical ring). Embedded in the grey region is a small square high-density region. Data
is generated by integrating the product of this image with the characteristic functions of the
strips representing a 20 angle, 32 bins-per-angle discretization. The square of high density
has width equal to one half the width of the individual strips making up the global coarse grid.
The "exact" image is shownon the left of Fig. 14, while the global coarse grid reconstruction
is shown on the top right.

A single-level refinement region is generated by refining one half of the strips in the center
of the set for each angle, using strips of half the width of those on the global coarse grid. The
reconstructed image using the spotlight method with one cycle ofFAC is shown on the bottom
of Fig. 14. Both the global coarse grid and refinement grid portions of the composite grid
were solved using three V-cycles, each with two relaxation sweeps on the downward leg and
one relaxation sweep on the upward leg. The high-density region, which does not show in the
global coarse grid reconstruction, appears in the spotlight reconstruction. This is demonstrated
a bit more clearly in Fig. 15, in which only the central region of each of the reconstructions is
shown.
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FIG. 15. The central portions of global coarse grid (left) and spotlight (right) reconstructions of Fig. 14 are
shown in thisfigure. The image reconstructedfrom the composite grid data clearly shows the object ofinterest, while
the global coarse grid imagefails to resolve it.

We chose this example because of its clarity for the reader. However, it does not really
illustrate the practical benefits of FAC because it costs essentially the same as would solving
the globally refined problem. In practice, we envision that FAC will be used for spotlighting
smaller features of the image, and to much. finer detail. That is, rather than refining one half
of the strips on each angle by splitting them once, we foresee refining a much smaller region,
such as one tenth of the strips along each angle, to a resolution four or eight times that of the
global coarse grid. In such settings the benefits of spotlighting would be very substantial.

8. Concluding remarks. The results presented here are encouraging, in that they demon-
strate that multilevel methodology can be applied to the image reconstruction problem with
some hope of success. The benefits of multilevel reconstruction, the way we have developed
it, remain somewhat limited, although we do see images of quality equal to those produced
by Gauss-Seidel, achieved at somewhat lower cost.

We believe that this limitation may stem from restricting the coarsening to be within
projections. That is, we have reduced only the number ofdetectors per angle, not the numberof
angles themselves. Evidence gathered by examining the near null space components suggests
that angle coarsening is essential for efficiency at coarse grain resolution, which multigrid
methods always face. This is currently being explored.

The results presented here show great promise in the area of spotlight tomography, for
cases where a finer resolution image is needed over portions of the image space. It is not
feasible to compute entire images at the fine resolution, since such problems lead to extremely
large, dense systems. As the simple example shows, however, PML can be used to formulate
the spotlight problem to use FAC technology in a way that may lead to practical algorithms.
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Abstract. In this paper we show how the properties of integral operators and their approximations are reflected
in the performance of the GMRES iteration and how these properties can be used to smooth the GMRES iterates by
an implicit application of Nystrtim interpolation, thereby strengthening the norm in which convergence takes place.
The smoothed iteration has very similar properties to Broyden’s method. We present an example to illustrate the
ideas.
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1. Introduction. In this paper we consider the performance of the GMRES [27] iteration
for linear equations of the form

(1.1) Au u Ku f

with K a compact operator on a separable Hilbert space H. An example of such an operator
is an integral operator on H L210, of the form

(1.2) Ku(x) k(x, y)u(y) dy
o

where k is continuous.
Our setting is that of 15] where issues similar to those raised in this paper were considered

in the context of Broyden’s method [4] for linear and nonlinear equations. Broyden’s method
has also been considered as a linear equation solver in [5], [12], 13], [25], and [20]. Let H be
a separable real Hilbert space and let X C H be a Banach space such that the inner product
(-, .) in H is continuous from X x X R. This implies that there is Cx such that

(1.3) Ilulln Cxllullx

for all u X. Let K CO.A4(H, X ), which is the space of compact operators from H to X.
Of course, we may also regard K as an element of CO.A4 (H), which is the space of compact
operators on H. In the context of the integral operator (1.2) with continuous k, H L2[0, 1 ],
X C[0, 1], and Cx 1.

Algorithms such as GMRES and Broyden’s method, which depend on notions of or-
thogonality, could use the Hilbert space inner product of H to solve equations in which the
right-hand side f X. However, a convergence theory based entirely on a Hilbert space
formulation would show that the resulting sequence is convergent in the topology of H but
not necessarily in that of the Banach space X in which the problem may have been originally
posed. Hence, we face an apparent conflict between the topology in which the problem was
posed and the inner product (and hence Hilbert space) nature of the algorithm. This issue was
resolved in 15] in the context of Broyden’s method. For the linear equations context of this
paper the result of 15] is that the Broyden iterations converge q-supeflinearly in the topology
of X provided K CO.A/I(H, X and f X.

*Received by the editors May 4, 1994; accepted for publication (in revised form) March 24, 1995.
Center for Research in Scientific Computation and Department ofMathematics, North Carolina State University,

P.O. Box 8205, Raleigh, NC 27695-8205 (T+/-rn_KeLley@ncsu. edu, xue@naat:h, ncsu. edu). This research
was supported by National Science Foundation grants DMS-9024622 and DMS-9321938. Computing activity was
also partially supported by an allocation of time from the North Carolina Supercomputing Center.

217



218 c.T. KELLEY AND Z. Q. XUE

Nystr6m interpolation [24], i.e., replacing an approximate solution u by t f + Ku,
can be used to create approximations accurate in stronger norms than the original [17] to
improve the overall accuracy of a discrete approximation [28] and as a method for smoothing
an intergrid transfer in multilevel schemes ], [3], 14]. We have the first purpose in mind here.
Following GMRES with a Nystr6m interpolation would, as we shall see, result in accuracy in
the X-norm. The cost, however, would be an additional application of K.

The purpose of this paper is to show how GMRES can be modified to incorporate Nystr6m
interpolation at a very small cost in both computational effort and algorithmic complexity. The
result is an algorithm that has the simultaneous X and H convergence property of Broyden’s
method. The example we give in 4 compares GMRES, both with and without Nystr6m
interpolation, and Broyden’s method as primary solvers and not in the context of a multilevel
method, where they could be either used as coarse mesh solvers or as the primary solver in
a nested iteration approach. The reasons for this are that the independence of our results to
mesh size can best be illustrated if the solvers perform the same task for each mesh. The
merits of our implicit Nystr6m interpolation carry over to the multilevel situation, enabling
coarse mesh solvers to be accurate in the appropriate discrete X-norm, which is important for
the convergence theory.

Throughout this paper we assume that A is a nonsingular linear operator on H and X.
We consider convergence rate estimates of the form

(1.4) IIrllH llr011H,

where rg f Auk, and the sequence of real numbers {rk} converges to zero and is inde-
pendent of the right-hand side f of (1.1).

Rates of convergence of the form (1.4) can be derived from resolvent integration [21 ],
[22] for any K such that I K has bounded inverse and 1 is in the unbounded component of
the resolvent set of K. If K is compact, more precise information can be obtained. In fact the
GMRES iterates converge r-superlinearly to the solution in a way that is independent of the
right-hand side. This means that the sequence {r converges q-supeflinearly to zero; i.e.,

Z’k+llim O.

In the case of normal or diagonalizable (similar to normal) compact operators a q-
superlinearly convergent sequence {rk} can be directly related to spectral properties of K
in a very simple way. In 18] assumptions on the rate of decay of the spectrum were used for
this. In order to illustrate how the smoothing properties of K might influence the convergence
rate, below we present a slight extension of the result in 18]. While this result follows from
the general theory in [22], we believe that its direct and brief proof is worth inclusion. We
denote by tot/(A) the H-norm condition number of A;

xH(A) IIAII/IIA-lIlts.
THEOREM 1.1. Let H be a separable Hilbert space, K CO.A/I(H), let A I K be

nonsingular, and let S be a nonsingular bounded operator on H such that

L SKS-x

is normal. Let {)i be the eigenvalues ofA ordered so that

(1.5) I.i- 11 >_ 19i+1- II for >_ 1;
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thenfor all k > 1 the GMRES residuals rk satisfy

(1.6)
k

rk xH (S)ll r0 2 U 1 ;k-I I.
i=1

Proof. For k 1 define

(1.7)
k

Pk(Z) H(1 -lz).
i=1

Since pk(O) 1 for all k we have [27]

(1.8) Ilrklln cn(S)llrolln sup IPk(.m)l.
rn

For k fixed, pk().m) 0 for 1 < rn < k. For rn > k,

Ip(Xm)l
k k

H l1 )-l)m [-- H IJk-lll)i ;kml
i=1 i=1

k k

H Igk}-ll (IJki II + I1 Zml) I-I IJk-1121;Li II
i=1 i=1

k

2 H I1 .-11.
i=1

This completes the proof. U
Since )L 1, the sequence

k

rk 2 U I1 ,-11
i=1

is q-superlinearly convergent. If, say, K is normal (so S I) and the eigenfunctions of K are
smooth, then the rate of convergence of )i to one reflects both the smoothness of the kernel k
and the convergence rate of the sequence {r }.

2. Convergence in a stronger norm. In this section we show how, given a rate estimate
like (1.4) for the sequence of residuals, the GMRES iteration can be modified to produce a
sequence that converges with the same rate in the norm of X. This will lead to a modified form
ofGMRES that uses information at hand to perform Nystr6m interpolation implicitly without
the need for an additional application of the operator K. Proposition 2.1 is a coupling of the
convergence rate derived above with the standard smoothing result for Nystr6m interpolation
[2]. We provide the simple proof to help clarify the ideas.

PROPOSITION 2.1. Let {u} be the sequence ofGMRES iterates. Assume that (1.4) holds
for some sequence {r}. Let (tk uk + r. Then

Pro@ First note that (1.4) implies that

(2.2) Ilu u*lln rcn(A)llUo u*ll.
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Since

k uk + rk f + Kuk,

continuity of K as a map from H to X implies that

IItTk u*llx IIg(ug u*)llx <_ IIKIIci,xlluk u*ll/.

This completes the proof. [3

The interpolant k is as easy to compute as uk upon exit from the main loop in GMRES.
An algorithmic description of GMRES follows.

ALGORITHM 2.1. Algorithm grnre s (u, f, A, )
1. r f Au, Vl r/llrlll, p Ilrll/,/ P, k 1
2. While p > b n do

(a) Vk+l Ark
for j-- k

i. hjk (Vk+l, vj)
ii. Vk+l Vk+l hjkl)j

(b) hk+l,k IIv+all/
(C) l)k+ V/l/llVg/l I1/
(d) el (1, 0 0)T E Rk+l

Minimize II/el HgYlIa/ to obtain y Rk

(e) p II/el nYllg+
(f) k=k/ 1

3. Uk Uo + Vky

In step 3 Vk Rk -- H is defined by

k

Vky yjvj.
j=l

We can use the fact that

rk f Auk Vk+l(/el d- Hky) ro + Vk+l Hky

tO recover tTk with no additional operator-vector products involving A. In fact if z Hky
and we define a vector

w (wl, w2 Wk+l)T Rk+l

by W Zi "2V Yi for 1 < < k and Wk+l Zk+l, we have

which can simply replace the computation of uk in step 3 of cjrnres. We will refer to the
resulting algorithm as smoothed GMRES. Note that smoothed GMRES differs from GMRES
only in the final output, where (2.3) is used to compute the final result.

As an algorithm for the solution oflinearcompact fixedpointproblems, smoothedGMRES
shares two properties with Broyden’s method. Both converge superlinearly to the solution in
the topologies of both H and X and both require storage of the iteration history. Older
implementations of Broyden’s method require storage of two vectors for each iteration, [10],
[23], [7]. However recent work for linear [9] and nonlinear [16] problems show how to use
only a single vector, making the two algorithms competitive.
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3. Discrete problems. While we state and prove our results in the infinite-dimensional
setting they apply equally well when K is an approximation of some compact operator and X
and H are both RN for some N with different norms, say, discrete approximations of L2 (for
H) and L or C (for X) norms.

To illustrate this point, consider the integral operator defined by (1.2). A standard ap-
proximation by an N-point quadrature rule would lead to the discrete problem

(3.1)
N

Ui k(xi, xj)wj f(xi),
j=l

where {X and {1/) are the nodes and weights of the quadrature rule. Assume that f and k
are times continuously differentiable. Define H to be Rg with the inner product

and associated norm

N

(u, v)H u.i vj wj
j=l

Ilull ud j
j=l

We give C [0, the norm

[lullfl Ilull + Ildlu/dxll[.

If we replace Ildlu/dxlll with a/th divided difference we may define an approximate
C norm on RN. If X is RN with such an approximate C norm, then the matrix

satisfies, with C independent of N

Kij k(xi, xj)wj

IIKullx CllullH,

and the development in the above section may be applied for each level of discretization N
with the constants in the estimates being independent of N.

For example, if 1, and the nodes of quadrature rule are {ih }i=0N-1 with h 1/(N 1),
we may define the divided difference D1 u E RN-1 by

(3.2) (DlU)i (Ui+l ui)/ h

and the X-norm by

Ilullx -Ilull + IIDlull.

In 4 we present an example showing how smoothed GMRES can capture the smoothing
properties of the Broyden iteration that are missed by GMRES alone.

4. Example. As an example we consider the source iteration operator from linear trans-
port theory [19], [26]. We will describe the equation and its discretization only briefly and
refer to [19] and [26] for more details. We consider the equation

(4.1) (x ) + (x, )
c(x) r

1 (x,’)d’Z X T,] -1
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for x (0, v) with boundary conditions

(4.2) (0,/z) Fl(iZ), /z > 0; (r, z) Fr(lZ), z < O.

In (4.1) and (4.2) the intensity is the unknown real valued function of x and
c 6 C([0, rl), and FI and Fr are given continuous real valued functions of/z. It is known [6]
that the boundary value problem (4.1)-(4.2) has a unique solution if 0 < c(x) < 1.

The intensity can be computed directly once the flux

(x,/z’) d(4.3) f(x -is known. By integrating forward (/ > 0) and backward (/z < 0) in x we derive the integral
equation for f,

(4.4)

where

f(x) k(x, y)f (y) dy g(x)
o

1
k(x, y) El(Ix yl)c(y),

and

fl(Ix y[) exp
0

if (u-vx)exp Ft(v)dvg(x) - o

-(r -x))exp Fr(-v) dv.

It is known [6], [8] that the integral operator K in (4.4) has spectral radius < 1 and hence (4.4)
has a unique solution. It is also easy to see from the formula for k that K maps L2 into any of
the spaces

XI, C[0, 13 CI cl[., 11.

By examining the formula for g we see that the solution f 6 C[0, is infinitely differentiable
in compact subsets of (0, and hence lies in any of the spaces X.

We discretize (4.4) with the standard discrete ordinates approximation to (4.1), which is
not a direct approximation of (4.4) by a quadrature rule at all. We approximate the integral
in (4.1) by a 20-point double Gaussian quadrature rule (10-point Gaussian quadratures on
each of the intervals (-1, 0) and (0, 1)) in line with the analysis in [26] and then integrate
forward and backward with the Crank-Nicolson scheme on a spatial mesh with N points. The
convergence theory developed in 19] and [26] implies that the discrete form K of the integral
operator satisfies

IIKulll, M(I, )llull/

for some M(k, ), which is independent of the spatial mesh. Here II/ denotes the scaled
Euclidean norm
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FIG. 4.1. N 401.

Ilull.
j--1

and the discrete xl norms are given by

(4.5) Ilull/,, -Ilulloo 4-IIOu, lloo.

In (4.5) the operator D1 is defined by (3.2) and u, is the vector defined by

(u,)i I O, ih <

! ui, ih > .
We set Fl(tZ) 1, Fr(lZ) 0 for all/z, and r 10. We set c(x) exp(-x/100), which

is a special case of the class considered in [11 ]. We performed three sets of computations for
N 401, N 801, and N 1601. We used the initial iterate u0 0 and solved the equation
with GMRES, smoothed GMRES, and Broyden’s method. We terminated the iteration when
the discrete H-norm residual had been reduced by a factor of 5/(N 1 )2. We used the solution
with N 6401 (terminated when the H-norm residual had been reduced by a factor of 10-12
as a representation of the exact solution). We computed the discrete X/,-norms with e .025.

For N 401 (Fig. 4.1), N 801 (Fig. 4.2), and N 1601 (Fig. 4.3) we plot relative
residual norms as functions of the iteration number in both the discrete xl-norm (solid line)
and the discrete H-norm (dashed line). In each figure there are plots of residual histories for
both GMRES and smoothed GMRES (SGMRES). In those plots the dashed line is the H-norm
relative residual for both GMRES and SGMRES. The solid line is the relative residual norm
in X, which we computed directly in GMRES by explicitly computing the residual and its
x,l-norm or by using (2.3). We also plot the error in the final result as a function of x e [0, r]
for smoothed (dashed line) and unsmoothed (solid line) GMRES. One can clearly see the
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effects of the smoothing especially near x 0 where the errors of the unsmoothed solution
oscillate much more strongly.

To show how the smoothing affects the results in other norms, we present in Table 4.1 the
norms of the errors in the discrete Loo, X, X2, and X3 norms for GMRES and SGMRES. One
can see from these tables that the effect of the Nystr6m interpolation becomes more dramatic
as the differentiability in the norms increases.
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TABLE 4.1
Errors in various norms.

N 401 N 801 N 1601
Norm GMRES SGMRES GMRES SGMRES GMRES SGMRES
H 3.1865e-4 2.3279e-4 7.6028e-5 4.8816e-5 1.7326e-5 9.8239e-6
L 6.9223e-4 5.2749e-4 1.6349e-4 1.1584e-4 6.1573e-5 2.2828e-5

X 4.0814e-2 8.0632e-3 7.0348e-3 1.2897e-3 3.1247e-3 3.9660e-4

X 1.9878e+0 2.4950e-1 5.3146e-1 3.0577e-2 2.2838e-1 1.1983e-2

X 8.3956e+1 7.5656e+0 2.5227e+1 1.6119e+0 9.2401e+0 8.5306e-1

The computations illustrate how the smoothed GMRES iteration gives better performance
in the xl-norm. The curves for the various values of rn are quite similar, indicating that the
infinite-dimensional analysis can be observed numerically. Note also that the X, and H
relative residuals for the Broyden iteration, which requires more work than GMRES, are very
close, in line with the theory in 15].

The tables and figures were created with MATLAB version 4.0a on a Sun SPARC 20
model 61 workstation running SUN OS 4.1.3.

Acknowledgments. The authors thank Anne Greenbaum for pointing out [22] and An-
dreas Griewank for telling us about [9].
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ITERATIVE METHODS FOR TOTAL VARIATION DENOISING*
C. R. VOGELt AND M. E. OMAN

Abstract. Total variation (TV) methods are very effective for recovering "blocky," possibly discontinuous,
images from noisy data. A fixed point algorithm for minimizing a TV-penalized least squares functional is presented
and compared with existing minimization schemes. A variant of the cell-centered finite difference multigrid method
ofEwing and Shen is implemented for solving the (large, sparse) linear subproblems. Numerical results are presented
for one- and two-dimensional examples; in particular, the algorithm is applied to actual data obtained from confocal
microscopy.

Key words, total variation, denoising, image reconstruction, multigrid methods, confocal microscopy, fixed
point iteration
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1. Introduction. The problem of denoising, or estimating an underlying function from
error-contaminated observations, occurs in a number of important applications, particularly
in probability density estimation and image reconstruction. Consider the model equation

(1.1) z=u+e,

where u represents the desired true solution, e represents error, and z represents the observed
data. A number ofapproaches can be taken to estimate u. These include spline smoothing (see
18]), filtering using Fourier and wavelet transforms, and total variation (TV)-based denoising.
Figure 1 illustrates the qualitative differences between these various approaches on a simple
one-dimensional test case. It is not the goal of this paper to carry out an exhaustive comparison
of TV with standard denoising methods. For that, see 15] and the analysis in [5]. Suffice it to
say that TV denoising is extremely effective for recovering "blocky," possibly discontinuous,
functions from noisy data. It is the goal of this paper to present a new algorithm for TV
denoising and to compare it with some existing TV-based methods.

In their seminal paper on TV denoising, Rudin, Osher, and Fatemi 15] considered the
constrained minimization problem

(1.2) min[ IVul dx subject to Ilu zll = r2,
u

where the parameter cr describes the magnitude of the error in the data in the model equation
(1.1). Here f2 is a bounded, convex region in d-dimensional space, I" denotes the Euclidean
norm in Rd, and I1" denotes the norm on L2 (f2).

Here we will consider a closely related problemmthe minimization of the TV-penalized
least squares functional

1
(1.3) f(u)- llu- zll -t- /(u),

where

(1.4) Jfl(u) f v/’lVul z +/3:z dx
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FIG. 1. Denoised reconstructions obtained using a variety offiltering techniques. Dotted lines represent noisy
data. Solid line in subplot A is the exact solution. Solid lines in subplots B-F are reconstructions. Reconstructions
E andF were obtained using Haar and Daubechies’s wavelets, respectively. See 4for details.

and c and/ are (typically small) positive parameters. The parameter ct controls the trade-off
between goodness of fit to the data, as measured by Ilu zll, and the variability of the solution,
measured by J#(u). When/ 1, J#(u) represents the surface area of the graph of u, while
/ 0 gives the total variation of u.

When/ 0, TV-penalized least squares can be viewed as a penalty method (see 11 ]) to
solve the constrained problem (1.2). The penalty parameter c in (1.3) is inversely proportional
to the Lagrange multiplier for (1.2). This penalty approach is standard in the inverse problems
community and is commonly referred to as Tikhonov regularization. Provided the parameters
are selected appropriately, the solutions obtained by these two methods are identical. However,
from a computational standpoint, unconstrained problems are much easier to implement than
constrained problems.
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To solve their constrained minimization problem, Rudin, Osher, and Fatemi applied ar-
tificial time evolution. In the context of the unconstrained problem (1.3), this amounts to
assuming u is a function of time (as well as space) and then time-integrating the differential
equation

(1.5) =-g(u), t>0,
Ot

(1.6) u=u(), t=0,

to steady state. Here g(u) denotes the gradient (derivative with respect to u) of the TV-
penalized least squares functional (1.3), and u (0) is an initial guess for the solution. Formally,
g is a nonlinear elliptic partial differential operator with homogeneous Neumann boundary
conditions

(1.7) g(u) u -oV.

Ou
(1.8)

On
--0’ x O.

After spatial discretization, Rudin, Osher, and Fatemi applied explicit (forward Euler)
time marching to obtain a gradient descent scheme. In the context of (1.5), this approach
yields

(1.9) u (k+l)
tl

(k) 5k g(u(k)), k --O, 1

A line search (see [4]) can be added to select the step size zk in a manner that gives sufficient
decrease in the objective functional in 1.3) to guarantee convergence to a minimizer. This gives
the method of steepest descent (see 11 ]). While numerical implementation is straightforward,
steepest descent has rather undesirable asymptotic convergence properties that can make it
very inefficient. Obviously, one can apply other standard unconstrained optimization methods
with better convergence properties, like the nonlinear conjugate gradient method or Newton’s
method. These methods converge rapidly near a minimizer provided the objectivefunctional
depends smoothly on u. When/ 0, the term J in (1.3) is not differentiable. For small values
of/, the near nondifferentiability of the objective functional results in a loss of robustness
and efficiency for higher-order methods like Newton’s method.

In this paper we introduce an alternative approach to minimizing 1.3) that we call "lagged
diffusivity fixed point iteration," denoted by FP. At a minimizer, g(u) 0 or, equivalently,

(1.10) u + ot L(u)u z,

where L(u) is the diffusion operator whose action on a function v is given by

(1.11) / 1
L(u)v -V.

V/[Vu[2 +/2Vv
FP iteration can be expressed as

(1.12) (1 -[- Z(u(k))) u (k+l) z, k 0, 1

Note that at each iteration one must solve a linear diffusion equation, whose diffusivity depends
on the previous iterate u (k), to obtain the new iterate u (k+l). In our numerical experiments, we
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have observed global convergence of FP iteration. We suspect this is true in general because
the mapping u L(u)u is monotone (see [9]). Hence, there appears to be no need for
a "globalization" procedure like a line search to guarantee convergence, as is the case with
standard optimization methods. In addition, this method exhibits rapid linear convergence for
a broad range of the parameters c and/3.

In the following section, we discuss the mathematical structure of the TV-penalized least
squares functional (1.3) and the equations that arise in its minimization. Section 3 deals with
numerical implementation issues like discretization, stopping criteria, and iterative methods to
solve (large, sparse) linear systems. In the final section we present a numerical comparison of
FP iteration with Newton’s method and steepest descent. Results of a numerical study of the
effects of various parameters (e.g., ot and/3 in (1.3)) are also presented in this section. Finally,
we apply FP iteration to denoise actual data obtained from a confocal scanning microscope 19].

2. Mathematical structure. In this section we discuss the mathematical structure of the
TV-penalized least squares functional 1.3) and the implications of this structure for numerical
methods. An analysis of a similar functional,

(2.1) -llgu zll + cJ(u),

has been carried out in [1], where K is a compact linear operator mapping Lp() into L2(f2),
with 1 < p < d/(d 1). d is the spatial dimension. This analysis relies on the relative
compactness of sets of the form

(2.2) {u LP(K2) IIulIp + J(u) < O},

where B is a fixed constant, in LP (2).
Perhaps the most important difference in the analysis of (1.3) is the fact that sets of the

form (2.2) are not relatively compact in L2(f2) for dimensions d > 1. Following 2 of [1],
define the functional

(2.3)

Also define

(2.4) f(u) sup Q(u, ),

where

(2.5) 12 { e C(K2; Rd)’l(x)l < 1}.

For u sufficiently smooth (say, in C1(g2)), this coincides with the functional in (1.3)-(1.4).
We wish to find u* 6 L2() for which

(2.6) f(u*)-- inf f(u).
uL2(f2)

THEOREM 2.1. Problem (2.6) has a unique solution.

Proof. Note that f(u) is L-coercive; i.e., f(u) --+ cxz whenever Ilul12 . This com-
bined with the weak compactness of closed balls in L2 (f2) and the weak lower-semicontinuity
of f yields existence. Uniqueness follows from the strict convexity of the L2 norm. [3

While we have not yet been able to rigorously establish this fact, it appears that the
minimizer is stable with respect to perturbations in the data z and the parameters ot and/3.
This has the following implications"
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FIG. 2. Subplot A shows TV reconstructions for various fl’s with fixed t 0.01. Solid line corresponds to
=. 1, dashed line to .01, and dotted line to/ 10-6. Subplot B shows reconstructionsfor various tx’s with

fixed/ 10-4. Solid line corresponds to ot .001, dashed line to a .01, and dotted line to ot .1. See 4for
details.

(i) Taking/ small but positive in (1.3) gives minimizers that are close (in an L2 sense)
to minimizers obtained with/ 0. This is illustrated in Fig. 2A.

(ii) As ot ---> 0, the minimizer u u,, in (1.3) tends to the (noisy) data z. On the other
hand, as ct becomes large, u,, tends to the mean value of z. This is illustrated in
Fig. 2B.

We next examine the operators arising in the minimization of (1.3). Taking the first
Gateaux derivative in the direction v and assuming u and v are smooth, one obtains the
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gradient

(2.7) (g(u), v) (u z)v + c lVulZ + f12
dx.

Similarly, one obtains the Hessian

(2.8) (H(u)o,w)=f.(ow+=
The quadratic approximation

Vv. Vw
(iVul2 )3/2 dx.

1
(2.9) f(u + s) f(u) + (g(u), s) + -{H(u)s, s) + o(llsll 2)

is the basis for the analysis of standard optimization methods. In particular, the spectrum
of the Hessian H(u) determines the asymptotic convergence rate of the methods of steepest
descent and the (nonlinear) conjugate gradient method (see [11 ]). One obtains local quadratic
convergence for Newton’s method assuming that H(u) is Lipschitz continuous and has a
bounded inverse (see [4]). The size of the convergence region is proportional to the inverse
of the Lipschitz constant and the bound on the inverse. Note that if/3 0 and Vu vanishes
anywhere in g2, then f(u) is not differentiable. This is a consequence ofthe nondifferentiability
of the Euclidean norm. This difficulty is overcome when > 0, but the Lipschitz constant
behaves like/3-3 when/3 is small. This explains the deterioration in the performance of
Newton’s method observed in 4 for small values of/3.

Again assuming sufficient smoothness and applying Green’s identity (integration by parts)
in (2.7), one obtains

(g(u), v) (u z) -V.
v/lVul2 + f12

1) dx

(2.10) +c f Vu n

where n is the outward unit normal to the boundary 02. Consequently, a minimizer for (1.3)
is a weak solution to the nonlinear second-order elliptic PDE

(2.11) g(u)ae’( TM )
(2.12)

This can be expressed in operator form

(2.13)

where

A(u)u (1 + otL#(u))u z,

(2.14)

and

L (u)o -V.

(2.15) x#(u)
4ivul +
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Note that the operator L is symmetric and positive semidefinite. Its null space consists of
the constant functions. The diffusivity x(u) is bounded above by and below by zero.

Finally, observe that the Hessian is related to the operators A(u) and L(u) by

(2.16) H(u) 1 + otL#(u) + otL’(u)u
a(u) + otL’(u)u,

where denotes differentiation with respect to u.

3. Numerical implementation. Any discretization of (1.3) should allow for very sharp
gradients without introducing spurious oscillations in the solution u. We have implemented
several finite element methods (which are based On (2.7)) with piecewise linear basis functions
and the first-order accurate finite difference scheme described in 15 (based on 2.11 (2.12)).
The resulting discrete systems are quite similar. These schemes yield discrete Hessians H,
cf. (2.8), and matrix operators A, cf. (2.13), which are symmetric and positive definite (SPD)
and sparsemtridiagonal in one space dimension and block tridiagonal in two dimensions.
Let u and z denote the vectors (mesh functions) obtained from the discretization of u and z,
respectively. Also, denote by f(u), g(u), H(u), and A(u), respectively, the discretization of
the objective functional (1.3), its gradient, Hessian, and the operator A in (2.13).

What follows is a genetic algorithm for the minimization of f(u). The superscript (k)
denotes iteration count. Let u) be an initial guess. For k 0, 1

1. Compute a descent direction d(k) for f at u(k).
2. u(k+l) u(k) -- .*d(k), where

)* argminz>of(u<g + .d(k)).

3. Check stopping criteria.

j(k) _g(k) defFor the method of steepest descent, Uso -g(uk), while for Newton’s method,

,.!k) _H(u))-lgk)(3.1) N

Note that the line search in step 2 may be replaced by a trust region method [4]. Either
"globalization" technique will guarantee convergence to the minimizer of f.

For our FP iteration, steps 1 and 2 are combined. One obtains u(k+l) directly by solving
the linear system

(3.2)

,(k) u(k+l) u(k) yieldsSetting oFP

(3.3)

(3.4)

A(u(k))u(k+l) Z.

d(k) --A(u(k)) -1 (A(u(k)) u(k) Z)FP

--A(u(k))-1 g(u(k)).

The second equality follows from (2.11) and (2.14). Hence FP iteration is of quasi-Newton
form, and existing convergence theory in [4] can be applied. Since the matrix A(u) is SPD with
its minimum eigenvalue bounded away from zero, each ofthe a(k) ’s is a descent direction, andFP
global convergence can be guaranteed by "globalization," i.e., appropriate step size control. In
our computational experiments, we have not found globalization to be necessary. Comparing
(3.1) and (3.3) and observing that the term otL’(u)u in (2.16) does not vanish, the asymptotic
convergence rate is linear.
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The following stopping criteria are standard (see [4]). tl, t2, and t3 are user-defined
tolerances, kmax is an iteration limit, and denotes the e norm.

(3.5) Ilu<k+l) u)ll ,
(3.6) IIg*+))ll 2,

(3.7) f(uCk)) f(u<+)) < 33 Ilu(+1)

(3.8) k > kmax.

Solving the linear systems. With both Newton’s method (cf. (3.1)) and FP iteration
(cf. (3.2)), one must solve a sparse SPD linear system at each iteration. In one space dimension,
these systems are tridiagonal and can be solved directly in O(n) operations, where n is the
order of the system. In two space dimensions, these systems are block tridiagonal. Direct
banded system solvers, which have complexity O(n3/2), may be applied. One may also apply
a variety of iterative methods, like preconditioned conjugate gradient (PCG) methods (see [2],
[10]) and multigrid methods (see [12] and the references therein).

For certain linear SPD systems arising in the discretization of elliptic PDEs, one can
achieve O(n) complexity with multigrid methods 12]. Our early multigrid implementations,
which were based on standard finite difference or finite element discretizations and standard
intergrid transfer operators, yielded very disappointing results when u was not smooth. This
seems to be due to properties of the diffusion coefficient c(u); cf. equation (2.15). For
nonsmooth u ofbounded variation, c, (u) is not smooth. Moreover, on the set (having Lebesgue
measure zero) where u is discontinuous, c,(u) vanishes.

To overcome these difficulties, we employed a cell-centered finite difference (CCFD)
discretization (see [7] and the references therein). To solve the resulting linear systems, we
applied a variant of the multigrid algorithm developed by Ewing and Shen [8]. While pure
multigrid iterations were considered in [8], we applied a PCG iteration with a CCFD-based
multigrid method as a preconditioner. See [17] for implementation details. Numerical results
appear in the following section.

4. Numerical results. In this section we first present a numerical comparison of FP
iteration, Newton’s method, and steepest descent applied to minimize the TV-penalized least
squares functional (1.3). Results are also presented that illustrate the effects of varying the
parameters ot and on these methods.

First consider the one-dimensional test problem of denoising the data presented in Fig. 1.
The exact (noise-free) solution is

3
(4.1) Uexact(X) X[1/6,1/4]-1- X[1/3,5/8],

where )(.[a,b] denotes the indicator function for the interval a < x < b. The data was generated
by evaluating Uexact at N 257 equispaced points in the interval 0 < x < 1 and adding
pseudorandom, uncorrelated error (so-called"discrete white noise") {i }i=1 having a Gaussian
distribution with mean 0 and variance (r2 selected so the noise-to-signal ratio

E -iN= 6.2i)
(4.2)

E/N=I U(Xi)2
0.5.
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Here E(.) denotes mathematical expectation. Subplot C shows the minimizer of theTV-
penalized least squares functional (1.3). Subplot B shows the minimizer of a related
HI-penalized least squares functional, which is commonly used in data smoothing (see 18])

(4.3) Ilu zll -4- f IVul2 dx.

Here the penalty term is the square of the Sobolev H seminorm. It does not allow discon-
tinuous minimizers. On the other hand, it is easy to compute minimizers and is appropriate
for denoising smooth functions. Subplot D was obtained by Fourier transforming the data,
applying a low pass filter, and then applying the inverse transform. Subplots E and F were
created with the aid of the software package wavetzhresh, as documented by Nason and
Silverman 14]. Each of these reconstructions was obtained by applying a wavelet transform
to the data, applying the universal filter of Donoho and Johnstone [6], and then applying an in-
verse wavelet transform. In Subplot E, Haar wavelets are used in the transformations (see 16]
or [13] for a discussion of Haar wavelets). These wavelets are generated by a discontinuous
mother wavelet and are of regularity level 1 (see 14]). This reconstruction clearly maintains
the discontinuities of the true image; however, there appear to be extraneous effects similar
to ringing that are not a part of the original image. Subplot F uses Daubechies’s "extremal
phase" wavelets (see [3]), which have regularity level 2 (see [14]). Here, both smoothing and
ringing effects are apparent. In all cases, the filter parameters were selected so that

(4.4)
N

(tl(Xi) zi)2/N rr 2.
i=1

Figure 2 shows the qualitative effects of varying the parameters c and/3 on the minimizer
of the TV-penalized least squares functional (1.3). In subplot A, the fixed c 0.01 is selected
so (4.4) is satisfied, and/3 is varied. Larger values of/3 have the effect of "rounding off sharp
edges" in the reconstructions. In subplot B,/3 10-2 is fixed and ct is varied. Solutions
tend to be piecewise constant. Larger values of ct have the effect of reducing the number of
piecewise constant regions.

Figure 3 illustrates the convergence behavior ofthe various methods for minimizing 1.3),
as measured in the el norm of the gradient. In each case, the initial guess was taken to be the
zero solution; i.e., u 0, and ot 0.01. Subplots A and B also show the effect of varying
the parameter/ on the performance of Newton’s method with a line search and FP iteration.
Note that the Newton iteration converges rapidly for relatively large values of/3. However, as
/ decreases, the performance decreases markedly. Tlie line search restricts the size of steps
in order to maintain a steady decrease in f(u)), but quadratic convergence is not attained
until a very large number of iterations have been performed. See the discussion in 2 for
an explanation. FP performance also drops off as/ decreases, but unlike Newton’s method,
the drop off is gradual and there is no dramatic change as/ becomes very small. Subplot C
illustrates performance of the method of steepest descent. There is a substantial decrease in
the norm of the gradient in the first few iterations, but after that the decrease is extremely slow.
A thousand steepest descent iterations were required to obtain reconstructions comparable to
those obtained with four or five Newton or FP iterations.

Figure 4 shows FP performance as measured by the objective functional (1.3). Note that
f(uk) decreases monotonically.

Finally, we present a two-dimensional example from confocal microscopy (see 19]). The
images in subplots A and B of Fig. 5 show rod-shaped bacteria on a stainless steel surface.
The vertical axis represents recorded light intensity, while the horizontal axes represent scaled
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FIG. 3. Performance ofmethods measured by the scaled el norm ofthe gradient IIg(k)lll/llg(0)ll. c 0.01 is

fixed throughout. Subplot C shows steepest descent performancefor 15 only. Subplot A shows FP performance
for 15 (solid line), 15 0.1 (dashed line), 15 10-2 (dashed-dotted line), and 15 10-3 (dotted line). Subplot
B shows Newton performance for t5 (solid line), 15 O. (dashed line), 15 10-2 (dashed-dotted line), and
15--- 10-3 (dotted line).

f(uk) f(u_exact) for Fixed Point Iteration
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FIG. 4. Performance offixedpoint iteration measured by f(u(k)) f(u*), where u* is the minimizer off Solid
line is for 15 and dashed line isfor 15 O. 1. et is fixed at 0.01.

pixel locations on a 64 64 grid. Figure 5A is an actual image recorded with a scanning
confocal microscope. Figure 5B shows a TV reconstruction obtained from the FP algorithm
with our CCFD multigrid PCG method used to solve the linear systems at each fixed point
iteration. The actual computations were performed on a 256 256 pixel grid, with n 65,000
unknowns. So that fine details are not obscured, only the upper left hand 64 64 subgrid is
actually displayed. Parameter values are cr =/ .01.
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FIG. 5. Subplot A shows a scanning confocal microscope image of rod-shaped bacteria on a stainless steel
surface. Subplot B shows a TV reconstruction obtained using FP iteration. Subplots C andD illustrate performance
ofthe linear system solver.

Subplots C and D describe the performance of the CCFD multigrid PCG linear system
solver. Subplot D shows the norms of residuals rj z Auj as a function of PCG iteration
count at FP iteration 10. A A(u(])) is fixed throughout for this subplot. Define the PCG
convergence factor to be the ratio pj Ilrj II/llrj-1 II, Subplot C shows the geometric mean of
the convergence factors, 5 exp(y In pj/m), as a function of FP iteration count.

Finally, we note that far fewer that 10 fixed point iterations and 10 PCG iterations per
FP iteration were required to obtain comparable denoised images. The purpose of the large
number of iterations was to demonstrate the asymptotic convergence properties of the linear
iterative method.
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MIGRATION OF VECTORIZED ITERATIVE SOLVERS
TO DISTRIBUTED-MEMORY ARCHITECTURES*

CLAUDE POMMERELL’f AND ROLAND RHL

Abstract. Distributed-memory parallel processors (DMPPs) can deliver peak performance higher than vector

supercomputers while promising a better cost-performance ratio. Programming, however, is harder than on traditional
vector systems, especially when problems necessitating unstructured solution methods are considered. A class of
such applications, with large resource requirements, is the numerical solution of partial differential equations (PDEs)
on nonuniformly refined three-dimensional finite element discretizations. Porting an application of this class from
vector and shared-memory parallel machines to DMPPs involves some fundamental algorithm changes, such as grid
decomposition, mapping, and coloring strategies. In addition, no standardized language interface is available to ease
the efficient parallelization and porting among DMPPs and between vector computers and DMPPs.

This article describes how PILSman existing package for the iterative solution of large unstructured sparse linear
systems of equations on vector computersmwas ported to DMPPs, using the parallelizing Fortran compiler Oxygen.
Two DMPPs, namely an Intel Paragon and a Fujitsu AP1000, were used to evaluate the performance of the generated
parallel program quantitatively. The results indicate how an application should be designed to be portable among
supercomputers of different architecture. Several language and architecture features are essential for such a porting
process and ease the parallelization of similar applications drastically.

Key words, distributed-memory parallel processing, large-scale scientific computing, iterative solvers, paral-
lelizing compilers, inspector-executor, unstructured sparse matrix computations

AMS subject classifications. 65Y05, 68N20, 65F10

1. Introduction. Recent development in VLSI technology has made distributed-memory
parallel processors (DMPPs) attractive alternatives to vector supercomputers. DMPPs offer
high peak performance for relatively low investment in computer hardware: powerful micro-
processors can be used to build a DMPP processing element (PE) with only few integrated
circuits. By connecting many such PEs together in a communication network, it is easy
to achieve at least the same peak performance as featured by today’s most powerful vector
supercomputers.

Unfortunately, DMPPs are still much less comfortable to program. Programming comfort
cannot be quantified as precisely as peakperformance, but it is clear thatmore user efforts are re-
quired to implement efficient and portable programs. While early research in scientific parallel
processing concentrated on isolated parallel algorithms and specialized architectures, many
current projects aim to mitigate this lack of general programmability. Approaches include
new software technologymlike parallel algorithms, operating systems (OS) and parallelizing
compilersmand new hardware designs, in particular more powerful DMPP interconnection
networks. Portability among DMPPs and, even more, portability between DMPPs and vector
supercomputers is often ignored.

In this article, we trace a way to extend the portability of a software package from vector
computers to DMPPs, in the hope of providing a guideline for similar ports. Our project
is a step toward the full parallelization of existing applications that are based on large and
unstructured two- and three-dimensional finite element discretizations.

The article is organized as follows. After defining the project goal and rising the associated
questions more precisely, we will introduce the hardware platforms and the two software
packages PILS [29] and Oxygen [32] used in our study. We will then discuss additions to the
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numerical library PILS that enable an efficient parallelization with the parallelizing compiler
Oxygen and conclude with a summary of our measurements on two selected DMPPs.

2. Goal of this project. The distinction between the two classes of supercomputers is
far less rigid than it may appear from the above. Pipelined vector operations and parallel
computations on distributed memory are two orthogonal architectural concepts to exploit par-
allelism. Distributed-memory parallel vector processors or superpipelined processors with
large caches on a shared-memory bus are examples of hybrid combinations featured in com-
mercial supercomputers available today. If an application proves to be portable from single
vector processors to distributed-memory scalar parallel processors, one can safely assume that
it will also achieve reasonable efficiency on a supercomputer of hybrid architecture. For the
sake of clarity, we distinguish between single vector processors (which we call vector com-
puters) and distributed-memory scalar parallel processors (which we call DMPPs), keeping in
mind all variations in between.

The interest of the research community in DMPPs has led all leading vector supercom-
puter manufacturers to develop new supercomputers that are based on distributed-memory
architectures. For many applications, however, DMPP operating systems and compilers are
still incapable of assisting the user in obtaining a reasonable fraction of the machine’s peak
performance, in a way comparable with what can be expected on vector computers. Closing
this gap faces many unsolved problems. Among others, the following three questions have
yet to be answered.

How difficult is the migration of existing vector supercomputer application Codes to
DMPPs, and by what techniques can parallelism expressed for vector operations be translated
into parallel computations on data structures in distributed memories?

Howmuch can the system software (OS and compiler) ease the above migration, and how
efficiently could a standardized software interface (for instance, a programming language like
High Performance Fortran (HPF) [18]) support the implementation of scientific applications
that are portable to both types of high performance architectures?

How should large-scale applications be designed to achieve high performance on both
vector and parallel supercomputers in a portable way?

It is easier to answer the questions above for applications requiring only highly structured
computations, like dense matrix linear algebra, or finite element and difference methods ap-
plied to structured grids. In fact several research groups have defined Fortran-like languages
and implemented compilers to allow portable coding of these applications. The definition
of HPF is an attempt to standardize these efforts. The portability on a whole spectrum of
architectures has been proven for some of these languages (see for instance 14]).

We are concerned with more unstructured computations, like linear algebra on general
sparse matrices, or finite element or finite volume methods applied to nonuniformly refined
grids. For this application class some software support must be provided at run-time; standard
compile-time dependence analysis techniques fail when control-flow depends on run-time
information. If we want to avoid "manual" intervention in the application code, run-time
support should either be provided by the OS or by the compiler’s run-time library. The three
problems above have been discussed by only a few research groups [5], [21].

Strictly speaking, almost any unstructured solution method to a given scientific problem
can be substituted by a structured method that is more easily parallelizable, but generally
also more resource intensive. With many real-world problems, however, using a less pow-
erful method induces a severe loss that cannot be offset even by massive parallelism. While
there are many options to solve a particular problem, the only efficient solution method may
require unstructured computations. Many publications reporting close to peak performance
on some problem in fact use outdated regularly structured methods, and it would be faster to
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solve the same problem with a state-of-the-art unstructured method running at workstation
performance.

This article tries to answer the three questions above for the existing vector supercomputer
code PILS, a software Package ofIterative Linear Solvers targeted to the solution ofvery large,
unstructured sparse, unsymmetric, ill-conditioned systems of linear equations. The package
is used routinely in finite element-based applications on a range of sequential and vector
supercomputers, and we want to extend this portability to DMPPs and among DMPPs. We
have parallelized PILS using the compiler Oxygen. The performance of the generated parallel
program is evaluated on two DMPP systems, namely the Intel Paragon 19] and the Fujitsu
APIO00 [20].

A fully automatic parallelization of such a code would be impossible, just like today’s
hi.ghly mature vectorizing compilers are incapable of achieving high performance on a naive
sequential implementation of such an application. Instead, carefully designed data structures
together with additional hints to the compiler (usually in the form ofdirectives) are necessary to
exploit the architectural features of vector computers. We try to exploit the same restructuring
effort in a highly vectorized application and substitute a parallelizing compiler for DMPPs,
together with some additional tuning.

Our self-imposed restrictions include that modifications to the original application are
kept to a minimum, so that the code stays fully compatible and compilable on vector com-
puters. Except for the performance gain, the user should not be able to distinguish whether
the application runs on a single processor or in parallel on the DMPE Along with that, most
communications are generated transparently by the paralleliZing compiler, which hides the
underlying message-passing architecture as far as possible.

Many recent studies investigate DMPP implementations of iterative solvers for linear
systems. Almost all of these publications aim at a much simpler goal. Most authors consider
only regularly structured problems, like 5-point finite difference discretizations of simple
PDEs. The resulting matrices do not need a general sparsity data structure; all operations
on them can be treated much more efficiently as addition, scaling, and positional shifts on
smaller dense matrices. Furthermore, most authors do not consider preconditioning, except
possibly for diagonal scaling. Good preconditioners often increase the convergence speed of
an iterative method more drastically than parallelization, and many real-world ill-conditioned
problems just cannot be solved by unpreconditioned iterative methods. On the other hand,
good preconditioners, like approximate factorizations, are more difficult to parallelize than any
other component of iterative solvers. Finally, many authors consider only symmetric positive-
definite systems, for which conjugate gradients, but also weaker methods like successive over
relaxation (SOR) or Jacobi iteration converge well. Despite significant new developments
in the last few years, no single unsymmetric variant of conjugate gradients can be seen as
universally successful on ill-conditioned unsymmetric linear systems, so that high flexibility
in the choice of methods and preconditioners is required.

3. Background.

3.1. Target platforms. We have ported PILS to five different DMPPs: the CM-5 from
Thinking Machines, the NEC Cenju-2 and Cenju-3, the Fujitsu AP1000, and the Intel Paragon.
Results in this article are only drawn from the latter two.

3.1.1. lntel Paragon. The Intel Paragon XP/S 5+ features Intel i860 XP processors con-
nected in a rectangular mesh. PEs operate at 50 MHz and contain 16 Kbyte data and instruction
caches. The maximum bandwidth from cache to floating point unit is 800 Mbytes/s. Hard-
ware communication bandwidth between any two nodes is 200 Mbytes/s full duplex. For this
article, parallel measurements were taken on a machine with 32 Mbytes local PE memory,
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FIG. 1. Execution time of neighbor-to-neighbor communications in the (virtual) torus topology of AP1000
and Paragonfor various message sizes. Both systems are configured as 4 8 tori. We use tagged communication
operations as specified in the code segment above.

whereas sequential measurements were performed on a single PE of another (much smaller)
machine with 128 Mbytes.

As C compiler and back end to Oxygen, the PGI compiler version 4.5 was used under a
beta release of operating system OSF AD 1.2.

The communication library of the Paragon is build on top of OSF. This provides a high
functionality (like support of standard UNIX I/O library functions), but requires expensive
context switches and thereby affects the utilization ofthe underlying communication hardware.

3.1.2. Fujitsu API000. An AP1000 consists of a collection of processors and a Sun-4
host. Each AP1000 PE consists of a 25 MHz Sparc with FPU, 16 Mbytes DRAM, and 128
Kbytes direct mapped cache memory. Three communication networks are available" the
Torus network (T-net) for point-to-point communication between PEs, the Broadcast network
(B-net) for host-to-PE communication, and the Synchronization network (S-net) for barrier
synchronization. A detailed description of the AP1000 system can be found in [20].

For all our measurements we used the AP1000 OS CellOS 1.1, with the Sun-C compiler
SC1.0 as back end for Oxygen.

Each processor runs only a relatively primitive microkernel that supports communication
to the host and to other processors. The host connects to the outside world and provides
general I/O.

3.1.3. Basic measurements. We showed in [2], [3] that the speedup ofDMPP programs
strongly depends on the DMPP’s communication ratio.

To determine communication performance, we measure execution time of neighbor-to-
neighbor communications in the (virtual) torus topology for various message sizes. Figure 1
compares such measurements on Paragon and AP1000. Both machines are configured as 4 8
toil.

The performance of floating point operations is difficult to predict on complex computer
architectures, as it depends strongly on the location of the operands in the memory hierarchy.
We have therefore measured Tc, the time required to compute a double-precision multiply add
operation as in DAXPY, for in-cache and out-of-cache operands. Table 1 shows the results
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TABLE
Measurements of computation speed (in C-compiled DAXPYs) on the two systems. For comparisons we also

include measurementsfor several Sparc-based workstations, namely Sun SparcStations +, 2, and 10-41.

rc (s)
Paragon AP1000 SSI+ SS2 SS10

In cache 0.27 1.15 1.93 0.87 0.24
Out of cache 1.14 1.91 2.25 1.18 0.58

for the two DMPPs. Note that code generated by the Paragon C compiler even for the simple
DAXPY loop does not run close to peak performance.

3.2. PILS. PILS implements a large number of iterative methods, preconditioners, and
other variants for iterative solvers and provides a high degree of flexibility, like automatic
adaptation to a more robust preconditioned iterative method whenever the solver that is usually
fastest fails to converge. The library is integrated into a number of applications, including
several semiconductor device simulators, where the solution of hundreds of ill-conditioned
linear systems of similar sparsity structure dominates the overall execution time. PILS and its
client applications have been used regularly over four years now, at several dozens of academic
and industrial sites.

PILS runs on a number of different platforms, from workstations to supercomputers,
including Convex, Cray, Fujitsu, and NEC vector computers. The sparse matrix data structures
in PILS are optimized for the use of vector computers.

This section describes those features of PILS that are relevant for our project. Inter-
ested readers are referred to [29] for an overview of algorithms and applications, [30] for a
performance analysis, and [27] for ample detail on algorithms and implementation.

3.2.1. Colored jagged diagonals based on a partitioning by matchings. Nonzero en-
tries of the sparse matrix are stored in so-called "jagged diagonals" [33], a data structure in
which matrix-vector products can be computed with a few long vector operations, even if the
number of nonzeros per row or column is small. Every operation on a row-oriented jagged
diagonal (where row indices are given implicitly by the storage order, and column indices are
stored explicitly in an index vector) accesses one of the argument vectors (on the fight-hand
side of an assignment) through indirect addressing, using a vector-gather routine.

Column-oriented jagged diagonal operations update a vector by addressing it indirectly
both on the left- and the right-hand side of an assignment, requiring vector-gather and vector-
scatter routines. To avoid write conflicts in this scatter, the entries in the index vector must
be unique. This is obtained through a reordering of the nonzeros resulting from a partitioning
by matchings in the associated graph. PILS uses a combination of row- and column-oriented
jagged diagonals to save storage on structurally symmetric parts of the matrix and to make
transposed matrix-vector multiplication as efficient as matrix-vector multiplication without
transposition. Transposed matrix-vector products are important in some of the iterative meth-
ods, and are inefficient with many other sparse matrix formats.

The rows of the sparse matrix are further symmetrically permuted into blocks, such that
the blocks comprising the diagonal are zero everywhere except on the diagonal itself. This
allows for a vectorized solution of sparse triangular systems, which is important for fast no-fill
incomplete factorization preconditioners. Such a block structure is obtained after coloring the
associated graph of the matrix into sets of independent vertices. Every color block of each
triangle of the sparse matrix is stored in separate jagged diagonals.

3.2.2. Language usage for portable vectorization. To meet the requirement for the data
structuring and flexibility, PILS is mainly implemented in C++. Because of the existence of
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a translator to C [37], C++ is available on all machines with a C compiler, including all vector
supercomputers. Unfortunately, the code generated by vectorizing C compilers, if available at
all, is generally slower than code generated by vectorizing Fortran compilers. For this reason,
the most time-critical, vectorizable parts of PILS are written in Fortran. These Fortran parts
consist of 46 simple loops and four nested loops. Although they account for only six percent
of the total code size, these loops take over 99 percent of the solver’s run-time in a typical
application and are fully vectorized. The compilation system inserts for each machine the
appropriate compiler directives, allowing the vectorizing compiler associative rearrangements
of global summations, or asserts that index vectors used on the left-hand side of an assignment
are unique and safe for scatter operations.

In particular, all linear algebra operations are handled by these critical loops. Addition,
scaling, componentwise multiplication, copying, and zeroing of vectors as well as inner prod-
ucts are among the simple Fortran loops. Sparse matrix operations are supported through
several more complicated loops that use indexed addressing and deeper nesting.

The C++ part of PILS constructs data structures, interprets specifications to set up the
correctly parametrized solution method, and interfaces with the outside world (e.g., a client
application), converting external formats into internal data structures if required. Within the
solution process in a preconditioned iterative method, C+/ controls the program flow, calls
linear algebra routines, and checks convergence through vector norms, but never accesses
directly the entries of any of the vectors involved in the iteration. In the computation of
sparse matrix-vector products, as well as in the application of no-fill incomplete factorization
preconditioners, a C++ program segment guides through the data structure, but the final
computation involving the argument and result vectors is performed by Fortran segments.

3.2.3. PILS client applications. Typical client applications for PILS require the solution
of many linear systems in which the matrices have different numerical values but only one
or a few sparsity structures. These matrices arise, e.g., in the discretization of nonlinear
PDEs into a system of nonlinear equations. Every iteration of a Newton solver for this
nonlinear system requires the solution of a linear system of equations. Similarly, the solution
of time-dependent PDEs calls for the solution of one or more linear systems at each time
step. Semiconductor device simulation, our target application [16], requires the solution of
up to several hundreds or even thousands of linear systems within the modeling of a system
of time-dependent nonlinear PDEs on nonuniformly refined two- or three-dimensional finite
element grids. For large simulations, the time to solve linear systems accounts for more than
95 percent of the overall execution time.

As the sparsity structure of the matrices is reused many times, the initialization cost for
data structures is amortized over several numerical solver runs. The time used in the inherently
sequential algorithms to build vectorizable data structures is negligible in comparison to their
benefits.

The linear systems occurring in device simulation can be very ill conditioned. Occa-
sionally, iterative methods preconditioned by standard fast no-fill incomplete factorization
preconditioners fail to converge. In such a case, PILS adapts to more robust preconditioners,
like approximate factorizations with numerical dropping of fill entries based on a threshold
tolerance. Unfortunately, these robust preconditioners offer little room for vectorization or
parallelism and run essentially in scalar mode.

3.3. Oxygen. Oxygen is a parallelizing Fortran compiler for DMPPs. It accepts For-
tran 77 and compiler directives and generates parallel C code with communication primitives

1Note that the collection does not consist only of BLAS1 routines [23]. Most critical loops perform combined
operations that allow a more efficient usage of caches, vector registers, and chainable pipelines.
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for execution on DMPPs. Originally designed as part of the K2 project 1], the compiler has
been ported to several platforms. For a list of such platforms and for an evaluation of the
efficiency of Oxygen-generated parallel programs, the interested reader is referred to [31 ].

Several compilation systems with similar (or more) functionality than Oxygen have been
developed recently [40], [24], [17], [22], [13], [41], [6]. Such compilers provide programming
comfort and ease program portability on DMPPs and often target automatic parallelization
of existing "dusty deck" sequential Fortran programs. As a result of those efforts the HPF
standard has evolved 18], which essentially defines a set of Fortran annotations to distribute
data and parallelize loops on DMPPs. In all the above systems, distributed data can be accessed
through what is commonly referred to as a global name space. This means that any processor’s
reference to an element of a distributed data structure is handled by the compiler, transparently
to the user; the compiler inserts communication primitives in the generated DMPP program
to allow such remote data references.

For this study, Oxygen serves only as a tool to ease the parallelization of PILS, without
making use of its automatic parallelization capabilities. While simple programs like dense lin-
ear algebra codes such as LINPACK can be parallelized automatically in an efficient way [26],
it is commonly believed that strong user interaction is required to parallelize PILS-like codes,
even on simpler parallel architectures such as shared-memory multiprocessors.

The Oxygen input language features a global name space much like HPF. In contrast to
the above-mentioned compilers of languages that had some influence on the HPF definition,
and also in contrast to the first HPF compilers commercially available (e.g., the HPF subset
compiler from Applied Parallel Research [4]), Oxygen includes several features that make
it especially well suited for supporting the parallelization of unstructured computations in
general and PILS in particular:

Oxygen directives include constructs to dynamically distribute data and control flow
in parallel programs.
Run-time analysis supports a global name space even in program segments that
include arbitrarily nested dependencies on elements of distributed arrays.
Not only remote fetches, but also remote updates of distributed data, are allowed.
That is, we do not restrict ourselves to the "owner-computes rule."
All processors in Oxygen-generated parallel programs execute duplicates of the se-
quential part and synchronize only implicitly through local communications as re-
quired by data exchanges.

Some ofthe above features are supported also by few other experimental systems (for instance,
remote updates by ARF [40]). However, for the DMPP parallelization of PILS, all these
features are crucial.

3.3.1. Programming paradigm. Most of the systems mentioned above support a global
name space primarily through compile-time analysis. The user can specify data distributions
in the input language, and the compiler then distributes operations on distributed data by using,.
for instance, the owner-computes rule; i.e., only the PE that allocates a data item is allowed
to change it. To a limited extent, some of the above systems (for instance Fortran D and
ARF) support the global name space also through run-time analysis. For code segments for
which the compiler cannot statically determine from where to fetch nonlocal data (for instance,
when sparse matrix data structures are used), the compiler generates two execution phases: a
so-called inspector and an executor. The inspector preprocesses execution to find out about
nonlocal data accesses. The executorperforms the actual computation and uses communication
patterns constructed by the inspector to fetch nonlocal data. Such run-time analysis introduces
significant overhead in execution time. However, many important applications that require
such run-time analysis have two important characteristics: (1) the critical code segments are
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invoked repeatedly, for instance as computational kemels of an iterative solution method; (2)
the critical code segments can be start-time scheduled; i.e., although control flow depends on
run-time information, once a communication pattern has been computed, it can be reused for
repeated execution of a given segment.

Oxygen supports a global name space primarily at run-time. It also generates two execu-
tion phases for critical code segments: symbol handlers and executors. We do not denote the
preprocessing phase as inspector because the symbol handler has more functionality: while
inspectors can only handle a single level of indirect array accesses, the symbol handler cor-
rectly preprocesses code segments with multiple nesting levels of dependencies on nonlocal
data. The compiler generites several preprocessor slices 10], i.e., symbol-handler iterations
that generate communication patterns either for the following symbol-handler iteration or for
the executor. Oxygen’s run-time analysis is also more powerful in saving communication
patterns: driven by compiler directives, for a given code segment, several communication pat-
terns can be saved; communication patterns are stored symbolically, such that preprocessing
can be avoided even when a computational kernel is applied to different data (for instance by
calling a subroutine with different parameters), as long as the data structures have identical
shape. Note that the generation of recursive inspectors has recently also been investigated by
other research groups [6], [7].

Oxygen lets the user decide where computation on distributed data is carded out, and both
remote fetches and updates of nonlocal data are allowed. Therefore, the input language not
only includes directives for data distribution but also for loop distribution. Both data and loops
can be distributed dynamically using a user-defined mapping computed at run-time. Unless
specified differently by the user, variables are replicated (and not part of the global name
space), and sequential code is executed on all processors. Many of the above other systems
imply global synchronizations at the end ofparallel loops by restricting execution of sequential
program parts to one processor or by using collective communication statements to orchestrate
nonlocal data accesses. Oxygen generates parallel programs where PEs synchronize only
implicitly through the use of local communication primitives (i.e., nonblocking sends and
blocking receives) for nonlocal data exchange.

4. Porting PILS with Oxygen. Ifthe linear solver is the main time-consuming operation
within an application implemented using PILS, we can obtain a notable benefit by parallelizing
only PILS, without touching the client application. Parts with significant parallelism are
already marked in PILS as vectorizable parts. These critical loops, mentioned in 3.2.2, are
parallelized by Oxygen.

The client application should preferably run sequentially and not see a difference between
a sequential or a parallel version of the PILS library. Because of the large memory require-
ments of a typical client application, and because of necessary OS support, we decided on
the AP1000 to run the client application and the mostly sequential parts of PILS that con-
struct data structures on the AP1000 host. On the Paragon, any PE can take the role of the
host, since virtual memory and standard UNIX I/O library routine calls are also supported
on compute nodes. We decided that Paragon PE 0 both executes the sequential control code
and its share of the parallelized code. An alternative model, where one particular PE executes
only sequential code, was discarded because--for increased parallel efficiency--Oxygen re-
quires the underlying machine to feature a number of processors computable as a power of
two. To simplify the following discussion we call Paragon PE 0 as well as the AP1000 host
controller.

The separation ofthe numerically intensive, time-consuming part ofPILS coded in Fortran
and the more complex control and interfacing part coded in C++ led us to the following
parallelization strategy:
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All C++ code is executed on the controller.
All Fortran routines are annotated with parallelization directives and compiled by
Oxygen into parallel subroutines to be executed on the PEs.
Controller and PEs communicate via a remote procedure call interface. This interface
requires an additional software layer between C++ and Fortran that determines
which parameters to send from controller to PEs on subroutine invocation, and which
parameters to return at the end of the routine’s parallel execution.

We will now describe the parallelization of the numerically intensive time-consuming Fortran
source on the PEs and then explain how the remote procedure call interface was optimized to
avoid expensive controller/PE communications.

4.1. Parallelizing the Fortran part. The numerically intensive part of PILS consists of
linear algebra operations on vectors and sparse matrices. As mentioned in 3.2.1, matrices
are stored in colored jagged diagonals. The part of this data structure that describes the
sparsity structure consists mainly of indices for nonzero entries and remains constant while
an application is solving many linear systems with the same sparsity structure. The numerical
part ofthe data structure, with one particular instance ofvalues for the nonzero entries, remains
constant over the whole iterative algorithm that solves one particular system oflinear equations.
The average number of nonzeros per row in the matrices ranges typically between five and
twenty-two, and there are typically between five and twenty vectors involved in the iteration
process. Both matrices and vectors thus have to be distributed for memory and execution-time
efficiency.

Matrices can be distributed in a way that they are read only locally during the solution of
one linear system. Distributed vectors are accessed remotely and updated in each iteration.
We declare them as distributed Fortran arrays, so that remote accesses to vector elements are
supported by Oxygen’s global name space.

All vectors share the same dynamic distribution in all fifty subroutines. A distribution
vector specifying ownership of vector elements (i.e., which element is allocated on which PE)
is defined in data distribution directives when vectors are declared. The distribution vector is
initialized by the controller/PE interface when the solver starts executing.

The same dynamic partitioning and mapping is also used for simple loops. This makes
efficient parallelization of many Fortran routines defining vector-vector operations rather
simple, as no linear operation on vectors requires communication. Since Oxygen does not
enforce global synchronization at the end ofloops, PEs compute fully asynchronously on these
operations. Only a few such routines (for instance, the computation of a dot product) require
global reduction operations.

The indirect addressing within sparse matrix-vector products constitutes the major chal-
lenge. The same operations that require vector-gather routines on a vector computer (see
3.2.1) need remote memory fetching on a DMPP. Oxygen handles these transparently by
generating appropriate messages for accesses to the global name space. Since the indirect
addresses are not known at compile-time, the communication patterns can only be generated
at run-time. As the same patterns are required many times (there are one or two matrix-vector
products per iteration, and several tens of iterations to solve a linear system), the executor
can reuse communication patterns, and the time-consuming symbol handler is performed only
once.

Vector-computer scatter routines writing to an indexed array correspond to remote updates
on a DMPP. These operations can be parallelized efficiently only because Oxygen does not
restrict computation to the owner of a data item. The generation of remote update messages
is just as transparent and efficient as remote fetching.



248 CLAUDE POMMERELL AND ROLAND RHL

FIG. 2. Two-dimensional geometric mapping ofa refined discretizationgrid to a 4 x 4processor interconnection
network. All elements (triangles) whose corners are assigned to different processor are drawn in black. White lines
crossing black strips correspond to graph edges that require communication; local edges are drawn as black lines.

4.2. Mapping for locality. Any simple-minded assignment of vector entries to proces-
sors would degrade performance disastrously, as almost all indirectly addressed entries would
result in remote accesses, and every processor would have to communicate with every other
processor. The mappingproblem for finite element meshes consists ofpartitioning vectors (and
matrix rows and columns) in a way that each processor owns an approximately equal number
of entries (for load balancing) and a maximum number of accesses are local. Moreover, a
minimum number of other processors should be accessed for remote fetching or updating, and
these processors should be at minimum distance in the communication network (thus reducing
transfer latency and network contention). The development of heuristics for this (NP-hard)
mapping problem is currently a field of active research, and beyond the scope of a parallelizing
compiler, but the possibility of defining a dynamic mapping using a distribution list allows us
to add problem-specific mapping heuristics to our code.

We selected a two-dimensional geometric mapping heuristic that we had good experience
with in an earlier related project [28] and that is well adjusted to the two-dimensional network
topologies ofboth the Paragon and the AP1000. The heuristic proceeds as follows on n vertices
mapped to a Pv x Ph torus or mesh of processors: First, vertices are sorted according to their
x-coordinate in the physical discretization grid. This sorted list of vertices is partitioned by
(pv 1) vertical cut lines into po sets of n/po vertices each, and each of these sets is assigned
to one column of the mesh of processors. Then each set is sorted again according to the y-
coordinate and partitioned by (Ph 1) horizontal cut lines into Ph sets, and each ofthese sets is
assigned to one processor of this column. This algorithm has a time complexity of O (n log n)
and can be used in the sequential part on the controller, as it does not dominate over other
algorithms in the construction of the colored jagged diagonal data structure. Figure 2 shows
how the discretization grid of the smallest of our test cases was mapped on 16 processors
arranged in a 4 x 4 mesh.

Recently, new mapping heuristics such as recursive spectral bisection [35] have been
shown to reduce the total number of edges that are cut by processor boundaries. We re-
frain from such techniques because the eigenvalue computations required in these algorithms
would clearly dominate over all other operations in the construction of the PILS data struc-
tures. The normal procedure would be to move these computations off line to a separate
mapping program whose result is read from the file before starting the parallel program.
This would conflict too much with our goal to parallelize PILS transparently from its client
application.
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4.3. Coloring. Incomplete factorization preconditioners rely on the solution of sparse
triangular systems of linear equations. In the case of fast preconditioners with no fill (like ILU
or its faster variant D-ILU), the sparsity structure of the triangular matrices for the precondi-
tioner coincides with the corresponding triangle of the system matrix.

The solution of triangular systems imposes higher sequentiality than matrix-vector mul-
tiplication. In a lower triangular system Lx b, for instance, the th entry of the solution
vector xi depends on the calculation of the previous entries, xj with j < i. Apparently, this
would impose a synchronization point (with data exchange through communication) for each
row. However, sparsity in L reduces the dependencies: xi depends only On xj if ij is nonzero.
Coloring is a technique to exploit this sparsity in order to construct higher parallelism in
triangular system solvers.

Coloring is already used in PILS to vectorize triangular system solvers (see 3.2.1) and is
integrated into the colored jagged diagonal data structure. The solution of a triangular system
with c colors now results in (c 1) self-synchronizing data exchanges, adding up to (2c 2)
communication points for a D-ILU preconditioned matrix-vector product. The typical number
of colors is around 7 for our two-dimensional grids and around 12 for our three-dimensional
grids.

Even if perfect load balance in vector-vector operations and unpreconditioned matrix-
vector multiplication is achieved by mapping an equal number of vector entries to each pro-
cessor, the coloring introduces some imbalance within the processing of each single color.
The balanced greedy coloring heuristic [28] achieves an equal distribution of each color, at
the expense of increasing the total number of colors. As this type of coloring would require
certain modifications in the code that handles the jagged diagonal sparse matrix data structure,
we refrained from this additional tuning.

4.4. The controller/PE interface. The controller/PE interface replaces Fortran subrou-
tine calls in the C++ PILS source code with a remote procedure call (RPC) interface. It first
passes all parameters required for the parallel execution of the subroutine to the PEs, then
initiates the start of the corresponding compiler-parallelized routine on the PEs, and finally,
after the parallelized routine’s execution, the interface collects results necessary on the con-
troller for further execution of the solver. Parameters to be passed include scalars, vectors,
and sparse matrices.

For best performance, matrix assembly should be performed in parallel on the PEs. How-
ever, as most client applications assemble their matrices outside of PILS, we provide a mech-
anism to load the matrix from the controller to the PEs, so that the entire client application can
run on the controller without necessarily having to be parallelized as well. Correct parallel
execution does not require the matrix to be loaded for each parallel matrix-vector operation.
As already mentioned above, the matrix is only read accessed and can therefore be loaded
only once for each linear system.

Controller-to-PE distribution of vectors jeopardizes efficient parallel execution of any
vector operation, if read access to a vector during such operation requires the controller to
distribute the vector to the PEs. Iterative solvers spend most of their time updating vectors.
Because the PILS source was optimized such that the most time-consuming code was imple-
mented in Fortran, most vector accesses take place in the Fortran code; i.e., the controller
never overwrites a vector during the iterative solver’s execution. Most dependencies from the
Fortran subroutines to the controlling C++ code are due to data items involved in control flow
decisions, such as the computation of a convergence criterion.

The above observation allows for heavy optimization of the controller-to-PE commu-
nication protocol: if indeed a vector is only modified by the Fortran subroutines, it must
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be distributed to the PEs only once; any future subroutine accessing the same vector will
operate on the same data kept resident in the PE memory after the subroutines finish execu-
tion.

However, without major changes in the controlling PILS C-t-+ source, it is difficult to
decide statically whether any valid vector copy exists on the PEs or whether such a vector
should be (re)initialized by the controller/PE interface. Our measurements in 5 show that
such a decision can be made efficiently at run-time by the controller/PE interface. As part
of that interface we have implemented on the PEs a controller/PE cache, which dynamically
allocates and downloads from the controller copies of vectors accessed in parallelized Fortran
subroutines. Whenever the cache on the PEs finds a valid memory-resident copy of a vector
it does not download the vector from the controller.

For result vectors and scalars that are used in the controller code after they are modified by
a parallelized Fortran subroutine, the PEs are forced to invalidate the corresponding entry in
the controller/PE cache. Such a decision is done statically as part of the controller/PE interface
code.

On some platforms controller/PE communications are rather expensive. On the AP1000,
for instance, PEs are attached to the host via a VME interface, which is much slower than
interprocessor communication channels.

The following two strategies were chosen to further optimize the interface. First, only
few parallelized Fortran subroutines actually return data to the controller. These are mostly
vector dot products used in the iterative algorithm to compute scalars and control termination.
Therefore, the execution ofmost subroutines can bepipelined, which reduces PE idle times due
to controller-to-PE latency and PE idle times due to interprocessor communication. Oxygen
does not introduce global synchronizations at the end of most parallel loops. Second, the
controller/PE cache is also implemented on the controller to reduce protocol overhead between
controller and PEs. The controller itself computes which data need to be distributed; the PEs
take in parallel the same decision about which data need to be received from the controller.

4.5. Visualization. To summarize our porting strategy, we visualize in Fig. 3 different
execution phases of a PILS application running in parallel on a 2 x 4 Paragon system. For the
visualization, PILS was instrumented to drive the performance analysis tool ParaGraph 15],
which is part of the Paragon programming environment. The following different phases of
execution are shown together in a "Task Gantt Chart" 12]: sequential execution ofC++ code
on PE 0, parallel (and asynchronous) execution of Fortran routines, and the run-time analysis
introduced by Oxygen during the first PILS iteration.

The symbol-handler overhead only appears in the first iteration. Later iterations save
execution time by reusing communication patterns. Further overhead in the first iteration on
PE 0 is due to sequential operations like preconditioner setup. The asynchronous overlapping
ofcomputation in different processors is clearly visible during colored preconditioned matrix-
vector multiplications using gather and scatter remote accesses.

5. Experimental results.

5.1. Test environment. Our benchmark suite consists of six linear systems extracted
from real semiconductor device simulations. These problems are selected to display the
variety of problem sizes and complexities within typical large device simulations. Most
of our problems are based on three-dimensional discretizations, as two-dimensional device
simulation problems are often small enough to be solved more efficiently with sparse direct
solvers.

Standard device simulation solves the drift-diffusion equations, a set ofthree PDEs in three
variables. Depending on the operating mode, the discretized equations are solved separately
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FIG. 3. The parallel execution ofPILS is visualized using Task Gantt charts ofParaGraph. Different execution
phases ofPILS running on a 2 x 4 Paragon are shown in different shades ofgray. We distinguish controller execution,
Oxygen symbol-handler overhead, and actual parallel computation ofdifferent PILS library routines. The top Gantt
chart depicts the first and most of the second Bi-CGSTAB iteration; the bottom chart zooms into the solution of a
sparse triangular system within a preconditioned matrix-vector multiplication.
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Grid dimension
# PDEs

# unknowns
# nonzeros

Matrix density

TABLE 2
Problem characteristics.

2674 15564 20412 25642 46692 76926

18614[143710[ 263920 234436 986042 1618414

7..0 9.2 13.0 9.1 2.1 21.0

("Gummel iteration"), involving one unknown per discretization grid point, or all three PDEs
are assembled in a coupled system with three unknowns per grid point. Grid dimensionality
and number of PDEs influence the density of the sparse matrix and the connectivity for
partitionings as those used in the mapping. Table 2 summarizes the characteristics of our test
problems. Matrix density is conveniently expressed as the number of nonzero entries per row.
Unless otherwise noted, all benchmarks are done using Bi-CGSTAB as the iterative solution
method, preconditioned by a D-ILU preconditioner in split position.

5.2. Parallel reduction operations and convergence. Iterative solvers are sensitive to
rounding errors in the computation of vector dot products. Any parallel implementation of
such a reduction operation must modify the summation order with respect to the sequential op-
eration. Since floating-point addition is not associative, even a slight change in the summation
order induces a different rounding of the result. In an iterative solver, these rounding variations
propagate up to variations in the total number of iterations required to solve a given problem
(for very sensitive ill-conditioned problems, such variations may even result in divergence or
algorithmic breakdown [27]).

Vector dot products are executed in parallel on a DMPP by summing up globally local dot
products on the local partial vectors. Oxygen substitutes tuned library calls for these global
summations. Unfortunately, the summation order in these manufacturer-provided library rou-
tines typically depends on the number of processors of the underlying machine configuration.

In Table 3 we have collected the number of iterations required for both serial and par-
allel solver runs. Due to the different sequences of summations when computing vector dot
products, the required number of iterations to achieve a given precision (here 10-10) with the
parallelized solver may be both smaller or larger than for the serial program run. In order
to avoid misinterpretations due to this effect, whenever the measurements presented in this
section should demonstrate the efficiency of our parallelization strategy, we refer to only one
iteration of the iterative solver. Total execution times are shown only when different solution
methods are compared.

5.3. Execution time and speedups per iteration. The total execution time of PILS can
roughly be decomposed into three components: (1) execution time of the compute intensive
Fortran code, (2) distribution of the matrix from controller to PEs, and (3) overhead of the
controller/PE RPC interface. The first component is depicted in Table 4; measurements of the
second and third components are summarized in Table 5.

Table 4 summarizes execution times and speedups measured for one iteration running
on one Paragon and one AP1000 processor, respectively, on both a SparcStation 1+ and a
SparcStation 2, and running in parallel on Paragon and AP1000 systems of different sizes.
The parallel execution times refer to the Fortran code only; i.e., no controller/PE communi-
cation overhead is included. On the one hand, parallel performance depends on the structure
of the problem: larger systems like DR15C achieve high speedups, because the relative impor-
tance of the communication overhead decreases. On the other hand, different communication
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T,SLE 3
Number of iterations required to achieve precision 10-1

LDDrt DR15E IIPOL3D20KI-I BP25E DR15C BP25C

Serial execution
56. 71 80 30 65 102

Parallel execution
Paragon 4 4 59 71 80 30 65 90
Paragon 4 8 56 71 77 30 65 90
Paragon 8 8 58 71 81 30 65 94
AP1000 4 4 55 71 69 30 65 n.a.
AP1000 4 8 58 71 82 30 65 n.a.
AP1000 8 8 54 71 80 30 65 89
AP1000 8 16 54 71 80 30 65 96

TAL 4
Execution times per iteration in seconds and speedup ofthe PILS Fortran code. Table entries denoted with n.a.

(not available) could not be filled due to the memory requirements of the largest problems. Numbers in italics have
been extrapolated using SparcStation measurements.

LDDH DR15E "IPOL3D20KI BP25E Dg15C BP25C

Serial execution times (s)
Paragon 0.066 0.37 0.60 0.60 2.11 3.43
AP1000 0.20 1.46 2.4 2.5 8.6 14.2

SparcStation 1+ 0.16 1.15 1.89 1.98 6.72 n.a.
SparcStation 2 0.09 0.69 1.13 1.15 4.03 6.68

Parallel execution times (s)
Paragon 4 4 0.041 0.105 0.266 0.249 0.616 1.632
Paragon 4 8 0.043 0.079 0.177 0.159 0.368 1.093
Paragon 8 8 0.040 0.076 0.133 0.138 0.285 0.579
AP1000 4 4 0.035 0.188 0.326 0.474 1.059 n.a.
AP1000 4 8 0.025 0.104 0.182 0.295 0.571 n.a.
AP1000 8 8 0.019 0.067 0.109 0.176 0.346 0.750
AP1000 8 16 0.017 0.045 0.072 0.127 0.213 0.500

Paragon 4 4 1.6
Paragon 4 x 8 1.6
Paragon 8 x 8 1.7
AP1000 4 x 4 5.7
AP1000 4 x 8 8.0
AP1000 8 x 8 10.5
AP1000 8 x 16 11.7

Speedup
3.5 2.3 2.4 3.4 2.1
4.7 3.4 3.8 5.7 3.1
4.9 4.5 4.4 7.4 5.9
7.8 7.4 5.3 8.1 n.a.
14.0 13.2 8.5 15.1 n.a.
21.8 22.0 14.2 24.9 18.9
32.4 33.3 19.7 40.4 28.4

performance of the underlying DMPP strongly influences speedup measurements. As also
shown in Fig. 1 and Table 1, for short messages, the ratio of communication to computation
performance is approximately eight times smaller on the AP1000 than on the Paragon. It is
therefore not surprising that the highest speedups could be measured on the AP1000. The
lower message latency also lets the AP1000 outperform a Paragon with the same number of
processors on moderately sized problems.

The major reason for the measured differences on the Paragon and the AP1000 is the
different communication performance of the two systems. In order to quantify how important
low communication startup latencies are for the efficient distributed-memory parallel execution
of PILS, we have depicted in Fig. 4 the total number of PE-to-PE messages communicated
in an 8 8 AP1000 as a function of the message size for the complete solution of each
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TABLE 5
Average execution timeper iteration (measured on the controller) and total overheadfor the matrix distribution;

the distribution overhead is given both as time (in seconds) and as controller/PE bandwidth (in Mbytes/s).

LDDH DR15E BIPOL3D20KH BP25E OR15C BP25C

Controller execution time (s)
Paragon 4 x 4 0.058 0.124 0.288 0.264 0.644 1.672
Paragon 4 x 8 0.059 0.098 0.198 0.175 0.398 1.115
Paragon 8 x 8 0.056 0.095 0.155 0.155 0.316 0.604
AP1000 4 x 4 0.103 0.258 0.402 0.523 1.160 n.a.
AP1000 4 x 8 0.100 0.174 0.259 0.349 0.672 n.a.
AP1000 8 x 8 0.094 0.139 0.187 0.237 0.442 0.844
AP1000 8 x 16 0.094 0.117 0.151 0.187 0.310 0.589

Time for matrix distribution (s)
Paragon8 x 8 0.162 0.690 1.138
AP100088 0"557 3"347 5.937

0.79515.15515.839
4.270121.957]28.903

Controller/PE bandwidth for matrix distribution (Mbytes/s)
Paragn8x8 0.393 0.742
AP10008 x 8 0"1131 0.152

0.856
0.164

1.051 0.79 1.056

0.19510.17110.213

Accumulated nr. of sends
200k

150k

100k

50k

Iddh
dr15e
bipol3D2Okh
bp25e

bp25css

0 8 16 24 32 40 48 56 64 72 80 88
Message size in bytes

FIG. 4. Distribution ofmessage sizesfor parallel execution on an 8 x 8 AP1000 system.

of the six problems. From this figure it is obvious that very often only small messages
are communicated. Since the compiler is able to pack messages optimally at run-time, this
distribution only depends on the partitioning strategy and the resulting data dependencies.

5.4. Introducing global synchronizations. Most ofthe compilation systems mentioned
in 33 generate collective communication statements at the end of each parallel loop. There-
fore at any such point an implicit synchronization of all PEs takes place. When an Oxygen-
generated parallel program is executed, only PEs that need to exchange data implicitly syn-
chronize by blocking-receive statements.

To demonstrate what impact global synchronizations have on the overall performance in
Table 6 we compare PE execution times per iteration on one hand running an example problem
(DR15C) without synchronizations on several Paragon configurations, and on the other hand
running the same code with an additional synchronization at the end of each parallel loop.
Performance degrades quickly with increasing number ofprocessors. This is partially because
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TABLE 6
PE execution times per. iteration (in seconds) without and with global synchronizations introduced after every

parallel Fortran loop ofthe program running on several Paragon configurations.

Paragon configuration Without synchronization With synchronization

2x2
2x4
4x4
4x8
8x8

1.799
1.022
0.616
0.368
0.285

2.269
1.765
1.630
1.626
1.830

TABLE 7
Execution time (in seconds) ofvarious variants ofmethodsfor one particular problem on 64 processors ofan

lntel Paragon and a Fujitsu AP1000. The numbers in parentheses indicate speedup over a single processor. This
problem is too large to fit on a single AP1000 processor, so we extrapolated the AP1000 speedupfrom SparcStation
measurements.

Method Preconditioner Iterations Time(Speedup)
Paragon AP1000

Reference
Bi-CGSTAB split D-ILU 65 18.5 (7.4)[23.1 (24.9)

Other methods
BiCG
CGS

GMRES(10)
GMRES(oo)

split D-ILU
split D-ILU
split D-ILU
split D-ILU

130 40.4 (6.4)
78 21.6 (7.4)
388 67.5 (7.6)
89 37.9 (7.0)

45.9 (25.6)
27.2 (26.2)
87.4 (25.4)
41.6 (31.6)

Other preconditioners
Bi-CGSTAB right D-ILU
Bi-CGSTAB split ILU
Bi-CGSTAB split SSOR

67
61
69

28.7 (6.6)
33.1 (6.9)
19.5 (7.3)

33.4 (23.5)
38.0 (23.8)
24.6 (23.6)

Nested iterative solvers
GCR(o) GMRES D-ILU 17 35.7 (7.0) 43.0 (25.3)
GCR(oo) Bi-CGSTAB D-ILU 11 35.1 (6.5) 41.4 (23.3)

synchronizations per se cost a lot of time (e.g., 600/xs on 32 processors), but also because
asynchronously operating PEs can overlap different computation phases (cf. Fig. 3).

5.5. Variants of iterative methods. Table 7 details some other variants of iterative
solvers in PILS. For all these experiments, the linear system DR15C was solved to a relative
residual norm of 10-1. We compare execution times on 64 processors of an Intel Paragon
and a Fujitsu AP1000.

Our experience on other machines has shown that Bi-CGSTAB [38], split preconditioned
with a D-ILU factorization, is the fastest iterative method on most of the linear systems
occurring in semiconductor device simulation. It appears to be the fastest solver in our DMPP
version as well; this is why we chose split D-ILU preconditioned Bi-CGSTAB for all other
measurements in this article, and as a reference for the following comparison ofother methods.
The present section just highlights a few aspects of the methods that appear to be relevant for
the parallelization; the interested reader is referred to [27] for further details.

BiCG 11 requires transposed matrix-vector products, which is often an impediment in a
parallel implementation. The good speedup here is due to the partitioning by matchings in the
jagged diagonal data structure ofPILS, and to remote updates in the code generated by Oxygen.
Conjugate Gradients Squared (CGS) [36] has a very similar structure to Bi-CGSTAB, which
explains the similarity in the parallelization results. GMRES(cx) [34] requires a minimum
number of matrix-vector multiplications, at the expense of memory and other operations. In
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particular, GMRES requires many dot products of vectors. These global reduction opera-
tions are a well-known bottleneck in parallel implementations. High message latencies make
this bottleneck more visible on the Paragon. The dot-product bottleneck can be reduced by
grouping more global reduction operations together or by restarting the method every few
iterations (10 in our experiment), but most of these kinds of variants of GMRES appear to lose
some numerical stability and convergence speed, and this can be devastating on ill-conditioned
problems.

The most popular preconditioners perform an approximate factorization of the original
System matrix A into a product of two sparse triangular matrices A LU. If L 4- U has the
same sparsity structure as A, a preconditioned matrix-vector product requires twice as many
computations as an unpreconditioned product. Our favorite preconditioner is D-ILU, a variant
of incomplete factorizations in which all off-diagonal entries of the triangular factors coincide
(modulo a diagonal multiplier) with the off-diagonal nonzeros of the original matrix. When
D-ILU is used in split position (that is, every preconditioned matrix-vector product applies
the operator L-1AU-1 to a vector), Eisenstat’s trick [8] saves almost half of the computations
for a preconditioned matrix-vector product. The savings are only one quarter in right or left
preconditioning (using the operators AU-1L-1 or U-L- A, respectively). Classical ILU
preconditioning [25], [9] modifies all nonzero entries on unstructured matrices as ours, so
that Eisenstat’s savings cannot be refunded. The SSOR preconditioner has the same general
structure as D-ILU, and thus achieves the same parallelization effect.

Note that the most powerful preconditioner in PILS, an approximate factorization with a
numerical threshold, is too finely grained for an efficient parallelization on today’s DMPPs.
In some large device simulations, a few among several hundreds of linear systems are so ill
conditioned that they require this more robust preconditioner. This preconditioner runs mostly
in scalar mode on vector computers. In our programming paradigm, it can run sequentially
on the controller. A fully distributed parallelization would be severely restricted in this case.

Nested iterative solvers are another altemative for very ill conditioned linear systems that
resist standard preconditioning. A preconditioned iterative method (Bi-CGSTAB or GMRES
in our examples) is used to precondition another iterative method (Generalized Conjugate
Residuals (GCR) in the examples). The inner method is again preconditioned by split D-ILU.
The first of the nested solvers listed in Table 7 is equivalent to GMRESR(10) [39]; it uses ten
inner iterations for each outer iteration. The inner method of our second nested solver iterates
only to a relative tolerance of 10-2 or terminates if this inner tolerance cannot be achieved
within ten iterations.

(i. Conclusions. With the results of 5, and at least for packages similar to PILS, i.e.,
applications based on finite elements and unstructured sparse matrix computations, we can
now answer the three main questions asked at the beginning of this project:

How difficult is the migration of existing vector supercomputer application codes to
DMPPs?
How much can compilers ease this migration?
How should applications be designed to keep portability among vector and parallel
architectures?

In our case, the migration was possible due to several features of both the application code
and the supporting parallelizing compiler.

The clear separation of Fortran code for numerically intensive computing and C4-4-
code for the more complex control-flow decisions was a key feature of PILS allowing us
to successfully use the parallelization strategy outlined in 4.4. The fact that two different
languages are used to implement both parts is not important; what allowed us to reduce host/PE
traffic significantly was the relatively few data dependencies between the two code parts. PILS
has been used in several applications, including some semiconductor device simulators. In
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these applications it was used as a library; i.e., the surrounding application used PILS library
calls to solve a linear system of equations stored in memory. The main lesson for the user
of similar packages (already optimized for vector supercomputers) is to access main data
structures if possible exclusively using library calls provided by the underlying package. The
less data traffic exists between the surrounding application and the library, the easier our
parallelization strategy could be applied. On the other hand, the package developer should
include a set of library routines that cover all reasonable uses of the data, so that uncontrolled
direct access to the main data structures can be avoided.

Several features of Oxygen are crucial for the efficient parallelization of PILS: (1) general
global name space support at run-time, (2) support of remote fetches and remote updates of
distributed data (i.e., no "owner computes"), (3) replication of sequential parts of the program
execution, and (4) avoidance of global synchronizations by synchronizing processors only
locally through the use of local communications as required by data exchanges. None of the
other compilation systems listed in 3.3 supports all four of these features.

The general opinion ofthe DMPP operating system research and development community
seems to favor a hostless programming paradigm. We agree that in contrast to host-based
machines like the AP1000, on machines like the Paragon, this paradigm offers more elegance
and potential to overcome the host I/O bottleneck. However, unless full I/O support is provided
on at least some selected PEs of the system (including a large physical and even larger virtual
memory), a strategy as outlined in 4.4 for the parallelization of PILS could not be applied to
such a hostless system. On the Paragon, which supports virtual memory on all PEs, the lack
of physical memory on the controlling PE accounts for longer execution times when solving
large problems.

In addition, as we have already done in [2], [3], we must again advocate balanced DMPP
architectures. Applications like PILS can only be parallelized efficiently on DMPPs if the un-
derlying architecture supports performing computation and communication engines equally
well. For host-based DMPPs, the host can be incorporated into the overall parallel applica-
tion, and thus host communication speed is equally essential. The communication time for
message sizes required by a given application should be of the same order of magnitude as
the time to consume the message contents in computations. As shown in Fig. 4, the compiler
generated parallel code with many small-message exchanges between processors (due to ap-
plication requirements, not due to compiler restrictions). Therefore, the efficient execution
of PILS depends strongly on the communication startup latency featured by the underlying
DMPP architecture. A DMPP’s communication latency, its communication bandwidth, .and
its local computation performance should be balanced to support efficient parallel execution
of applications similar to PILS.
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A SIMPLE PARALLEL ALGORITHM FOR POLYNOMIAL EVALUATION*

LEI Lit, JIE HUt, AND TADAO NAKAMURA

Abstract. In this paper, we show a simple parallel algorithm for polynomial evaluation. By this method, we
only need 2N/p + log p steps on p processors (where p < O(N1/2)) to evaluate a polynomial of degree N on an
SIMD computer or an MIMD computer, which is a decrease of log p steps as compared with the p-order Homer
method [S. Lakshmivarahan and S. K. Dhall, Analysis and Design ofParallel Algorithms, McGraw-Hill, New York,
1990], and also a decrease of (2 log2 p)l/2 steps as compared with some other algorithms on an MIMD computer
[J. I. Munro and M. Paterson, J. Comput. System Sci., 7 (1973), pp. 189-198, K. Maruyama, IEEE Trans. Comput.,
C-22 (1973), pp. 2-5]. The new algorithm is simple in structure and easy to implement.

Key words, parallel algorithm, polynomial evaluation
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1. Introduction. As a basic subroutine, the polynomial evaluation of degree N is often
used in many parallel iterative computations. For an SIMD computer, Estrin’s algorithm
[2] needs T 2(loga N + 1) steps when using p IN/2] processors; here Ix] is an integer
satisfying the inequality x < Ix] < x + 1. And the p-order Horner method needs T 2N/p+
2 loga p steps when using p processors 1 ]. For anMIMD computer, the number of steps can be
further decreased but the algorithms become extremely complex to implement. For example,
Munro and Paterson [3] and Maruyama [4] proved that p N, T < loga N + (2 loga N) 1/a +
O(1), and when p N1/:z, T < 2Nip + loga p + (2 loga p)l/a + O(1). Muraoka applied
the method of folding and realized T < 1.44 loga N + O(1) when using N processors 1].
Even when there is an infinite number of processors, Kosaraju [5] derived a lower bound for
T(N) by giving the inequality T(N) > loga N + (2log2 N) 1/a (loga N)/4 C, where the
constant C > 0.

In this paper, we present a simple parallel algorithm for evaluating a polynomial ofdegree
N on an SIMD computer or an MIMD computer. This algorithm needs T < 2N/p -t- loga p
steps when using p <_ O(N1/a) processors.

2. Algorithm. Let f(x) be a polynomial of degree N,

()
N

f(x Z aiXi
i=0

and N + 1 KL. Suppose the number of processors p L + 1. First we divide the N + 1
items of f(x) into L groups; i.e.,

L-1

f (X) Z bix K,
i=0

where

(2) bi aiK + aiK+lX + + aiK+K-1xK-1 for 0, L 1.

Therefore the new algorithm can be obtained as follows"
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(a) First, compute b0, bl bL-1 in parallel using L processors by the vector Homer
method. We know 2(K 1) steps are needed.

(b) Next, serially compute x I’:, x2r" x (L-1)I.
Now, let us show how to compute each xil’: by the fast power method. Suppose 2 <

K < 2r+l; then K can be expressed in binary form:

K do -t- dl .2 +d2.22 +.’. q-dr "2r,

where d/ (0, 1), 0, 1 r 1, dr 1. Then xt can be written as follows:

(3) X
K xdO(xdl(xd2... (xdr-l(xdr)2)2...)2)2;

therefore x *c can be computed serially in 2r(< 2[log2 K]) steps using one processor. Further-
more using L 2 multiplications, we can get

(4) X
iK for/ 2,3 L- 1.

(c) And last, compute the inner product

(5) bo + blXK + b2x2K at-... -+- bL-1x(L-1)K

in parallel using L processors. We know that at most 1 + [log2 L] steps are needed.

3. The analysis of time complexity. Now let us turn to analyze the number of steps of
the new algorithm for an MIMD computer. Note that expressions (2)-(4) can be computed in
the following parallel way. We compute (2) by using L processors, and compute (3) and (4)
by using one processor in parallel. Finally we can compute (5) by using L processors. Thus,
the whole process can be computed in parallel in

T<max(2K-2,21og2K+L-2)+2+log2L
2K +log2L

/ L + log2 K + log2(N + 1)

when L < 2K 2 log2 K,

when L > 2K 2 log2 K

steps. Let

Yl=f(L)=2K+log2L=2(N+I)/L+log2L (whereL <2K-21og2K);

then the derived function of Y1 is

Y -2(N + 1)/L2 -+- 1/ln2,1/L
1/L (log2 e 2(N + 1)/L) < 0.

Thus function Y1 is monotone decreasing. Similarly, let

Y2 g(L) L + log2 K + log2(N + 1)

=L-log2L+21og2(N+l) (whereL>2K-21og2K);

then the derived function of Y2 is

Y 1- log2e, 1/L > 0,

and so Y2 is monotone increasing. Therefore the number of steps takes the minimum T
2K + log2 L when L 2K 2 log2 K. Now we can get the following conclusion.
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THEOREM 1. For an MIMD computer, a polynomial of degree N(where N + KL)
can be computed in T 2K + log2 L steps at most when using L + 1 processors, where
L < 2K 2 log2 K. And when L 2K 2 log2 K, T takes the minimum.

For an SIMD computer, it is easy to use our method. When Po, pl PL-I, then do
addition. We can let PL do addition by plus zero. So, we obtain an SIMD algorithm for
polynomial evaluation with T < 2K + log2 L, L < K 2 log2 K. Therefore, we can get the
following:

For an SIMD computer, T < 2Nip + log2 p, p < O(N/Z).
For an MIMD computer, T < 2Nip + log p, p < O(N/Z).

4. Conclusion. A simple parallel algorithm for evaluating a polynomial of degree N is
presented in this paper. This method needs 2Nip + log p parallel steps on p < O(N1/2)
processors and has decreased by log2 p steps and (2 log2 p)/2 steps as compared with the
p-order Homer method 1] and some MIMD methods [3], [4], respectively. The new method
is also simple on structure and easy to implement.
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A BLOCK QMR METHOD FOR COMPUTING MULTIPLE SIMULTANEOUS
SOLUTIONS TO COMPLEX SYMMETRIC SYSTEMS*

WILLIAM E. BOYSEt AND ANDREW A. SEIDLt

Abstract. "le solution of complex symmetric indefinite systems of equations where multiple solutions are
required is considered. The quasi-minimum residual (QMR) method, ideally suited for these matrices, is generalized
using the block Lanczos algorithm to solve multiple solutions simultaneously. This modification alone is shown,
through numerical examples involving large sparse matrices from finite element discretization of Maxwell’s equa-
tions, to accelerate the convergence by a factor almost as great as the number of simultaneous solutions. A natural
convergence criterion for this method is presented that is shown to be as effective as, and easier to compute than, the
usual equation residual. Finally, a numerical comparison of the classical incomplete Cholesky and a variant of the
ILU(T) preconditioners is given showing superior performance by the latter.

Key words. QMR, complex symmetric matrices, block Lanczos algorithm, preconditioner, Maxwell’s equations

AMS subject classifications. 65F10, 65N22

1. Introduction. Electromagnetic scattering applications require the solution of large
matrix equations for many right-hand side vectors. Typically these vectors correspond to
the numerous angles for which the simulated radar return is desired, i.e., monostatic radar
cross section (RCS). When using a boundary integral equation method (aka method of mo-
ments [12]) the system matrix is general, complex, and dense. For these systems, an LU
factorization is performed and the multiple solutions are generated by forward reduction and
back substitution. However, when finite element methods are used to model scattering from
large three-dimensional objects [1], [7], [6] they produce matrices much too large for direct
factorization.

Using the finite element method to discretize Maxwell’s equations in differential form
necessitates the solution of large sparse complex symmetric indefinite matrices for many right-
hand side vectors using iterative methods. This is by far the dominant computational task in
all such scattering codes.

Recently an iterative solver ofparticular merit was developed which specifically addresses
the complex symmetric indefinite nature of these matrices [8]. The quasi-minimum residual
(QMR) method is theoretically superior to the biconjugate gradient (BCG) method for these
problems and exhibits a nearly monotonically decreasing convergence behavior.

In this paper, we generalize the QMR algorithm to solve multiple right-hand side vectors
simultaneously as was done for the conjugate gradient (CG) method in [14], [15]. This
involves utilization of the block rather than the point Lanczos algorithm and of course the
requisite matrix rather than scalar arithmetic. For the application considered, this modification
alone results in an acceleration of convergence by a factor almost as great as the number of
simultaneous solutions [4]. A natural convergence criterion for this method is also presented
and is shown to be equal to the usual equation residual in effectiveness.

Further convergence acceleration is achieved by using an appropriate preconditioner. Both
the "classical" incomplete Cholesky preconditioner and a variant of the ILU(T) [17], [18], [3]
preconditioner are implemented and evaluated on a scattering problem.

The outline of this paper is as follows. In 2, we present the block version of the QMR
algorithm for complex symmetric matrices and the natural convergence criterion. Arguments
are given for the potential speedup of convergence by using the block algorithm. In 3,
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numerical examples are shown illustrating the effectiveness ofthe natural convergence criterion
and the effects of preconditioning and blocksize on the convergence rate as applied to large
finite element problems. Finally, in 4, we draw some conclusions and comment on parallel
applications.

2. Block QMR method. The QMR method, based on the Lanczos algorithm, has a natu-
ral generalization to the simultaneous solution ofmultiple right-hand sides in the block Lanczos
algorithm. Converting the QMR algorithm to block form requires generalizing vectors and
scalars into matrices and deriving a block QR decomposition used in the solution process. The
noncommutative nature of matrices requires that all the algebra used in the derivation respect
this restriction. The algorithm described and notation used follow [8] with modifications as
needed.

We will call the symmetric indefinite bilinear form

(1) (x, y)Q XkYk,
k

where x and y are complex vectors, the "quasi" inner product. It differs from the usual
inner product in that neither constituent is conjugated. With respect to this form, a complex
symmetric matrix is "quasi-self-adjoint," i.e.,

(2) (Ax, y) O (x, Ay) Q.

This permits the formal generalization of techniques developed for real sYmmetric matrices to
complex symmetric matrices, as in the derivation ofthe BCG algorithm from the CG algorithm.
In the remainder of the paper, the prefix of quasi will refer to an operation with respect to the
bilinear form in (1).

The block QMR algorithm used addresses the solution of a system of equations involving
a complex symmetric indefinite matrix

(3) Ax b,

where A is an n-by-n matrix, and x and b are n-by-m matrices. In this case, the m columns
of b are m right-hand side vectors and the m columns of x are their corresponding solution
vectors.

2.1. Symmetric block Lanczos recursion. Let x0 be an initial guess at the solution,
which may be zero. The symmetric block Lanczos algorithm is then

Initialization:

(4) r0 b-Axo
(5) v0 0

(6) 1 r0

For k 1, 2, 3,

(7) Okk 3k
(8) k+l Ark Vk-li

T(9) ot, l)k )k+
(10) k+l k+l l)kOlk
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where Ctk and k are m-by-m matrices, vg and f)k are n-by-m matrices, and the superscript T
denotes the transpose. The operation described by (7) is the quasi-QR decomposition of k,
where g. is written as a quasi-unitary matrix vg times an upper triangular matrix/k. This
decomposition is computed using the modified Gram-Schmidt process using the quasi inner
product. The Lanczos algorithm is due to Pissanetzky [16] and differs from [8] in that the
computation of ag in (9) is performed after the partial orthogonalization of Ark in (8).

The matrix Vg is defined to be the aggregate of the columns of the individual vj’s for
j=l k,

(11) [1)1 1)2 1)k ],
and the k + 1-by-k block tridiagonal matrix g is defined by

o.
(12) Tg

k
k+l

0/k-1

The Lanczos algorithm thus provides the block tridiagonal representation of the matrix
A in terms of

(13) A Vk Vk+l k,

where the columns of Vg are a quasi-orthonormal basis for the Krylov subspace generated by
all the right-hand side vectors

(14) Kg Span{Aj coli(b- Ax0)10 _< j < k- 1, _< < m},

where coli (b) is the ith column of b.

2.2. Block QMR algorithm. At iteration k we seek an approximate solution Xk of the
form

(15) x xo + Vzk,

where Zk is a k. m-by-m complex matrix. That is, each column of xg x0 lies in the Krylov
subspace Kg (14).

The equation residual for this approximate solution is given by

(16) rg b Axg

(17) b- Axo AVgzk

(18) ro AVkZk
(19) 1)1fl1 Vk+l TkZk.

Let fag be a k m-by-k rn block diagonal weight matrix

(20) fag Diag(ogl, o9 COk),

where oi is an m-by-m matrix to be defined later. The residual may then be written

(21) rg Vk+lfak+l O)lel/l fak+lkZk
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where el is the n-by-m matrix which is zero except for the first rn rows, which are the m-by-m
identity matrix. This represents each column of the residual matrix as a linear combination of
the columns of Vt+l fak+.-1

Suppose for a moment that all quantities are in fact real, that rn 1, and that fak+l is
the identity matrix. Then Vk would be a unitary matrix, not just quasi-unitary. The minimum
residual solution could then be obtained by minimizing the Euclidean norm of the coefficients
of the columns of Vk, i.e., minimizing

(22) 11o91e11 K2t/l tZtll.
For the complex symmetric case, the QMR algorithm mimics this solution by also mini-

mizing these coefficients, where the block diagonal weighting matrix t+l is chosen so that
-1the columns of Vt+lt+l are each of unit Euclidean norm. In light of (20) this may be

accomplished by defining

(23) o& Diag(llcoli(vt)ll).

(24)

The block QMR algorithm chooses zt so that

Ilcoli(COlel/l t+l Tgzg)ll

is a minimum independent for m. The natural convergence criterion for this method
is the maximum of the minima attained in (24) and is termed the quasi residual.

This minimization is accomplished using the QR decomposition 11], where a unitary
matrix Qt+l is determined so that

ak+lt+lTk

(25)

(1 r]2 03

2

k

where Rt is upper triangular as shown This factorization is stable for indefinite matrices
under consideration

The matrix Qk+l is updated from the previous iteration by setting

(26) Qt+l 0 Q(ak, bk, Ck, dk) 0 Im

where

(27) Q(ak, bt, ct, dk)
ct dt

is a 2m-by-2m unitary matrix written as four m-by-m blocks, and I is the m-by-m identity
matrix.

A problem equivalent to minimizing (24) may then be written as minimizing

(28) coli(Qt+lOOle1,8,-[ ROt ]zt)
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for 1 m. This is easily done by defining

(29) t’k+l-- Qk+l)leltl-- [ tk ]k+l

where fk+l is an m-by-m matrix, and setting

(30) zk R1
tk.

The quasi residual QRESk is computed directly from the quantity fk+l as

(31) QRESk max/Ilcol (f+l)II.

This will be compared with the equation residual

(32) RESk max/Ilcoli (Axk b)II

as an equivalent convergence criterion. Note that when using these criteria all the simultaneous
solutions will satisfy the convergence tolerance individually.

2.3. Block QMR algorithm. The block algorithm closely follows that given in [8]. It is
worth noting that Freund’s algorithm makes no use of multiplicative commutivity of scalars
in its derivation and therefore resembles the current algorithm for which lack of commutivity
for matrices must be respected.

Initialization:

(33) v0 P0 p-1 0

(34) c0=b-l=b0 0

(35) a0 d-1 do In
(36) 1 b- Axo
(37) Vlfll 31
(38) Wl Diag{llcoli(Vl)ll}

(39) fl 601ill

For k 1, 2, 3,

(40) k+l Auk
T(41) otk l)k k+l

(42) k+l k+l UkOlk

(43) Vk+l/Sk+l k+l
(44) Wk+l Diag{llcoli(Vk+l)ll}

(45) Ok bk-20)k-1

(46) Ok ak-ldk-20)k-li -1- bk-lO)kOlk

(47) k Ck-ldk-2Wk-lfl + dk-lWkOtk

(48)

Next, a 2m-by-2m unitary matrix Q(ak, bk, ck, dk) is computed such that

Q(ak, bk, Ck, dk) ( k

OOk+ k+
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where (t is upper triangular. Then,

(49) Pk (Vk Pk-llTk Pk-2Ok)

(50)

(51)

(52) k+l Ck’k

Here, a,, b,, c,, d, ct,,/,, 0,, r/,, (,, (,, a,, z,, and f, are all m-by-m matrices with (, and
/, upper triangular. The terms p,, v,, fi,, and x, are n-by-rn matrices. Equations (37) and
(43) are quasi-QR decompositions of the right-hand side matrix in each equation.

At the end of each iteration, the quasi residual is computed and compared with a given
convergence limit. The equation residual RESt may also be computed, either directly or by
accumulating in another work matrix [8].

Aside from the obvious matrix arithmetic and quasi-QR factorizations, the main difference
between this and Freund’s algorithm is the QR factorization in (48). In the point algorithm,
this is just a complex Givens rotation of the form

(53) Q cj sj
-s c

The generalization to the block algorithm necessitates a more general form, (48), which then
affects the rest of the algorithm. This factorization is computed using a conventional QR
decomposition algorithm 11 of rank 2. rn and then partitioning the matrix into four m-by-m
submatrices.

2.4. Convergence improvement. O’Leary [14] showed that the effect on the conver-
gence rate of the block CG algorithm, with blocksize of m, was to remove the deleterious
effects of the rn 1 smallest eigenvalues. Specifically, she showed that while the worse-case
convergence rate of the point CG algorithm is determined by the condition number, i.e., ratio
of largest to smallest eigenvalue, the worse-case convergence of the block algorithm is deter-
mined by the ratio of the largest to ruth smallest eigenvalue, and thus is no worse and possibly
much better. Theoretically, this could be ofgreat benefit when there are a few small eigenvalues
that slow the convergence rate. O’Leary also observed significant convergence acceleration
of eigenvalue computations using a block algorithm and randomly generated initial vectors.

A heuristic argument for the convergence advantages ofthe block algorithm over the point
algorithm is given by a comparison of the Krylov subspaces used in the approximations.

In the point algorithm, we have

(54) Xk- XO E Span{Aj (b- Ax0)10 < j < k- 1}.

Thus, the exact vector x* xo is approximated in a subspace of dimension k. However, in the
block algorithm, we have

(55) col/(xt -xo) E Span{Aj coli(b- Axo)10 _< j < k- 1, 1 < < m}

for each 1 rn. In this case, the approximating subspace has dimension rn k, or m
times as great as the corresponding point algorithm. The larger dimension of the subspace
should provide a better approximation and thus more rapid convergence. The ideal limit of
convergence improvement would be a reduction in the number of iterations by a factor of m,
exactly corresponding to the increase in dimension of the approximating subspace.
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The word "should" must be emphasized because the behavior of this algorithm in real
applications is dependent on the right-hand side vectors. Just because the Krylov subspace
is larger in the block rather than the point algorithm does not necessarily imply that the
approximation will be better. The Krylov subspaces corresponding to the individual right-hand
side vectors may not provide good approximations to solutions other than their corresponding
one. In extreme cases, the right-hand sides might be linearly dependent, which would cause the
presented algorithm to fail completely because the QR decomposition (37) would be singular.

While it is easy to concoct examples that will defeat the block algorithm, it is of most
interest to determine what practical problems are amenable to this approach. In the next
section, we will show, through a numerical example, real acceleration due entirely to the
block Lanczos method as applied to the iterative solution of large finite element problems.

3. Numerical example. The application for which this technique was developed is called
the hybrid finite element method (HFEM) [2], [5]. In this method, finite elements are used
to discretize Maxwell’s equations in differential form in and around the scatterer while a
scattering integral equation is used on a smooth enclosing surface, where the fields themselves
are smooth, to terminate the finite element mesh and provide the exact near field radiation
condition.

The finite element implementation utilizes a scalar and vector potential formulation 1
for the electric field and second-order Lagrangian tetrahedral elements. It is essentially a 3-D
vector Helmholtz formulation. The mesh is terminated on a surface of revolution where the
integral equation is applied to ensure a radiating solution 13].

The discretization ofthe integral equation represents the equivalent electric J H and
magnetic M -fi x E currents using 1-D Hermite-cubic finite elements along the generator
and Fourier modes azimuthally for each of the two orthogonal polarizations on the surface,
where " is directed along the generator from pole to pole, and q is directed azimuthally. These
basis functions are then nearly orthogonal, with only basis functions of the same polarization,
same azimuthal mode, and belonging to the same Hermite element having a nonzero inner
product.

In this application, the computational task is to solve the finite element boundary value_.
problem, where x E --Mk, on the surface of revolution for each of the basis functions Mk
representing the magnetic current on this surface. Once these multiple solutions are generated,
the scattering problem is reduced to one involving only the efficient boundary integral equation.

The scatterer used for this example is a 10.-by- 10.-by- 1 ! 10. perfectly conducting plate,
where . is the wavelength in a vacuum, enclosed in a surface of revolution resembling a
thick traditional (round) pizza crust. The volume between the plate and the outer surface was
discretized yielding 270,000 complex finite element degrees of freedom. The finite element
matrix is real symmetric, since there is no lossy material present, and the right-hand side
vectors are complex.

Two symmetric preconditioners are evaluated on this example. The first is the "classical"
incomplete Cholesky (IC), where no fill is allowed. The second is an IC variant of the ILU(T)
method [17], [18], [3], called IC(T), where the usual factorization algorithm is applied and
"small" elements are dropped from each row of the factor as it is generated. Here "small"
refers to size compared with the diagonal entry and was adjusted so that the "classical" IC and
IC(T) factorizations have approximately the same number of nonzeros and thus require the
same computer time to apply. This makes for a fair comparison ofthe two methods. Minimum
degree ordering 10] is used for both preconditioners, which are applied symmetrically.

All timing tests were performed on a SUN Sparcstation rated at 3.8 double precision
Megaflops (LINPACK). The algorithms, of course, all utilize double precision arithmetic.
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FIG. 1. Preconditioner comparison: Quasi and equation residuals.

While the scattering problem was too large to run to completion on the SUN, these convergence
tests were completed.

Figure 1 shows the preconditioner evaluation while solvingjust one right-hand side vector.
Convergence was defined by Q < -5.0, with iterations cut off at 1% of the rank of the matrix.
The curves labeled "Q*" are the relative quasi residual while those labeled "R*" are the relative
equation residual, both in Bels (the base 10 logarithm of the residuals),

Q log10

(56) R log10

QRESt
QRES0
RESt
RES;

The curves labeled Q and R show the convergence without preconditioning, Q-IC and R-IC
show the convergence using the IC preconditioner, while Q-IC(T) and R-IC(T) show those
using the IC(T) preconditioner.

Note that the quasi residuals are all slightly below but closely follow the equation residual.
This is typical behavior experienced in running this code over the last four years. In practice,
the quasi residual provides a reliable convergence criterion and eliminates both the computation
and storage [8] needed to monitor the usual equation residual.

The case without preconditioning was terminated at 2700 iterations without quite reaching
the -5.0 convergence criterion (-4.65). The case with IC preconditioning converged in
1184 iterations. Although this is less than half the number of iterations required with no
preconditioning, each iteration is twice as expensive. A preconditioner, whose number of
nonzeros is the same as the original matrix, must reduce the number of iterations by a factor
of 2 just to break even, which the IC preconditioner barely achieved.

However, the IC(T) preconditioning converged in only 318 iterations. This is approxi-
mately one-ninth of the number with no preconditioning and reduced the wall clock time to
solution by a factor greater than 4. Again, this is the typical behavior these preconditioners
have exhibited on a wide range of problems, and the IC(T) is the only one used in practice.



A BLOCK QMR METHOD FOR COMPLEX SYMMETRIC SYSTEMS 271

0.0

-3.0

-4.0

-5.0

-6.0
0 50 100

Q-11

200 250 300 350150

Iterations

FIG. 2. Blocksize comparison.

Figure 2 shows the effects of varying the number of simultaneous solutions. Only the
quasi residuals are shown, since they are the criterion used in practice; preconditioning using
the IC(T) method and blocksizes of 1, 2, 4, and 8 are compared.

The case for 1 solution, the same as curve "Q-IC(T)" in Fig. 1, shows convergence in
318 iterations. Solving for 2 solutions simultaneously required 178 iterationsm57% of the
iterations required for 1 solution and close to the ideal limit of 50%. Solving for 4 solutions
simultaneously took 97 iterations, 30% ofthat required for 1 solution, compared with the ideal
limit of 25%. Finally, solving 8 solutions simultaneously required only 57 iterations, or 18%
of that required for one solution, compared with the ideal limit of 12.5%.

Note that in the early convergence history, 50 to 100 iterations in Fig. 2, the convergence
for one solution appears better than the convergence for two simultaneous solutions. This
is caused by slower convergence for fight-hand side number two only and the fact that the
maximum of the residuals for fight-hand sides one and two is plotted. When solving multiple
simultaneous solutions, the residual for any single fight-hand side will neverexceed the residual
obtained when that fight-hand side is iterated individually.

/The wall clock time per solution provides another important measure of the effectiveness
of this technique. Figure 3 shows the elapsed time per solution relative to the time for one
solution without preconditioning. Note that the use of the classical IC preconditioner did
not affect the solution time significantly. Although convergence was accelerated, it was not
enough to overcome the added computation of applying the preconditioner at each iteration.
In contrast to this, the IC(T) preconditioner had a major beneficial effect on solution times, as
did increasing the blocksize.

It should be noted that as blocksize rn increases, the relative cost ofthe algorithm increases
due to the m-by-m and n-by-m matrix arithmetic. These operations, however, are all BLAS3
calls, which are highly optimized on most computers capable of seriously running a problem
of this size.

As a second example, a perfectly conducting sphere of radius 1 meter covered with two
hemispherical shells of dielectric material 1/16 meter thick was illuminated by an 80 MHz
plane wave. The electrical parameters of one shell were 6r 2 + and/Z 1, while those
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of the other were/2.r 2 + and fir 1. The discretization of this problem yielded 10,556
unknowns. Due to the lossy materials, the matrix was complex symmetric.

Figure 4 shows the effect of varying the blocksize from 1 to 32, using the IC(T) precon-
ditioner as usual. In this case, the convergence acceleration with increased blocksize is not
as dramatic as in the previous example. This is not uncommon for problems this small where
convergence is achieved in only a few iterations [3], [4].

4. Discussion. There are many topics of interest relative to this iterative method that we
have not addressed. The issues of dealing with possible linear dependencies in the Krylov
subspace bases, incorporating look ahead [9] into the block algorithm, and deflating the linear
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systems that converge before the others are not treated. Our emphasis has been on developing
the basic algorithm and evaluating its behavior on our problems.

This preconditioned block QMR method has been the solver of choice for our finite ele-
ment work for about four years. Applied primarily to large problems, 100, 000+ unknowns,
it has been both reliable and effective.

Although the large example shown here uses a real matrix for computational expediency,
the performance on complex matrices, generated either with impedance boundary conditions
or the inclusion of lossy material, is just as good or better. In fact when the loss is removed
from the material in the second example, the convergence for one right-hand side increases
from 24 to 47 iterations. This behavior is typical and not unexpected.

The computation of the IC(T) preconditioner uses the algorithms given in 16], is adapted
to use files on disk, and is very fast. The preconditioner used in the rank 270,000 problem
took only 10 minutes elapsed time on a 3.8 MFLOP Sun workstation (compared with hours
for the block QMR to complete). Since this factorization is potentially unstable for indefinite
matrices, there were some initial concerns about stability. To date we have not experienced any
problem attributable to instability in this calculation. We do, however, monitor the maximum
and minimum pivots used in the factorization as a measure of stability.

For large problems, several factors must be balanced for optimal solution times. Increasing
the blocksize accelerates convergence but also increases the memory requirements of the
block QMR algorithm and increases the computational burden due to the matrix arithmetic.
Computing a "less incomplete" preconditioner, by decreasing the definition of "small" in the
algorithm, also accelerates convergence but increases the cost of computing and applying
the preconditioner. These factors are highly dependent on the computer used and must be
optimized in situ.

The dominant computational task in this method is the sparse matrix multiply and pre-
conditioner application. In this area, too, the block algorithm shows great potential. As found
in 15] and observed by us, using the block algorithm provides another dimension that may
be used for parallelization.

Our preliminary work on a Cray Y-MP has shown that both the sparse matrix multiply
and preconditioner applications are "embarrassingly" parallel, exhibiting a speedup of al-
most 8 times when solving 8 simultaneous solutions using 8 processors. This is especially
significant for the preconditioner application since its recursive nature severely limits par-
allelization. Combining this speedup with the convergence acceleration of solving multiple
simultaneous solutions means significant reductions in wall clock times per solution are pos-
sible.

While this solver performs exceedingly well in our application, the convergence acceler-
ation due to multiple simultaneous solutions is dependent on the sparse matrix, the right-hand
side vectors, and the choice of initial guesses. In what other situations block solvers will
perform equally well is not yet known. Preliminary testing of a sparsely preconditioned block
GMRES solver for general dense complex matrices shows convergence acceleration with
increasedblocksize, but not yet as much as reported here.

Acknowledgment. The authors would like to thank Noel Nachtigal for helpful discus-
sions about this method and for his encouragement to publish this material, and the reviewers
whose thoroughness greatly improved this manuscript.
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SOLVING LINEAR INEQUALITIES IN A LEAST SQUARES SENSE*

R. BRAMLEYt AND B. VINNICKA

Abstract. In 1980, S.-E Han [Least-Squares Solution ofLinearInequalities, Tech. ReportTR-2141, Mathematics
Research Center, University of Wisconsin-Madison, 1980] described a finitely terminating algorithm for solving a
system Ax <_ b of linear inequalities in a least squares sense. The algorithm uses a singular value decomposition of
a submatrix of A on each iteration, making it impractical for all but the smallest problems. This paper shows that
a modification of Han’s algorithm allows the iterates to be computed using QR factorization with column pivoting,
which significantly reduces the computational cost and allows efficient updating/downdating techniques to be used.
The effectiveness of this modification is demonstrated, implementation details are given, and the behaviour of the
algorithm discussed. Theoretical and numerical results are shown from the application of the algorithm to linear
separability problems.

Key words, iterative methods, linear inequalities, least squares, linear separability
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1. Introduction. Let A e )mxn be an arbitrary real matrix, and let b e )m be a given
vector. A familiar problem in computational linear algebra is to solve the system Ax b in
a least squares sense, that is, to find an x* minimizing IIAx bll. Here and throughout this
paper, refers to the two-norm. Such an x* solves the normal equations Ar(Ax b) 0,
and the optimal residual r* b Ax* is unique (although x* need not be). The least squares
problem is usually interpreted as corresponding to multiple observations, represented by the
rows of A and b, on a vector of data x. The observations may be inconsistent, and in this case
a solution is sought that minimizes the norm of the residuals. More information about linear
least squares problems and solution techniques can be found in [9], [15], [4].

A less familiar problem to numerical linear algebraists is to solve systems of linear in-
equalities Ax < b in a least squares sense, but the motivation is similar: if a set ofobservations
places upper or lower bounds on linear combinations of variables, we want to find x* mini-
mizing II(Ax b)+ll, where the ith component of the vector v+ is the maximum of zero and
the th component of v. However, potential applications extend beyond simple data analysis,
and include linear separability problems. That application requires finding a hyperplane that
best separates two point sets; when the two sets are not linearly separable, a hyperplane that
correctly separates the largest number of points is desired. Although an 1-norm formula-
tion using linear programming seems more natural for this problem, the f2-norm formulation
described here provides comparable solutions.

When the system Ax < b is consistent, that is, when a solution exists that satisfies
all the inequalities, then phase I of any standard linear programming method can find it.
Furthermore when the system is not consistent, linear programming can identify that case,
but does not directly provide an "optimal" solution. Other methods developed for solving
linear inequalities include an unusual algorithm by Stewart 14], which defines a function that
diverges in a direction that converges to a solution of the inequalities; if no solution exists, the
function converges to a unique minimum.

One way of solving the problem is to state it as the quadratic programming problem
in (x, z)

*Received by the editors May 23, 1994; accepted for publication (in revised form) December 19, 1994. This
work was supported by NSF grant CDA-9223008.

tComputer Science Department, Indiana University, 215 Lindley Hall, Bloomington, IN 47405-4101
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T

(1) (QP)
min z z,

subject to Ax- b < z.

However, there are serious numerical difficulties with solving a quadratic programming prob-
lem that has a singular objective function; furthermore, most methods require an active-set
strategy that can be difficult to implement, particularly when it is necessary to decide which
entries to drop from the active set. The analogue of an active set for the algorithm described
in this paper is automatically determined without difficult decisions of when to drop a con-
straint. In. particular, the numerical determination of the active set consists of a test against
zero, without the need to introduce machine- or problem-dependent tolerances.

The only algorithm specifically designed for solving arbitrary systems of linear inequal-
ities in a least squares sense was developed by S.-P. Han [6]. That algorithm requires finding
the minimum-norm least squares (equality) solution to systems Aix bt, where At is a
submatrix of A consisting of some rows of A. This implies that a singular-value decompo-
sition or a complete orthogonal decomposition of A1 is required on every iteration. Both of
these decompositions are relatively expensive to compute, and there are currently no effective
update/downdate methods that allow the reuse ofwork performed on a previous iteration. This
paper will show that a minor modification of Han’s algorithm allows an implementation using
a QR factorization with column pivoting instead, and both the robustness and finite termination
of Han’s algorithm are retained.

Section 2 of this paper defines notation and reviews some basic properties of least squares
solutions for linear inequalities, most of which can be found in [6]. Section 3 outlines Han’s
algorithm and 4 presents and validates the minor change in the convergence proof that allows
QR with column pivoting to be used. Section 5 gives implementation details and testing
results. As an illustration of how the algorithm can be used in an application area, 6 and 7
examine the linear separability problem. Linear separability problems start with two sets of
experimental data points, where the points in one set have a certain property and the points in
the other do not. A hyperplane that best separates the two point sets is found and then used to
classify future data points as having or not having the relevant property.

2. Basics ofsystems of linear inequalities. This section summarizes some fundamental
properties of linear inequalities from Han’s technical report, and proofs of the results can be
found in [6]. Let A )mxn be an arbitrary real matrix, and let b e )m be a given vector. No
relation is assumed between rn and n, and the matrix A can be rank deficient, ill conditioned,
or even the zero matrix. Let the rows of A be denoted a, m. We want to find an
X )n solving the system

(2) Ax < b

in some sense. System (2) is interpreted componentwise, so we want ax < bi for all
1 m. Possibly no such x exists. As an example, consider the system

-1 0 ,b=

which is equivalent to x. < 1 and x > 2. In these cases, we want a least squares solution,
which we now define. Given a vector v t, define its positive part as the vector v+ t

{0, 1)with components given by v+ max }. A least squares solution to (2) is any vector x
that minimizes

1
(3) f(x) II(Ax b)+ll 2.
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Analogous to the linear equality case, we can also define the (necessarily unique) x ofminimum
norm that solves x argmin (Ax b)/ II, but the method analyzed here does not provide a
minimum-norm solution. For example when m < n and A is full rank, the method finds one of
the infinite number ofpossible solutions, but which one depends on the starting point. Also, the
function f(x) is convex, continuously differentiable, and piecewise quadratic. Differentiating
gives the analogue of the normal equations.

PROPOSITION 2.1. x* 9n solves (2) ifand only ifAT (Ax* b)+ O.
The proposition follows immediately from the convexity of f and the relation Vf(x)

Ar (Ax b)+.
Keeping in mind the similarity of Proposition 2.1 and the normal equations for equality

linear least squares problems, we define the residual vector as z (Ax b)+. This residual is
zero if and only if the system of inequalities is consistent and x is a solution. Furthermore, by
noting the equivalence of (2) and the quadratic programming problem (1), which is convex,
we have the following proposition.

PROPOSITION 2.2. For any matrix A )rnxn and vector b )]n, a least squares solution
to (2) exists. The optimal residual vector z* (Ax* b)+ is unique, and x is a least squares
solution ifand only if (Ax b)+ z*.

Finally, we note that the gradient of f is globally Lipschitz of order 1, with a Lipschitz
constant of 11A 112.

PROPOSITION 2.3. [IVY(x) Vf(y)[[ _< [IAll2llx yll,for all x, y 9n.
Again the proof is straightforward, using the relation Vf(x) Ar (Ax* b)+. Note,

however, that the Hessian of f fails to exist at points where a/rx bi for any 1, 2 m.

3. Outline of Han’s algorithm. Two notations are needed for the statement of Han’s
algorithm. First, Gt denotes the pseudoinverse of the matrix G [13]. In practice, all that
is needed is the action of G on a vector f, not the linear operator itself in explicit form.
The vector G f is the minimum-norm, least squares solution to the problem of minimizing
Gy f I, and can be computed by a QR factorization when G is full rank, or by singular value

or complete orthogonal decomposition otherwise. See [4, Chap. 5] for details on computing
these and other factorizations for linear least squares.

Second, let I

_
1, 2 m be an index set. Then At is the submatrix of A consisting

of rows with indices in I. With this definition, At fit Izln, where Ill is the cardinality of I.
The vector b1 can be defined similarly. Using this notation, the algorithm follows.

ALGORITHM 3.1. Let A )mxn, b 9m, a starting point x fitn, and > 0 be given.

Initialize:
Set k 0 (Iteration number)
Setr=b-Ax
Set I {i ax > bi} {i ri < 0} (Set of active indices)
Set p0 ir/011 (initial residual norm)

Iterate: While (pk > e)
dk tkAir
) argmin f(x + ,d), where f(x) is defined by equation (3)
x+l=x+)dk

rk+l b Ax +1

I Ik+ {i afx+1 >_ bi} (New set of active indices)
pk+l ii(rk+l)lll
k=k+ 1
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Superscripts in the above algorithm indicate the iteration number. Note that I and . depend
on k also, but for clarity, we omit the k when examining a single step of the algorithm. The
exact line search for . is computationally reasonable, since 0 ()). f(xk + )dk) is piecewise
quadratic, convex, and continuous; we can simply search through the knot points to isolate
an interval on which 0(.) is quadratic, then interpolate. Numerical testing shows that the
algorithm is in fact sensitive to the line-search procedure, and it is worthwhile to consider
other methods.

The fundamental result Han established about this algorithm is that it converges in a finite
number of steps to some minimizer of (3). The proof relies on the following properties, which
are readily verified.

PROPOSITION 3.1. For any matrix A 9imxn and vector b 9in, let f(x) be given by (3),
x x, d d, and I I (x). Then

1. Vf(x) -AAId, so drVf(x) IIAldll, and d is a descent directionfor f(x).
2. d is the minimum norm least squares solution to the problem: minimize A d rl II.

4. A more efficient version of Han’s algorithm. To make this algorithm practical, dk

needs to be computed by means of a cheaper factorization of AI. Han’s algorithm uses the
pseudoinverse to define dk in order to limit the growth of the component ofx in the null space
of AI. As mentioned in the introduction, we now show that this can be relaxed, allowing
cheaper computation of dk. Omitting the superscript k temporarily, let dsvd Arl. The

general least squares solution to Aid rl is given by d dsvd + (I AAi)y for y 9in.

Note that (I A Ai)Y is in the null space of Ai, so that A d A dsvd. This is critical since,
with one exception, the proof of finite termination in [6] involves only the quantity Ald, not
d. Before addressing that exception, we recall a result of Golub and Pereyra [5].

THEOREM 4.1. Let G be an rn x n matrix, and let GP Q be the QR with column-
pivotingfactorization of G. Partition

(4) / JR1 R2]0 0

where R1 is r x r, upper triangular, and invertible, and R2 is r x n r. Let Ysvd be the minimum-
norm least squares solution to the problem: minimize IIGy fll, let Qf (cr, gr)r, where
c 9ir, and set

(5, y--P(Rlc).
Then IlYll z _< (1 / IIR{ae=ll2)llYsvdll z.

The application of this result to the linear inequality algorithm tells us that using QR
factorization with column pivoting to compute the search direction d will always provide a d
that is bounded by a constant times the norm of dsvd, where the constant does not depend on
x or the iteration number k.

THEOREM 4.2. Let d be computed in Han’s algorithm using QRfactorization with column
pivoting. Then there is CR > 0 such that Ildll _< Cglldsvdll independently of the iteration
number k.

Proof. For a given index set I, let R1 and R2 be the factors definedby applying Theorem 4.1

to the problem: minimize IlAid rill. Let C1 /(1 + [IR-1R2[12), and let CR max{C/},
where the maximum is taken over all possible index sets I. Since the number of such index
sets is finite, CR is well defined. The result follows immediately from the last Theorem. [3

We now prove the main convergence result needed.
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THEOREM 4.3. Let the sequences of vectors xk and dk be computed using Algorithm
3.1, with dk computed using QR factorization with column pivoting on AI. Then either the
algorithm stops after a finite number of iterations, or

(6) lim Vf(xk) O,
k-- cx:

Proof. If the algorithm stops after a finite number of iterations there is nothing further to
prove. Suppose it takes an infinite number of iterations. Then for all steps, At is a nonempty
matrix, since I b if and only if xk is a solution. Initially we drop the superscripts k, and
consider one step of the algorithm. Since Vf is continuous and globally Lipschitz with a
Lipschitz constant of IIAII 2, from the mean value theorem [11, Thm. 8.3.1]

(7)

f(x + .d) f(x) . f01
--.f01
<,fo
< .IIAII 2 fO

drVf(x + t,d)dt

dr[Vf(x + t)d) Vf(x)ldt + )drVf(x)

IldllllVf(x + tZd) Vf(x)lldt + .drVf(x)

lldll2tdt + ,drvf(x),

and so

(8) f(x + Xd) <_ f(x) + ZdrVf(x) + IIAII2 (Xlldll)2
2

As a function of ., the right-hand side of the above bound has a minimum at

-drVf(x)
(9) ;

A =" lid 2"

Substituting this value of . in (8) and using drVf(x) -drAAzd, we get

(10) f(x + d) f(x) < - ][A : -J-l]
Note that if the component of d that lies in the null space of At becomes arbitrarily large, the
upper bound above can go to zero. However, from Theorem 4.2 IId[I _< C Ildsvll, where CR
is independent of the iteration number. Since dsvd range (Air), dsvd AAtd, and so

(11) Ildll < ClllAAidsvdll < CIIAII" IIAzdsvdll < CIIAldsvdll,

where C (max/IIall) C. Substituting this bound on d into (10) gives

1
(12) f(x + .d) f(x) < -2CIIAII2 IlAzdll 2.

Since the stepsize . is chosen by an exact line search,

1
(13) f(x) f(x + ,d) > f(x) f(x + ,d) > IlAidll 22CIIAII 2
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The last inequality holds for all iterations, and since f(xk) is monotone decreasing and bounded
below by zero,

(14)
k=0 2CIIAII2 g=0

is a finite sum, so Aikd -- 0 as kcx and hence Vf(x) -AkAId 0 as

The rest of Han’s proofs, which are not reproduced here, still apply to the modified
algorithm, since they only rely on Atd, not d. His arguments in particular show that of
the two alternatives in Theorem 4.3, the second alternative (equation (6)) cannot occur. It
is worthwhile to compare those results with related ones. As early as 1965, Katznelson [8]
established finite termination ofan algorithm for solving piecewise linear systems ofequations
that arise in circuits. More recently Li and Swetits 10] have established finite termination for
solving systems of the form (x) Qr[(Ax + b)+ + (Cx + d)] 0 (c.f. the gradient of
f(x)). In both cases, they relied on the assumption that within each polyhedral set created
by the hyperplanes Hi {x arix bi }, the gradient of is nonsingular. This corresponds
to the case where A/rAt is nonsingular for all index sets I. The key idea is that within each
polyhedral set the function is quadratic, and so if the kth iterate lands in the polyhedral set
containing the (necessarily unique) minimum, Newton’s iteration converges in one step. Since
there are a finite number of such polyhedral sets, it is a matter of showing that if an infinite
number of the iterates lie in a single polyhedral set, they must converge to a point in the set.
The unicity of solutions to V(x)d - allows this by assuring that the iterates remain
bounded.

Han’s method applies a Gauss-Newton approach to the same problem, and restricts the
choice of search directions d to minimum-norm solutions, in order to have zero growth in the
null-space component of A. The key idea used in this paper is that some growth in that null
space is allowed, provided that it is uniformly bounded over all of the polyhedral sets, that is,
over all choices ofindex set I. This result is important because it allows applying the algorithm
to large systems, and the recent development of efficient and reliable orthogonal factorization
methods for sparse systems allows it to be applied to the kind of systems that frequently arise
in applications. Furthermore, methods for computing QR factorization with some form of
pivoting on parallel machines allow implementation on modem high-performance computers.

5. Numerical characteristics of the algorithm. This section summarizes results of nu-
merical testing, and further details can be found in [2]. The algorithm has been implemented in
Matlab(C),l with four ways of generating search directions: the singular value decomposition
(SVD), a complete orthogonal factorization (COF), QR factorization with column pivoting
(QR), and QR factorization with updating and downdating of the factors (UD), which is used
only when it is numerically safe.

The implementation defines the active set exactly as given in Algorithm 3.1. By contrast,
active-set strategies in quadratic programming methods for (1) involve tolerances and can
require numerical determination of ranks of submatrices.

The number of iterations required is sensitive to the line search, since stopping short or
overshooting a hyperplane boundary gives a different index set. Two line-search methods have
been tested: a search through the knot points for the piecewise quadratic line-search function
followed by quadratic interpolation, and a binary search method.

Table 1 shows the mean ratios of flops and iterations for 200 random problems of orders
80 x 40, 40 x 80, and 400 15. The flops computed are the total flops required, not just those

Matlab(C) is a registered trademark of The MathWorks, Inc.
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TABLE
Statisticsfor comparing costs ofSVD andQRfor search direction andquadratic interpolation and binary search

for line search.

SVD SVD Quadlnt QuadlntProb Size Statistic -Q--if- Flops Iters BinSearch Flops BinSearch Iters

40 x 80 Arith Mean 4.45 0.73 0.98 0.99
Std Dev 1.82 0.25 0.13 0.12

Geom Mean 4.13 0.69 0.97 0.99
80 x 40 Adth Mean 6.18 0.95 1.03 1.12

Std Dev 1.74 0.23 0.26 0.33
Geom Mean 5.92 0.93 1.00 1.08

400 x 15 Arith Mean 2.04 1.00 1.00 1.01
Std Dev 0.26 0.00 0.06 0.89

Geom Mean 2.02 1.00 1.00 1.00

in finding the search direction or performing the line search. The third and fourth columns
compare using an SVD to using QR with column pivoting, and show that for all problem
sizes, SVD is significantly more expensive, even though fewer iterations are required by SVD,
especially for the 40 x 80 problem size. This makes intuitive sense because, in this case,
many of the submatrices A don’t have full column rank. Finding the search direction via
QR with column pivoting can introduce components from the null space of AI, components
that may have to be removed by later iterations when the index set changes, and which can
introduce numerical instability. However, even when requiring 3 times more iterations, the
QR-based method takes fewer flops; less than one-tenth as many in some cases. The fifth and
sixth columns show the ratios when QR with column pivoting is used, but this time comparing
the two line-search methods. This shows that the two methods are close in cost, but for
overdetermined problems binary search is slightly cheaper. Because binary search is easily
coded and evaluating the line-search function at a given point requires only the computationally
inexpensive task of forming matrix-vector products with A, this suggests it is the preferred
method.

Table 2 compares the number of flops for four search direction methods" COF, SVD, QR,
and UD. The ratios of the first three to the last one are given, since UD was found most often
to be the most efficient method for overdetermined problems. Although the average cost of
COF for underdetermined problems is slightly more than for UD, the geometric mean of 0.94
shows that COF is cheaper for a larger number ofproblems. In this case the subproblems tend
to have a large null space for AI, and eliminating that component as COF does significantly
reduces the number of iterations. So although on a given iteration COF is more expensive, its
overall cost can be reduced.

The conclusions from these experiments are that using a binary line-search method is
cheaper than a quadratic interpolation as often as not, and altering the algorithm to select the
search direction with a QR factorization is an important improvement for the m > n case.
When n >> m and the extra freedom introduced in null(Ai) could potentially cause numerical
difficulties, COF is preferred.

Figure 1 shows the maximum iterations needed for random problems with varying m and
n. In all cases no more than 1 + max(m, n) iterations were needed, and the largest number
of iterations occurs when m 2n, which may be from having twice as many halfspaces
as variables, and so finding the correct index set takes several steps. When m >> 2n, few
iterations are needed, since there are generally enough active rows to give an impetus in the
directions imposed by rows not currently active, but which are active at the solution. Finally,
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TABLE 2
Statisticsfor ratio offlopsfor search direction methods.

Prob Size Statistic

40 x 80

80 40

Arith Mean
Std Dev

Geom Mean
Arith Mean
Std Dev

Geom Mean

COF SVD QR
-0- -" UD

1.03 4.56 1.00
0.41 1.81 0.00
0.94 4.20 1.00
1.37 6.20 1.37
0.38 1.77 0.25
1.32 5.95 1.35

Max Iterations in Linlneq

2O

20 40 60 80 O0 120 140 160 180 200

FIG. 1. Maximum iterations requiredfor m x n problems.

when rn < n, only 1-3 iterations are required, since the number of degrees of freedom exceeds
the number of "constraints" imposed by the system.

6. Application to the linear separability problem. The linear separability problem is
the one of finding a best hyperplane that separates two point sets ,4 and/3 in 9in. Let and/3
have rn and k points, respectively, and let A and B be matrices with rows giving the coordinates
of the points in A and/3. We want to find w E 9in and a scalar y so that Aw _< yem and
Bw > yek, where ei 9ii is a vector of all ones.

Clearly not all sets ./t and/3 can be separated by a hyperplane, so we want to find a
hyperplane that is optimal by having fewest points incorrectly classified as belonging to ,4 or
/3. This can be approximated as the least squares inequality problem

Aw- yem < -em,
(15) Bw + yek < --ek.

This formulation specifies that all the points lie outside of the "slab" H {x , 1 _<
wTx _< ?’ + 1 }, guarding against the case when all the data points line up on a hyperplane,
in which case the least squares problem (15) with zero on the right-hand side gives a trivial
solution (w, ,) 0. In 1 ], Bennett and Mangasarian formulate this problem in terms of the
/l-norm: minimize

(16)
m k

--/1 (bw- ’ + 1)+
1 (-aw + V + 1)+ + i

j=l
m
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and then solve it as the linear programming problem: minimize over (w, y, y, z) the function
(yrem)/m + (zreg)/k subject to the constraints Aw yen + y > era, -Bw + yek -Jr- Z > ek,

and y, z >0.
The normalization ofterms ofthe objective function by 1 !m and 1 / k assures that nontrivial

solutions (w, ?,) exist. A similar result holds for the least squares formulation (15).
THEOREM 6.1. Suppose the two point sets and B have m and k points, respectively,

and m, k > O. Then the least squaresformulation of(15) has the trivial solution w 0 ifand
only if

(17)

for some constant

let

(18)

Then

m k

ai =oty.bj
i--1 j--1

(19)

Proof. Suppose that the least squares solution of (15) has w 0, let t (wr, y)r, and

G--[ A
n

-era ] ( -em )ek
g

--ek

( )2II(G g)+ll 2 (1 y)em
(1 + y)ek

+

m(1-?’)2,

(+)21)m(1-?, +k(l+g)2,

Furthermore, the active index set I is

if y<-l,
if y>l,
if -1 <y < 1.

{1,2 m}, 1/ <-1,
(20) I= {m+l,m+2 m+k}, ,> 1,

{1,2 m +k}, -1 < ?, < 1.

From the normal equations, Gr (Gt g)+ 0. If , < -1, this implies

( AT(1--Y)em ) ( Jim=l ai )(21) 0= (l-y)
-m(1 y) -m

and so m O, a contradiction. Similarly, if y > 1, this implies

( -BT(I+y)eg ) =(l+y)( -=lbj )(22) 0
k(1 + y) k

and so k O, again a contradiction. So -1 < y < l, in which case

-m(1 y) + k(1 + y) y(m + k) + (k m)

If Yl 1, the last component implies that one ofm or k is zero. So Yl < 1, and the theorem
holds with ot (1 +

It is easy to check condition (17) before beginning computations, and perturbing any entry
of G will avoid the trivial solution. By contrast, in the L:l-norm minimizing method of 1 ],
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only the objective function for the linear program needs scaling. However, that formulation
only guarantees that nontrivial solutions exist, but it does not assure that a linear programming
program will find such a nontrivial solution. In any case, the condition in (17) has so far only
occurred in artificially created problems.

In testing the linear programming and least squares methods, after (w, y) are found a
secondary minimization on y is performed to improve the solution. The next proposition
shows that the inequality least squares problem will translate the separating hyperplane to
where the sum of residual violations is balanced; this is not a criterion of the original linear
separability problem, and is the reason we follow the iterations with the secondary minimiza-
tion.

PROPOSITION 6.2. Let (w, y) be a least squares solution to the system (15). The sum

ofresiduals corresponding to point set jt equals the sum ofresiduals corresponding to point
set B.

Proof. From the normal equations for (15),

[ AT -Br ]( aw-(Y-1)em ) =0.(23) --emT egr -Bw + (y + 1)e +

The last scalar equation from above gives

T T(24) em(Aw (y 1)era)+ ek (-Bw + (y + 1)ek)+

or equivalently

(25)
m k

E [a[’w- (y- 1)]+ E [-bfw + (y + 1)]+,
i=1 j=l

which is the statement of the proposition. [q

The one-dimensional minimization is easily carded out by searching through the knot
points defined by Yi a/r w and yj bf to and adds little to the overall computation costs.
This usually improves the solution by a few data points for two-dimensional test problems, but
is much less effective for higher-dimensional problems. Intuitively, in the two-dimensional
case minimizing on ?, varies one-third of the variables, while for a 9- or 13-dimensional
problem, only one-tenth or one-fourteenth of the variables are being changed.

7. Performance on test databases. The linear separability methods have been tested on
the Wisconsin Breast Cancer and Cleveland Heart Disease Databases [3]. Here the goal is to
provide a linear predictor that can be used to distinguish between benign and malignant tumors
in the first database, and patients at risk or not at risk of heart attack in the second database.

Both data sets are available from the University of California-Irvine Repository of Ma-
chine Learning Databases and Domain Theories 11 ]. The first data set consists of 551 points,
346 from set A (corresponding to benign tumors) and 205 from set/3 (corresponding to
malignant tumors). Each data point has 9 components, corresponding to experimental mea-
surements. The second data set consists of 297 points, 137 from set A (corresponding to a
negative diagnosis) and 160 from set/3 (corresponding to a positive diagnosis).

We discarded data samples that had missing measurements. As in 1 ], the data were di-
vided randomly into a training group consisting of two-thirds of the data points, and a testing
group consisting of the remaining one-third of the data. The best separating hyperplane was
found by applying the inequality least squares solver using the training group of data, and then
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TABLE 3
Percent ofincorrectly classified pointsfor two databases.

Database Data Group
Cancer Training

Testing
Heart Training

Testing.

Ls Sq w/o , Min

3.19
4.24
14.75
15.76

Ls Sq w , Min

2.64
3.80
13.84
15.96

Lin Progr
3.01
2.56
15.23
16.53

the effectiveness of the hyperplane was tested on the remaining testing group of data. This
was repeated ten times, with different partitionings into training and testing sets. For the first
data set, the inequality solver required seven or eight iterations each time and spent an average
of 92% of its flops in finding the search direction. For the second data set, five or six iterations
were needed each time and an average of 95% of the flops were spent in finding the search
direction.

Table 3 shows the results both with and without the secondary minimization on ,, along
with similar results from [1]. The results are not strictly comparable since that work used
566 data points from the Wisconsin Cancer Database and 197 data points from the Cleveland
Heart Disease Database, but the comparison suggests that the inequality least squares method
provides a solution similar to that of a linear programming method. This is unexpected because
the two-norm solution given by inequality least squares can heavily weight outlying data points
while the one-norm solution given by the linear programming method weights outlying data
points less. However, these results show that for realistic problems the inequality least squares
solution is qualitatively competitive.

8. Summary and future work. A computationally efficient implementation of Han’s
algorithm for solving linear inequalities in a least squares sense has been presented, and has
been shown convergent by minor modifications to his convergence proofs. The effectiveness
of this change in the algorithm’s implementation has been demonstrated, and it has been tested
on randomly generated and linear separability problems. The results indicate that with the
new implementation, this linear inequalities solution method is a worthwhile addition to a
computational scientist’s toolkit.

Current work includes applying this method to the graph-partitioning problem for parallel
computing (see [7] for a survey of this problem and solution methods). This works in phases:
given a graph corresponding to a physical mesh, first find the "deepest" set of nodes by a
breadth-first search from the boundary nodes. Two nodes that are furthest apart in the deepest
set are selected as initial 4 and/3 points, and the sets are grown outwards using a constrained
breadth-first search. A separating hyperplane is then found to better define those sets, followed
possibly by a few steps of simulated annealing to further improve the partitioning. This avoids
finding eigenvalues or singular values of the Laplacian of a sparse matrix, and uses only fast
graph algorithms and a relatively low-cost linear inequality solver.

The most interesting work remaining is a proof of convergence within max(m, n) + 1
iterations, or a counterexample. Since QR factorization with column pivoting takes O(mn2)
work in the dense case, this would provide a polynomial upper bound on the algorithm. A
linear programming problem can be stated as a system of inequalities [6], so this algorithm
would be another polynomial method for linear programming. Furthermore, the subproblems
generated by the inequality least squares algorithm have condition numbers no worse than
that of the original data, since at each step a decomposition is performed on a submatrix
of A (condition number for least squares problems is defined as the ratio of largest to small-
est nonzero singular values). Interior point methods for linear programming have subproblems
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that become increasingly ill conditioned as the iterates converge. So if the conjectured up-
per bound on the number of iterations holds, this algorithm provides a numerically stable,
polynomial time algorithm for linear programming.
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ON THE EFFECTS OF USING THE GRASSMANN-TAKSAR-HEYMAN METHOD
IN ITERATIVE AGGREGATION-DISAGGREGATION*

TURUL DAYARt AND WILLIAM J. STEWART

Abstract. Iterative aggregation-disaggregation (IAD) is an effective method for solving finite nearly completely
decomposable (NCD) Markov chains. Small perturbations in the transition probabilities of these chains may lead to
considerable changes in the stationary probabilities; NCD Markov chains are known to be ill-conditioned. During
an IAD step, this undesirable condition is inherited by the coupling matrix and one confronts the problem of finding
the stationary probabilities of a stochastic matrix whose diagonal elements are close to 1. In this paper, the effects
of using the Grassmann-Taksar-Heyman (GTH) method to solve the coupling matrix formed in the aggregation step
are investigated. Then the idea is extended in such a way that the same direct method can be incorporated into the
disaggregation step. Finally, the effects of using the GTH method in the IAD algorithm on various examples are
demonstrated, and the conditions under which it should be employed are explained.

Key words. Markov chains, decomposability, stationary probability, aggregation-disaggregation, Gaussian
elimination, sparsity schemes

AMS subject classifications. 60J10, 60J27, 65F05, 65F10, 60-04

1. Introduction. NCD Markov chains are irreducible stochastic matrices that can be
ordered so that the matrix of transition probabilities has a block structure in which the nonzero
elements of the off-diagonal blocks are small compared with those of the diagonal blocks.
Such matrices often arise in queueing network analysis, large scale economic modeling, and
computer systems performance evaluation. We have

nl n2 nN

(1.1)

Pll P12 P1N \ nl
P21 P22 P2N ) n2

nxn ..
Pt Pt2 Ptt

The subblocks Pii are square, oforder hi, with n E/N=I hi. Let the stationary distribution
of P, zr (i.e., zr P zr, IIzr Ill 1), be partitioned conformally with P such that zr
(:rl, zr2 zrN). Each zri, 1, 2 N is a row vector having ni elements. Let P
diag(Pll, P22 PNN) + E. The quantity IIEll is referred to as the degree ofcoupling and
it is taken to be a measure of the decomposability of the matrix (see [5]). If it was zero, then
P would be reducible.

NCD Markov chains that appear in applications are quite large and sparse, possibly having
more than thousands of states For such large chains, direct methods can generate immense
fill-in during the triangularization phase of the solution process, and due to storage limitations
they become impractical Moreover, when the system is nearly completely decomposable,
there are eigenvalues close to 1, and the poor separation of the unit eigenvalue implies a slow
rate of convergence for standard matrix iterative methods [12]. IAD methods do not suffer
from these limitations [7], [23].
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The idea in IAD methods is to observe the system in isolation in each of the diagonal
blocks as if the system is completely decomposable (see 15]) and to compute the stationary
probability distribution of each diagonal block. However, there are two problems with this
approach. First, since the diagonal blocks are substochastic, the off-diagonal probability mass
must somehow be incorporated into the diagonal blocks. Second, the probabilities obtained by
this approach are conditional probabilities, and this condition has to be removed by weighing
each probability subvector by the probability of being in that group of states. Only if these
two problems are overcome can one form the stationary distribution of the Markov chain by
weighing the subvectors and pasting them together.

For the transition probability matrix P, the stochastic complement of Pii [8] is

Sii Pii q7 ei,(I- Pi) -1P,i,

where
ei, ni (n ni) matrix is composed of the ith row of blocks of P with eii removed,
e,i (n --ni) ni matrix is composed of the ith column ofblocks of P with Pii removed,
Pi (n ni) (n ni) is the principal submatrix of P with ith row and ith column of

blocks removed.
Each stochastic complement is the stochastic transition probability matrix of a smaller

irreducible Markov chain obtained by observing the original process in the corresponding
block of states. The conditional stationary probability vector of the ith block is 7t"i/l[7ri I[1 and
it may be computed by solving (i/][7illl)Sii Yri/l]zril]l (see [8] for details). However,
each stochastic complement has an embedded matrix inversion that may require excessive
computation. An alternative solution technique is to approximate Sii by accumulating the off-
diagonal mass Pi. into the diagonal block eii on a row-by-row basis. There are various ways in
which this can be done [21 ]. Thereafter, an approximation to the conditional stationary vector
of the block of states may be found by solving the corresponding linear system as before.

To determine the probability of being in a certain block of states, one needs to construct
the so-called coupling matrix that shrinks each block down to a single element, forming an
N N irreducible stochastic matrix. This is accomplished by first replacing each row of
each block by the sum of elements in that block row. The sum of elements of row k of eij
gives the probability of leaving state k of block and entering into block j. Therefore, the
operation to be performed for each block is Pije. In what follows, e is a column vector of
l’s whose length is determined by the context in which it is used. Moreover, each column
vector Pij e must be reduced to a scalar. The total probability of leaving block to enter into
block j may be determined by summing the elements of Pij e after each element of this vector
has been multiplied by the probability of being in that state (given that the system is in block
i). These multiplicative constants may be obtained from the stationary vector elements; they
are the components of ri/llril]l. Hence, the ijth element of the coupling matrix is given
by Cij (zci/llrci I1)Pije. The stationary vector of the coupling matrix gives the stationary
probability of being in each one of the block of states. In other words, the weighing factors
mentioned before are the elements ofthe stationary vector ofthe coupling matrix. However, the
stationary vector itself is needed to form the coupling matrix. Since the aim is to compute the
stationary vector, one can approximate the coupling matrix by using an approximate stationary
vector and improve on the approximate solution iteratively [21 ].

Without further ado, the lAD algorithm is provided. Convergence analysis of the algo-
rithm appears in [17]. Additional discussion may be found in [21] and [2].

The generic iterative aggregation--disaggregation (IAD) algorithm.
1. Let zr) (zr0 zr20) _0

*N be a given initial approximation to the solution. Set
k=l.
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2. Construct the coupling matrix C(k" 1)

(k- 1) 7t’k-l)
ij

]]7/. (k_l)
Pij e.

3. Solve the eigenvector problem

(k-1)c(k-1 (k-1), II(k-1)lll 1

for (k-,) (k-1), 2(k-1) (Nk-1)).
(a) Compute the row vector

z
Ilrr-l)

(b) Solve the N systems of equations

7t’/(k)= 7r’(t k) ei + Zk) Pj + 7t’k) ej
j>i j<i

iir-l)

for zrk) 1 2 N.
5. Test zr/(k) for convergence. If the desired accuracy is attained, then stop and take r/(k)

as the stationary probability vector of P. Else set k k + 1 and go to step 2.

In the lAD algorithm, steps 2 and 3 form the aggregation step and step 4(b), which is essen-
tially ablock Gauss-Seidel iteration, forms the disaggregation step. In step 2, 7t’k- 1) /II rrfk- 1)II1
is an approximation of the stationary distribution of the stochastic complement of Pii. The
weighing factors (llzrllll, Ilzralll IlZrNlll) are approximated by (k-1) in step 3. Each
iteration of the IAD algorithm reduces the residual error (i.e., Ilzr (I e)ll) by a factor of IIEII
(see [14], p. 80).

The next section discusses how a modified version of Gaussian elimination may be used
to enforce stability in the solution of the coupling matrix. In 3, the idea is extended so that
it can be used in a nonsingular system of equations with a substochastic coefficient matrix.
Section 4 discusses certain implementation issues, and 5 provides numerical experiments
with the IAD algorithm on NCD Markov chains.

2. Solving the coupling matrix. The coupling matrix is an irreducible stochastic matrix
of order N; that is, each of its two dimensions is equal to the number of blocks in the NCD
Markov chain, and all states form a single communicating class. The goal is to solve the
singular system (k)c(k) (k) subject to II(k)lll 1, which is termed the normalization
equation. Essentially, each row of C(k) is a linear combination of the others, and inclusion of
the normalization equation enables one to replace the redundant equation, thus achieving full
rank in the set of equations. Being an irreducible stochastic matrix, the coupling matrix has
a unique unit eigenvalue. All other N 1 eigenvalues are close to 1. The distance of these
other eigenvalues to 1 depends on the degree of coupling.

A careful inspection reveals that one can solve the equivalent transposed system

(2.1) (I c(k)) T ((k))T 0, II(k)lll 1.

The justification for considering this form of the problem is the following. (2.1) is the conven-
tional form in which a (homogeneous) linear system of equations is expressed: the coefficient
matrix postmultiplied by the unknown vector equals the (zero) right-hand side. Besides, there
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are already existing algorithms that may be used with this form of a linear system. But most
importantly, as it is explained later in 4, a row-wise sparse storage implementation will spend
extra time in the substitution phase of the nontransposed system of equations.

(I c(k))r is a singular M-matrix (see [1]) with 0 column sums, and the unique null
vector of unit 1-norm is sought. For such a matrix, Gaussian elimination (GE) preserves
column diagonal dominance throughout its computation so that the multiplier element at each
step is bounded by thereby eliminating the need for pivoting. This follows from the fact that
the pivot element at a given step has the largest magnitude among all elements that lie in the
unreduced part of its respective column. Note that the same argument would be valid for the
original system of equations if C(k) was doubly stochastic.

It is well known that since C(k) is a perturbation of the identity matrix, all its nonunit
eigenvalues are close to 1. Due to this fact, iterative methods tend to converge slowly. On the
other hand, certain stability issues need to be addressed if direct methods are used. As it is
shown next, ordinary GE is not stable in the presence of rounding errors on a coupling matrix
whose diagonal elements are close to 1.

Example. Consider the following irreducible stochastic matrix:

-c
c ot 2c

Assuming c is small, P is clearly NCD. Additionally, the degree of coupling is 2c. Now,
suppose 2or is less than machine epsilon (smallest representable positive floating-point number
such that + > 1). Let zr (k) > 0. Then, the coupling matrix is rounded to

2c 1

Note that the coupling matrix is not stochastic. Therefore, the matrix (I c(k))T is rounded
to

(I C(k))T ( O -2t )--ot 0

Hence, it is necessary to apply some sort of pivoting strategy in order to proceed with GE. Oth-
erwise, the algorithm breaks down contrary to the general belief that GE applied to stochastic
matrices is always stable. Before going any further, this issue should be explained some more.

It is possible for an irreducible NCD Markov chain ordered as described in (1.1) to have
zero blocks. Consequently, the coupling matrix of such a chain at any iteration has zeros
in locations corresponding to zero blocks in the transition probability matrix. However, the
zeros in the coupling matrix occur in just the right places so that the coupling matrix is still
irreducible [8]. Keeping this in mind, the situation that causes GE to break down occurs when
the pivot element at a given step ofGE is zero in the matrix (I c(k)) during the kth iteration
of the lAD algorithm. A sufficient condition for the failure of GE during the aggregation step
is to have a transition probability matrix with a degree of coupling less than machine epsilon.
In this case, all diagonal elements in (I c(k)) will be zero, as in the example, and GE will
fail in the first step.

The advocated approach to finding a remedy for this situation is the GTH algorithm
described in [4] and the direct method discussed in 16]. The original GTH algorithm emerges
from probabilistic arguments, and it is shown that the stationary distribution of a Markov
chain can be calculated using only nonnegative numbers and avoiding subtraction operations.
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This algorithm achieves significantly greater accuracy than other algorithms described in
the literature [11], [5] since there is no loss of significant digits due to cancellation [6].
Interestingly, the inspiration for the algorithm presented in 16], which is specifically for the
solution ofNCD Markov chains, is the GTH algorithm. In a recent paper 10], it is shown that
the stationary probability vector of an N x N irreducible Markov chain stored in floating-point
form is close to its exact stationary vector. In other words, even if one has an algorithm that
does not introduce any errors by itself, the best that can be done is to compute the stationary
vector of an N N Markov chain with an entrywise relative error of only about 2Nu of the
exact stationary vector. In fact, the relative error incurred by each element of the floating-point
stationary vector is about 2Nu, where u is the unit roundoff (i.e., the maximum relative error
in approximating a real number by its nearest floating-point number). This result follows from
the fact that the perturbation introduced by storing the matrix in floating-point form is of order
unit roundoff. Moreover, in the same paper it is proven that ifGTH is employed in the solution
process of this N x N Markov chain, the relative error in each entry of the stationary vector
will be of order N3u. It should be remarked that the entrywise relative error in the stationary
vector for the GTH algorithm is independent of the structure of the matrix and the magnitude
of its elements.

The following lemma shows that the GTH way of calculating the pivot element may also
be applied to the transposed system of equations (2.1). It is this form of the equations in which
multipliers are bounded by 1, and it will be demonstrated by numerical experiments that the
type of implementation chosen (i.e., transposed versus nontransposed system of equations)
has no effect on the accuracy of the results obtained.

LEMMA. Let A I Pr, where P is a stochastic matrix, and

A=( all vr)U A22

Then erA 0 and eru -all. If

L1A all
0 22

where

( 1 0) ( 1 0)L1 --u/all I L-{1 u/all I

then/22 (like A) is a singular M-matrix having 0 column sums.

Proof. We have

erA er(L-{1L1)A 0,

1erL-{ (1, 1 1) u/al o)I --(0,1 1),

(0, 1 1)(L1A) 0 :: eta22 O.

Other steps may be shown similarly. Note that the lemma is also valid for the negation of any
generator matrix.
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The properties of a singular M-matrix coupled with the GTH idea of avoiding subtractions
and negative numbers suggests the following modification to GE. At each step of GE, rather
than calculating the pivot element in the usual way, one can correct the pivot by replacing it
with the negated sum of the off-diagonal elements in the unreduced part of the same column
as the pivot. When one mentions the GTH method, it is this approach used in calculating the
pivot elements that is implied.

3. Using the GTH method in the disaggregation step. In a given iteration, the disag-
gregation step of the lAD method uncouples the NCD Markov chain to obtain a new estimate
for the stationary distribution. As indicated in [21 ], in order to achieve an even better approx-
imation of zr, at the (k / 1)st iteration of the lAD algorithm, one solves

(3.1) (I Pi)(yrk+l))T be,

where 7t’/(k+l) is the (k + 1)st approximation of 7t" and bf ,j<i Yt’k+l) eji + j>i
for 1, 2 N (see step 4(b) of the lAD algorithm).

eii is a strictly substochastic matrix of order hi, and bi 0, which gives a nonhomoge-
neous system of linear equations with a nonsingular coefficient matrix. Had the coefficient
matrix been stochastic, the same GTH technique that is utilized in solving the coupling ma-
trix could be clearly employed. In order to be able to use the GTH technique in solving the
diagonal block system, first certain modifications must be made. These modifications involve
adding one more equation and augmenting the matrix with bi to put the system into the form

(3.2) w/T (yt./(k+1). (k+l))Ti 0,

where

ni

wiT_._ ( I--i bi ) ni
113 110i 1

Wi Pi,e, 13i -brie, and 7t-i+/-(k+J is introduced so that the solution vector has as many
columns as the coefficient matrix. In other words, (wf, ui) sums up the columns of W/r to 0.

The values of ui and Jt are irrelevant, because just as in (2.1) one has a singular system
with ni d- 1 equations, and after W/r is reduced to upper-triangular form, the last row will
be all O’s. Hence, the reduction needs to be carried out for only n steps. What needs to be
done for the computation of (7t’/(k+l)) T is to use the first ni elements of column ni "- 1 in the
upper-triangular matrix as the right-hand side in the back substitution phase.

It is not possible to put GE to use in the disaggregation step in the previous example in 2 or
in similar problems on the diagonal blocks for which ei, < . Under the given condition,
I Pi is a singular matrix in floating-point form; however, the vector bi is still nonzero, and
therefore the system of equations in (3.2) is inconsistent. On the other hand, GTH computes

to in W/r by using the nonzero elements in Pi, and forms the pivot by summing off-diagonal
entries in the unreduced part of the same column as the pivot. Hence, GTH may be applied to
solve such blocks.

4. Implementation considerations. As mentioned before, NCD Markov chains that
arise in real-life applications are generally large and sparse. This necessitates the design and
employment of sparse storage schemes, which essentially store only the nonzero elements of
the transition probability/rate matrix.
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So far, the application ofthe GTH (and GE, for that matter) algorithm to systems (2.1) and
(3.1) is considered. (3.1) is written in the form of (3.2) so that it has a singular M-matrix with
0 column sums as its coefficient matrix just as in (2.1). Now, the alternative nontransposed
systems of equations may be written. The system that corresponds to (2.1) is given by

(4.1) ()(I C<)) O, II()I11 I.

Similarly, the equivalent of (3.2) is

(4.2) (:k+l), 2 )Wi O.

Define
Scheme 1. The transposed systems of equations in (2.1) and (3.2).
Scheme 2. The nontransposed systems of equations in (4.1) and (4.2).
Unless otherwise specified, reductions mean row reductions (i.e., the addition of a multiple

of a lower-indexed row to a higher-indexed row) in a given system of equations. The last
assumption is that the coefficient matrices are supplied to both schemes in the nontransposed
version. This is a fairly reasonable assumption, since the matrices are usually generated by
following the possible transitions from a given state, implying a row-wise generation.

The advantage of reducing the coefficient matrices in Scheme rather than the ones in
Scheme 2 to upper-triangular form is twofold:

the multiplier elements at each step of the reduction are bounded by 1 and
only the upper-triangular matrix needs to be stored during the reduction process.

Although the multipliers in Scheme 2 are not necessarily bounded by 1, the growth factor
still cannot be greater than 1 as indicated in [22]. However, if row reductions are carded out
in Scheme 2, both the upper-triangular matrix and the lower-triangular matrix, which contains
the multipliers, have to be stored during the triangularization process. The reason is that if row
reductions are performed on the nontransposed coefficient matrix, the LU decomposition will
provide a nonsingular lower-triangular matrix and a singular upper-triangular matrix that has
O’s in the last row. Although the decomposition is premultiplied by the stationary vector, one
only has to carry out a single substitution phase (see [9], p. 724) just as in the transposed system
of equations (but this time involving the lower-triangular matrix), thereby making it necessary
to store both the lower and the upper-triangular matrix during the reduction. One cure that
comes to mind is to store only the upper-triangular matrix during the reduction process and to
reconstruct the multiplier matrix after the reduction is over. Though quite straightforward, this
solution is inefficient due to the superfluous operations performed in calculating the multipliers
for the second time. On the other hand, Scheme 1 calls for the transposition of the coefficient
matrix before executing GE or GTH.

What follows is a discussion of the effects of the two implementation schemes on a
semisystematic row-wise sparse storageformat (see [13]). A row-wise sparse storage format
is a data structure that stores the nonzero elements in the coefficient matrix row by row.
Semisystematic means the elements of row precede those of row + 1, but the elements
within a given row need not be ordered. Together with the real value of each nonzero element,
the column index of the element is stored as well. Hence, two arrays of the same length, one
real and the other integer, are needed. Last, in order to have access to the rows, the starting
location of each row has to be stored in an integer array. To facilitate the computation of
the number of nonzero elements per row, an extra element whose value is equal to the total
number of nonzero elements plus 1 is appended to this array.

The GE algorithm, no matter which scheme is chosen, may be implemented using delayed
updates, which means at step k all reductions on row k + 1 may be carried out and the row
compacted and stored before the algorithm continues in the next step with the update of the
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next row. The property ofthe GE algorithm that makes this efficient implementation possible is
that reduction on a given row requires the addition of appropriate multiples of lower-indexed
rows to it. Hence, there is no data dependency between a row to be reduced and higher-
indexed rows in GE. The importance of this idea lies in the fact that it is sufficient to fully
expand only the row to be updated at a given step, whereas all other rows with higher indices
can still be held in compact form. However, this is no longer applicable when GTH is used in
Scheme 1, since all updates due to a row must be finished before the algorithm proceeds with
the next step. This situation is dictated by the new way ofcalculating the pivot elements. In the
GTH algorithm, the pivot element is formed by summing the most recently updated elements
that lie below the pivot, which implies a dependency of data between the pivot row and the
higher-indexed rows. Since storage is limited, one possibility is to expand each row that is
operated on, update it, and finally store it back in the appropriate location. The drawback is
that this sequence of operations on a row, depending on the fill-in, most probably causes other
elements in sparse storage to be shifted around the data structure (extra nonzero entries are
likely to occur after a row update). Consequently, it is safe to assume that GTH, with such
an implementation, spends more time doing memory reads and writes for larger chains. As
pointed out in 2, there is a slight difference in the way the single substitution phase in Schemes
1 and 2 is implemented in the GTH algorithm when a row-wise sparse storage format is used.
In the substitution phase, Scheme 2 calls for the solution of a homogeneous linear system in
which the stationary vector is postmultiplied by the lower-triangular matrix obtained from the
LU decomposition. The substitution is accomplished by accessing a different column of the
lower-triangular matrix at each step. This situation makes it necessary to have a doubly nested
loop in the code for accessing the elements of the columns. On the other hand, the substitution
phase ofScheme 1 requires the solution of a homogeneous linear system in which the stationary
vector is premultiplied by an upper-triangular matrix. This being so, the substitution phase
of Scheme 1 conforms nicely to a row-wise sparse storage implementation, and, therefore, it
may be handled in a single loop that accesses a row of.the upper-triangular matrix at each step.
In the actual implementation, the normalization equation (i.e., Ilrtll 1) is used to discard
the last equation and form a nonzero right-hand side in both schemes.

A suggestion made by G. W. Stewart [18] as a compromise between the high accuracy
of GTH and the implementation efficiency of GE is the following. Rather than performing a
correction on the pivot element at each step of GTH, the suggestion is that a pivot should be
corrected only when .cancellation would produce an inaccurate pivot. For the systems arising
in the lAD algorithm, cancellation seems to occur at quite predictable places. Specifically,
for the coupling matrix Ck), cancellation occurs in. the computation of the diagonal elements
of I Ck. The suggested cure is to compute the diagonal elements of I C from the
off-diagonal elements at the start and to use GE thereafter. For the solution of the diagonal
blocks, cancellation is most likely to occur in the computation of the last pivot element. In this
case the recommendation is that GE should be applied to the augmented system in (3.2) (or
(4.2)), and only the last pivot should be computed by summing the off-diagonal probability
mass as in GTH. It is expected that using the suggested scheme in the IAD algorithm will
result in a competitive solver (with the GTH method in terms of relative accuracy and with the
GE method in terms of total time spent in the lAD algorithm). Results of experiments with
this scheme are discussed in 5.

An alternative storage scheme is one that keeps the unused array elements in the form of a
linked list (basically, a freepool). In this case, an extra integer array, which, for each nonzero
element, stores the location of the next nonzero element in the same row, is required. ILa
given element is the last in its row, then the corresponding pointer may be set to 0. Though
this scheme circumvents the problem of moving array elements back and forth in memory, it
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introduces overhead due to the manipulation of the freepool. Note that just as in the ordinary
row-wise sparse storage format, all elements in a row may be kept ordered according to their
column indices in this last implementation. Finally, it should be pointed out that the effect of
using a column-wise sparse storage format with Scheme 2 is the same as using a row-wise
sparse storage format with Scheme 1 and vice versa.

Although not as costly as the extra reads and writes due to the discussed implementation
problems, GTH has N k extra additions at step k of the elimination procedure, amounting

N-1to Y’-k=l (N k) N(N 1)/2 extra operations in the solution of the coupling matrix.
Similarly, there are, ni(ni 1)/2 extra additions in the solution of the ith diagonal block.
Clearly, this is an upper bound. Since these extra addition operations are performed only on
nonzero elements in a sparse storage implementation, the actual overhead may be smaller.
Moreover, because of the need to introduce one more row to the linear system, extra n --[- 1
locations are used during the solution of each Pii in the disaggregation step. Last, in order to
form the (ni + 1)st equation during the disaggregation step, a number of additions equal to the
number of nonzero elements in Pi. are performed. If extra memory locations are available,
these N matrix-vector multiplications may be performed at the outset and the resulting vectors
stored for future use.

Note that both programming difficulties and overhead storage (arrays to store the indices
of nonzero array elements and pointers between elements) increase with the sophistication
of the storage scheme. Together with the row-wise sparse storage format, experiments with
the sparse storage format proposed by Knuth (see 13] for a brief explanation), which provide
equally fast access to columns and rows of a matrix, are conducted. For each nonzero element,
in addition to having a pointer to the next nonzero element in the same row, there is an additional
pointer to the next nonzero element in the same column. Obviously, there are two arrays that
keep the locations of the first nonzero element in each row and each column, respectively.
However, as remarked earlier, extra time will be spent for obtaining memory elements from
and returning memory elements to the freepool with this kind ofimplementation. With Knuth’s
sparse storage format, there is no need to transpose the matrix because rows may be treated
as columns and columns as rows. Although one may be inclined to think that Knuth’s sparse
storage format is more advantageous than the row-wise sparse storage format, due to the
overhead of handling the freepool, numerical experiments suggest that Knuth’s format is
likely be useful only if implemented in a programming language that provides primitives for
pointers to memory.

If some information about the structure of the coefficient matrix is available, then another
possibility may be to employ a two-dimensional banded storage structure. As for GE, the
row-wise sparse storage format with Scheme 1 is recommended.

Keeping in mind that memory is much slower than CPU, one must evaluate the significance
of extra operations performed and excess time spent in a sparse storage implementation as
opposed to the increased stability and accuracy that accrue from GTH in the context of real-life
applications.

5. Numerical results. Experiments with the IAD algorithm are carried out in sparse
storage on a SUN SPARC station 2. All routines used are part of the software package
MARCA (Markov Chain Analyzer) (see [20]). The routines are written in FORTRAN and
compiled in both double-precision and quadruple-precision floating-point arithmetic. For each
problem solved, the residual error and the relative error in the solution are computed. The
relative error is computed as Ilzr z 112/11r112, where zr is the quadruple-precision solution
and z is the double-precision solution obtained by the lAD algorithm. Both zr and z are
normalized so that their 1-norms are unity. The residual error is computed as I1(I P) 112,
which theoretically is 0 if zr ’. See Table 1.
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TABLE
Notationforparameters ofnumerical methods.

n

nzb
lter

Ttotal
Errres
Errrel

magg
mdisagg

Order of the stochastic transition matrix P
Number Of nonzero elements in the matrix
Number of strongly connected components
Number of nonzero blocks
Number of iterations required to get a residual norm
of less than 10-15
Total time spent in the IAD algorithm, (in CPU seconds)
II(I- PT)rII2

Decomposability parameter
Method used in aggregation phase
Method used in disaggregation phase

TABLE 2
Solvers used.

GEl
GE2
GTH2
GTH1

Sparse Gaussian elimination using Scheme
Sparse Gaussian elimination using Scheme 2
Sparse Grassmann-Taksar-Heyman algorithm using Scheme 2
Sparse Grassmann-Taksar-Heyman algorithm using Scheme

The problem associated with GE, when NCD Markov chains with a degree of coupling
less than machine epsilon are to be solved, has already been shown. Therefore, the emphasis
is on problems with a degree of coupling larger than machine epsilon in order to see how GE
and GTH behave comparatively in this case. Experiments are performed with implementation
Schemes and 2 on the row-wise sparse storage format used in MARCA. The GTH imple-
mentation of Scheme 1 is accomplished by shifting contents of arrays rather than using the
alternative with the freepool. See Table 2.

The first problem appears quite frequently in the literature. Although the order of the
matrix considered in this problem is quite small, it is still instructive to examine the effects of
using the IAD algorithm on such a problem. The second problem investigated is a real-life
example and had been studied with a variety of parameters in the past. The scheme suggested
by G. W. Stewart 18] in 4 is implemented, and the outcome of the related experiments are
discussed following the presentation of the numerical results.

The decomposability parameter /(in Table 1) is input by the user; it is used to determine
the strongly connected components in the transition matrix by simply ignoring the elements
that are less than the suggested value. Therefore, y may be taken as an approximation of the
degree of coupling. If the matrix is not already in the form (1.1), then symmetric permutations
are used to put it into the form in which the diagonal blocks form the strongly connected
aggregates.

5.1. Test Problem 1. The first problem that is considered is the 8 8 Courtois matrix
[3] with all row sums equal to 1. The degree of coupling for this matrix is 0.001.

TABLE 3
Reultsfor Problem 1: n 8, nz 41, /-0.001, N 3, nzb 9.

GEl GEl 4 0.04
GE2 GE2 4 0.04
GTH2 GTH2 4 0.04
GTH1 GTH1 4 0.04

Errres Errrel
0.286E- 16 0.824E- 13
0.347E- 16 0.904E- 13
0.250E- 16 0.420E- 15
0.208E- 16 0.282E- 15
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0.85
0.1
0.1
0
0.0005
0

0 0.149 0.0009 0 0.00005 0
0.65 0.249 0 0.0009 0.00005 0
0.8 0.0996 0.0003 0 0 0.0001
0.0004 0 0.7 0.2995 0 0.0001
0 0.0004 0.399 0.6 0.0001 0
0.00005 0 0 0.00005 0.6 0.2499

0.00003 0.00004 0 0.1 0.8
0 0 0.00005 0.1999 0.25

0.00003 0
0 0.00005

0.00005
0.00005
0
0
0
0.15
0.0999
0.55

0.8928265275450187E 01
0.9275763750513320E 01
0.4048831201636394E 01
0.1585331908198259E + 00
0.1189382069041751E + 00
0.1203854811060527E + 00
0.2777952524492734E + 00
0.1018192664446740E + 00

5.2. Test Problem 2. The second problem considered appears in [19]. It represents a
time-shared, multiprogrammed, paged, virtual memory computer system modeled as a closed
queueing network (see Fig. 1).

The system consists of a number of users using the terminals, a central processing unit
(CPU), a secondary memory device (SMD), and a filing device (FD). The degree of multi-
programming in the system at any given time is 0 r/0 / r/1 -[- r/2, where r/0, r/l, r/2 are,
respectively, the number of processes in the CPU, SMD, and FD queues at that moment. Fur-
thermore, r/t represents the number of processes currently being generated at the terminals but
not yet transmitted to the CPU for execution. ) is the mean generation time of processes by
users working on the terminals. The mean service rate of the CPU depends on r/and is given
by/z0(r/). The processes that leave the CPU proceed to the SMD, to the FD, and back to the
terminals with probabilities pl, p2, 1 pl p2, respectively. The mean service rate at the
SMD is given by/Zl and at the FD by/z2. All arrival and service rates are exponential. Note
that it is not possible to apply analytical techniques to solve the above model since the CPU
execution time depends on the degree of multiprogramming.

Terminals

Pl P2

FIG. 1. An interactive computer system.
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Given the necessary parameters, MARCA generates the transition probability matrix cor-
responding to the specific queueing system under consideration. Experiments with different
combinations of parameters are carried out because the effect of making the transition proba-
bility matrix larger and closer to the identity matrix so that it is almost decomposable is to be
observed. The generated matrix has a block tridiagonal structure with a small percentage of
nonzero elements. It must be remarked that this type of matrix is frequently encountered in
queueing network analysis.

(a) For the first example, the following parameters are chosen:

r/t+r/ 3,
) (10-4)r/t,

pl/z0(r/) 100(0/128) 15,
p2/z0(r/) 0.05,

1-pl-p2 0.002,

]-/,1 0.2,

/J,2 1/30.

TABLE 4
Sizes ofthe aggregatesfor Problem 2(a):}, 10-3.

10 6 3

TABLE 5
Resultsfor Problem 2(a): n 20, nz 80, , 10-3, N 4, nzb 10.

GE GEl 5 0.10
GE2 GE2 5 0.10
GTtt2 GT tt2 5 0.10
GTH1 GTH 5 0.10

Errres Errrel
0.468E- 15 0.381E- 12
0.483E- 15 0.391E- 12
0.447E 15 0.404E 12
0.448E- 15 0.404E- 12

(b) The parameters in this example are the same as those in 2(a). except

/z2 (10-1)/30.

Sizes of the aggregates for Problem 2(b) for , 10-11 are the same as for Problem 2(a).

TABLE 6
Resultsfor Problem 2(b): n 20, nz 80, , 10-11, N 4, nzb 10.

GEl GEl 0.07
GE2 GE2 0.07
GTH2 GTH2 0.07
GTH1 GTH1 0.07

Errres Errrel
0.974E- 17 0.345E- 14
0.974E 17 0.345E- 14
0.999E- 20 0.421E 16
0.999E 20 0.421E 16

(c) The parameters in this example are the same as those in 2(a) except

2 (10-14)/30.
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Sizes of the aggregates for Problem 2(c) for y 10-15 are the same as for Problem 2(a).

TABLE 7
Resultsfor Problem 2(c): n 20, nz 80, y 10-15, N 4, nzb 10.

GEl GEl 0.02
GE2 GE2 0.02
GTH2 GTH2 0.02
GTH1 GTH1 0.02

Errres Errrel
0.551E- 16 0.204E- 13
0.551E- 16 0.204E- 13
0.846E 28 0.354E 24
0.841E 28 0.354E 24

(d) The parameters in this example are the same as those in 2(a) except

r/t -k- r/ 10.

TABLE 8
Sizes of the aggregatesfor Problem 2(d)" ?’ 10-3.

3 6 10 15 21 28
36 .45 55 66

TABLE 9
Resultsfor Problem 2(d)" n 286, nz 1,606, y 10-3, N 11, nzb 31.

GEl GEl 8 0.47
GE2 GE2 8 0.64
GTH2 GTH2 8 1.18
GTH1 GTHI 8 2.72

Errres Errrel
0.519E- 16 0.142E- 11
0.969E- 16 0.469E 11
0.412E- 16 0.233E- 12
0.449E- 16 0.233E- 12

(e) The parameters in this example are the same as those in 2(d).

TABLE 10
Sizes ofthe aggregatesfor Problem 2(e)" y 10-4.

[65 55 165

TABLE 11
Resultsfor Problem 2(e)" n 286, nz 1,606, y 10-4, N 3, nzb 7.

Magg Maisagg liter Tttal
GEl GEl 5 0.88
GE2 GE2 5 1.09
GTH2 GTH2 5 2.89
GTH GTH1 5 13.84

Errres Errrel
0.178E- 110.583E 16

0.531E- 16 0.132E 11
0.398E- 16 0.383E- 12
0.350E- 16 0.383E- 12

(f) The parameters in this example are the same as those in 2(d) except

//’2 10-5)/30.
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TABLE 12
Sizes ofthe aggregatesfor Problem 2(f): y 10-3.

2 3 2 4 3 5 2 4 6 3 5 7
2 4 6 8 3 5 7 9 2 4 6 8 10

3 5 7 9 11 2 4 6 8 10 3 5 7 9
2 4 6 8 3 5 7 2 4 6 3 5 2 4

3 2

TABLE 13
Resultsfor Problem 2(f): n 286, nz 1,606, y 10-3, N 66, nzb 196.

GEl GEl 3 0.16
GE2 GE2 3 0.24
GTH2 GTH2 3 O.39
GTH1 GTH1 3 0.49

Errres Errrel
0.469E- 130.247E- 16

0.247E 16 0.469E 13
0.111E- 15 0.107E- 14
0.1ilE- 15 0.107E- 14

(g) The parameters in this example are the same as those in 2(a) except

r/t + /= 20 and . (10-7)r/t.

TABLE 14
Sizes ofthe aggregatesfor Problem 2(g): , 10-6.

3 6 10 15 21 28
36 45 55 66 78 91 105
120 136 153 171 190 210 231

TABLE 15
Resultsfor Problem 2(g): n 1,771, nz 11,011, ?’ 10-6, N 21, nzb 61.

Maisae’e’ Iter Ttotal Errres
GEl GEl 3 3.79 0.234E- 16
GE2 GE 3 4.11 0.234E 16
GTH GTH2 3 15.12 0.514E- 18
GTH1 GTH1 3 82.47 0.514E- 18

Errrel
0.263E- 12
0.263E- 12
0.605E- 14
0.605E- 14

(h) The parameters in this example are the same as those in 2(a) except

r/t + r/= 20, /Zl 0.2(10-1), and/x2 (10-1)/30.
Sizes of the aggregates for Problem 2(h) for V 10-12 are the same as for Problem 2(g).

TABLE 16
Resultsfor Problem 2(h): n 1,771, nz 11,011, , 10-12, N--21, nzb--61.

Maisaga Ilterl Ttotal Errres
GEl GEl 3 2.23 0.390E- 16
GE2 GE2 3 2.88 0.390E- 16
GTH GTH2 3 9.12 0.399E- 16
GTH1 GTH1 3 26.89 0.399E 16

Errrel
0.466E 03
0.466E 03
0.583E- 15
0.584E- 15

In all problems considered, both IAD with GE and IAD with GTH converged (see Iter in
Table 1) with a residual of order machine epsilon regardless of the implementation scheme
chosen. For each problem, the number of iterations taken by both methods is the same.
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However, the relative error in IAD with GE is much larger than that of IAD with GTH in
the first small problem (see Table 3) where lAD with GTH has a relative error almost of
order machine epsilon. It is presumed this is due to the smaller size of the systems solved in
this problem. The first test problem has a small coefficient matrix giving rise to a coupling
matrix of size 3 x 3. Similarly, the largest system solved in the disaggregation step of the
lAD algorithm is of size 3 x 3. Consequently, one expects to lose a relative accuracy of
roughly 2 digits in this problem when lAD is used with GTH. The results confirm that lAD
with GTH performs even better than the expectations, and only a single digit of accuracy is
lost. However, as in the second problem, there are cases where the GTH algorithm does not
achieve its worst-case bound due to statistical effects in rounding error accumulation although
the matrices solved are considerably larger (see Tables 4, 8, 10, 12, and 14). Moreover, just as
indicated in 10], it is possible to improve the entrywise relative error in the GTH algorithm
even further by forming the pivot element in higher precision (quadruple precision for the
given system parameters).

As expected, the number of iterations taken to achieve the prespecified tolerance criterion
decreases as the decomposability parameter becomes smaller for a given problem. Among the
problems considered, when the decomposability parameter is greater than or equal to 10-6,
IAD with GE provided results in which 3 to 5 digits of accuracy are lost (see Tables 3, 5,
9, 11, 13, and 15). An observation regarding the results of the second test problem is the
difference between Ttotal’S for implementation Schemes 1 and 2 (see Tables 9, 11, 13, 15,
and 16). First, although it is not the case for the second problem, the nonzero structure of a
nonsymmetric matrix changes if the matrix is transposed, thus totally affecting the reduction
process. Second, both methods in Scheme 2 store the multipliers, and thus they spend extra
time. Finally, remember that Scheme 1 implementation of GTH is accomplished by shifting
data around in memory, which is a very time-consuming process.

The results of the modified scheme (suggested by G. W. Stewart) are quite competitive
with those of IAD with GTH for the first small problem (see Table 17). However, there are
examples (Test Problem 2, parts (b), (c), (e), (f), (g)) with varying degrees of decomposability
for which the modified scheme does not provide a relative error that is competitive with the
relative error in IAD with GTH (see Tables 6, 7, 11, 13, and 15). However, it is never larger
than the relative error in lAD with GE (see Table 17). The timing of the modified scheme is
almost as good as that of IAD with GE even for the larger test cases.

6. Conclusion. In this paper, the computation of the stationary probability vectors of
ill-conditioned NCD Markov chains is considered. The GTH method, which avoids subtrac-
tions, is a much more stable version of GE. For that reason,, it is a good candidate to be used
in the two-level IAD algorithm. Experiments on several problems are carried out, applying this

TABLE 17
Resultsfor modified scheme (transposed version).

Problem liter Ttotal
4 0.04

2(a) 5 0.10
2(b) 0.07
2(c) 0.02
2(d) 8 0.56
2(e) 5 1.03
2(f) 3 0.28
2(g) 3 4.35
2(h) 3 2.71

Errres
0.621E- 16 0.423E- 15
0.458E- 15 0.381E- 12
0.974E- 17 0.345E- 14
0.551E- 16 0.204E- 13
0.443E- 16 0.245E- 12
0.385E- 16 0.109E- 11
0.247E- 16 0.469E- 13
0.234E- 16 0.263E- 12
0.399E- 16 0.273E- 15
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idea versus GE in the IAD technique. The GTH approach to calculating the pivot element by
taking the negated sum of the off-diagonal elements in the unreduced part of the pivot column
proves to be valuable for singular M-matrices with 0 column sums, and it is shown to be quite
effective on the problems of interest.

The GTH idea is employed to solve the linear systems of equations formed in both
the aggregation and disaggregation steps of the IAD algorithm. For the first small problem
considered, we observed that the relative error in lAD with GE is much larger than that of
lAD with GTH, whose relative error is fixed in the order of machine epsilon. In all cases,
the size of the systems solved provides an estimation for the worst case bound on the relative
error for IAD with GTH. Additionally, just as explained in 4, it was not surprising to see lAD
with GTH take on the order of 10 times as much time as IAD with GE for the larger chains in
the second test problem. A modified scheme suggested by G. W. Stewart, which essentially
performs diagonal correction on pivots only when there is a suspected loss in significance,
seems to work very well in the lAD algorithm for small NCD Markov chains. The scheme
possesses the good relative accuracy property of GTH and the convenient implementation
of GE. However, for larger matrices, it is frequently no better than GE (while never being
worse than GE) in terms of relative accuracy. It is also verified for IAD with GE that a
significant difference between the relative error and the residual error is. a clear indication of
an ill-conditioned problem.

In conclusion, ordinary GE should definitely be avoided in both steps of the iterative IAD
algorithm when solving NCD chains with a degree of coupling less than machine epsilon.
However, if an approximation to the stationary vector of a large NCD Markov chain is sought
in a short time, IAD with GE may be used. On the contrary, if relative error in the stationary
vector of the NCD chain is deemed as of utmost importance, then IAD with GTH has to
be recommended. However, we do recommend lAD with GE when the decomposability
parameter for a given problem is greater than or equal to 10-6. Only 3 to 5 digits of accuracy
were lost in such problems considered. A compromise between GE and GTH seems to be
the modified scheme suggested by G. W. Stewart. Examination of several sparse storage
formats for both GTH and GE has indicated one disadvantage of the GTH method. The time
to execute the IAD algorithm on large irreducible NCD Markov chains tends to be longer
when the GTH method is used in the aggregation and disaggregation steps of the iterative
solver. Memory requirement of the GTH algorithm is generally slightly higher than that of
GE; nevertheless this mostly depends on the sparse storage format chosen. One last remark
would be to direct attention to the possibility of exploiting the inherent parallelism in the
formation of the coupling matrix. Similarly, parallel implementation of the solution of N
nonsingular systems in the disaggregation step needs to be investigated.
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MOVING MESH METHODS FOR PROBLEMS WITH BLOW-UP*

CHRIS J. BUDDt, WEIZHANG HUANGt, AND ROBERT D. RUSSELL

Abstract. In this paper we consider the numerical solution of PDEs with blow-up for which scaling invariance
plays a natural role in describing the underlying solution structures. It is a challenging numerical problem to capture the
qualitative behaviour in the blow-up region, and the use ofnonuniform meshes is essential. We consider moving mesh
methods for which the mesh is determined using so-called moving mesh partial differential equations (MMPDEs).
Specifically, the underlying PDE and the MMPDE are solved for the blow-up solution and the computational mesh
simultaneously. Motivated by the desire for the MMPDEto preserve the scaling invariance ofthe underlying problem,
we study the effect of different choices of MMPDEs and monitor functions. It is shown that for suitable ones the
MMPDE solution evolves towards a (moving) mesh which close to the blow-up point automatically places the mesh
points in such a manner that the ignition kernel, which is well known to be a natural coordinate in describing the
behaviour of blow-up, approaches a constant as -- T (the blow-up time). Several numerical examples are given to

verify the theory for these MMPDE methods and to illustrate their efficacy.

Key words, blow-up solution, moving mesh, scaling invariance
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1. Introduction. Many mathematical idealizations of physical models have the property
that they develop singularities in a finite time T. Examples are the blow-up of the solutions
of models describing combustion in chemicals or chemotaxis in cellular aggregates and the
formation of shocks in the inviscid Burgers’ equation and the space-charge equations. Such
a singularity often represents an important change in the properties of the model, such as the
ignition of a heated gas mixture, and it is important that it should be accurately reproduced by
a numerical computation.

When a singularity forms, changes occur on increasingly small length scales and, as the
time T is approached, on increasingly smaller timescales. If a numerical method with afixed
mesh is used to reproduce such behaviour then its accuracy will diminish significantly when
the length scale of the singularity approaches the spacing between mesh points. In some cases
this will lead to numerical solutions which differ qualitatively from the underlying analytic
solution. Indeed, examples can be found where a computation on a fixed mesh misses the
blow-up entirely, or where the numerical solution blows up over the whole region even though
the analytic solution develops a singularity at a single point [AB94].

To compute such singular behaviour accurately, it is essential to use a numerical method
which adapts the spatial mesh as the singularity develops. Ideally, the numerical method will
reproduce the singularity sufficiently accurately as -- T to mimic the asymptotic behaviour
of the solution. A feature of a wide class of PDEs (partial differential equations) which
makes this feasible is that the spatial structure of the singularity evolves in a fairly simple
manner, often independent of any local structure in the initial conditions. Provided that the
adaptive method can reproduce this simple asymptotic behaviour, there is reason to hope that
a numerical scheme can be designed to perform accurately for all times < T.

One class of problems which have this feature is the semilinear parabolic equations de-
scribing the blow-up of the temperature of a reacting medium, such as a burning gas. The
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simplest equations describing such blow-up have the form

(1.1) ut Uxx + f(u), u(0, t) u(1, t) 0, u(0, x) uo(x),

where f(u) is any convex function of u such that f(u) cx as u -- x. In this paper
we shall consider the cases of f(u) up, f (u) eu, and slightly more general problems.
It is well known [FM85] that if uo(x) is "sufficiently large" and has a single nondegenerate
maximum, then there is a blow-up time T < cx and a unique blow-up point x* such that

(1.2) u(x*, t) -- o as --+ T

and

(1.3) u(x, t) --+ u(x, T) < cx ifx x*.

(If > T the solution becomes infinite everywhere.) Close to x*, the solution u(x, t) develops
an isolated peak which becomes narrower, tending to zero width, as T. A derivation and
general study of these systems is given in [BE89].

The computation of the solutions of (1.1) is important for several reasons. First, although
very simple, the formation of the singularities in this problem is typical of that of a wide
class of PDEs modelling many differing physical phenomena. Second, a great deal is known
about the analytic structure of the solutions of (1.1) for close to T and x close to x*, and
thus they make excellent problems for testing the performance of and verifying the analysis
for the numerical methods used in their solution. Third, having numerical methods which
are faithful to the underlying asymptotics of the PDEs raises the possibility of solving very
difficult problems for which the analytic structure is unknown, and then using the resulting
numerical solutions to lend insight into this structure. Of course this can in turn motivate
derivation of further theoretical results.

Existing adaptive numerical methods for solving (1.1) are described in [Cho81], [LPSS86],
[BK88], [Bet89], and [BDS93]. These are either based upon closely exploiting the known
analytic structure of the singularity or on an adaptive procedure which requires an increas-
ingly larger number ofmesh points to model the developing singularity as T. In contrast,
we shall describe here an elegant set of methods for solving (1.1) which use the dynamic
gridding algorithms described in [HRR94b]. These MMPDE (moving mesh PDE) methods
are based upon equidistributing a monitor function, say M(u, Ux, Uxx), which relies on no a
priori knowledge of the solution to the PDE u, although an analysis of scaling properties of
the PDE does lead to certain optimal choices of M. We shall show that these methods have
the significant property that they reproduce the dynamical nature of the development of the
singularity. In particular, there is a natural rescaling of the spatial coordinate close to the
singularity which is automatically captured by the moving mesh method.

The asymptotic scaling of the singularity was first observed formally by [Do185]. A full
proof is given in [BB92]. They showed that for x close to x* and close to T there was a
natural spatial coordinate, the so-called ignition kernel lz, where

(1.4) /x(x, t) (x x*) [(T t)l log(T t)l] -1/2

In [BK88] the original PDE is recast in terms of the closely related "similarity" variable

(1.5) ( =/z log (T t),

which is derived from a scaling invariance of the original PDE, and the resulting scaled PDE
is then solved by using a static regridding algorithm. In contrast, we show that the MMPDE
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solution evolves towards a (moving) mesh which close to the singularity automatically places
the mesh points xi(t) in such a manner that Ix(xi, t) approaches a constant as -- T. In this
way, the MMPDE methods naturally inherit the correct spatial structure of the singularity.

The paper is organized as follows. In 2 we introduce the blow-up problems and describe
the asymptotic form of solutions close to blow-up. In 3 we introduce the. MMPDE method
for determining the mesh coordinate transformation used to solve these problems. Motivated
by the desire to preserve scaling invariance, we consider the effect of different choices of the
MMPDE and monitor function M. In 4 we show that in fact the "approximate" similarity
solution behaviour of (1.1) is preserved by suitable choices of M, using techniques for the
discrete analysis which mimic the previous analyses for the continuous case. In 5 we give
numerical examples to verify the theory for theseMMPDEmethods and illustrate their efficacy.
Finally, in 6 we state some conclusions and briefly discuss a more general framework under
current investigation.

2. Structure ofblow-up solutions for PDEs. We now consider the form ofthe solutions
of the semilinear parabolic PDE

(2.1)
U --Uxx -[-Up p > 1,
u(O,t) u(1, t) =0,
u(x, O) uo(x) > O.

As well as looking at the asymptotic form of the solutions close to blow-up we also consider
some of the underlying principles which lead to these solutions. These principles can then be
used as a guide to the numerical method and also to study other related equations.

It has been shown by several authors, e.g., [FM85], that if uo(x) is sufficiently large and
positive and has a single nondegenerate maximum, then (1.2) and (1.3) hold. The point x* and
the time T depend subtlely upon uo(x) but, remarkably, the solution u(x, t) itself is almost
independent of u0 provided that x and are close to x* and T, respectively. The blow-up
profile takes the form of an isolated spike of increasingly narrow width and has been studied
by [Do185] and [BK88]. The behaviour of this spike may be described as follows.

THEOREM 2.1. Let and let Ix(x, t) be defined by

(2.2) Ix (x x*) [(T t) (c log(T t))]-
where is a constant which depends on uo(x).

(i) Ifx(t) is taken to keep Ix(x, t) constant, then the solution u(x, t) to (2.1) satisfies

(2.3) (T t)u(x, t) 1 + as -- T.

(ii) If Ix x*l is small butfixed and independent oft, then

(2.4) u(x, t) -- u(x, T) 4pfl2 lot 2 log Ix x II x*
Ix x*l e

(1 -t- O([x l)e

ast -+ T.
We observe that the expressions (2.3) and (2.4) coincide’ if we set Ix to be large. The

expression (2.3) describes the evolution of the blow-up peak in terms of the "ignition kernel"
Ix. This variable was first identified by [Do185], and is a natural variable to describe the spatial
structure of blow-up. A remarkable feature of the numerical methods we shall describe is that
close to x* the moving mesh is placed precisely at those points for which Ix is constant.
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The starting point for deriving these expressions is a natural scaling invariance of the
solutions of (2.1) (in the absence of boundary conditions). In particular, the equation is
invariant under the scaling

(T t) --+ k(T t),
luU--)" )

x - xfor any positive .. A similarity solution of (2.1) is any solution which is invariam under this
scaling. Many interesting PDEs, including problems leading to blow-up (see below), have a
scaling invariance similar to (2.5).

Motivated by (2.5) we recast (2.1) in terms of similarity variables w(s, y), y, and s

defined by

(2.6)
s -log(T t),
w(s, y) (T t)u(x, t),
y (x x*)(T t) -1/2

to give the partial differential equation

(2.7) w Wyy -yWy nt- W
p W

supplemented with

(2.8) Wy(S, 0) 0 and w(s, y) -- 0 as lY[

The latter condition is necessary to match the boundary conditions satisfied by the solutions
of the unscaled problem.

A similarity solution of the original PDE is a steady state (i.e., s independent) solution
of (2.7) which also satisfies (2.8). These solutions were originally proposed as solutions of
(2.1), but in fact, the only bounded, nonzero steady state solution of (2.7) is

(2.9) w(s, y) ,
which fails to satisfy (2.8). However, if we consider a set of poims x(t) such that y(x, t) is
fixed, then by using energy arguments Giga and Kohn [GK85] show that

(2.10) (T t)u(x, t) --+ ,
so that the function (2.9) is an attractor for solutions of (2.7) over compact sets in y.

To calculate a solution of (2.7) which corresponds to a solution of (2.1) we consider
instead a perturbation of the similarity solution by setting

(2.11) w(s y) f (g--(-() =-- f(z)

where f and g satisfy the conditions

(2.12)
f(z) --+ 0 as Izl ,
g(s)-- cx as s ,-- 0ass cx.
g
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The derivation of these conditions is given in [BK88]. Substituting into (2.7) gives

g’ 1
fp(2.13) --zfz g-Z fzz + -;zfz + [3f 0

g z

which, for large s, reduces to the first-order equation

1
(2.14) -;zfz + flf fP 0

z

with solution

(2.15) f (z) [ d- cz21 -l
where c is a constant which without loss of generality may be set to 1. The reduction of
problem (2.1) from a second-order equation (2.7) to a first-order Hamilton-Jacobi one (2.14)
is a crucial feature of blow-up problems, see [GV93]. The function g, giving the spreading
rate, can be derived formally by making an expansion of the function w in powers of 1 and

matching terms. This implies that g-2, g’, and s- should all be ofthe same order for s > > 1.
The details of this derivation are given i [BK88] and [Do185] and give

(2.16) g(s) [4/32p(s + c)]
where ot is a constant which depends (weakly) upon the initial conditions. Combining (2.15)
with (2.16) and taking s large gives (2.3).

The derivation given here is formal and is closely related to an analysis of the behaviour of
the numerical scheme described in 4. A more precise derivation of the result (2.3) describing
the shape of the blow-up peak follows from a centre-manifold reduction of the solutions of
(2.7) and is given in [BB92], [FK92], and [HV93]. These papers also give a rigorous derivation
of (2.4), although this equation follows formally from taking the large/z limit of (2.3) and
matching to a steady state solution.

A useful conclusion from (2.3) is the natural relationship between the various scalings
involved in the solution of the blow-up problem. In particular, if we consider r (T t) to
be the local "timescale" for blow-up, then the corresponding scale for u is

(2.17) U

and the length scale for x is

(2.18) X [’t’(ot log "t’)] 1/2

Furthermore, the scale for ux is approximately given by

U
(2.19) Ux [’t’l+2C(Ot- log "t’)J

-1/2"

X

These scales are useful in deciding the choice of an appropriate numerical method. For
example, (2.18) gives an indication of the correct mesh spacing close to the blow-up point.

The scaling invariance (2.5) plays a crucial role in the analysis of (2.1). Although the
solution of the PDE is not self-similar, it is close to being self-similar and moreover converges
to the self-similar solution w /3 on any compact interval in the similarity variable y.
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Such scaling invariance and associated self-similar and approximately self-similar solution
behaviour is found in many other equations describing blow-up and for completeness we list
some of these here. Further examples of semilinear and quasi-linear PDEs related to (2.1)
include the Kassoy problem [Kas77], [Gel63]

(2.20) ut lgxx -t- eu

and porous-medium reaction-diffusion equations

(2.21) ut (luxlux)x + eu

and

(2.22) U (lgUx)x "at- Up,

which are analyzed in [BDG93] and in [GP91], respectively. Furthermore, the nonlinear
Schr6dinger equation [LPSS86]

(2.23) iapt / A7 / 17127 --0

is an example of a hyperbolic PDE for which blow-up occurs in Rt if N > 2, and this has
been used to model focusing in lasers.

The similarity variables for (2.20) and (2.21) are

| w(s, y) log(T t) + u(x, t),
(2.24)

y x(T t)

and with this change of variables (2.20) and (2.21) reduce to PDEs similar to (2.7), which can
be analyzed in an analogous way. Remarkably, the corresponding solution is approximately
self-similar if cr 0 and exactly self-similar if a > 0. Similar behaviour to that in (2.1) is
observed for (2.22) with ot > 0, where

(2.25) y x(T t) -1/2[l+t/(p-1)].

The behaviour of the nonlinear Schr6dinger equation is less well understood, but it is invariant
under various scalings. In particular, it has a natural set of similarity variables given by

Y= t),
ds(2.26)

u(y, r) L1/Cr,
where r Ixl and L(t) can be chosen in various ways. These follow from the scaling
invariance of solutions given by

(2.27) p(x, t) --+ Z-l/or l/t

In [LPSS86] extensive use is made of this rescaling in calculating the solution of (2.23)
numerically. Self-similar solutions arise when L(t) (T t)1/2, as in the previous problems,
and numerical evidence for the existence of such solutions has been obtained.

It is clear from this brief discussion that the scaling invariance of (2.1) and (2.20)- (2.23)
plays a key role in determining the dynamical solution behaviour. This strongly implies that
numerical methods which respect this invariance should be more effective in reproducing the
dynamics than those which do not. Such methods must necessarily employ moving meshes
to allow for rescalings in both space and the solution. We now consider these.
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3. MovingmeshPDEswith scaling invariance. The class ofmethods whichwe propose
for solving (1.1) are the moving mesh PDE methods described in [HRR94a] and [HRR94b].
For these the function u(x, t) is discretized to give the solution values ui(t) defined on a
moving mesh xi(t), 0 N. The boundary conditions in (1.1) give u0 UN 0 and
x0 0, xN 1. The mesh Xi(t) is defined in terms of a differentiable mesh transformation
x(, t) [0, 1] -- [0, 1], where x is the physical coordinate and is the computational
coordinate such that

(3.1) xi(t) x (, t)
In the continuous formulation, the constraint

Ox
(3.2) > 0

assures that the mesh transformation is well defined for fixed t, and the discrete analogue
is that mesh crossing does not occur. For the MMPDE approach, a new partial differential
equation for x(, t), called the moving mesh PDE, is solved simultaneously with the original
PDE for u(x, t). The underlying strategy for determining x(, t) is to require equidistribution
of a positive monitorfunction, say M(u, Ux, Uxx), so that

/0
x

f0(3.3) Mdy Mdy.

Equivalently, differentiating this identity gives

(3.4)
0

m 0, x(0, t)=0, x(1, t)-- 1.

A mesh (or a coordinate transformation) is said to be equidistributed when (3.4) holds. It is
convenient in practice not to enforce exact equidistribution upon a mesh but to instead solve
an MMPDE for which it tends toward an equidistributed state. This has the advantages that a
simple initial mesh (such as a uniform one) can be used, the process produces stable meshes
with less risk of mesh crossing than if (3.3) were enforced, and combined with a smoothing
approach it reduces the problem (associated, for example, with the schemes proposed in
[LPSS86]) of placing so many points close to the developing singularity that resolution is lost
elsewhere. Of the various MMPDEs proposed in [HRR94a], we consider the two labelled
MMPDE4 and MMPDE6. These are, respectively,

(MMPDE4)

and

(MMPDE6) r M
02 0

Here, k denotes Ox-b-71 fixed and r is a small parameter which acts to relax the mesh to the
equidistributed state. Note that MMPDE6 is the second derivative with respect to of the
integro-differential equation

(3.5) zc (foX Mdx fol Mdx)
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It is worth remarking that many previous moving mesh equations can be regarded as variants
of or discrete approximations of these MMPDEs. (See, e.g., [HL89] for MMPDE6; see also
[HRR94a] and [HRR94b].)

If we apply moving mesh PDE methods to solve a PDE with an underlying scaling invari-
ance, then as the underlying PDE and the MMPDE are solved simultaneously to determine
both the solution u and the mesh x, it is desirable that the scaling invariance of the underlying
PDE be preserved. For (2.1) this requires that MMPDE4 or MMPDE6 be invariant under the
scaling (2.5). The parameter r and the monitor function M can indeed be suitably chosen to
meet this requirement. Assuming that the solution u (x, t) to (2.1) is positive for x 6 (0, 1) and
> 0, MMPDE6 can be made invariant under the scaling (2.5) if r is taken as a dimensionless

constant and

(3.6) M(u) up-1.

However, regardless of the choice of M, r cannot be constant if MMPDE4 is to be invariant
under (2.5) (although we can obtain an invariance if r is chosen adaptively).

This difference between MMPDE6 and MMPDE4 becomes important when we consider
the timescales under which the mesh adapts to follow the structure of the solution. An inspec-
tion of MMPDE4 and MMPDE6 shows that each has a natural timescale Tmesh for adapting
the mesh towards an equidistributed mesh. For MMPDE4 Trnesh O(r) and for MMPDE6
Tmesh O(). If Zmesh is significantly greater than the natural timescale for the evolution
of the solution structure, then the mesh cannot adapt rapidly enough to follow the solution
structure and is to all intents and purposes fixed. As we showed in 2, the natural timescale
for the evolution of the blow-up peak is O (T t). Hence, if

(3.7) T < < r,

then MMPDE4 will not be able to evolve the mesh rapidly enough to follow the evolution of
the peak. In contrast, if we look at MMPDE6 with M as in (3.6), then u-_ r(T t).
Hence the timescale for the evolution of the mesh is always a factor r smaller than the natural
timescale of the underlying problem, and MMPDE6 will continue to evolve the mesh for
close to T. This is a direct consequence of the scaling invariance of MMPDE6 under this
choice of monitor function. Other choices of monitor function (for example, arclength) do
not share this property, and we will study this in more detail in 4.

For the numerical computation, PDE (2.1) is transformed in terms of the computational
coordinate and discretized by central finite differences on a uniform mesh in the computa-
tional domain. That is, (2.1) is first transformed into the quasi-Lagrangian form

(3.8) { ,_ -v-i= l(U) +up
x x

u(0, t) u(1, t) 0,

and discretization gives the equation

X
Xi+l Xi-1 Xi+l Xi-1 Xi+l Xi Xi Xi-1

1 N 1 and u0 UN 0. Similar finite difference equations can be obtained for
discretizations of MMPDEs 4 and 6.

It is well known that formoving meshmethods, some sort ofsmoothing ofthe mesh is often
necessary in order to obtain nonoscillatory, reasonably accurate solutions (e.g., see [DD87],
[FVZ90], and [HRR94b]). In [DD87], Dorfi and Drury use a technique which smooths the
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node concentration defined by x, x," In [VBFZ89], Verwer et al. prove that smoothing the
o+

node concentration is basically equivalent to smoothing the monitor function over all points.
To maintain the local structure of the underlying difference equations, we use the technique
employed in [HRR94b]. Specifically, the values ofthe smoothed monitor function M at nodes
are defined by

i+ip

Mk (y+l) Ik-il

lii k=i-i
i+ip Ik-il

k=i-ip

where Mi =- M(i, t), ip is a nonnegative integer, and , is a positive constant. The summations
in (3.10) are understood to contain only elements with indices in the range between 0 and N.
Notice that the replacement of Mi by M is basically equivalent to using a smoother monitor
function, and p 0 corresponds to the nonsmoothing case. Values of the parameters ,
and ip need to be selected for these moving mesh PDE methods. In our experience (also see
[HRR94b]), the choice of , is fairly insensitive and can generally be fixed. In this paper, we
use ?, 2. The value for ip usually is taken as 0, 1, 2, 3, or 4.

The final forms for the discrete moving mesh equations for MMPDE4 and MMPDE6 are

(3.11)

and

"g (]/li+1/2 (Jfi+l i) )i-1/2 (JCi -i-1))
(]li+1/2 (Xi-4-1-- Xi) ]"li_1/2 (Xi Xi-1))

/

()i+1(3.12) 2J:i "k- 3i-1)-- l’liA_ (Xi+X Xi) (Xi Xi-1))
1, N 1 supplemented with x0 0, XN 1, where/Qi+ := (/i +/i+1)/2. We
thnote at the smoothing process maintains the dimension of the monitor function, which will

become important when we consider rescalings of the equations.

4. Analysis of the solutions of the moving mesh equations. We now analyze the solu-
tion behaviour for the discretization of problem (2.1), using the discrete version ofMMPDE6
together with the monitor function given by (3.6). The analysis will be in two parts. First, we
shall solve MMPDE6 exactly assuming that u(x, t) is as described in 2. This will, in effect,
determine the "optimum" mesh for such a problem. Second, we shall analyze the solutions of
the coupled finite difference equations (3.9) and (3.12), assuming exact time integration, and
compare the solutions with those obtained in the continuous case.

4.1. Analysis of the moving mesh equations. Integrating MMPDE6 with respect to ,
we know that the mesh transformation x(, t) satisfies the equation

(4.1) rk Mx + O(t)

where O(t) is an integral constant which will be determined by the boundary conditions for
x (, t). Indeed, integrating (4.1) with respect to we have

(4.2) "r.(: t) fI=0 Mxd + O(t).
o
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Then, from the boundary conditions

(4.3) x(0, t) x(1, t) 1 0,

(4.2) implies that

(4.4) O(t) f Mdx.

0

Because the function u (x, t) has a sharp peak, the integral above is asymptotically domi-
nated by the contribution from the peak. It follows from (3.6) and (2.3) that within the blow-up
region M has the asymptotic form

(4.5) M
(T- t)[1 q- 4p4]

where/z(x, t) is defined in (2.2). If we take e to be a small (fixed) positive value, we then
have that

(4.6)

o(t)
x*q-

dx,_ f (T_t)[I+UX* -- 4pfl

e[ot-log(T-t)]-l/2(T-t)-l/2
fl[a-log(T-t t/2 l" d

(T-t)l/2 _[_log(T_t)]_/2(T_t)_/2 1+ 4p

As -- T the limits in the above integral tend to 4-cx so that

(4.7)
o(t) fl[ot-l(T-t)]l/2

(T_t)l/2 f
zr/4[a-log(T-t)]t/2

(7,_01/2

The contribution to O(t) from the range outside that considered will be of O(1) in time and will
be asymptotically dominated by the estimate in (4.7). It then follows that within the blow-up
region (4.1) reads as

fl 7rfl4,f[ot log(T t)] 1/2
(4.8) r2 x

(T t)(1 + 4p-) (T t) 1/2

The definition of/z(x, t) in (2.2) suggests an ansatz for the mesh behaviour of the form

(4.9) x(, t) x* + (T t)l/2[ct log(T t)]l/2z().

Substituting this into (4.8) gives

(4.10) rz -+O log(f-t) lq 4--t
The choice of the monitor function to be Up-1 ensures that the left-hand side and the first

(1)term of the right-hand side of (4.1) have the same scale in (T t). The term O log(T-t)

on the left-hand side of (4.10) emphasizes the difference between an exactly self-similar and
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an approximately self-similar solution. Since z() should be finite in the blow-up region, the
left-hand side term is small compared with the first term on the fight-hand side if z < < 1 and
therefore can be dropped. Hence, to the approximation of order we obtain an asymptotic
equation within the blow-up region as

(4.11) z zr/v/-p/ 0
l+4-b-

or

(4.12) fl4X/ tan-1 (p) --zrflV/-4p](--"*)
2

where we have assumed that z 0 when *, i.e., blow-up occurs at the point x*
x(*, T).

Equation (4.12) describes the distribution of the mesh points within the peak, and the
boundary conditions (4.3) determine *. From (4.9) these two conditions correspond in the
limit of large Izl, i.e.,

(4.13) / z-o, as0,
/ z---+o, as--- 1,

implying

1
(4.14) * 2"

Our choice ofM implies that the terms of order r will be consistently small inside the blow-up
peak.

Combining these results, we deduce that the mesh function x is given by

(4.15) x(,t)=x*+2x/(T-t)l/2[ot-log(T-t)] 1/2 tan (zr( )) q- O(r)

so that

(4.16)
x(, t)- x* 2x/- as T.

(T t)l/2[ct log(T t)] 1/2 tanzr( 3)

Substituting this into the expression for u (x, t) gives

(4.17) u(, t) (T t)-/[cos(zr( 1/2))]2.

This expression for u in the computational domain may be easily checked against numerical
calculations.

The above analysis only applies for mesh points within the peak. However, as -- 0 or
1 the mesh points must eventually tend to 0 and 1, respectively, and close to 0 they

correspond to points where u (x, t) is not changing rapidly and hence is bounded as T.
If we fix x, then as T,

8/2p log Ix x*ll 1(4.18) u(, t)
(x x*)2

-[- O(x x*)2.
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Thus,

(4.19) ul/fl 8f12p log Ix x*ll 8f12p
(x x*)

Similarly, from (4.11),

/re [ct log(T t)] 1/2
(4.20) u 1/# O(t)

(T -/,)1/2

so that an equidistributed mesh will give

(4.21) U 1/ O(t)s,

and hence

log [x x*ll
(X --X*)2

which leads to

(4.27) u(, t) (T t)-Z fl [1 21 ’*1]
However, when r[ct log(T t)]l/2(T t)/-1/2 > > 1, which occurs when p > 3 and t
is sufficiently close to T, then the left-hand side of (4.25) dominates over other terms and
then there exists no solution satisfying the resulting asymptotic equation and the matching

After some manipulation we find that this is precisely the form that (4.16) takes as -- 0 (or
indeed as -- 1).

We observe from (4.15) and (4.22) that x is close to x* if lies in the interval [e, 1 e]
where e (T t)l/2[ot log(T t)] 1/2. Outside this interval, x rapidly tends to 0 or 1. The
implications of this analysis are that if A is the mesh spacing in the computational domain,
then a significant number of mesh points will be away from the peak only if

(4.23) A < (T t)l/2[ct log(T t)] 1/2.

A similar calculation can be made for the arclength monitor function

(4.24) M 1 + Ux2.

Indeed, when Ux is large, M u, and we have from (4.1), (4.4), and (4.9) that

[ (I)][c log(T t)]’/2-rz -3 +O (T-t)#-log(T-t)
(4.25)

2fl#+lzlz -+- O,
4pfl(l+ z2 a#+

4pfl

where (R) is a constant. Thus, when r[c log(T t)]l/2(T t)-/2 << 1, for which we
require p < 3 and z to be fixed and small, then within the blow-up region the mesh equation
is asymptotic to

2fl#+llzlz(4.26) + (R) 0,
4p(1 + z2 +

4pfl

8f12p log Ix x*]l fire.tip# lot log(T t)]x/2
(4.22)

(x x*)2 (T -/)1/2
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conditions (4.13). This implies that the mesh (or the coordinate transformation) cannot take
the form (4.9) and hence is not "optimal" when r[ct log(T t)]l/2(T t)t-l/2 > > 1.
Indeed, in this case the timescale for the mesh evolution is greater than T and the mesh
ceases to evolve. To be precise, this occurs when

(4.28) r(T t)/-1/2 r(T t)(3-p)/2(p-1) ztt(mPa-3)/2 > > 1.

Finally we note that the above analysis is general and can also be applied to MMPDE4.
Since the argument is quite similar, we omit it here but refer the reader to the discussion in 3.

4.2. The analysis of the discrete equations. We now turn our attention to an analysis
of the discretizations (3.9) and (3.12) of the PDEs for blow-up and mesh evolution. We show
that these equations admit a discrete solution which evolves in an "approximately self-similar"
manner very closely related to that of the solution described in 2. Although we do not prove
that this discrete solution is an attractor, the numerical calculations given in 5 strongly imply
that it is, and the asymptotic predictions of this section agree with the observations in 5.
(We emphasize at this point that the numerical solution may have a slightly different blow-up
time from the analytical solution. However, as we are interested in the dynamics close to
blow-up rather than the blow-up time itself we shall treat the blow-up times of the analytic
and numerical methods as the same.)

Since the discrete equations have the same scaling invariance as the continuous ones, it
is reasonable to consider a discrete solution in terms of similarity variables closely related to
those in (2.6), namely

Wi (T t)tli,
(4.29) yi(s) (xi x*)(T t)-1/2,

s log(T t).

In these similarity variables we consider solutions with wi independent of time. Substituting
into (3.9) gives

Wi ..3t_ [Oi+l--ll’i-I (1
Yi+l-Yi-I Yi i)

(4.30)
2 (i+,-wi oi-wi_.__:_) + w"Yi+l --Yi-1 Yi+l --Yi Yi --Yi-1

The equation (4.30) is essentially a discretization of (2.7) on the nonuniform mesh {Yi and
must also satisfy a discrete form of the boundary conditions (2.8). Like (2.7) it also possesses
discrete "similarity solutions" for which both wi and yi are independent of time, and these
solutions satisfy a discretization of the steady state of (2.7). However, this latter equation has
only one solution which does not grow exponentially with y, and that is the constant solution,
which does not satisfy the boundary conditions. (We note that wi =- is also a solution of
(4.30).) Provided that the mesh {Yi is sufficiently fine we will expect that the (nonconstant)
discrete solutions ofthe steady state of (4.30) should approximate their continuous counterparts
and also grow rapidly with i. Such solutions will not then match the boundary conditions.
We can conclude from this reasoning that (4.30) is unlikely to have a steady state solution and
that we should instead seek a solution which, like its analytical counterpart, is approximately
self-similar rather than self-similar. We can compute these as in 2 by setting

(4.31) yi(s) g(s)zi

where zi is independent of time and the function g satisfies (cf. (2.12))

gt
(4.32) g(s) -- cx and-

g



318 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

Substituting into (4.30) and letting s oe, we have

(4.33) iWi + ll)i-t-1 113i-1 Zi

This is a centred difference discretization of (2.14), and hence, provided the mesh {Zi} is
sufficiently regular,

1 /2)-(4.34) Wi -’ " Z "t- 6i,

where i is a small error which decreases with the number ofmesh points. As before, the form
of g for large s can be derived from formal scaling arguments which give

(4.35) g(s) C[Ol "-[- S] 1/2.

We can repeat the arguments in [BK88] to deduce the value of the constant c which, to within
a small error similar to i, is consistent with (2.16). This demonstrates that an approximately
self-similar solution for the numerical scheme (4.30) exists which has the correct dependence
upon zi and hence upon xi. Finally, we evaluate zi. The moving mesh equation (3.12) gives

--r(3i+l 2i -t- i-1)
(4.36)

1 p-1 -1) (u/P-12 (/’//+.1 + U/p (X/+I Xi) " -JI- g)(Xi Xi-1),

which has first integral

1 p-1 tit/-1 Xi) nUO(t).(4.37) z(2i+ 2i) (ui+ + )(Xi+l

Substituting for zi and wi we have after some manipulation that

+
(4.38)

(T-t) 1/2

--2---1 (//3/P-ll -1- W-1)(zi+l Zi) "Jr- g(s) O(t).

Choosing 0 appropriately and using (4.34), this is a centred difference discretization of (4.10),
and hence zi is a discrete approximation to z() given in (4.9).

We conclude that the discrete form of the PDE coupled with MMPDE6 admits an ap-
proximately self-similar solution for which both the mesh xi and the function ui are consistent
approximations to the mesh x(, t) and function u(, t) calculated in 4.1. Provided that this
solution is (like its analytic counterpart) an attractor for a wide class of initial data, then the
numerical method given will faithfully reproduce the dynamics of the blow-up peak for all
times up to the blow-up time. In particular, the asymptotic estimates given in 4.1 will be
reproduced in the numerical calculations. It is difficult to analyze analytically whether the
solution is an attractor, and we do not attempt it here.

5. Numerical examples. We now present some numerical calculations for several blow-
up problems using MMPDE4 and MMPDE6. These calculations support the analysis of3
and 4 and also illustrate the effect ofsmoothing the monitor function M. For these calculations
we take uo(x) 20 sin(zrx).

After spatial discretization, the resulting ODE systems are solved using the double preci-
sion version of the stiff ODE solver DASSL [Pet82]. The time integration uses the backward
differentiation formulas (BDF), wherein an approximate Jacobian is computed by DASSL in-
ternally using finite differences. The relative and absolute local time-stepping error tolerances
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FIG. (la, lb, and lc from the left). MMPDE4 without smoothing is usedfor solving (2.1) with p 2. In
Figs. la and lc LO initial solution, L1 Umax 108, L2 Umax 109, L3 Umax 1010, L4 Umax 1011,
L5 Umax 5 1011, L6: the asymptotic solution.

(in a root-mean-square norm) are chosen as rtol 10-8 and atol 10-8, respectively. Unless
stated otherwise, we use a uniform mesh (in x) initially with N 40 and take 3 10-5. As
pointed out in [HRR94a] and [HRR94b], the choice of value for the time correction parameter
3 is not critical and can generally be fixed to be a small positive value.

5.1. Calculations using MMPDE4. The analysis in 3 indicates that MMPDE4 ceases
to evolve the mesh when the timescale of the blow-up is less than 3, i.e., when

(5.1) (T- t) < 3.

Since u(x*, t) (T t)-, the mesh ceases to evolve when

(5.2) u(x* t) > 3-after which MMPDE4 gives a nonuniform but essentiallyfixed mesh. The results of [AB94]
show that if p > 2, ui will blow up at only one point and if p 2 it will blow up at three
points, but the blow-up is asymptotically dominated by the growth at one point.

To confirm these results we integrate (2.1) when p 2 coupled with MMPDE4 using
the monitor function given by (3.6). Blow-up occurs at T 0.082291 and x* SO
that the maximum value occurs at u20. In Fig. la we present a graph of the scaled discrete
solution values u_,, for u20 108 109, 1010, 1011 5 1011 and in Fig. lb we show the

U20

corresponding mesh, plotting log Ixi 1 against log(u20). From the second figure it is clear
that the mesh evolves until u20

I and is then fixed. The results of Fig. a show convergence
of the normalized solution to a delta function, demonstrating that, effectively, it is only u20
which is blowing up. In Fig. lc we plot the approximation for u (x, t) when u20 1011 and
compare it with the asymptotic function u(x, t) given in (2.3). It is clear that it approximates
the limiting asymptotic function rather well (except at the blow-up point), showing that the
mesh generated by MMPDE4 leads to an accurate approximation to u(x, t) away from the
point of blow-up and the behaviour of u(x, T) is well approximated in this range. Indeed, at

is given bythe point when MMPDE4 ceases to evolve the mesh, the mesh point nearest

1
(5.3) x - - O(A31/2 log1/2 3),

where A is the mesh spacing in the computational domain. Thus MMPDE4 gives an accurate
1/2picture of the evolution of the solution in the region [0, O(A31/ log 3)] U [. +

0(A31/ log1/ 3), 1], but it will not resolve the structure in the remaining blow-up region.
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Fm 2 (2a, 2b, and 2cfrom the left). MMPDE6 withoutsmoothing is usedfor solving (2.1) with p 2. In Fig. 2a
LO: initialsolution, L1 Umax 108, L2 Umax 109, L3 Umax 1010, L4 Umax 1011, L5 Umax 5 1011,
L6: the asymptotic solution.

5.2. Calculations using MMPDE6. The analysis given in 3 and 4 indicates that (in
contrast to MMPDE4) using MMPDE6 with the monitor function given by (3.6) should
give an accurate resolution of the blow-up peak. A calculation of the evolution of the
PDE gives a blow-up time of T 0.082283 when p 2. The scaled solution {,2-0 for

u20 108, 109, 1010, 1011, 5 1011, is given in Fig. 2a together with the theoretical scaled
solution cos2 zr( 3) where A (cf. (2.10) and (4.17)). It is clear from the figure
that there is close agreement between the predicted and computed curves implying that the
solution calculated in 4.2 is indeed an attractor. Figure 2b shows a graph of log Ixi 31 as a
function of log t/max with clear evidence that each of the mesh points (apart from those close
to the boundary) evolves in the same (approximately self-similar) manner. To confirm that the

mesh behaves precisely as predicted in 4, we give a graph in Fig. 2c of (T_t)/2llog(T+/-t)li/2 as

a function of log(T t)1-1 where we use the estimate T 1- According to formula
u20

(4.16),

Ixi 31 1
(5.4)

(T t)1/21 log(T t)ll/2 I 2 log(T t)l

as log(T t)l cx. Thus, for each we expect to obtain a graph which is asymptotically
_1linearin log(T t)1-1 and converges to tanrr(i 3) with slope 3cV- tanzr(i 3)"

The figure clearly shows that this is the case, and we estimate ot to be 7.
Thus MMPDE6 accurately reproduces the evolution of the peak profile; however, with

40 mesh points X39 3 35.94(T t)l/21 log(T t)l 1/2 SO that X39 0.500966 when
u20 1011 Thus, the mesh points are concentrated in the blow-up region, so that the solution
away from the peak is poorly resolved.

If smoothing as described in 3 is introduced, the resulting form of u__/for the same value
U20

of t/max is given in Fig. 3a. In this case, the blow-up is slightly delayed to T 0.082319.
Now, the scaled discrete solution u__/} no longer approaches a constant curve, but instead,

U20
slowly approaches the delta function which would.be obtained using a uniform mesh. This
is because smoothing tends to place fewer points in the peak and more points away from the
peak. Nevertheless, we see from Fig. 3b that the mesh points close to the peak evolve in a
manner similar to those in Fig. 2b. Hence, whilst these points are close to the blow-up point,
the analysis of 4 still applies and the value of ui will be close to u(xi, t). Thus, although
smoothing does not precisely align the mesh along the level curves of the function/z in (4.16),
it still gives an accurate resolution of the structure of the peak.

The resolution of the peak in the two cases is made apparent in Figs. 4a and 4b, which
plot u__z./as a function of log Ixi 31 for u20 109, 1010, 1011 5 1011 for the unsmoothed

U20
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FIG. 3 (3a and 3b from the left). MMPDE6 with smoothing (ip 2) is usedfor solving (2.1) with p 2.
In Fig. 3a LO: initial solution, L1 Urnax 108, L2 Urnax 10, L3 Urnax 1010, L4 Urnax 1011,
L5 Urnax 5 1011, L6: the asymptotic solution which is valid onlyfor the unsmoothed case.
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FIG. 4 (4a and 4bfrom the left). MMPDE6 is usedfor solving (2.1) with p 2. Fig. 4a isfor the case without
smoothing and Fig. 4b for that with smoothing (ip 2). In the figures, L Umax 108, L2 Umax 109,
L3 Urnax 1010, L4 Umax 1011, L5 Umax 5 1011.

and smoothed meshes, respectively. The coordinate log IXi "1 is used to stretch the length
scale close to the peak so that its structure can be seen more easily. The two figures are almost
identical, confirming that smoothing does not affect the accuracy of the resolution of the peak
for these values of u (although presumably it would for much larger values). As a further test
of the accuracy of the schemes the graphs in Figs. 4a and 4b can be compared with the graph
of the function

(s.s)

-1
u

1+
(x-g

t/max 8(T t)(ot log(T t))

where Umax (T t) -1. Indeed, the value of ot 7 estimated earlier gives a good fit for
each of the curves.

Although smoothing is not necessary when p 2, it becomes essential when dealing
with more severe nonlinearities, as unsmoothed moving mesh equations can tend to introduce
oscillations in solutions away from singularities by placing too few points there (e.g., see
[VBFZ89]). We see this by taking p 5, M u4, and using an initial mesh equidistributed
with respect to the initial solution u (x, 0) 20 sin(zrx). Figure 5a shows the computed value

(14of " plotted as a function of in the case ofno smoothing for umax5 108 ,109 10, 10
Nmx

5and 10. These computed solutions approximate cos ( g) for Urea 10 but deviate
from it, due to mesh oscillations, when 5 10Ureax > In contrast, the smoothed solution
(obtained with ip 4) does not oscillate and still retains enough points near the blow-up point
to give good resolution in the peak, where for reference purposes we also give the asymptotic
solution cos rr( g) which applies only for the nonsmooth moving mesh case (see Fig. 5b).
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Fro. 5 (5a and 5bfrom the left). MMPDE6 is usedfor solving (2.1) with p 5. In Fig. 5a (without smoothing),
LO:. initial solution, L1 uSmax 108, L2 U5max 109, L3 uSmax 1010, L4 uSmax 1011, L5 U5max 1012,
L6: the asymptotic solution. In Fig. 5b (with smoothing (ip 4)), LO: initial solution, L1 USmax 109,

10 1011, 1013,L2" Uma 10 L3 Uma L4 U5max 1012, L5 U5max L6: the asymptotic solution which is
valid onlyfor the unsmoothed case.
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F/G. 6 (6a and 6bfrom the left). MMPDE6 with smoothing (ip 4) and the arclength monitorfunction is used

for solving (2.1)with p 5. In Fig. 6a, LO: initialsolution, L1 ’USmax 101, L2 USmax 1011, L3 USmax 1012,
L4 USmax 1013, L5 U5max 10TM, L6: the asymptotic solution.

It is interesting to repeat the calculations for p 5 using the common choice of the
arclength monitor function M v/1 + Ux2 [HRR94b]. The results of4 indicate that the mesh

(p-3)/2will cease to evolve when "CUmax > > 1, which in this case occurs when Umax > > 1/r. In
Figs. 6a and 6b we present the resulting computed solution for different values of Umax5 and
the evolution of the mesh (with smoothing ip 4), respectively. We see clearly that the mesh
ceases to evolve in this case. The value of Umax at which this occurs is, in fact, rather smaller
than the value predicted above. This is a result of the smoothing we have employed.

5.3. Exponential nonlinearities. We can easily extend the results of the previous sub-
sections to the case of an exponential nonlinearity, such as for the equation

(5.6) ut Uxx + eu

and its generalization

(5.7) ut (lul"ux)x + eu,

using the monitor function M(u) eu. It is well known [Do185] that close to the blow-up
point the solutions of (5.6) have an approximately self-similar solution of the form

(5.8) u(x, t) log(T t) log 1 +
x2

4(T t) log(T t)
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The solutions of (5.7) are, in contrast, self-similar such that

(5.9) ( x )u(x, t) log(T t) + W (T t) 1/(a+2)

where for small cr the function W has the form

(5.10) W(() -log 1 + .2

(see [BG94]). Using an analysis identical to that given earlier we may derive the following
formal result.

PROPOSITION 5.1. Let M(u eu.
(i) Ifa O, then an equidistributed mesh transformation is given by

(5.11) x(,t)=x*+(4(T-t)log(T-t)) x/2 tan-1 (zr ( )),
(5.12) eU(1/2.t

)" cos2zt -(ii) Let

X

f(x) =-- 1 + ya+2’
o

F 2f(cxz).

Ifr > O, a small, then

(5.14) l-a)
1/(a+2)

eU(g,t)
(5.15)

eU( 1/2,t)
-’+

1 + (f-l[F(

Computations with the exponential nonlinearity raise issues similar to those discussed
earlier, especially with regard to smoothing. For example, if r 0 then a calculation with
uo(x) 5 sin(zrx) and no smoothing is successful when Umax < 15 (e"mx < 3 x 106), giving
a close approximation to the asymptotic results, but it becomes unstable for larger values of
u. We illustrate this in Fig. 7a, giving eui-umx for Umax 10, 11.6, 13.33, 15, 16.6. A graph
of the resulting mesh in Fig. 7b shows the oscillations in the mesh points at the boundary
even more dramatically. In Figs. 7c and 7d we give the corresponding results with smoothing,
taking e 4.

It is interesting to compare the functions u(x, t) computed in these cases, and in Figs.
7e and 7f we present graphs of eu-um"x as a function of the physical coordinate x for Umax
10, 11.6, 13.33, 15, 16.6 for both the unsmoothed and smoothed cases, respectively. These
graphs are nearly identical, except that the peak is smoother in Fig. 7f. Figure 8 gives the
results of the same calculation on a fixed, uniform mesh. We conclude again that smoothing
greatly improves the method without losing the advantages of mesh adaption.



324 C.J. BUDD, W. HUANG, AND R. D. RUSSELL

0.8

0.2

L4 --i

0,2 0.4 0,6 0,8 10 16 18 20

LO
L1

0.8
; L4

0.2 0.4 0.6 0.8

10 16 18 20

0,9

0.8

0,7

0,5

0.4

0.2

0.2 0.4

’’ ’LO
L1

L3

L5

0.6 0.8

0.8

0.7

0.6

0.5

(I,4

0,2

OA

0.2 0.4 0.6 0.8

FIG. 7 (7a, 7b, 7c, 7d, 7e, and 7ffrom the top left). MMPDE6 is usedfor solving (5.6). Figures 7a, 7b, and 7e
arefor the case without smoothing and Figs. 7c, 7d, and 7f arefor that with smoothing (it, 4). In thefigures, LO:
initialsolution, L1 Umax 10, L2 "Umax 11.6, L3 "Umax 13.33, L4 Umax 15, L5 Umax 16.6, L6: the
asymptotic solution which is valid onlyfor the unsmoothed case.
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FIG. 8. Afixed, uniform mesh is usedfor solving (5.6). LO: initial solution, L1 ’Umax 10, L2 Umax 11.6,
L3 Umax 13.33, L4 Urnax 15, L5 "Umax 16.6.

5.4. Degenerate parabolic equations. To show the ability of the MMPDE methods to
handle different types ofblow-up, we conclude this section with the application oftheMMPDE
methods to a problem that has not been as extensively analyzed as (2.1) or (2.20). We consider
the degenerate parabolic problem

(5.16) XUt Uxx + 15u2

subject to the boundary conditions u(0, t) u(1, t) 0. This problem has been studied
theoretically and numerically in [Flo91] and [SF90]. It is shown in [Flo91] that a distinct
feature of the blow-up for (5.16) from that for nondegenerate problems (e.g., (1.1)) is that the
solution blows up at the boundary x 0. In contrast to that for nondegenerate problems, the
blow-up behaviour for degenerate problems like (5.16) is as yet not well understood.

The results obtained with MMPDE6 and smoothing (ip 2) are shown in Figs. 9a-9e. In
the computation, we have used uo(x) 4x(1 x) and M u3/2, which is chosen so that the
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FIG. 9 (9a, 9b, 9c, 9d, and 9efrom the top left). MMPDE6 with smoothing (ip 2) is usedfor solving (5.16).
Figure 9b is the magnification ofthe left portion ofFig. 9a.

extended system consisting of the physical PDE and the MMPDE preserves the underlying
scaling invariance of (5.16). The results show the blow-up at the boundary x 0. Our
computation gives a blow-up time of T 0.056015, which is close to the value obtained
in [SF90] with a so-called peak-tracking strategy. The computation required roughly 36.7
seconds of CPU time on an SGI R3000 Indigo.

6. Conclusions and comments. In this paper we have considered PDEs which model
blow-up problems for which scaling invariance plays a natural role in describing the under-
lying solution structures. When one computes the solutions to such problems, adaptive mesh
methods are virtually unavoidable. It is useful to interpret such numerical methods as dis-
cretizations (on a uniform mesh) of the PDEs rewritten in terms of a computational coordinate
transformation. This transformation can in turn be defined through an MMPDE [HRR94b]
which is determined by equidistribution with respect to a monitor function M. It is natural to
seek a monitor function which preserves the scaling invariance; note that this does not require
detailed knowledge of the solution behaviour itself. The scaling invariance is then preserved
by the discretization, i.e., by the actual moving mesh method which is implemented. To our
knowledge, this is the first instance in which rigorous analysis has been used to motivate the
choice of specific monitor functions. For the blow-up problems with known detailed solution
behaviour, the solutions are only approximate similarity solutions, and, quite remarkably, their
structure is also preserved by the discrete equations when suitable monitor functions are cho-
sen. As a result, with relatively few mesh points the analytic structure ofthe blow-up solutions
can be accurately computed in a very efficient way. We briefly present some computations
(without accompanying analysis) for a degenerate parabolic problem whose solution has not
been extensively analyzed.

A comparison of our approach for blow-up problems with those of others is outside the
scope ofthis paper. Nevertheless, we have tried to emphasize the naturalness of our method for
automatically picking up the self-similar coordinate and to demonstrate the ease with which
these problems can often be solved with little a priori knowledge.
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This is not to say that the moving mesh methods are without pitfalls, however. It is
important to use proper monitor functions, and examples are given where the popular choice
of arclength fails to perform adequately. The MMPDEs must also be implemented with care.
For example, in Figs. la and lbMMPDE4with fixed z fails to give the properblow-up structure
when the solution becomes sufficiently large, and the question of whether or not to use mesh
smoothing, and if so, the judicious choice of one, are issues with no simple resolution. The
blow-up problems considered here are part of a larger framework of PDEs having similarity
solutions for which MMPDEs with suitable monitor functions preserve the scaling invariance,
and we are in the process of developing a theory for such problems.
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HIGH-ACCURACY FINITE-DIFFERENCE SCHEMES FOR LINEAR WAVE
PROPAGATION*
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Abstract. Two high-accuracy finite-difference schemes forsimulating long-range linear wave propagation are
presented: a maximum-order scheme and an optimized scheme. The schemes combine a seven-point spatial operator
and an explicit six-stage low-storage time-march method of Runge-Kutta type. The maximum-order scheme can
accurately simulate the propagation of waves over distances greater than five hundred wavelengths with a grid
resolution of less than twenty points per wavelength. The optimized scheme is found by minimizing the maximum
phase and amplitude errors for waves which are resolved with at least ten points per wavelength, based on Fourier
error analysis. It is intended for simulations in which waves travel under three hundred wavelengths. For such cases,
good accuracy is obtained with roughly ten points per wavelength.
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1. Introduction. In the past few years, interest has grown in time-domain numerical sim-
ulations of linear wave phenomena using finite-difference or related methods. Applications
include electromagnetic [12, 13, 20], acoustic [3, 6, 14], and elastic waves [10, 11]. It is gen-
erally recognized that in order to avoid excessively fine meshes for many practical problems,
high-order discretizations are required. Consequently, many high-order differencing methods
have been developed for problems involving wave phenomena [1, 4, 5, 7, 10].

Furthermore, optimized or spectral-like finite-difference schemes have been proposed
which can provide improvements in accuracy over high-order schemes with the same com-
putational effort [8, 9]. In an optimized finite-difference scheme, the error behavior over
a range of spatial wavenumbers is optimized according to some criterion, usually based on
Fourier error analysis. This contrasts with conventional schemes, which generally maximize
the order of accuracy, i.e., the order of the leading error term. Detailed studies of optimized
schemes have been performed by Lele [9] and Holberg [8], who optimized the spatial operator
only. Sguazzero, Kindelan, and Kamel 11] have developed optimized fully discrete schemes
based on Holberg’s spatial operators. Tam and Webb 15] present an optimized scheme which
consists of a seven-point centered-difference operator in space combined with a four-step
time-marching method of the Adams-Bashforth type.

In this paper, we present two fully discrete finite-difference schemes for linear wave
propagation: a maximum-order scheme and an optimized scheme. The schemes are suitable
for problems requiring high accuracy with relatively large distances of travel. Both schemes
combine a seven-point spatial operator and an explicit six-stage time-march method of the
Runge-Kutta type. The spatial operator is divided into an antisymmetric component, i.e., a
centered difference operator, and a symmetric component or filter. The optimized scheme is
developed by minimizing the maximum phase and amplitude errors obtained using Fourier
error analysis for waves which are resolved with at least ten points per wavelength.

The maximum-order scheme and the optimized scheme are presented in the next two
sections. The two schemes are then analyzed and compared. Next, their stability is discussed
andnumerical boundary schemes are presented. After presenting the results ofsome numerical
experiments, we conclude with a discussion ofsome ofthe considerations involved in choosing
a difference scheme for a given problem.
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2. Maximum-order scheme. We consider first the spatial difference operator, which is
divided into an antisymmetric component, i.e., a centered difference operator, and a symmetric
component, or filter, which provides dissipation of high wavenumber modes. The grid is
uniform with xj j Ax. The function values at the grid nodes are uj u(xj). For the
linear convection equation with a positive phase speed, the first derivative of u at node j is
approximated as

(1)

1
(SxU)j X-X [(d3 a3)uj-3 -f- (d2 a.)uj_2 + (dl al)uj-1 -+- douj

-t- (dl -+- al)Uj+l 4c- (d2 + a2)uj+2 at- (d3 at- a3)uj+3],

where the ai are the coefficients ofthe antisymmetric component and the di are the coefficients
of the filter. The maximum order of accuracy possible for this operator is sixth-order. This is
obtained with al 3/4, a2 -3/20, a3 1/60, do dl d2 d3 0. With a nonzero
value of do, fifth-order accuracy is obtained with dl -3d0/4, d2 3do/10, d3 -d0/20.

Since the time-marching method described below is unstable for pure imaginary eigen-
values, a nonzero value of do is required. We have chosen do 0.1. Although this introduces
some amplitude error, the amplitude error ofthe fully discrete scheme is generally less than the
phase error, as will be shown later. Furthermore, the resulting operator produces dissipation
for high wavenumber components of the solution which are not propagated accurately.

In order to apply this spatial operator to a hyperbolic system of equations in the form

(2)
0u 0(Au)

-t- 0,
t 0x

the operator must be split into the antisymmetric part, Bxa (with the ai coefficients), and the sym-
metric part, (with the di coefficients). The spatial derivative in equation (2) is approximated
as

(3)
0(Au)
0x

B,Au + 8xlAlu

where

IAI-- XIAIx-1
and X is the matrix of right eigenvectors and A the matrix of eigenvalues of A.

The time-marching method is an explicit six-stage method of the following form:

U
(1)

Un "Jr" hotlfnn-l-Ot

U(2) e(1)
n+2 un "+- hot2 a n+u
(3) _,.(2)

(4)
Un+c3 bin -t- hot3 Jn+a2,

.(3)
nWc4 bin -[" hot4Jr+o3,
(5) e(4)Un_l_ot bln -1I-- hol5 j nat-or4

he(5)Un+ tn -- an+c5,

where un u (tn), h is the time step, and

f(l
du(
dt
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With c5 1/2, this method is second-order accurate. With or5 1/2, Ct4 1/3, ct3 1/4,
ct2 1/5, ctl 1/6, it produces sixth-order accuracy for linear homogeneous ordinary
differential equations. In [19], this six-stage method is shown to be more accurate than the
classical fourth-order Runge-Kutta method when combined with the above spatial operator
for both homogeneous and inhomogeneous linear problems. The extra stages were accounted
for by performing the comparison for an equal number of derivative function evaluations.
Furthermore, the six-stage method requires less computer memory than the classical fourth-
order Runge-Kutta method.

3. Optimized scheme. Optimized finite-difference schemes are obtained by dropping
the requirement of maximum order of accuracy and selecting the resulting free parameters to
achieve some desired error behavior. The spatial operator given in (1) is at least first-order
accurate if

(5) do q- 2dl + 2d2 + 2d3 0

and

1
(6) al + 2a2 + 3a3 .
A value of do 0.1 was selected based on stability considerations and the need for high
wavenumber damping, as discussed above. Therefore, by reducing the order of accuracy of
the spatial operator to first order, four free parameters are obtained. The time-march method,
(4), is at least second-order accurate as long as ct5 0.5. With this constraint, four free
parameters are available in the time-march method as well. Consequently, eight parameters
are available to optimize the fully discrete scheme.

The present optimized scheme was developed to minimize the maximum error for waves
resolved with at least ten grid points per wavelength (PPW) for Courant numbers less than
or equal to one. There are numerous ways to find such an optimized scheme. We used
the following approach. First, we determined the optimal spatial operator for the specified
wavenumber range in one dimension. Using this spatial operator, we then optimized the time-
march method at a Courant number of one, also in one dimension. The resulting coefficients
are listed below:

al 0.7599613, a2 -0.1581220, a3 0.01876090,

(7) do 0.1, dl -0.07638461, d2 0.03228961, d3 -0.005904994,

0.168850, ct2 0.197348, or3 0.250038, Ct4 0.333306, ct5 0.5.

4. Fourier error analysis. In order to analyze finite-difference schemes for wave prop-
agation problems, we consider the linear convection equation 16], given in one dimension
by

(8)
0u 0u
+c =0,

Ot Ox

where U U(x, t) and c, the phase speed, is a positive real constant. With an initial condition
given by

(9) U(x, O) Uoexp(itcx),

the exact solution on an infinite domain is

(10) U(x, t) U0 exp[ic (x ct)],
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where c is the spatial wavenumber. Assuming a solution in the form

(11) U(x, t) u(t) exp(icx)

and replacing the spatial derivative appearing in (8) by a numerical approximation, the fol-
lowing ordinary differential equation is obtained:

(12)
du

cc *u )u
dt

where c* is the numerical (or modified) wavenumber, which depends on the spatial operator,
and . -icK*.

This ordinary differential equation can be numerically advanced in time using a time-
march method. For linear time-march methods, the characteristic polynomial has one or more
roots, a, which are functions of .h, where h is the time step. We consider here only methods
which produce one a root. The numerical solution to (12) is then

(13) Un UoO’n

where tln U(tn) u(nh). Writing a R exp(iq), the numerical solution to (8) is thus

(14) Unum(X, t) UoR exp[i (tcx + nO)].

This numerical solution can differ from the exact solution in both amplitude and phase. We
can rewrite the numerical solution as

(15) Unum(X, t) UoRn exp[itc(x c’t)],

where c* is the numerical phase speed given by c* /xh. Comparing (15) with (10), we
define the normalized error components as

(16) era lal- 1 R- 1,

c*
(17) ere 1 1

c ctch

where era and erp denote amplitude and phase error, respectively.
In one dimension, the error resulting from a given numerical scheme depends on the

product z c Ax where Ax is the grid spacing and the Courant number is C ch/Ax. In
two or three dimensions, the error has a further dependence on the direction of propagation.
The two-dimensional linear convection equation is given by

(18)
OU OU OU

+ c cos 0 + c sin 0 0.
Ot x Oy

This equation governs a plane wave convecting a scalar U with speed c along a straight line
making an angle 0 with respect to the x-axis. On a square grid, when the same difference op-
erator is used to approximate the two spatial derivatives in (8), the two-dimensional numerical
wavenumber Cd can be written as

(19) :d(Z 0) COS0tC* (ZCOS0) + sin *
ld OtCld(ZSinO),

where C’d is determined from the one-dimensional analysis.
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For the spatial operator given in (1), the numerical wavenumber is given by

1
[do + 2(dl cos z + d2 cos 2z + d3 cos 3z)itc* A--(0)
+ 2i(al sinz + a2 sin2z + a3 sin3z)].

For the time-marching method (4), cr is given by

cr 1 + .h + fl2(.h)2 -+- fl3(,h)3 q- fl4(Zh)4 q-/35(.h)5 + fl6(.h)6,(21)

where

/2 O5, /3 O50/4, /4 050/403,

The procedure for determining the errors for given values of z, 0, and C proceeds as follows.
First, tca must be calculated from (19) with tc’a determined from (20). The parameter . is
then found using . -icx*. Equation (21) is used to determine or, which then produces the
phase and amplitude errors from (16) and (17).

Figures 1 and 2 show the numerical phase speed and amplitude at a Courant number
of unity in one dimension for the following three fully discrete finite-difference schemes:
(1) second-order centered differences in space with fourth-order Runge-Kutta time marching
(designated RK4C2 on the figures), (2) fourth-order centered differences with fourth-order
Runge-Kutta time marching (designated RK4C4) and (3) the maximum-order spatial scheme
given by (1) with do 0.1 and the time-marching method given by (4) with the values of
the coefficients which produce the maximum order (designated maximum-order). Care must
be taken in assessing schemes at individual values of 0 and C. However, for the schemes
considered here, the errors in the practical range of wavenumbers are generally largest for
0 0 and decrease with decreasing Courant number.

Lele [9] defines the resolving efficiency of a scheme as the fraction of the domain 0 <

z < zr for which the errors lie below a specified tolerance. Table 1 shows the resolving
efficiency of the three schemes above for four different values of error tolerance e. In all three
cases, the phase error is larger than the amplitude error and hence the resolving efficiency is
determined by the phase error. Note that as the error tolerance decreases, the higher-order
schemes become relatively more efficient. For example, at the largest error tolerance shown,
the resolving efficiency of the maximum-order scheme is less than twice that of scheme
RK4C4 while, at the smallest tolerance, the maximum-order scheme has almost three times
the resolving efficiency of scheme RK4C4. The parameter z tc Ax is related to the number
of points per wavelength by which a given wave is resolved through the relation PPW 2rr/z.
Table 2 shows the PPW required to produce errors below the specified error tolerance values.

The procedure used to develop the optimized scheme is not sufficient to guarantee that
the maximum error obtained over the specified wavenumber range in one dimension is not
exceeded at nonzero values of 0. However, in the present case, the maximum phase and
amplitude errors are obtained at 0 0 at a Courant number of unity. These errors are shown
in Figures 3 and 4 in comparison with the maximum-order scheme for 0 < z < zr/5. The
errors produced by the optimized scheme are bounded by 2 10-5 while the maximum-order
scheme produces errors up to 4 10-4. For the range 0.4 < z < 0.7, the optimized scheme
gives much smaller errors than the maximum-order scheme. This corresponds roughly to 9 to
16 PPW. For larger wavenumbers the advantage is reduced, while for smaller wavenumbers,
the maximum-order scheme is more accurate.

Table 3 shows the resolving efficiency r andrequired PPWvalues for the optimized scheme
with the four error tolerances as in the preceding tables. The advantage of the optimized
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FIG. 1. Numerical phase speed for second-order centered differences with fourth-order Runge-Kutta time
marching (RK4C2), fourth-order centered differences withfourth-order Runge-Kutta time marching (RK4C4), and
the maximum-order scheme.
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F. 2. Il for second-order centered differences with fourth-order Runge-Kutta time marching (RK4C2),
fourth-order centered differences withfourth-order Runge-Kutta time marching (RK4C4), and the maximum-order
scheme.

scheme is largest at the "design" error tolerance 2 10-5. For this error tolerance, it produces
1.6 times the resolving efficiency of the maximum-order scheme and four times the resolving
efficiency of the fourth-order scheme. For error tolerances below 2 10-5, the optimized
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TABLE
Resolving efficiency ofRK4C2, RK4C4, and the maximum-order scheme.

e,---

Scheme 10-5 2 x 10-5 10-4 3 10-3

RK4C2 <0.01. <0.01 <0.01 0.04
RK4C4 0.04 0.05 0.07 0.17

Maximum order 0.11 0.12 0.16 0.29

TABLE 2
PPWrequiredfor specified error tolerances.

e--

Scheme 10-5 2 x 10-5 10-4 3 x 10-3

RK4C2 >200 >200 >200 50
RK4C4 50 40 29 12

Maximum order 18 17 13 7

erp

-0.5

-1.5

-2.5

x 10
.4

’w’

Maximum-order Scheme
Optimized Sch

-4) ,,I

0.1 0.2 0.3 0.4 0.5 0.6

FIG. 3. Phase errorfor the maximum-order scheme and the optimized scheme.

scheme is substantially inferior to the maximum-order scheme. For higher values of error
tolerance, the advantage of the optimized scheme is reduced in comparison with both the
maximum-order scheme and the fourth-order scheme.

Another useful approach for assessing finite-difference schemes for wave propagation is
to determine the PPW required to maintain global phase and amplitude errors below a speci-
fied level as a function of the number of wavelengths travelled. The global amplitude error is

given by

(22) Era= 1-1cr (z, C) cz
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xlo
-4

FIG. 4. Amplitude errorfor the maximum-order scheme and the optimized scheme.

TABLE 3
Resolving eciency and PPWrequiredfor optimized scheme.

e---

10-5 2 x 10-5 10-4 3 x 10-3

0.05 0.20 0.22 0.32
PPW 40 10 9 6

where no is the number of wavelengths travelled. The global phase error is

(23) Erp
2rnw
Cz

I(C, z) + Czl.

Figure 5 shows the PPWrequired to maintain Era and Erp less than 0.1. The maximum-order
scheme can accurately simulate the propagation ofwaves over distances greater than five hun-
dred wavelengths with a grid resolution of less than twenty points per wavelength. This is
less than half of the PPW required by the combination of fourth-order centered differences
and fourth-order Runge-Kutta time marching. In three dimensions, this translates to more
than eight times fewer grid nodes. The optimized scheme is superior for simulations in which
waves travel under three hundred wavelengths. For such cases, good accuracy is obtained
with roughly ten points per wavelength. In [21] several other finite-difference schemes are
compared on this basis.

5. Stability and numerical boundary schemes. From Fourier analysis, the maximum-
order fully discrete scheme is stable up to a Courant number of roughly 1.5 in one dimension
and the optimized scheme is unconditionally unstable. Stability by Fourier analysis is a
necessary condition for Lax-Richtmyer stability. However, the instability of the optimized
scheme is very mild and we now show that on a finite domain asymptotic (or time) stability is
achieved. Consider a semidiscrete approximation to (8) obtained by dividing the domain into
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FIG. 5. PPW requirements for the maximum-order scheme, the optimized scheme, and the combination of
fourth-order centered differences andfourth-order Runge-Kutta time marching.

M subintervals of length Ax 1/M and approximating the spatial derivative in the interior
by (1). At the inflow boundary, the derivative is approximated by [18]"

1
(xU)l [-12u0 -65Ul -+- 120u2 -60u3 -+- 20u4 3u5],

60Ax
(24)

1
(6xU)2 [6.6u0- 51.6ul + 34u2- 12u3 + 39u4- 19.6u5 + 3.6u6].

60Ax

These operators are fifth-order accurate and hence do not compromise the global accuracy of
the method. At the outflow boundary, the difference operators for the last three points in the
grid are formed using fifth-order space extrapolation together with the interior differencing
scheme. The space extrapolation can be written in the form

(25) (1 E-1)PuM+I O,

where the shift operator E is defined by Euj Uj+l and the order of the approximation is
p 1. When this approach is applied to hyperbolic systems, flux-vector splitting is required
near boundaries [20].

The semidiscrete form can be written as

(26) d--u-u u, where / c-f-A,
dt Ax

I1 [Ul, /22 //M-l, ut]r. Figure 6 shows the eigenvalues of A for the maximum-
order and optimized spatial schemes with M 100. Each scheme produces two boundary-
condition-dependent eigenvalues [2] but these lie in the left half-plane and hence do not pose
a problem. These eigenvalue spectra both lie well within the stability contours of the respec-
tive time-marching methods, as shown in Figure 7, and thus the fully discrete methods are
asymptotically stable at a Courant number of unity.
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Asymptotic stability is a necessary condition for Lax-Richtmyer stability but it is not
sufficient. Thus we now consider the amplification matrix G given by

(27) G I -’l-" CA --/2(CA)2 -’i-"/3(CA)3 "l’-/4(CA)4 +/5(CA)5 "l"/6(CA)6.
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FIG. 8. Variation ofthe L2-norm ofthe amplification matrix ofthe maximum-order scheme.

A necessary and sufficient condition for stability of a fully discrete finite-difference scheme
is that there exists a constant K > such that

(28) II(G(mx, h))nll < K

for all n > O, 0 < nh < T with T fixed. For hyperbolic problems, the Courant number must
be kept constant as n is increased. Figure 8 shows Gn 112 for the maximum-order scheme for
three different values of M and a Courant number of unity. Figure 9 shows similar results
for the optimized scheme. In both cases, IIGn 112 is clearly bounded and hence both schemes
appear to be stable. This is consistent with the results of [20], in which both schemes were used
for simulations of electromagnetic waves with no evidence of instability. However, a singular
value decomposition of G shows that the growth in Gn shown in Figure 9 is associated
with the numerical boundary scheme at the inflow boundary. This obscures the very slow
growth of the unstable modes of the optimized scheme, which is revealed if the numerical
boundary scheme at inflow is removed. Nevertheless, Figure 9 provides some reassurance
that the instability causes no immediate difficulties. As shown in Figure 4, the maximum
value of Irl predicted using Fourier analysis is 1.00002 at a Courant number of unity. Since
1.0000234,000 < 2, the scheme can safely be used for well over 34,000 time steps without the
solution exhibiting any instability. However, the optimized scheme is not intended for such
long simulations since the maximum-order scheme becomes more accurate if the distance
travelled becomes very large, as shown in Figure 5.

6. Numerical experiments. We now consider several numerical experiments in order
to further compare the four schemes discussed above. The one-dimensional linear convection
equation with c 1 is solved with periodic boundary conditions on the domain 0 _< x _< 1.
The initial condition is given by a Gaussian-modulated cosine function as follows:

U (x, 0) (cos xx)e-5(x-5)/’g12
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with various values of rg and to. For the present schemes, the errors in the practical range of
wavenumbers are generally largest at 0 0 and decrease with decreasing Courant number.
Therefore, one-dimensional numerical experiments with a Courant number of unity represent
the worst case.

For the first experiment, we consider a Gaussian (x 0) with trg 0.04. The grid is
uniform with 100 points across the domain. Figure 10 shows the result after 100 time steps
with a Courant number of unity, i.e., at 1. The exact solution is identical to the initial
condition. The solution produced by scheme RK4C2 is poor, while the other schemes are
very accurate. After 1000 time steps, the solution produced by RK4C4 is inadequate for many
purposes, while the maximum-order and optimized schemes remain very accurate, as shown
in Figure 11.

Figures 12-15 compare the maximum-order and optimized schemes for Gaussian initial
conditions with four different values of Crg. The results are again shown for C 1 and 1.
The figures show the difference between the computed solution and the exact solution. For
O’g 0.04 and Crg 0.03, the L2-norm of the error produced by the optimized scheme is less
than half of that produced by the maximum-order scheme. For Crg 0.02 the improvement
from the optimized scheme is reduced and for trg 0.05 the optimized scheme produces more
error than the maximum-order scheme.

These results can be better understood by considering the normalized power spectra of
these Gaussians, which are shown in Figure 16. These spectra show the wavenumber content
of the Gaussians as a function of z based on a 100-point grid. They can be compared with
Figures 3 and 4, which show the numerical errors also as a function of z. For example, Figures
3 and 4 show that the optimized scheme is much more accurate than the maximum-order
scheme for roughly 0.4 _< z _< 0.7. With rg 0.05, there is virtually no content in this region
and hence the optimized scheme is inferior to the maximum-order scheme since it produces
more error at low wavenumbers. For Crg 0.04 and crg 0.03, there is some content in the
range 0.4 < z _< 0.7 and little content at higher wavenumbers. Consequently, the error is
dominated by these modes and the optimized scheme is superior. Finally, for Crg 0.02, the
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error is dominated by wavenumbers with z > 0.7 and thus the optimized scheme is not much
superior to the maximum-order scheme.

The gains produced by the optimized scheme for Gaussians are quite modest, even for
Crg = 0.03 and ag 0.04. This occurs because Gaussians always have considerable low
wavenumber content, which is convected more accurately by the maximum-order scheme.
The optimized scheme is more effective for functions with a narrower bandwidth. Figures
17-19 show results for Gaussian-modulated cosine functions with trg 0.1 and c 24zr,
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32rr, and 40rr, on a 200-point grid. The results are shown after 200 time steps at a Courant
number of unity, i.e., at 1. The corresponding normalized power spectra are shown in
Figure 20. In each case, these functions have considerable spectral content in the range for
which the optimized scheme is superior. For x 32rr, the L2-norm of the error produced by
the optimized scheme is more than ten times less than that produced by the maximum-order
scheme.
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7. Discussion. In this section, we discuss some considerations in selecting and develop-
ing finite-difference schemes for wave propagation problems, initially an error tolerance must
be determined. This is based on two factors: (1) the level of accuracy required of the simula-
tion in order to produce meaningful results and (2) an estimate of the largest distance a wave
will travel during the simulation. Next an estimate must be made of the shortest wavelength
which must be accurately resolved. This is also based on the accuracy requirements ofthe sim-
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ulation. For a given scheme, the grid spacing can then be determined to produce the required
accuracy in phase and amplitude for the shortest wavelength of interest based on Fourier error
analysis. The grid resolution must be sufficient to satisfy the accuracy requirements for the
worst combination of Courant number and propagation direction.

The compromise involved in optimizing a scheme is clearly revealed in Figure 5. For
small distances of travel, the optimized scheme is superior but as the distance is increased the
maximum-order scheme eventually requires fewer PPW. [21] includes a scheme similar to
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that presented here which is optimized for waves resolved with at least 7.5 PPW. This scheme
is slightly superior to the present optimized scheme for distances of travel less than roughly
75 wavelengths but is inferior for longer distances.

For some wave propagation applications, it is essential that the numerical scheme produce
no dissipation, i.e., no amplitude error. The schemes presented here are inappropriate for such
problems. However, for most problems it is sufficient that the amplitude error be less than or
comparable to the phase error. Furthermore, the damping ofhighwavenumbermodes produced
by the present schemes can be helpful in some applications 17]. If reduced dissipation is
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desired, the present spatial,scheme can be used without the filter. Fourth-order Runge-Kutta
time marching should then be used for stability.

8. Conclusions. The two finite-difference schemes presented here provide a promising
option for simulating long-range propagation of linear waves. Potential applications include
electromagnetics and acoustics. Both schemes combine a seven-point spatial operator and an
explicit six-stage low-storage time-marching method ofthe Runge-Kutta type. The optimized
scheme was developed by minimizing the maximum phase and amplitude errors for waves
which are resolved with at least ten points per wavelength. The maximum-order scheme
can accurately simulate the propagation of waves over distances greater than five hundred
wavelengths with a grid resolution of less than twenty points per wavelength. The optimized
scheme is intended for simulations in which waves travel under three hundred wavelengths.
For such cases, good accuracy is obtained with roughly ten points per wavelength. Future
work will address the application of these schemes to complex geometries.
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A NONLINEAR, SUBGRIDSCALE MODEL FOR INCOMPRESSIBLE VISCOUS
FLOW PROBLEMS*

WILLIAM J. LAYTONt

Abstract. We consider a nonlinear subgridscale model of the Navier-Stokes equations resulting in a

Ladyzhenskaya-type system. The difference is that the power "p" and scaling coefficient/z(h) --" O(h) do not
arise from macroscopic fluid properties and can be picked to ensure both L-stability and yet be of the order of
the basic discretization error in smooth regions. With a properly scaled p-Laplacian-type artificial viscosity one can
construct a higher-order method which is just as stable as first-order upwind methods.

Key words, high Reynolds number, subgridscale model, Ladyzhenskaya model
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1. Introduction. Consider the approximate solution of steady, incompressible, viscous
flow problems, as described by the Navier-Stokes equations for the velocity u f2 C a

__
1d(d 2, 3) and the pressure . f2 -- :(1.1) Re-1AU -- U. VU -{-

subject to the usual no-slip boundary condition and normalization condition for ;"

(1.2) u 0 on Of2, f .dx O.

in (1.1), (1.2) is a bounded, polygonal domain in JRd, Re is the Reynolds number, ) is the
fluid pressure, and u is the fluid velocity. To fix ideas we consider a (centered) finite element
discretization of (1.1), 1.2) with a global (or outer) meshwidth (meaning maximum d-simplex
diameter) "h."

We also specifically consider herein the case of "high" Reynolds numbers. For Re high
enough, the equilibrium problem (1.1), (1.2) loses its stability. Thus, in this report large Re
will be understood to mean large with respect the number ofdegrees offreedom availablefor
the approximation of (1.1), (1.2). Thus 0 < Re-1 < O(h) will be the case considered.

In fluid flow problems, considerable energy in the flow can be contained in "eddies, vor-
tices/solution scales," etc. which are not large enough to be represented on a computationally
feasible grid. It is common practice for such problems to employ either a specialized dis-
cretization such as [16, 19, 28, 29] or some sort of "subgridscale" (SGS) model to represent
these effects on the grid, at least in some averaged sense. The goal is to remove the "excess
energy" from the large (resolved) eddies and to return some energy to the large eddies when
the eddy moves into a region with smaller local meshwidth. One common approach (others
are certainly possible; see Dubois, Jauberteau, and Temam 10] and Heywood and Rannacher
17]) is to obtain closure in the resulting set of SGS averaged equations via ajudicious combi-

nation of continuum mechanical principles and phenomenology. Often this approach results
in the same effect as beginning with, for example, an algebraic turbulence model, such as
studied in Gunzburger and Turner [14], and setting the characteristic length scale (x) to be
the local meshwidth h(x); for this approach see, e.g., Leslie and Quarini [23]. Thus, SGS
modelling, while unavoidable in many applications, can be highly arguable.

*Received by the editors January 31, 1994; accepted for publication (in revised form) October 5, 1994. This
work was partially supported by NSF grant 9400057.

Institute for Computational Mathematics and Applications, Department of Mathematics, University of Pitts-
burgh, Pittsburgh, PA 15260 (WJL@VMS.CIS.PITT.EDU).
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This paper takes a much more modest approach, not linked to either phenomenology or
(alas) mechanics, but having similar motivation and goals. To motivate the present proposal
consider first the usual O (h) upwind]artificial viscosity approximation to 1.1 ), 1.2). This may
be considered to be the most successful, although crudest, SGS model in practical calculations.
Effects smaller than one mesh cell are spread to O(4) distance thus resolvable on the outer
mesh. It "stabilizes" both the discretization and the resulting linear system and does not
alter the graph norm error (H for velocities, L2 for pressures) when using linear elements.
Although (1.1), (1.2) does not satisfy a maximum principle, the upwind/artificial viscosity
discretization does control "wiggles" since L-stability of the upwind approximation is easily
proven using discrete Sobolev inequalities:

(1.3) sup
0<Re<c

Iluhllz C(, f)h- Ilnhl 1-a, d dim(f2) 2, 3.

(The Navier-Stokes equations do possess singular solutions which are not in Lo (f2) on small
sets, Boisvert and Ames [4], so the constant on the right-hand side of (1.3) must --+ cxz as
h -- 0 if the method is convergent.) Further, other mathematical support for some advantages
of using upwind/artificial viscosity discretizations can be given 12, 13, 28, 29].

Fromthe point ofview ofthis paper, an SGS model should share these good attributes while
at least partially overcoming the well-documented accuracy and resolution shortcomings of
upwinding and first-order artificial viscosity. Therefore, relevant criteria include the following.

(i) The approximate solution should satisfy the same L-stability bound (1.3) as the
upwind method.

(ii) For degree k velocity elements and in smooth flow regions, the model should involve
an O (hk) or O (hk+) perturbation from a consistent variational formulation.

(iii) Mathematical support for the agreeable effects of the model should be possible (at
least for "model" problems).

(iv) The additional terms arising from the SGS model should be "stabilizing" for the
algebraic system in the sense of adding contractive terms. This plays the role of
removing "excess energy" from the large eddies.

To obtain a bound of the form (1.3) via the Sobolev embedding theorem, only three
parameters are available: d the dimension of , rn the order of the derivative, and p the Lp-

norm in which smoothness is measured, d is fixed at dim() (2 or 3) and rn may be considered
fixed at 2 (not wishing to increase the order of (1.1) for the usual reasons). Thus, only p is
available, leading to a p-Laplacian! An additional, nonlinear, artificial viscosity term of the
form

AVp(uh, v) := lz(h)(lVuhlp-2Vuh,

is thus suggested, where (., .) and denote the usual (Z2())d inner product and norm.
For/z fixed (e.g.,/z(h) < 0(h), a polynomial degree (Xh) + 1), taking 2 < p < cx large
enough will satisfy the conditions (i)-(iv) above.

The above form of "h" is taken to simplify the analysis somewhat. If meshwidths are
highly variable then A Vp (., .) should be modified appropriately to use the correct local mesh-
width:

A Vp(llh, v) Z fe/Z (diameter (e))lvuhlp-2Vuh Vvdx,
all triangles

1Similarity solutions are known with point singularities [4]. The singular set in space-time of solutions to the
Navier-Stokes equation has D Hausdorff dimension zero [6], so it is thin.
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with/z(h) given by the following formula. Choose p > and (k + 1) < cr < p I if d 2
and (k + 1) < cr < 23- (p 1) if d 3. Pick (/z0 constant and h local meshwidth)

(1.4) /z(h) lzollnhl-(-)(P-1)h.
This choice is motivated in Lemma 2.2, 2, but optimality of (1.4) can only be determined by
more testing. Note that we may choose cr as large as we want (for example cr polynomial
degree of finite element space + 1) by taking p correspondingly large: p > cr + 1 in three
dimensions.

The need for agreeable SGS models is even more acutely felt when the (nonlinear or
linearized) discrete Navier-Stokes equations are solved using a multilevel method. For exam-
ple, the finest mesh may indeed be sufficient to resolve solution scales. However, those same
scales can possibly be troublesome on coarser meshes. This can be potentially troublesome
for a two-level or multilevel discretization of nonlinear problems when the coarse mesh ap-
proximation should be in the ball of attraction for Newton’s method for the fine mesh problem.
(These promising methods were used already in 1935 by Southwell [27]. Their mathematical
validation has recently been pioneered by Xu [31] for elliptic boundary value problems, and
then generalized to the Navier-Stokes equations in [19-21].) The "Navier-Stokes plus p-
Laplacian" equations were originally proposed by Ladyzhenskaya [18] as an alternate model
for fluids with large stresses. In our view, the Ladyzhenskaya alteration is quite promising as
an SGS model with (1.4) when notjustified as a macroscopic fluid model. Finite element error
analysis of this model was carried out in Du and Gunzburger [7-9] under a global unique-
ness (small data) condition. The preliminary analysis given herein thus complements that of
[7-9] in that we give error analysis in 3 for high Re with respect to solutions of (1.1) with
/z =/z(h) -- 0ash -- 0.

2. Preliminaries and max-norm stability. We consider the nonlinear SGS method:
seek (uh, )h) (Xh, Qh) satisfying

(2.1) AVp(uh, v) + Re-l(Vuh, Vv) + b(uh, uh, v) ()h, V. v) + (q, V. uh) (f, v)

for all (v, q) e (xh, Qh), where A Vp(., .) is given, as indicated in the introduction, by

AVp(u, v) :=/z(h)(IVulp-2VU, Vv).

Here p 2 corresponds to usual linear artificial viscosity, and b(u, v, w) is the usual skew-
symmetrized trilinear form:

lfob(u,v,w) := [u. Vv. w- u. Vw. v]dx.

We shall assume that Xh satisfies the usual inverse and discrete Sobolev inequalities. In
particular, for d 2, 3 and all v Xh (where is the LE-norm),

(2.2) Ilvllo < Clln(h)l 1-h-llvvll.
Additionally, we shall need the LP L2-type inverse inequality which follows.

LEMMA 2.1. Let Oo be the minimum angle in the triangulation andMk {v(x) v(X)le
79k(e)for all e Fib(f2) }, 79k being thepolynomials ofdegree < k. Then, for Vh the element-
wise definedgradient operator, there is a C C(0o, p, k) such thatfor 2 < p < cx, d 2, 3
and all v M,
(2.3) IIVhvllLp(a < Ch (Z)llVholl.
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Proof First a local version of (2.3) is proven by a scaling argument, using the technique
of Dupont and Scott 11]. Let denote the reference element. First consider the affine map
x he q- b mapping e to an element Y the size of the reference element

A change ofvariables gives immediately that vo L2(e) hd-2)/2 x)o z (well known)
and x)v <e hP-d/P Xzo (e) (completely analogous). The effect ofthe shape distortion
between Yand is accounted for by a compactness argument (llowing 11]) which contributes
a constant C C(00, k). Finally, norm equivalence implies
These combine to yield

The global bound is obtained by the Cauchy-Schwarz inequality as follows. Let p > 2 be an
integer. Then,

IlXZhvllLp IlXZvll p < Ch() P
LP(e) [[VVIIL2(e)

Ch( [IVvllz2(e)llVvllP2-(le) < (C.B.S. ineq.)

< Chff(llVvll Xzw 2-1e
repeat p 3 more times < Ch

This proves the result for the 2 < p < o integer. The case of noninteger p follows by
interpolation.

LEMMA 2.2 (max-norm stability). Let Sh (S2) satisfy the inverse estimates (2.2) and (2.3).
Then thefollowing holds.

(i) Linear artificial viscosity. If p 2 and lz(h) Ioh, then uh satisfies (lzoh +
Re- 1) Vuh

0 <_ C f II- so that

(Re-t)
-1

IluhllLo < C(k, f2) Izo q-
h

h-llnh[ 1- Iit"11-1.

(ii) Nonlinearartificialviscosity. LetRe-1 < Ch. Ifp > , lz h withtr < (p- 1)
(i.e., p > -+ 1), then

Iluh I1o _< C(k, p, S2) /zo
L h- Ilfllwq.-.

Remark This suggests choosing/2 O(llnhl-((a-l/d(p-l), which gives the formula
(1.4) of the introduction.

Proof. Set v uh and q )h in (2.1):

lzh fo [711hlp-2l711h]2dx -- Re-l llTuhl[2 (f, llh) 5 [[fllwq,-l ll711hllLP,

where 1 + 1 1. Thus
P q

/z0hllTuhl[-1 --< Ilfllw.,- and [[VuhIIL" < /0
el h-7:r- [[fllwq,_l.

d iluhllL < C()llVuhllz, andThe Sobolev embedding theorem now implies that for p > 3,
the result follows. ]
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3. Error analysis for,the Oseen problem. This section presents an error analysis of the
SGS model discretized by the finite element method for a linearized Navier-Stokes problem.
The error is calculated with respect to the solution of (1.1), unregularized. This analysis com-
plements the finite element error analysis for the Ladyzhenskaya model (see Ladyzhenskaya
18]) of fluid flow in Du and Gunzburger [7-9] in that the former considers the nonlinear prob-
lem with the parameters/z and Re sufficiently small to ensure global uniqueness of solutions
while herein we study/z =/z(h) -+ 0 and Re large for a (linearized) Oseen problem. There
is also other work on the pure (symmetric) p-Laplacian problem and a related creeping flow
problem in Barrett and Liu [2, 3].

The Oseen problem is given as follows. For U(x, y) a smooth enough, known flow fluid
with div U 0, we seek u(x, y) satisfying

-Re-1Au+U.Vu+V)=finf2,V.u=0in
(3.1) u 0 on Of2, fa )dx O.

Error analysis for (3.1) at all Reynolds numbers is possible using monotonicity techniques
since the solution operator to (3.1) is monotone on the space

V:= v (2) "V.v=0

of divergence-free functions, [12, 13].
The numerical method for (3.1) is as follows. Choose the velocity-pressure finite element

ol
spaces (Xh, Qh)suchthatXh C (H (f2))d, Qh C L(f2)"= {q L2(f2)" fa qdx--0} and
they satisfy the inf-sup or Babuska-Brezzi condition:

f qhV. Vhdx
h > O,(3.2) inf sup

qhEQ 1)hEX Ilq hll Vvhll

/h being bounded away from zero uniformly in h. Examples of"good" spaces satisfying (3.2)
are given in [12, 13]. The approximation is now defined by the following" seek (uh, ph)
(Xh, Qh)satisfying for all (v, q) 6 (Xh, Qh),

(3.3) A Vp(uh, v) + a(uh, v) q- b(U, Uh, V) -]- (h, V. v) (q, V. uh) (f, v).

LEMMA 3.1 (max-norm stability). Under the assumptions ofLemma 2.2 the solution uh

to (3.3) satisfies all the stability bounds ofLemma 2.2.
Since A Vp(., .) is associated with the "p-Laplacian," its monotonicity properties are

documented in many places; see e.g. [2-4, 7-9, 24, 30]. These properties will now be
summarized here; see the above references for proofs. Using the Riesz representation theorem,
define the operator T X X’ satisfying

(T(u), v) (IXTulP-2XZB, XTv) Vv X.

1,p
PROPOSITION 3.1. Let p > 2. Then T satisfiesfor all u, v

(T(u) T(v), u v) _> ((llV(u v)ll)llV(u v)llz,

liT(u) T(v)llw-,,q < r(r)llV(u v)ll,

for IlVull < r and IIVvlIL, < r, where r(r) C(2p 3)rp-2, and ((s) C()p-2sp-1.
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Proof These bounds have been proven, for example, in [2, 3, 7-10, 24, 30]. [3

The following is an easy consequence of strong monotonicity, [30], of T and the inf-sup
condition.

PROPOSITION 3.2. Let p > 2 and suppose (Xh, Qh) satisfies (3.2). Then,
(i) The subspace Vh ofdiscretely divergence-freefunctions

Vh "= {vh E Xh" (vh, qh)._ 0 [ qh Qh}

is well defined and nontrivial. Further, for u e X satisfying div(u) 0,

1 ) inf IlV(u v)II.inf V(u v)II C 1 + -7-
veV h vX

(ii) There is a well-defined continuous mapping Tph Vh’ --> Vh satisfying

(Tph (u), v) AVp(u, v) + Re-(Vu, Vv) + b(U, u, v).

(iii) Tph (.) satisfies thefollowing:for all u, v Vh

(T; (u) T; (v) u v) > C/z(h)((11V(u- v) L) V(u-v) L +Re- V(u-v) 2=L
where ((.) is given in Proposition 3.1.

Proof Part (i) is from standard finite element convergence theory for the linear Stokes
problem; see, for example, 12, 13] for a proof. Part (ii) follows immediately from the Riesz
representation theorem. Part (iii) follows from Proposition 3.1 and the skew symmetry of
b(.,., .).

COROLLARY 3.1. Suppose p >_ 2 and (3.3) holds. The solution (uh, xh) tO (3.1) exists
uniquely.

Proof. Existence of uh is equivalent to the solvability of Tvh (uh) phf in Vh where ph

is the L2 orthogonal projection ph Xh __> vh. Existence and uniqueness of Tph(uh) phfh
follows from Proposition 3.2 and Minty’s lemma; see Minty [26]. Existence and uniqueness
of h then follows from the inf-sup condition exactly as for the Stokes problem; see [12, 13]
for these arguments.

THEOREM 3.1. Suppose (Xh Qh) satisfies the inf-sup condition with constant h, andXh

satisfies the inverse estimates (2.2) and (2.3). Then, with r IlVull=,

(3.4)

/z(h)ll V(u- uh)ll pLp + Re- IIV(u- uh)ll 2

< C 1 + inf {C(U)llu- wll 2 + Re-lllV(u- w)ll =
wX

//z(h)llV(u w) I1 d-hd(2p)/z(h)211V(u w)ll 2L }
2p-2+ C inf II) qll 2 + CRehd(2P)/z(h)2llVullLp

qQh

Proof.The error bound is proven using Galerkin orthogonality, the inf-sup condition, and
monotonicity of Tph (.) on Vh First the error equation is derived. Let v Vh be arbitrary, then
u X satisfies

a(u, v) + AVp(u, v) + b(U; u, v) (f, v) (,k qh, V. v) d- AVp(u, v)
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for all qh E Qh. Thus, with e u uh, for all v E Vh,

AVp(u, v) -AVp(uh, v) 4- a(e, v) + b(U, e, v)

AV(u, v) ( qh, V. V).

Let w Vh be arbitrary and define b (w- uh) e Vh, r/ u- wh. Adding and
subtracting terms as appropriate gives

A Vp(w, v)- A Vp(uh, v) + a(b, v) + b(U, q, v)

_(, qh, V. v) b(U, r/, v)

-a(, v) + A Vp (w, v) A Vp (u, v) + A Vp (u, v).

Equivalently, for all v Vh,

(Tph (w), v) -(T; (uh), V) --(X qh, V. V)

-b(U, q, v) a(q, v) + A Vp(u, v)

4-A Vp (u, v) A Vp (w, v).

Setting v 4) (since p vh), using strong monotonicity on the left-hand side of the above
equation and local-Lipschitz continuity on the right-hand side gives

Cz (h)ff(llVll)llVll, + Re-lllVbll 2

_< I1 q v + c(u)I1 v
+Re-ll Vr v + AVp (u, )
+/z(h)r(r) V(u w)II Vwll,

where rl max {llVullg, IIVwll},
Now AVp(u, t) --/z(h)(T(u) T(0), b) < Iz(h)llT(u) T(O)llw-l.qllPllw-l.p < iz(h)

F(r2)llVullLe IIVIIL, with r2 Ilullw.. Thus,

A Vp(u, p) <_/z(h)r(r2)llull-llWll.
Thus,

C/(h)((llVll,)llVll + CRe-lllVll 2 IlX all 2 4- C(U)llrlll 2

4-Re-lllVrlll 2 //z(h)F(r2)llVull-lllvPllL 4-/z(h)r(r)llVrlll IIVll.

To complete the error analysis note that since b E Xh, tp satisfies the inverse estimate
(2.3). Indeed, IIW’II, _< ?’(h)llV,ll for all tp Xh, where ,(h) Ch2-p/p, so that

C/z(h)(llVePll,)llVPll+fRe-lllVll 2 <_ IIZ qll / C(U)llrlll 2

2p-24-Re-111 Vrll124-CRe,2(h, p)lz(h)2F2(r2)llVullLe
+CRer2(r)’2 (h)/z (h)2

Under the inf-sup condition an infimum over Vh may be replaced by a constant times an
infimum over Xh. Thus the result follows from the triangle inequality, the fact that at the
infimum rl, r2 < Cr0, and (since f 4- g

p P P_< C(p)(llfll, + Ilgll,))

(llV(u- uh)ll) IIV(u uh)lle
_< C((llV,ll,)llVll, + 2C((llVrlll)llXTrll.
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It is interesting to compare (3.4) with the usual error estimate for the (centered) Galerkin
method. With a careful error analysis, the usual Galerkin approximation ofthe Oseen problem
satisfies the error bound:

(3.5)
Re-111V(u uh)ll < C(1 +/5-1) inf {Re-lllv(u- w)l] 2 + Ilu- wll 2}

wX
+CRe inf II&- q 2.

qEQ

Suppose, for example, the "Mini" element 13, p. 36] is used (equal order interpolation is
optimal if Re-1 < O(h), [19, 21]); then (3.5) predicts an error bound of the rough form
IIV(u uh)]] < Cl(U, .)(h2 + Re2h4), which is no better than O(1) when Re O(h-2).
With the same reasoning (ignoring logarithm terms), the error bound (3.4) roughly states that
(fixing d 3, /z(h) /zoh, p r + 1) hllV(u- uh)ll, + Re-lllV(u- uh)l[ 2 <

C2(u, ,k) {h4 + Re-lh2 + h2r+l + Reh2r-3+3/(cr+l) }. For example, if Re O(h-2) and cr
4, this predicts IIX7(u uh)ll 2 < C2(u, ))h8/5.

Naturally the constants C1,2 (u, p) in the above rough estimates dependupon Re implicitly
due to local fluid behavior. The centered scheme is well known to do a poor job localizing
the errors in such cases. Approximate solutions are globally oscillating due to local solution
effects in small regions. Hopefully, the formulations (2.1), (3.3) introduce sufficient viscosity
in such regions to better localize the errors due to large derivatives of u and p. There is some
experimental evidence of this in 4; see Figures 4.1-4.3.

4. An illustration. Due to the complexity of solutions to the Navier-Stokes equations
andthe ambiguity ofthe notion of"solution quality," it has become customary to test discretiza-
tions tailored to higher Reynolds number problems first upon singularly perturbed convection
diffusion equations such as the following: seek $(x, y) satisfying

(4.1)
-Aq9 + U. Vb + 2p f in f2, p ot on 0f2,
0< << O(h), V.U=0inf2.

Equation (4.1) satisfies a maximum principle (unlike the Navier-Stokes equations) and, due
to the additional "+2q" term, a fairly complete asymptotic picture of solutions is available.
Therefore, at least lack of "solution quality" is clearcut for (4.1)! Further, (4.1) also arises
coupled to the Navier-Stokes equations as an energy equation [5], so it is interesting in its
own right.

FIG. 4.1. Approximate solution,/z0 1, p 3, cr 2 using linear elements.
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FIG. 4.2. Approximate solution, lzo 1, p 5, cr 3, using linear elements.

FIG. 4.3. The (Linear interpolant of) an approximate solution, e .lh2, h using/xo 1, p 5, cr 3,
quadratic elements.

FIG. 4.4. Usual FEM approximation, without nonlinear SGS terms.

To illustrate the effect of the additional nonlinear artificial viscosity term upon "solution
quality," we consider a rotating pulse problem of the form (4.1) approximated with linear and
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quadratic elements. The usual centered Galerkin formulation plus nonlinear artificial viscosity
A Vp(., .) is used.

Example (internal flow, rotating pulse problem). We have

if2 (-1, 1) x (-1, 1), U (-yR(r), xR(r)),

where r2 x2 -I" y2, R(r) 0 for r > 1 is a nonnegative C function with R(r) > 0 for
r < 1, R(0)-- 1, so that V U 0. We choosee =.lh2,andf-- lifr <_ , f =-0if

r > . This emulates a rotating flow inside a circular enclosure (r < 1). The true solution for
ifre small is a rotating "blob" or circular table with an O(/) transition layer, 4 <

and4 0ifr > .
The same mesh was used for all tests" a uniform rectilinear mesh h , each square

divided into two triangles by a line of slope -1. This mesh is not adapted to the circular
symmetry of the convection field. The nonlinear equations were solved using a damped
Newton method, and the linearizations, were solved using the conjugate gradient squared
(CGS) method using an ILUo preconditioner; see Maubach [25] for a presentation of these
methods. With a nonzero initial guess no difficulty was encountered. The only difficulty seen
was in solving the linearized system arising from a zero initial guess. Specifically, with a
zero initial guess for Newton’s method, the first iterate is the solution of the usual (centered)
Galerkin linear system. This linear system is much more sensitive and difficult to solve using
standard preconditioners than all the remaining linear and nonlinear problems. Aside from
using a nonzero initial guess or a better preconditioner, e.g., [22], another attractive possibility
is to begin with a linear artificial viscosity approximation and "antidiffuse" using a few defect
colxection steps, where the A Vp (., .)-nonlinearity only occurs in the residual calculation. This
requires solving only a few (stable) linear systems with the same coefficient matrix. This
combination has not yet been tested, but the practical success and theoretical support for this
type of procedure in other similar contexts [1, 19] and Hemker and Koren [15, 16] suggest
adapting it to the present one as well.

In the tests depicted in Figures 4.1-4.3, note the good quality ofthe approximate solutions
(compare Figures 4.1, 4.2, and 4.3 to Figure 4.4) and the capturing of the transition regions in
about 3h distance. With optimized parameter selections this could likely be further sharpened.

Acknowledgment. I thank J. Maubach for generously providing the examples in 4.
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A NUMERICAL METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS BASED ON AN APPROXIMATE PROJECTION*
ANN S. ALMGRENf, JOHN B. BELLf, AND W1LLIAM G. SZYMCZAK:

Abstract. In this method we present a fractional step discretization ofthe time-dependent incompressible Navier-
Stokes equations. The method is based on a projection formulation in which we first solve diffusion-convection
equations to predict intermediate velocities, which are then projected onto the space of divergence-free vector fields.
Our treatment of the diffusion-convection step uses a specialized second-order upwind method for differencing the
nonlinear convective terms that provides a robust treatment of these terms at a high Reynolds number. In contrast
to conventional projection-type discretizations that impose a discrete form of the divergence-free constraint, we
only approximately impose the constraint; i.e., the velocity field we compute is not exactly divergence-free. The
approximate projection is computed using a conventional discretization of the Laplacian and the resulting linear
system is solved using conventional multigrid methods. Numerical examples are presented to validate the second-
order convergence of the method for Euler, finite Reynolds number, and Stokes flow. A second example illustrating
the behavior of the algorithm on an unstable shear layer is also presented.

Key words, incompressible flow, projection methods
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1. Introduction. In this paper we develop a projection method for the incompressible
Navier-Stokes equations

(1.1) Ut + (U V)U eAU Vp + F,

(1.2) V. U O,

which is formally second-order accurate. Here U represents the velocity field, p represents
the hydrodynamic pressure, and F represents any external forces. We denote the x and y
components of velocity by u and v, respectively. The method presented here is based on
the algorithms presented by Bell, Colella, and Glaz [1] and Bell, Colella, and Howell [2].
As in those papers, we use a second-order upwind method for the treatment of the nonlinear
convective terms in (1.1). The algorithms presented in those papers were motivated by a
desire to apply higher-order upwind methods developed for inviscid, compressible flow to the
incompressible Navier-Stokes equations. In particular, they used a specialized version of the
unsplit second-order Godunov methodology introduced for gas dynamics by Colella [9]. The
upwind methodology provides a robust discretization of the convective terms that avoids any
cell-Reynolds-number stability restriction for high Reynolds-number flow.

The focus of this paper is on the discretization of the projection. The original projection
method developed by Chorin [6] defines the projection by defining discrete operators D and
G, approximating divergence and gradient, which are skew adjoint; i.e.,

D -GT.
With this definition the discrete projection

P I G(DG)-xD
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(with boundary conditions implicit in the boundary conditions ofthe flow problem) is a discrete
orthogonal projection on the finite-dimensional space of vector fields defined on the mesh. In
Chorin’s formulation both pressure and velocity are specified at nodes and central differences
are used for the definition of D and G. This results in an expanded five-point stencil for the
discrete Laplacian, DG, that must be inverted to apply the projection. This expanded stencil
produces a local decoupling of the mesh points with a 2d-dimensional kernel for G where
d is the dimension of the problem. Bell, Colella, and Glaz [1] use a discretization of the
projection based on a finite element method due to Fortin 10] that uses pressure defined on
cell centers with velocities given at nodes. This approach produces a more compact stencil
but also generates a local decoupling of the grid and dim ker G > 1. Bell, Colella, and
Howell [2] use a fully cell-centered analogue of Chorin’s algorithm. This scheme exhibits
a local decoupling, but in the presence of Dirichlet boundary conditions the cell-centered
approximation eliminates the nonconstant elements in ker G.

Although the projections discussed above have been shown to be effective for solution
of the incompressible Navier-Stokes equations, they exhibit a number of shortcomings as a
result of the local grid decoupling. First, the schemes all use nonstandard discretizations of
DG that require specialized iterative procedures that properly respect the stencil that is used.
(See [2, 13] for a discussion of such a procedure.) For the schemes in which dim ker G > 1,
the nonconstant elements in the kernel induce additional, artificial compatibility constraints
similar to the physical condition

o
U.nds =0

on the boundary of the physical domain S2. Local decoupling raises additional difficulties
when more complex low Mach number processes are being modeled. Often in these cases a
term that results from the additional physics, and is not in the range of the divergence operator,
is added to the right-hand side of the Poisson equation for pressure. The presence of the
additional source term can result in marked oscillations in the solution. Lai 16, 15] reports
such oscillations when using projections with locally decoupled stencils for modeling low
Mach number combustion. The approximate projection introduced here has successfully been
used for this type of simulation; see 19].

The goal of the work reported here is to develop a projection that avoids the difficulties
associated with locally decoupled stencils and is amenable to treatment by standard iterative
methods. Several approaches have been proposed that address this issue. In a MAC dis-
cretization (cf. Harlow and Welch 11]), a discrete form of (1.2) is enforced in a context in
which DG is the standard five-point finite difference Laplacian. However, in the MAC ap-
proach the components of velocity are not colocated, which makes the application of modem
higher-order upwind techniques extremely cumbersome if not impossible. Strikwerda [20]
proposes a regularized projection based on Chorin’s original node-based algorithm. Strik-
werda’s method uses a skewed, higher-order third derivative perturbation to D and G to re-
move the local decoupling of Chorin’s method. Colella [7] reports that although Strikwerda’s
algorithm is effective for homogeneous boundary conditions, noticeable anomalies arise from
the asymmetry of the operators when inflow and outflow profiles are specified. Although the
overall algorithm can be engineered around this shortcoming, the complexity of the method
is considerably enhanced. In addition, the Strikwerda projection also generates a wide stencil
requiring care in the treatment of boundary conditions.

We would like to develop a form of the projection compatible with a cell-centered dis-
cretization of velocity that avoids any local decoupling of the stencils, provides a symmetric
discretization of the potential flow inherent in nonhomogeneous boundary conditions, and
generates a linear system that fits the framework of conventional fast iterative techniques (e.g.,
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multigrid) for second-order elliptic equations. The evidence to date suggests that this is not
possible while simultaneously requiring that there is a discrete divergence D so that DU 0 is
satisfied. In this paper we will relax that condition and only require that DU O(h2), where h
is the mesh spacing. The approach will treat velocities as averages over grid cells and discretize
pressure using a standard bilinear finite element discretization. We will show that relaxing the
treatment of (1.2) does not have any deleterious effects on the stability or convergence prop-
erties of the algorithm; the advantages of the higher-order upwind methodology are retained
and the complexity of the linear algebraic aspects of the method is substantially reduced.

In the nexttwo sections we will review the basic fractional step scheme ofBell, Colella, and
Glaz 1] and describe the discretization of the convection-diffusion step of the algorithm. The
fourth section describes the approximation of the projection and briefly describes a multigrid
algorithm for its solution. This section also contains a discussion of boundary conditions for
the projection. In the fifth section we present computational results obtained with the method.
The first sequence ofresults demonstrates second-order convergence ofthe algorithm for finite
Reynolds number, Euler, and Stokes flows. The final example illustrates the application of
the method to the computation of an unstable shear layer. The sixth section contains the
conclusions.

2. Fractional step scheme. In this section we review the basic fractional step scheme
used in the algorithm. In the presentation ofthe basic algorithm we will focus on homogeneous
Dirichlet boundary conditions and no external forces. We will also assume that the mesh
spacing on the base grid is uniform in the x- and y-directions, with Ax Ay h. These
restrictions are not inherent limitations of the method; they have been adopted here for clarity
of exposition. The reader is referred to 1, 4] for a more detailed description.

Our strategy for solving the system (1.1)-(1.2) is a fractional step scheme that has two
parts: first we solve the advection-diffusion equations (1.1) without strictly enforcing the
incompressibility constraint. Then, we project an intermediate vector field onto the space of
discretely divergence-free vector fields.

For the diffusion-convection step we solve

(2.1)
U*-Un (un-}-U*)-Vpn-1/2At + [(U" V)U]n+1/2 EAh

2

for the intermediate velocity U*, where Ah is a second-order finite difference approximation
to A. The pressure gradient is evaluated at n-l and is treated as a source term in (2.1).
(The pressure gradient is only computed at the 1/2-time levels.) The advection terms in
(2.1), namely [(U V)U]n+1/2, are approximated at time n+l/2 to second-order in space and
time using an explicit predictor-corrector scheme. This scheme uses only the available data
at tn; thus, the implicit part of (2.1) corresponds to two decoupled parabolic equation solves.

The velocity field U* computed in the first step is not, in general, divergence-free. The
projection step of the algorithm decomposes the result of the first step into a discrete gradient
of a scalar potential and a discretely divergence-free vector field that correspond, respectively,
to the new approximation to the pressure gradient and an update for the velocity. In particular,
if P represents the composite grid projection then

un+l-- un (g*- gn)(2.2) P
At At

U* Un )Vp"+1/2 Vpn-1/2 -+- (I- P)
At

(Note that the vector field we project is not U*; it is an approximation of Ut.)
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3. Discretization of the diffusion-convection step. In this section we describe the al-
gorithm for the diffusion-convection step in the fractional step scheme, namely (2.1). The
algorithm is essentially the same as the second-order upwind method used by Bell, Colella,
and Glaz 1]. Here, Ui represents the value of the velocity field in cell Bij at time n, and

n-1/2
Pij represents the average value of Vp in cell Bij at time n-l We note that although

for the purposes of the projection the pressure is a bilinear function on each cell, we do not
use that structure in the advection step. The algorithm is a predictor-corrector method. In the
predictor, characteristic equations are used to extrapolate velocities to cell edges at the new
half-time level n+ 1/2. In the corrector, the predicted values are used to compute a flux, which
is then differenced to compute the advection terms. These two steps are described in more
detail below.

Predictor. In the predictor we extrapolate the velocity and density to the cell edges at
n+l/2 using a second-order Taylor series expansion. For edge (i + , j) this gives

un+1/2 ,L n Ax At
i+ 1/2,j Uj t_ TUnx’ij -[- Un’ij

extrapolating from (i, j), and

if/n+ 1/2,R n AX At
+1/2,j U;+I, Tg,i_t_l,j + "--gn,i_t_l,j

extrapolating from (i + 1, j), with analogous formulae for the other edges. The differential
equation (1.1) is then used to eliminate the time derivatives to obtain

n+,L Uij
U,ij (vUy)i + BAh n-(3.1) U

i+ 1/2,j Uj -k
2 2 2 - Uj GPi

.jin+ R

+1/2,j UI+I,j (X Ui+l,jAt)..- -" U,i+I,j

At( AhAt
(uUy)i+l,j t_ \E f+l,j2 T

n-!GPi+12,j)
Here, Ah is the standard five-point finite difference approximation to the Laplacian.

Equations (3.1)-(3.2) represent the final form of the predictor. Analogous formulae are used
to predict values at each of the other edges of the cell. In evaluating these terms the first-
order derivatives normal to the edge (in this case Ux) are evaluated using a monotonicity-
limited fourth-order centered-difference slope approximation [8]. The limiting is done on the
components of the velocity individually.

The transverse derivative terms (v Uy in this case) are evaluated by first extrapolating from
above and below to construct edge states, using normal derivatives only, and then choosing
between these states using the upwinding procedure defined below. In particular, we define

n=u5 + vijAt)2
Uy’ij’

vi,j+lAt)2
Uy,i,+,

where Uy are limited slopes in the y-direction, with similar formulae for the lower edge of
Bij. Using the upwinding procedure we first define the normal advective velocity on the edge:
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n ifn>0, n+-r>0
V’’ado= 0 ifn <0, r >0,

’r otherwise.

(We suppress the i, j + spatial indices on the bottom and top states here and in the next
equation.) We now upwind U based on V’’ado:

’On ifaa,, > O,

l(n -I- TUi,j+1/2 i if’.a. O,

r if’adv < O.

After constructing Ui,j-1/2 in a similar manner, we use these upwind values to form an ap-
proximation to the transverse derivative in (3.2)"

uUy
, -i j+ "+" "i j ) U j+ U j 1/2

Corrector. In the corrector we use the identical upwinding procedure to that used for the
transverse derivatives to choose the appropriate states Ui+l/2,j given the left and right states

uin+l/2,L un/I/2,R
+l/2,j and i+l/2,j We follow a similar procedure to construct Ui-l/2,j, gi,j+l/2, and

Ui,j-1/2. Finally, we use these values to form an approximation of the convective derivatives
in (1.1)

1
uUx 2t-- yUy , -(bli+1/2, j at-Igi_1/2,j)(Ui+1/2, j

1
Ui_1/2,j .L (Yi,j+1/2 -+- l)i,j_ )(Ui,j+ Ui,j_ 1/2).

The Godunov method is an explicit difference scheme and, as such, requires a time-step
restriction. A linear, constant-coefficient analysis shows that for stability we must require

luijlmt Ioijlmt )max cr < 1,
ij AX Ay

where cr is the CFL number. The time-step restriction of the Godunov method is used to set
the time step for the overall algorithm.

A weak nonlinear instability for cr > 0.5 has been observed [2]; it is believed to result
from the use of the lagged pressure gradient in the predictor-corrector algorithm as described
above. An alternate form of the corrector incorporates a MAC projection as in [2] to ensure
that the edge velocities satisfy

DMACU Ui+l/2,j Ui-1/2,j ’t"
l)i’j+l/2 1)i’j-1/2 --O.

ZXx Ay

This projection is applied immediately before, the construction of the convective derivatives
and eliminates the instability for .5 < r < 1. Convergence results will be presented for
calculations with and without the MAC projection.

Parabolic approximation. Once the advection terms are evaluated at every cell Bij, to
complete the solution of (2.1) we must solve the diffusion part of the system with the pressure
and advective terms treated as source terms. For this step we use a standard five-point dis-
cretization of the Laplacian with a modification at the boundary that computes a second-order
approximation of Laplacian that reflects the given boundary data. The resulting system for
each velocity component is solved using multigrid.
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4. Discretization of the projection. In this section we describe the numerical approxi-
mation ofthe projection. The projection is based on a finite element formulation. In particular,
we consider the scalar pressure field to be a CO function that is a bilinear function over each
cell; i.e., the pressure is in

Sh M(x) (R) M(y),

where M(x) is the space of polynomials of degree in the x-direction on each cell with C
continuity at x-edges. For the velocity space we define

Vh Vh,x )< Vh,y,

where Vh’x M01(X) (R) Ml_l(y) and vh’y M (x) (R) M-1 -1 (Y); i.e., u is piecewise constant
in x and a discontinuous linear function of y in each cell, with a similar form for v.

As noted above, our basic approximation represents U in terms of cell averages. The
velocity space Vh contains additional functions that represent the linear variation within each
cell. These additional degrees offreedom makeVh large enough to contain Vtp for tp Sh. We
establish a correspondence between these two representations by introducing an orthogonal
decompositionofVh In particular, for each V Vh we define a piecewise constant component

and the variation

1 f V dxVij Vol Bij ij

v-t-=v_V

so that for each cell Bij, fnij V-’[-dx 0. By construction these two components are orthogonal
in L2, so they can be used to define a decomposition of Vh into two components

(4.1) Vh Vh Vh+/-

whereh and rh+/- represent the cell averages and the orthogonal linear variation, respectively.
The decomposition ofVh induces a decomposition of Vtp for all tp sh; namely,

where

(V)ij (V)ij -- (V)/,
()i+1/2,j+1/2 "- i+1/2,j-1/2 )i-1/2,j+1/2 (i-1/2,j-1/2

Gqbij (v)i 2Ax

)i+1/2,j+1/2 dr- )i-1/2,j+1/2 i+1/2,j-1/2 )i-1/2,j-1/2
2Ay ,]

Yij xij )(V)i (i+1/2,J+1/2 " i--1/2,J-1/2 i-1/2,J+1/2 i+1/2,J--1/2) AX’ Ay

where )i+1/2,j+1/2 represent the nodal values of tp. Here Xij and yij are local variables, defined
on each cell such that xij Yij 0 at the center of Bij, xij d: at the left and right edges
of Bij, and Yij q- at the top and bottom edges of Bij.
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We now define a weak form of the projection on yh, based on a weak divergence on Vh,
In particular, we define a vector field Va in yh to be divergence-free if

(4.2) f va.V@ dx=O Yq/ 6 Sh.

With this definition we can then project any vector field V onto a gradient V4 and weakly
divergence-free field Va (with vanishing normal velocities on boundaries) by solving

(4.3) f V(x). Vi+1/2,J+1/2 (x)dx f V.VPi+1/2,J+1/2 (x)dx i+1/2,J+1/2 (x)

for

t(X) Z )i+1/2,J+1/21/ri+1/2,J+1/2 (X)
i,j

and setting Vd V Vb. Here the @’s are the standard basis functions for sh; namely,
1/ri+l/2,j+l/2(X is the piecewise bilinear function having node values 1/ri+l/2,j+l/2
(Xk/l/2,e.+l/2) ikje. We note that with a suitable normalization, the right-hand side of
(4.3) defines a nodal value of the divergence of V at node (i + , j + ); in particular, by
using (4.3) we are implicitly defining the discrete divergence by

(4.4)
1 f V’Vlri/1/2,J/1/2 (x) dx,(n v)i/1/2,J+1/2 --where-- f lPi+l/2,j+l/2(X dx.

When this approximate projection is applied in the context of our fractional step scheme,
the vector field V to which the projection is applied is given by

U* U
(4.5) V=V=_, V+/-=0.

At

(In the predictor we have only determined the quantity -*, so we make the implicit assumption
here that U+/-,* U-L’n.) In this case, since D operates on a "barred" vector, the divergence is
simply

VXi+l,j x x VV i+l,j+l- V i,j i,j+l
(DV)i+1/2’J+1/2 2Ax

VYi,j+l --I-- Vy
i+I,j+I VYi,j VY i+l,j+ 2Ay

where V and Vy are the x- and y-components of V, respectively. With V defined by (4.5),
U*mU V*--U
At and Vy We solve (4.3) for q to obtain an update for p; i.e.,At

(X) 6pn = pn+1/2 pn-1/2.

For the purposes of the fractional-step scheme we then define
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(4.6) d V- G4
mn+

as the approximation of u -u in (2.2).At

The vector field -d is only approximately divergence-free; i.e., DVd
7 0 even in the

weak sense of (4.2). The quantity that is weakly divergence-free is Vd V V4; however,
in general, DVd" 7 0; consequently, D-d

7 O. Effectively, what we have done in writing
(4.6) is perform the vector field decomposition into a divergence-free component and the

gradient of a scalar on Vh and project the weakly divergence-free component onto Vh
using

the characterization of Vh given by (4.1).
In order to estimate the effect of only approximately enforcing discrete incompressibility

we will rewrite the result of the projection as

* -n un+l un
(4.7) -+- VtpAt At

DUn+ O,

where we implicitly assume DU 0, although Dn
7 O. Since D -DUhi, we can

estimate how errors accumulate by examining the behavior of Uni To accomplish this we
break (4.7) into its component pieces:

-* -n -n+l n u+/-,n+l u+/-,n
+ + V(pn+ pn- 1/2).

At At At

If we then use the characterization of Vh given by (4.1), we obtain

n+l -n J- At
At

and

un+l+/-

Un+/- _}_ At((Vpn-1/2) +/- (Vpn+1/2) +/-) Un+/- At2(Vp)+/-.

This evolution equation for U+/- places limits on the growth of U+/-. The quantity (Vp) +/- is
uniquely defined by the node values Pi+l/2,j+ 1/2. As long as the pressure remains sufficiently
smooth in space and time, U+/- is well behaved as well and scales with At h crh2. The
factor of At comes from the evolution equation for U+/-; the factor of h comes from the fact
that for smooth g,, I(Vg,)+/-l _< O(h). Thus DU 0 guarantees that D-n

O(h2) as long
as the CFL condition is enforced. We monitored DU for the convergence study presented in
the next section and verified the second-order accuracy computationally.

The linear system associated with the solution of (4.3) is the standard bilinear finite
element stiffness matrix for Poisson’s equations. We solve this systemusing standard multigrid
methods (see [5]); in particular, we use the standard V-cycle with Jacobi relaxation. This
procedure reduces the residuals by approximately a factor of five per V-cycle.

The left-hand side of (4.3) is, in discrete form, a nine-point stencil approximating the
Laplacian of 4. We note that it is possible, using a similar development, to construct an
approximate projection in which the left-hand side of (4.3) is the standard five-point finite
difference Laplacian. This construction is based on approximating pressure as a piecewise
linear function on triangles. We define a triangulation of the domain by connecting lower-
left comers of each grid cell to upper-right comers. With this definition we define Vh to
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TABLE
Convergence rates--MAC-less predictor.

Case 16-32 Rate 32-64
Euler 1.44e-2 2.22 3.08e-3
Re 100 6.70e-3 2.06 1.61e-3
Stokes 4.95e-3 1.99 1.25e-3

Rate
2.36
1.94
1.99

64-128 Rate 128-256
5.98e-4 2.17 1.33e-4
4.20e-4 1.90 1.12-4
3.14e-4 1.91 8.39-5

TABLE 2
Convergence rates--predictor using MAC.

Case 16-32 Rate 32-64 Rate 64-128 Rate 128-256
Euler 1.44e-2 2.26 3.00e-3 2.35 5.90e-4 2.18 1.30e-4
Re 100 6.10e-3 2.15 1.37e-3 1.91 3.63e-4 1.87 9.93e-5

be piecewise constant functions on each triangle. As in the bilinear case, we establish the
relationship between the projection and the upwind procedure by defining a decomposition of
Vh similar to (4.1); namely,

Vh Vh
)Vh+/-,

where Vh
is defined as before and Vh+/- is piecewise constant on each triangle and averages

to zero over each of the original rectangular grid cells. This alternate form also leads to an
approximate projection in which the vector field decomposition is performed in yh and the

result is projected onto h., however, in this case (4.3) for 4 gives

ti+3/2,j+l/2 -]" ti-1/2,j+l/2 "]- )i+1/2,j+3/2 + ti+l/2,j-1/2 4i+1/2,j+1/2
h2 (DV)i+1/2,J+1/2

where DVi+l/2,j+l/2 is defined as in (4.4). We have verified the second-order accuracy of the
method with this five-point stencil and observed that the L2-errors between calculations with
different resolution using the five-point stencil differ by less than 2% from the errors shown
in Tables 1 and 2.

Boundary conditionsfor the projection. For homogeneous boundary conditions we want
Vd n 0 on 0f2. This condition is enforced (weakly) by including ap’s that are nonzero on
the boundary of S2 in Sh, which imposes a natural treatment of the boundary conditions for
the Poisson equation. If we formally integrate (4.3) by parts we see that b satisfies

A--DV on s2,

=V.n on
On

For inflow and outflow, we want to specify Vd. n on part of the boundary (inflow), which
we will refer to as F1, and have outflow on F2. On the outflow face we want to impose the
condition that there are no net forces accelerating the fluid parallel to the outflow face. In this
simple setting we can accomplish this by setting b 0 on F2. Thus, for outflow we restrict
Sh to include only those functions that vanish at points on F2.

We do allow ’s to have support on F1, so we solve for ’s on Fl, as in the homogeneous
boundary condition case; however, we must augment (4.3) with boundary terms to reflect the
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specified boundary data. In particular, we add a boundary term to (4.3) to obtain

f,..,.,.,., a,x: I,.., +/, +,.,".. a,s.

We substitute the boundary conditions for Vd on I-’1, subtract this quantity from the left-hand
side, and proceed with the projection. As can be seen by formally integrating by parts, we
now have

V.n- Vd .n on F1,
On

which enforces the desired condition. Note that the boundary condition for Vd is Vd n
(un+1 uinn)/At, where Uin is the time-dependent inflow velocity.

5. Numerical results. In this section we first present numerical results to demonstrate
the second-order convergence of the method presented here. We also apply the method to
computation of a forced, unstable shear layer to illustrate the capabilities of the method in a
more realistic setting.

For the convergence study we use the same initial data as was used in 1]. We initialize
the data with a smooth velocity field

u(x, y) sin2(rrx) sin(27ry),

v(x, y) sin2(zry) sin(2n’x),

in the unit square. The velocity satisfies homogeneous Dirichlet boundary conditions.
Calculations were run to 0.5 with Ax Ay 1/2 for n 4, 5, 6, 7, 8. The time

step was restricted by the stability criterion to be At .5Ax, which approximates CFL 0.5.
To estimate the convergence rate, we find the L2-norm of the difference between the velocity
obtained on each grid and the velocity obtained on the next finer grid; then take log2 of the
ratio of these norms. The convergence rates for velocity are given in Table 1 for the MAC-less
predictor, and in Table 2 for the predictor that uses the MAC projection. (We also present, in
Table 1, results for Stokes flow.)

The second set of calculations is a direct comparison with the experimental study of Ho
and Huang 12] on the nonlinear instability of a forced shear layer. The forcing is introduced
using an upstream perturbation based on the stability analysis of Monkewitz and Huerre 17].
We note that a number of other authors have also treated this problem; see, for example, Kuhl
et al. 14], who include a survey of the other literature.

Our computations were performed on a 512 x 128 uniform grid, with e 0. In Figures
1 and 2 we present contours of vorticity for two cases corresponding to the fundamental
perturbation frequency (o1) plus a subharmonic. The cases correspond to the first (092) and
second (co3) subharmonics, respectively. The largest perturbation amplitude was 1% for the
fundamental with reduced amplitudes for the subharmonics as given in 17]. The numerical
results show the instability of the shear layer and the downstream vortex merging pattern. The
first case consists of a simple pairing; in the second case the vortices merge in groups of three
with the latter two vortices merging first. The prediction of the correct merging patterns and
the near periodicity of the results serve to validate the numerical method on a realistic tlow
problem.

We also compute the flow perturbed by the fundamental plus nine subharmonics. Com-
putational results for this case are shown in Figure 3. In this case we see a substantially
more complex pattern of merger, analogous to the broadly forced instability of this shear layer
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FIG. 1. al + w2 forcing at times T 1333, 1369.

FIG. 2. 091 w3forcing attimes T 1319, 1354.

FIG. 3. Tenfrequencyforcingforcing at times T 1281, 1351.

investigated by Oster and Wygnanski 18]. Although detailed comparisons for this case are
beyond the scope of this paper, we note that the spreading rate in the computation agrees well
with the experimental value of 11 degrees. Also note that we see no difficulties at inflow and
outflow boundaries for either this case or the preceding cases.

6. Conclusions. Traditionally, projection methods for discretizing the time-dependent
incompressible Navier-Stokes equations have exactly applied a discrete form ofthe projection;
i.e., the velocity field returned from the projection satisfies a discrete constraint DU 0 for
some discrete divergence operator D. In this paper we have shown that this requirement can be
relaxed. We have defined a projection based on a finite element construction that only enforces
the divergence-free condition to second-order accuracy. The overall accuracy of the method
is essentially no different than previous versions of the methodology that exactly imposed
a discrete form of the constraint. By relaxing this requirement we have been able to define
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a projection for which the linear system that must be solved corresponds to a conventional
discretization of the Laplacian but for which the velocities are cell-centered, enabling the use
of modem upwind techniques for treating the advective derivatives.

This simplified projection is easily generalized to three dimensions and to variable density
flows (see [3]). This generalization will be discussed in a forthcoming paper. We are also
using this approach to develop an adaptive mesh version of the projection method. In this
context we can exploit the similarity with standard finite element techniques in order to use
iterative methods developed in the elliptic community for adaptivity.
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RESURRECTING CORE SPREADING VORTEX METHODS:
A NEW SCHEME THAT IS BOTH DETERMINISTIC AND CONVERGENT*

LOUIS F. ROSSIt

Abstract. A basic core spreading vortex scheme is inconsistent but can be corrected with a splitting algorithm,
yielding a deterministic and efficient grid-free method for viscous flows. The splitting algorithm controls the con-
sistency error by maintaining small vortex core sizes. Routine analysis will show that the core spreading method
coupled to this splitting process is convergent in LP spaces. Analysis of the linearized residual operator establishes
the uniform convergence of this method when the exact flow field is known. A sequence of examples demonstrates
the sensitivity of the method to numerical parameters as the computed solution converges to the exact solution. These
experimental results agree with the linear convergence theory. Finally, .direct comparisons between the traditional
random walk vortex method and the new method indicate that the new method has several advantages while requiring
the same computational effort.

Key words, vortex methods, vorticity dynamics, computational fluid dynamics, convergence theory
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1. Introduction. Core spreading algorithms have not been studied since 1985 when C.
Greengard proved that the basic core spreading method would not converge [8]. There are
many convergent methods for incorporating viscosity into vortex simulations, but none ofthem
are as simple as a core spreading method. A core spreading algorithm is fully deterministic,
allowing precise error control and faster convergence than stochastic methods. Also, these
algorithms do not rely on operator splitting, the division of the Navier-Stokes equations into
separate convective and diffusive processes. Furthermore, a core spreading method is fully
localized and grid free, permitting fast parallel execution, free from flow geometry consid-
erations. Neither the circulation redistribution schemes of Mas and Gallic nor the random
walk methods of Chorin have both of these advantages [3], 14]. In this paper, we introduce
a convergent core spreading vortex method that is both deterministic and localized.

While this new method is effective for unbounded flows, it was developed specifically for
flows around general boundaries 15]. One weakness of the split-step techniques more com-
monly used for vortex methods is that they do not satisfy both normal and tangential boundary
conditions at any given moment in the simulations except under very special conditions [3],
[4], [5], 19]. Rather, they leapfrog from satisfying the normal flow condition to locally sat-
isfying the tangential flow condition. Sethian has compiled a comprehensive bibliography
on vortex methods covering these and other issues 18]. The new method is not a split-step
method so it is possible to satisfy both boundary conditions using ideas similar to those of
Chorin and Sethian though a thorough discussion of these methods is beyond the scope of this
paper. This paper examines only the properties of this method for solving unbounded flows
with the understanding that these may well be flows in the interior of some bounded region.

The basic core spreading method is corrected by introducing a process called "adaptive
spatial refinement." This new vortex method is called the corrected core spreading vortex
method (CCSVM). Since the width of each basis function, or blob, is the critical convergence
parameter for a vortex method, it is necessary that blobs not grow too wide. Adaptive spatial
refinement approximates a single vortex element or blob with several thinner blobs. While
Lu and Ross investigated the possibility of using vortex splitting to approximate diffusive
processes 13], the instantaneous reconfiguration of vortex elements has not been considered

*Received by the editors August 26, 1993; accepted for publication (in revised form) October 18, 1994. This
work was supported by U.S. Air Force Office of Scientific Research ASSERT grant 496092J0324DEE

Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road,
Evanston, IL 60208-3125 (LF-Rossi@nwu.edu).
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as a method for reducing the core width. Surprisingly, it is possible to approximate any
vortex element to any specified tolerance with a formation of arbitrarily thinner blobs. Thus,
refinement is a technique for replacing one vortex element with many but has nothing to do
with the physical process of a single region of vorticity splitting into several distinct regions.
This technique has many similarities to the local regridding concepts introduced by Hou,
Lowengrub, and Shelley, but core spreading with adaptive spatial refinement does not require
the use of an underlying Eulerian coordinate system 11]. This paper establishes the linear
convergence of CCSVM to the Navier-Stokes equations.

The work of Beale and Majda already establishes the full nonlinear convergence of the
new method in the weaker Lp norms [2], but this paper will focus on the L (uniform)conver-
gence of the CCSVM in the linear case. Goodman and Hou established uniform convergence
of 2D vortex methods to Euler equations, but no such results exist for the Navier-Stokes
equations partially due to the stochastic convergence properties of the more popular random
walk method of modeling diffusion [7]. Uniform convergence is a more desirable result be-
cause it represents the maximum deviation from the exact solution anywhere in the domain.
Also, the standard vortex method convergence theory expresses convergence in terms of the
velocity field. By using a nonstandard approach, convergence can express itself as the dif-
ference between computed and exact vorticity fields. This result is developed by decoupling
the velocity field from the vorticity field. The uniform convergence theory highlights two
convergence parameters. The first parameter, l, is the maximum core width in the simulation.
Hald used this parameter in his first inviscid convergence proof [9] and has continually ap-
peared in subsequent vortex method .analyses. If a vortex element or blob grows larger than
l, the refinement scheme will replace it with several thinner elements. The other numerical
parameter, c, controls the accuracy and frequency of the refinement process and is unique to
CCSVM, though some associations can be drawn to parameters in other diffusive methods.
More accurate and frequent refinement increases the total number of vortex elements in the
simulation, as would be expected.

To control the problem size, many computational elements can be combined into a single
one under certain circumstances in a process called "vortex fusion." It is clear that two blobs
sharing the same location and core width could be replaced by a single blob with no change
at all to the induced vorticity field. An efficient code would merge these two blobs without
any loss of accuracy. Similarly, it can be shown that nearby elements with similar widths can
be fused with small errors in the vorticity field. Thus, it is possible to reduce the problem size
with precise error control. Since a thorough error analysis of this process is beyond the scope
of this paper, only the fundamental results together with a demonstration will be presented in
this paper. The full analysis, an explicit fusion algorithm, and detailed examples have been
submitted for future publication 16].

In the last section, some examples will highlight the interplay between and as well as
demonstrate the efficiency and accuracy of this new vortex method. To our knowledge, this
is the first time precise measurements of vorticity field convergence have been measured in
the uniform norm. These measurements show strong agreement with the linear convergence
theory. Also, it will be shown that even a very conservative fusion scheme can increase the
efficiency of the method considerably while inflicting a very small loss of accuracy. The
ultimate implications are that this method is a fast, accurate and naturally adaptive method for
viscous flow computations.

2. Formulation and algorithm. This method is designed to simulate 2-D, unbounded,
incompressible flows. Vortex methods attempt to approximate the vorticity dynamics equation

(1)
Dw pV2(.O
Dt
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Dwhere b-7 Ot + (. V). The velocity field can be determined from the vorticity field using
a Green’s function. Essentially, one must solve the heat equation in a frame moving with the
fluid. A vortex method accomplishes this by representing the full vorticity field as a sum of
basis functions.

Unlike most vortex methods, CCSVM does not split the vorticity dynamics equation.
Operator splitting breaks equation (1) into

(2)
Do)

0,
Dt

(3) Otw 1)V20).

The first equation, the Euler equation, is approximated by a simple vortex method. Chorin
handled the second equation by having each vortex undergo a random walk. There are many
other ways of approximating diffusive processes without grids, but all involve operator split-
ting. Even though vortex methods converge to exact solutions of the Navier-Stokes equations
when the operator is split, the numerical error will also include a splitting error not present
in CCSVM. Furthermore, it is difficult to define concepts such as consistency and stability
without keeping the operator intact. Hald notes in his original convergence proof that any
distinction between the two properties is artificial [9].

To facilitate a future convergence theory, it is desirable to invent a method which is
consistent with equation (1) without relying on operator splitting arguments. For solving the
heat equation, Gaussian basis functions are advantageous:

(4) 09(.) )"i - -il 2

i=1 40/2 exp
4a/2

where ’i is the circulation of blob and ri is the blob width. Though higher spatial accuracy
is achieved with the kernels of Hald, Beale, and Majda, Gaussians maintain self-similarity
while approximating the diffusive term in equation (1) [2], 10]. To capture equation (1), one
must allow each vortex blob to move and diffuse with the flow, giving rise to the following
dynamical system:

I(5) xi 1

(6) %2 v.

0 2zr [i j [2
1 exp

4o’/2j=l

The first system, equation (5), arises from Stokes’ theorem applied to equation (4). The whole
blob will move with the velocity of the blob center. Later, it will be clear that this is the source
of all consistency error. The second equation arises from solving the heat equation in a frame
moving with the flow.

This system of ODEs is not new in the world of vortex methods. In 1985, Greengard
demonstrated that it was inconsistent with the Navier-Stokes equations [8]. The reasons
are more or less evident from a simple heuristic argument. The convergence parameter for
a vortex method is the core size of the vortex elements. According to equation (6), the
cores have sizes of at least at the end of the simulation. Hence, it is impossible to
force the method to converge except under certain special circumstances discussed further
in 3.1.

2.1. Reducing consistency error with adaptive spatial refinement. In order to main-
tain small blob sizes throughout the simulation, the basic core spreading scheme is coupled to
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adaptive spatial refinement. This refinement process splits any blob wider that into a config-
uration of thinner blobs of width strictly less than I. With a practical and effective refinement
process, the general convergence theory ofHald, Beale, Majda, and others asserts that CCSVM
will have L2 convergence of order 12 when using Gaussian basis functions [2], [9].

However, the uniform norm is desired for many physical applications. Since both the
calculated and the exact vorticity field decay exponentially, a uniform bound can be converted
to an L2 bound while the opposite is not true. Finally, a uniform stability result is necessary
for the forthcoming uniform convergence theory. It will be shown that refinement induces
uniformly bounded disturbances to the vorticity field as numerical parameters grow small.

The numerical parameter ot 6 [0, 1] controls the accuracy and stability of adaptive spatial
refinement. The refinement process will approximate a single vortex element having width
with several blobs of width od. Therefore, a refinement algorithm takes all vortex elements
with core sizes greater than or equal to and splits them into many, each of which is scaled
by a factor of

The particular refinement process is somewhat arbitrary. Here, only 1-4 refinement, where
one vortex blob splits into four, will be analyzed, but this program of analysis can be carried
out for any "refined" configuration. The general strategy is to conserve as many moments as
needed to constrain the free variables. To begin, a single vortex element with circulation
and variance O-2 will split into four identical vortices, each with a variance of 02O-2. Without
loss of generality, one can assume the original vortex is located at the origin. Conservation
of the zeroth moment indicates the obvious: the new vortices must have the same circulation
as the original. Conservation of the first moment along with the rotational symmetry of the
system requires that each vortex have circulation and be centered uniformly along a circle
of radius r. Conservation of the second moment constrains the last variable

(7) r 2o" v/-1 ot2.

Now, all of the free parameters of 1-4 refinement have been determined, and it is possible to
explicitly describe CCSVM.

1. Approximate the exact initial vorticity distribution with vortex elements.
2. Numerically solve equations (5) and (6) to convect and spread each vortex element.
3. Split any element with o"i > according to the 1-4 refinement process listed above

with the refinement radius described in equation (7).
4. Repeat (2) and (3) until reaching time T.

As noted earlier, under the assumption that the field error induced by the refinement process
is stable for 0 < < T, the previous work of other investigators such as Beale and Majda
guarantees weak convergence of this algorithm. Also, one can see that this method is very
similar to the more traditional random walk vortex method (RWVM). On the surface, it would
appear that CCSVM and RWVM would require a similar number of numerical calculations
given the same N. Experiments in 5 confirm that this is the case.

2.2. The stability of adaptive spatial refinement. While adaptive spatial refinement
controls the core size of all elements in the simulation, it also induces small errors into the
simulation because there will be a difference between the original vortex element and the new
refined configuration. Fortunately, this error is a function of ot and will converge to zero as ct

approaches unity. It is possible to make strict uniform estimates of this refinement-induced
field error.

This estimate begins with a function expressing the pointwise difference between the
unrefined and refined fields.

’ exp( 112)- Y exp(-(8) e(Y)-
4rco"2 -4---

i___1
16zrt2o"2 4t2o"2
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FIG. 1. Adaptive spatial refinement with a 0.8. Upper left: Gaussian vortex before refinement. Lower left:
Gaussian vortex afler refinement. Right: difference between unrefined and refined vortices.

where Y [], Yz [-], :3 Jr], and/4---[_Or], and r comes from equation (7). Since
thegoal is to find a uniform norm, a scale transformation can be applied to all the spatial
variables in this function as follows:

(9)
20.

Thus,

(10) e() F exp(_[cl2
4 [/ /i 12

47r0.2 "=
exp

Ot2

Detailed analysis of the term in ]’s will show that its maximum value is at the origin for
realistically large (a > 0.43..) values of c.

Evaluating equation (10) at the origin, the uniform refinement error is

(11) Ile(c)ll
4zr0.2 -exp k,]

For any consistent method of initially assigning a and F to a vortex element, F/.2 is bounded
as the problem size grows. It is appropriate that this estimate only depends on the convergence
parameter ot and not because is strictly a measurement of blob width and does not control
the refinement process. It is only when the total evolution of a system of vortex elements is
analyzed that a relationship between and ct will emerge.

EXAMPLE (ct 0.8). A vortex element with 7’ 1 and 0. undergoes refinement.
Here, Ile(c)11 --0.0087, which is better than 40% improvement over ct 0.7. The original
vortex, the refined vortices, and the error between the twofields are shown in Fig. 1.

This uniform bound applies to a single refinement event, but a vortex element may undergo
many refinement events in its lifetime. The number of refinement events it will undergo is
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FIG. 2. A system ofvortex elements undergoes adaptive spatial refinement n times in a uniformflow. Initially,
there is only one vortex element located at the center. The distribution of4 vortex elementsfor n 0 (left), n 2
(middle), and n 4 (right) obeys a double binomial distribution. The grid width is r.

a function of l, c, the viscosity v, and the total simulation time T. The time required for a
vortex element to grow from a size cr cl to size cr shall be called "the viscous time
step" and is denoted by At. After an element reaches a width of l, refinement occurs, and it

r of these cyclesis again reduced to size otl. Presumably, vortex elements shall go through $7
during a simulation. The viscous time step is determined from equation (6) to be

(12) At
12 1 Ot2)

Thus, the total number of refinement events, n, in a simulation of duration T is

(13) n
/2(1 Ct2)

Since refinement events are coupled to core spreading through viscosity, but not by the flow
conditions, it is sufficient to analyze the stability of refinement when is constant.

A stable refinement process is one that induces a controllably small error as the number
of refinement events grows large. Therefore, one must consider the history of a single vortex
element centered at the origin as spreads and splits many times. This vortex will generate a
grid with spacing r from equation (7), but like a checkerboard, only even (odd) spaces will
have vortex elements for n even (odd). Without loss of generality, one can assume that n is an
even number. It follows from a block-walking argument that the distribution of 4n children of
the original vortex obeys a double binomial distribution [20]. More specifically, the number
of vortex elements at position x v/r(i j) and y /r(i + j) is (ni + ) (nj + ).
For examples, see Fig. 2.

Thus, after n refinement events, the original element can be expressed as an array of
elements with circulations

(14) y x y) Yo --; n + nj +

This expression can also be interpreted as the probability density function (PDF) of two
independent Bernoulli trials with p 1/2. In fact, this particular PDF corresponds to RWVM
with step size r /-At where At comes from equation (12). Thus, RWVM with Gaussian
basis functions and CCSVM are equivalent when there are many computational elements. The
crucial difference lies in the fact that CCSVM is deterministic, and one would only expect to
observe differences in performance when the problem size is moderate or small.
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The DeMoivre-Laplace theorem relates equation (14) to an exponential distribution for
large n [6]"

(15) Y0 .exp + Oy(x, y)=
2zr () 2 ()

This approximation converges rather rapidly even for small values of n. Using equation (13)
and substituting x and y into the left-hand side of equation (15), one obtains

8/2(1 t2)
exp + O[/2(1 otz)]y(x, y) Vo 4rcvT 4vT

(16)

for discrete values of x and y. The total field is

1 ( ’--i,J[)40"2(17) CO(Y)
/,’Tff’’(yi’j)zr-24O" exp

for o" e [cl, l] and ri
Adaptive spatial’refinement is stao,, if this quantity is close to the exact solution for all

time in the limit as a --> 0 and ot ---> 1. Each Yi,j can be said to lie in the center of a box Bi,j
of width /r. These Bi,j are the components of a grid (oriented 45 to the mesh depicted in
Fig. 2) naturally generated by refinement. Using this grid, one finds that equation (17) is a
Riemann sum of a simpler expression,

(18)

where i,j e ni,j. The higher-order error terms from the DeMoivre-Laplace theorem are
neglected because error terms from the Taylor expansion are of lower order.

Theterm will not be scaled explicitly in this analysis, but is worthy offurther discussion.
Vortex elements must be initialized on a length scale of d p where p < 1 to accurately
approximate the initial conditions. For instance, Hald in his second convergence paper chooses
p to balance error terms inhis convergence analysis [9]. Fora general p, O [12(1-p)].
One could also use the new parameter and set d r, in which case O(1 c2). For



RESURRECTING CORE SPREADING VORTEX METHODS 377

any of these choices, the term is arbitrarily small as 0 and ot 1. So, to make this
analysis as general as possible, will not be scaled explicitly.

Finally, the approximate field can be compared with the exact solution.

(19)

o()
4rc(vT + cr2)

exp -4zr(vT + r2) + O(lv/1 c2) + O(1 o2)

?’0 exp[ 1’12 ] ?’ [O(lv/a-t2)-Fo(a-2)-+-O(12)]4vT 4vT
+ -These error estimates apply for all points in the plane, implying that these estimates are

uniform. This gives rise to the following theorem.
THEOREM 2.1. A single vortex element initially having variance or2/2 and circulation ?’

will induce a uniformfield error no greater than

’0 [/x/(1 -ot2) -+- (1 -ot2) +/2]C
where C depends on T only.

Since the cumulative refinement error can be made arbitrarily small, this refinement error
can be interpreted as controllably small numerical disturbances to an ordinary vortex method
with Gaussian vortex elements of width I. That is, given any tolerance, the refinement error
can be made uniformly small for any core size, 1. This being the case, the previous work of
other investigators such as Hald or Majda can be applied to this core spreading method.

3. Linear convergence theory. This convergence theory has advantages and disadvan-
tages when compared with existing theory. The major disadvantage is that the flow field
is specified and 09 is computed as if it were a passive scalar, linearizing equation (1). The
greatest advantage of this theory is that it establishes full uniform convergence in to to the
exact solution. While this investigation focuses on vorticity dynamics, to could represent the
concentration ofany passive scalar. It is assumed that the flow velocity ff and all its derivatives
are known and bounded everywhere.

While initial conditions cannot be totally ignored, this study will not include a thorough
investigation of the initial approximation. It is assumed that the exact initial conditions,
to (2, 0), are known and at least piecewise continuous. The operator Ito (2, t) to (2, 0)
merely projects the vorticity field onto its initial values. Also, it is assumed there is some
consistent algorithm for assigning circulations to the initial configuration of vortex elements.
For instance, if the vortices are initially laid out in a grid, each vortex might have circulation
equal to the to(2, 0) at that point multiplied by the area of each grid cell. This or any other
consistent method for assigning initial circulations has the property that the circulations are
bounded as N oo for the startup configuration. Since circulations do not grow with this
method, they remain bounded for the duration of the simulation, 0 < < T.

At any time, each vortex element can be thought to occupy a given area, Ai, not necessarily
related to the core width. At = 0, this area might be used to assign initial circulations. As the
flow evolves and elements spread and split, this area will move with the flow. Since the flow
is incompressible, the Ai ’S will never grow in area though they may decrease or redistribute
themselves due to refinement. Furthermore, since the flow derivatives are bounded, these
regions will retain their shapes locally as N grows large and the areas grow proportionally
smaller. Later, this will be used to justify converting sums to Riemann integrals.

In studying the convergence of this method, a residual operator emerges,

(20) Rto Otto + (l V)to- pV2to.
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If w* refers to the exact solution and refers to a computed solution, uniform convergence in
o9 means IIo* 11 0 as 0 and ot -- 1. Inspired by the work of Isaacson and Keller
12], convergence is divided into two separate conditions. First,

(21) RII 0

as -- 0 and c --> 1. (Obviously, Rw* 0 always.) This is called "Condition A." It is not
quite the same as consistency, though it does measure the local truncation error because local
truncation error is a concept restricted to a discrete set of points usually on a regular grid. The
other condition is that

(22) IIo9(t T)II _< g eo911dt

for any 09 is some class of functions where K is independent of and ct. This condition
(Condition B) looks suspiciously like another convergence property called stability, but it is
not at all the same. In fact, Condition B is solely a property of the governing equations and
not the numerical method used to solve them. By combining these two results and letting
w o9* , linear convergence is established. While one is free to choose any norm for this
formalism, this paper shall focus on the L norm.

3.1. Condition A. Conventional treatments of local truncation error are not applicable
for a vortex method because it is impossible to substitute the exact solution into a difference
equation representing the numerical scheme. Thus, traditional concepts such as consistency
do not apply. This problem can be resolved by substituting a numerical solution into the
residual operator R.

v
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Combining these terms, one obtains an expression for the residual:

(23)
N

R i
?’i( xi)

.= 8zr 0"i
4

Vo

Refinement-induced errors are not included here because they constitute arbitrarily smalljump
discontinuities in the time evolution. Therefore, it is more appropriate to incorporate these
effects into Condition B in the next section.

I. il2)exp
4a/2

[(i) (’)]"
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From equation (23), it is possible to see why uncorrected core spreading fails to converge
in most circumstances and why it will work in some special circumstances. Assuming particle
trajectories are integrated exactly in time, the velocity deviations

across a vortex element centered at are damped by the shape of the vortex element on
the length scale equal to the core width. For CCSVM, this envelope scales on while, for
the uncorrected method, this envelope scales on /--. As mentioned in 2, the core size for
an uncorrected core spreading method is at least -. Therefore, it is impossible to make
RG 0. Greengard presented this same result by finding that the uncorrected core spreading
method converges to an equation different from Navier-Stokes [8]. In the case where flow
deviations across every vortex element are orthogonal to the displacement from the center of
the element, or, similarly, D (the matrix of partial derivatives of ) is strictly a rotation, this
error is effectively zero.

EXAMPLE 2 (wherein core spreading does not need to be corrected). To simulate the
evolution ofthe vorticityfield

x2 -I- y2 )--1 exp
4zr 4

the core spreading algorithm is employed using a single element with 0 (, r0 1, and
?’o 1. Applying equations (4)-(6), the element will spread (cro 1 + vt) but not move.
Furthermore, the induced flow across the single element is everywhere orthogonal to the
displacement vector, hence the residualfrom equation (23) is exactly zero, corresponding to
an exact solution to equation (1).

However, a generic flow will not have the special property that flow deviations across
the vorticity gradient will be zero, and so, will require corrections. Given that generic flows
will require correction, core spreading corrected with adaptive spatial refinement will restrict
the displacements over which velocity deviations can contribute to the residual. The extent
to which refinement controls these deviations will reveal the dependence of the corrected
method’s accuracy on numerical parameters and

Bounding R requires detailed analysis in many steps. First, equation (23) must be
approximated by an integral. This integral is an anisotropic regularization of terms involving

and the velocity field. This anisotropy is controlled by ot while the smoothness of the
regularization will depend on I. Finally, we found it necessary to include an artificial length
scale, d lP, to truncate the regularization, effectively introducing p into the convergence rate.
Fortunately, p will only appear in higher-order terms and not affect the end result. Following
this program without this artificial scale may be a valuable result in future investigations.

The first step in converting equation (23) into an integral is to extend the ai into a function
cr () such that al <_ cr () <_ and cr (.i) o’i. There are many ways to construct this function.
One might be to consider that each vortex blob position is contained in a small region, Ai,
as discussed earlier, and r (Y) is piecewise constant on these regions. Similarly, ()
on Ai.

In the limit -- 0, the function () -- (:) almost everywhere. Unless otherwise
noted, all integrals are evaluated over the entire real line. There are several relationships in
addition to equation (4) which relate to convolutions.

() 4- exp
4/2

O(llXll, 1),
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exp
4a/2 4yrff2()

exp dk"
4o’s-3

=0

Thus,

(24)

ffs (,_,2) s (’-’)exp 412 -4zra2(exp -4a2( d
oo

(1)=O /O(llVll,l).

Now,

4zra:(
exp

4a2(

[ 12--0"2(S-’)] ( I. g’12 [ /2 0"2(S-’) 1)’(S-)
1+ exp 1+(25)

4yr/2 crZ (s_,) 4/2 a2(

However, the latter term in the exponential is close to unity when lY k’l is close to zero.

(26) exp
4/2 a2(y 4/2 o-2(s-’)

Thus,

(27)

(/f +ff)
, -,
4x. (_, )_412 47rcr(2

<dexp 4/2 -- 1+

[ 1()
2]+ (1 +.-’) exp

1 + exp d
412 2 <d 412 4/2

[ 1()
2]+ I111 (1 + -2) exp

_111112 {3+ [ () exp[ () ]
+II ( + -:) exo

exp(_ly-k’l2

dll4(s-3 )
a2(s_)

exp
4a(s_)2

d’

Allowing d p where p < 1, the exponential terms decay faster than any polynomial in
or or. So,

(I-12) ( ( l:-]2)dJexp
4/2 4yra(2

exp
40- (S2

o

O (1
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Therefore,

(28)

4Jr 12
exp (- I 12)412 /

dk"

o / O(llVll, l) + O(1

This can be extended to the residual because the function

is locally integrable. Hence,

R.:f/ ( [ 12-’12] ( 1 )87[6r4(S_)
exp

4tr2(s_) [t(2) (]. (- ;)d+ O

8ua4(
exp k-

(9) +o + o(1111, l) + o(1 ).

While I111 and 11 are bounded initially, nothing in this analysis asseas that their evolution
is well behaved in the limit as u 1 and 0. However, similar analysis verifies that these
two quantities are bounded as the numerical method converges. These issues are addressed in
the appendices. Thus, for the rest of this section, it is assumed that the voicity field and i
gradients are bounded as the numerical parameters approach their limiting values.

Now, it is possible to analyze the residual operator

l<d,ll>d 8a4(
exp

4a2(

(30) +O + o(1111, l) + o(1 2).

The contributions to the residual are localized about 2 and the effects from > d decay
exponentially. Fuheore, the integrand for 2 < d can be decomposed into isotropic (a l)
and anisotropic (a varies in space) paas outside of the exponential. The expression D is the
matrix of paaial derivatives of and D is the induced operator no on L.

RII < exp [(2) (]. ( 2)d
I<d 8g/4 4ff2(

+ 42(I<d 8/4 a4(
exp [(2) (]. (-- 2)d

1181111DII 4 exp
1

24

(1)(31) +o + o(1111, ) + o(1 ).

The localization of the integral justifies a Taylor expaion of the voicity field within the first
te of equation (31). The second te can be bounded in tes of the voaicity field and the
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flow deviations.

(32)

ffll<d
+IIIIIIDII--87r/4

+,,,,,,Dll2ot4 [()2+4] [ l(/d--)2]exp-+o + o(llVll, ) + o( -o)o

Within the first term of equation (31), the exponential can also be decomposed into isotropic
and anisotropic parts. The anisotropic exponential is close to unity when oe is close to unity
as expected.

IIRlloo <

(33)

I<d 814 412

exp
412 crY(s_) [t(.) t(s-)]. (k"-

I<d 814 4a2( [(y) (]" ( Y)d

11811 D + 4 exp
1

24

+o + o(1111, l) + o(1 2),

The anisotropic exponential in the first term of equation (33) can be approximated by 1 plus
a small error which is bounded by the second term of its Taylor expansion.

(34)

cc

JJiv
(:)

exp r[_ )d
I<d 87r/4 412

+IIIIIIDII 8U416 I<d 412

+ IIll IIDII f i_ 13 exp [_ I l] d
8/4 I<d 41

[[]][]D[[ 4(1+)(1 ) +4 +4 exp -24

(1) + O(llll, l) + o(1 2),



RESURRECTING CORE SPREADING VORTEX METHODS 383

Finally, the velocity field is linearized about in the first term. The remainder is bounded in
terms of H, the Hessian.

(35)

Since the fluid is incompressible, D has zero trace. Therefore, the first term of equation (35)
is zero.

(36)

3l,llIlHtll2 2r/- [’fi-] exp (/d__)
-2d exp [-1 (/d_)2] 2,/-1 exp [_ (/d_) 2]]1

[[[[[[Dt[[(1-c2)(/d_) { [()2 4
1

+ 2ot--------
2

4 + lexp[-- (/d-) }
+ 2

-2d exp [- ()z1-12-i exp [_ ()zl]1
+[[[[[[D[[ 4 l+a+ (1-off)

2a4

-k-[cg4- ()2 (1--ot2)]
/o / O(llXrll, l) / O(1 c2).

If d lP where p < I then all but a few of these terms decay faster than any polynomial in
as -+ 0. The remaining terms are the true rate of uniform convergence for the corrected
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core spreading vortex method.

o + O(1111, l) + O(IIVII, l) + O[llll, (1

(37) -+-O[1111, (1 Or2),/2(p-I)].

The artificial length scale d only enters into the fourth term which is of higher order than the
previous three. While I111 and IIVll are bounded initially, nothing in this analysis asserts
that their evolution is well behaved in the limit as ot -- 1 and 0. However, analysis of the
growth ofG and W, similar to that ofR, proves that this is the case 15]. In this analysis, the
growth ofG depends on W, but closure is achieved for the estimates of V. This establishes
the following theorem.

THEOREM 3.1 (Condition A). IfG is a solution to equations (4), (5), and (6) with a suitably
stable refinement scheme to maintain core sizes between otl and then the residual operator
is at most 0 (l) + 0 (1 2) for large values ofN.

3.2. Condition B. In this section, it will be shown that any function can be uniformly
bounded in terms of its response to the operator R. To facilitate this result, a new operator is
defined:

(38) L(t) f((t), t) -v V:Zf(:(s), s)ds,

where Y is the position of a Lagrangian particle moving with a velocity g(Y(t), t). If L(t) is
restricted to a class of functions such that the function and all its derivatives are smaller than
M, then L(t) is bounded by vMT in the operator norm induced by L.

By establishing a relationship between co and Rco along Lagrangian trajectories, it is
possible to obtain a uniform estimate. Since does not have classical time derivatives during
refinement, we shall separate it into two parts:

(39) 6G G- G+,

where 3G is the difference between unrefined and refined G, and G+ is the smoothly evolving
difference between the two. Though 3G is not continuous in time, Theorem 2.1 establishes
that the time integral of this quantity is uniformly bounded by quantities of order 12, c2

and /1 o, all of which are of higher order than the error terms in R+. Thus, one only
expects to apply Condition B to+ and co.

(40)

co((T), T) e-L(T)eL(T)co((T), T)

e-(r eC(lco(2(t), t)dt + o)(2(0), O)

e-(r e(m(2(t), t)dt + Ira(2)

e_(r eL(t ((t), t) uVm(2(t), ) dt + Ira(2)

e-(r e(Rw(2(t), t)dt +

e(t-(rRm((t), t)dt +
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Thus, for any initial position,

(41) El0Iw((T), T)I _< euMT IRw((t), t)ldt + IIw(:7)l

This pointwise estimate can be extended to yield the desired result.
THEOREM 3.2 (Condition B). For anyfunction w with two continuous derivatives,

[[w((T), T)II evMT[foT IIRw((t), t)lldt + IIIw()ll]
3.3. A + B Convergence. Combining Theorems 3.1 and 3.2, one obtains a uniform

convergence estimate. From Theorem 3.2 and the linearity of R and I,

II((T), T) -co*((T), T)II

< evMT IlR+(:7(t), t) Rw*(Y(t), t)lldt + Ilia(Y) Iw*(Y)ll

(42) +IIG(T) I1.

But, Theorem 3.1 asserts

II((T), T) -w*(Y(T), T)II

(43) < evMT [O(1) -+- O(1 -ot2)] dt + III() Io*()11 / 118(T)II.

Since initially, no refinement has occurred, + G at time zero. If refinement did occur
initially, any error would be incorporated into I forming a new initial error, assuming that
one is using a convergent scheme for approximating the initial conditions which is at least
Oq).

THEOREM 3.3 (convergence of improved core spreading method). Assuming there existed
an exact solution to equation (1) which is twice differentiable, the solution to equations (4),
(5), and (6) (where Ft corresponds to the exact solution) with a suitable refinement algorithm
will converge to this exact solution and

II((T), T) -w*(2(T), T)II < 0(1) + O(1 -c2)

for < T.
While this convergence rate appears modest, it is stronger than previous results in many

ways. Previous findings are limited to velocity fields at particle positions. Convergence of the
vorticity field itself is substantially weaker, and again, is only measured at particle positions.
The above analysis determines a rate of convergence which is applicable to the vorticity field
itself in the far stronger uniform norm. Of course, this result can be extended to the velocity
field without loss of accuracy. This result will be verified experimentally in 5.

4. Efficiency and fusion. Since the computational complexity of a vortex method is
O(N2), the feasibility of computing a flow to a prescribed accuracy hinges directly on the
problem size, N. Clearly, two blobs sharing the same centroid and width can be merged into
a single blob with no induced error in the vorticity field. "Vortex fusion" shall refer to the
general process ofmerging many overlapping basis functions. The necessity ofadaptive spatial
refinement, discussed earlier, does not imply the existence of a fusion process. Rather, they are
two separate mechanisms for solving two separate problems: one corrects consistency error
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while the other reduces the problem size. This section presents the basic theorems describing
the uniform estimate for the induced fusion error without proof, leaving the details of this
analysis to 16]. From these results, one will see that it is not necessary to rigorously examine
all possible subsets ofa configuration ofvortex elements because the uniform estimate does not
depend on the number of elements merged. Rather, it only depends on certain nondimensional
parameters related to the separation and width of vortex elements in the simulation.

There are two error control parameters for vortex fusion based on a direct comparison
between each individual vortex in the original group and the fused vortex. To begin, the
vortices to be fused are labeled from 1 to n, where n < N, and have distinct circulations,
widths, and positions. The post-fusion element shall be labeled 0. Also, it is necessary to
assume that all ’i’s have the same sign for reasons discussed in 16]. The circulation, position,
and width of the fused vortex is

N

(44) ’0 Yi,
i=n

N

(45) ZXO yiXi
i=n

N

(46) 49/04 i (40/2 + I-i 12).
i=n

For convenience, all positions will be translated to the center of mass of the original cluster
of elements so that 0 0. Equation (46) constrains the fused blob width but does not play
a key role in the uniform error bound, as do the others. Therefore, it may be possible to use
other constraints in place of this one. The pointwise field error is

(47) e()
4zr0-

exp -40- ] i=1 47r0----’2 exp 4----/2
By isolating the appropriate length scales in the problem and studying the resulting expressions,
it is possible to establish the following theorem.

THEOREM 4.1 (fusion error bound). Suppose n vortex elements are fused into a sin-
gle element with circulation, position, and width defined by equations (44), (45), and (46).
Furthermore, assume that all circulations have the same sign and that

and

bl < 0- <b2
0-i

for each vortex. Then, the uniform inducedfield error, Ile(c)IIo, is no greater than

I?’01M
4r0-

where M is the maximum value of

0-2 exp [-[cexp (-Ic[2) /z 0"2,]
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alpha:O.85 alpha:O.85 with fusion

-2 -1 -2 -1

Fro. 3. A demonstration ofthe efficacy offusion. Vorticityfield with elementpositions at 2.5for a 0.85 in
the experiment described in 5.2 withoutfusion (left) and withfusion (right). The absolute pointwise error between
these twofields is less than 0.06%, while the problem size has been diminished by afactor ofalmost 3.

restricted to the compact set ofparameter space described by R, bl, and b2. Thus, M =--
M(R, bl, b2).

To find the value of M, it is not necessary to search the entire space [0, R] x [bl, b2]
because further analysis reveals that these maximal values are only attained on two comers
of this rectangle in parameter space. This is summarized in the second and final theorem
describing these merger estimates.

THEOREM 4.2 (explicit determination of fusion error bound). If

and

bl < i(0"0
2

< bE,
tri /

then the absolute maximal value ofthe uniformfusion errorfunction

exp (--[c 2) ----’ exp I [ ci 2(cr )]
is achieved with parameter values of either (R, bl) or (R, b2). Furthermore, this absolute
maximum is attained when is colinear with the origin and Ei.

The consequence ofthese theorems is that any number ofsame-signed vortex elements can
be fused together provided they have sufficiently similar core widths and are in close proximity
to each other relative to their core sizes. Furthermore, values of M can be tabulated easily
by evaluating the function in Theorem 4.2 at two points. Together, these two results describe
a fusion algorithm that can reduce the problem size of a given simulation [16]. Figure 3
presents a demonstration of this reduction for a simulation of two merging patches of vorticity
discussed more thoroughly in 5.2.

5. Simulations, measurements, and comparisons. In this section, the new method is
used to simulate two different flows. The first flow, a simple vortex patch, has an exact
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FIG. 4. VorticityfieM ofa radially symmetric patch ofvorticity with element positions at 1.Ofor ot 0.7
and ct 0.8.

analytic solution, and so can be used for a precise convergence study. Also, it can be argued
that generic flows are composed of many simple vortex patches so that its performance in the
simpler case can lend insight into its performance in more complicated settings. The second
flow is more complicated but is also a good testing ground for a convergence study. As a
second measurement of the method’s performance, the results of CCSVM are analyzed to see
whether or not they conserve certain integral invariants. Finally, one can directly compare
CCSVM and RWVM by using them to solve the same problem on the same machine with the
same total number of elements. As mentioned in 2.2, CCSVM and RWVM are equivalent in
the limit as problem sizes grow infinitely large. However, this is never the case when solving
a problem, so it is most meaningful to compare the two methods at moderate problem sizes.

5.1. A radially symmetric spreading patch of vorticity. The first example concerns
the evolution of a single Gaussian blob. While seeming simple on the surface, this example
could be said to be offundamental importance because the analytical solution is known. Using
this analytical solution, one can measure the uniform field error in numerical simulations to
demonstrate the linear uniform convergence estimate from the previous section. Also, this
simple example will demonstrate that refinement is a stable and locally adaptive process similar
to the local regridding scheme of Hou, Lowengrub, and Shelley 11 ].

The initial field is expressed by a single vortex element (V 5.0, r 0.2) centered at
the origin. The numerical parameter is fixed at a reasonably small value of 0.25, and ot is
allowed to vary. The vortex positions and widths were updated using forward Cauchy-Euler
with a small enough time step so that no variations in element positions were observed at the
resolution of our printer. The flow was simulated with T 1 and a large viscosity, v 0.1,
so that both convective and diffusive effects would be important. (Indeed, during the course
of this simulation, the width of the exact solution nearly doubles.) In Fig. 4, one can see how
the vortex elements split and.adapt across streamlines to accurately express the solution with
a length scale at or below 1.

Earlier investigators noted that vortex methods for Euler equations lose accuracy after
a finite period of time because flow deviations separate vortex elements until they cease to
overlap. Hou, Lowengrub, and Shelley corrected this problem by introducing local regridding
wherein vortex elements split under the action of flow deviations. Spreading and splitting
provide a similar mechanism though they are dependent upon viscosity. In the uniform error
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FIG. 5. Radially symmetric patch ofvorticity: velocityfield at (0,0.8) at 1.Ofor ot 0.7 (dotted), ot 0.8
(dashed), ot 0.9 (dot-dashed) compared with the exact solution (solid).

estimates of 3, the order of accuracy is actually determined to be O(IIDUtlI1) 4- rather
than just O (1) 4- Viscosity does not enter into the error estimate because the corrected
core spreading method solves the diffusion equation in the moving frame exactly. While
is not a numerical parameter it can be determined analytically and used in flow computation.
This raises two issues. First, one could augment the adaptive spatial refinement process by
allowing to vary spatially withD like D II1 where e is the new convergence parameter.
Second, one could use refinement in an Euler code by allowing particles to split based on some
measurement of strain during its evolution.

For this experiment, elements split more often and with greater accuracy as ot grows larger.
While somewhat counterintuitive, velocity measurements in Fig. 5 illustrate this increased
accuracy. The refinement events can be seen as jumps in the velocity field. Refinement events
begin after .0.225 because is significantly larger than the initial core width. As ot -- 1,
these jumps become more frequent but considerably smaller, demonstrating the stability of
refinement.

Most importantly, a precise measurement of the uniform field error can be determined
relative to the exact solution,

(48) o5(., t)
47r(0.22 4- 0.1t)

exp -4(0.22 4- 0.1t)

Since is fixed, one expects a linear profile in 1 ct2. In Fig. 6, our results agree with this
expectation. Variations at larger values of 1 ot2 might be attributed to refinement error.

5.2. Two merging patches ofvorticity. The next example is that oftwo blobs ofthe same
sign placed in close proximity to one anOther. Inthe inviscid case, this experiment has been very
popular because elements from opposite blobs would intertwine. In the viscous case, the blobs
diffuse together at the center of the interaction, but the dynamics are still interesting. Other
features of interest are the "tails" which form on the outer rim ofthe structure after long periods
of time. We will illustrate the same concepts as in the first example, for a more challenging
problem without an analytical solution. Once again, the initial conditions are simple and the
algorithm will allow the problem size to expand to meet consistency requirements. Initially,
there are two blobs, each with ?, 5 and cr 0.2. In all simulations, the spatial accuracy is
controlled by the parameter 0.2. (Elements larger than split.) The elements are placed
along the x-axis with a separation of 1.6, and the viscosity is 0.02. For T 2.5, each blob
will undergo about one quarter of a rotation about the origin, as seen in Fig. 7.
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FIG. 6. Radially symmetric patch ofvorticity: uniformfield error as afunction of 2 for ct 0.7, 0.725,
0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9 (solid) and a least-squared linearfit (dot-dashed).
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Fro. 7. Two merging patches ofvorticity: vorticityfield with elementpositions at 1.0, 1.5, 2.0, 2.5for c 0.8.
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FIG. 8. Two merging patches ofvorticity: uniformfield error as afunction of(0.9) o for c 0.7, 0.725,
0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9 (solid) and a least-squared linearfit (dashed).

As in the first example, the parameter c controls the relative accuracy of the method.
This problem is more challenging because of the lower viscosity, greater flow deviations, and
larger T. In Fig. 15 (left side only), it is clear that CCSVM naturally dedicates more elements
where the vorticity is greatest. Since there is no analytic solution available, the uniform error
is computed relative to the highest accuracy run at ot 0.9. Still, the theory predicts a linear
convergence in (0.9)2 c2 to this reference field and this is observed in Fig. 8.

While no analytic solution for this configuration is known, the dynamics of the second
moment of this configuration,

ff ff(49) d-- l12o)d 4v o)d:,

canbe determined exactly 1 ]. Since vorticity is conserved, equation (49) has the exact solution

(50) ff lYl2wdy 8 + 0.8t

for this particular two-vortex problem. This solution is coInpared with moments computed
from CCSVM computations as a qualitative measurement of its accuracy. Even for the coarser
value of ot 0.7, the second moment of computed vorticity is difficult to distinguish from the
exact value in Fig. 9 without adjusting the y-axis of the plot. Even so, the difference between
the exact moment and the computed moment is due to the size ofthe time step used to advance
the vortex positions rather than our method for reducing the Navier-Stokes equations to a
finite system of ODEs. There is little difference between the various values of c. However, if
the time step is reduced by a factor of 4, the second moments agree better even for the coarse
value of ot 0.7 (see Fig. 10).

Though this flow is relatively simple, it provides an example ofhow fusion can drastically
improve computational efficiency. A fusion scheme using the principles in 4 will reduce the
problem size during the simulation. In Fig. 3, one sees that the final problem size decreases
from N 2048 down to N 698 with a very small loss of accuracy for ot 0.85. Hence,
fusion mediates the exponential growth caused by refinement to yield a very efficient and
accurate method.

5.3. A comparative study with RWVM. To measure the strengths and weaknesses of
CCSVM as.a method for solving flow problems, both CCSVM and RWVM solved the pre-
vious problem on the same computer under the same conditions. These two programs are
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FIG. 9. Second moment ofmergingpair at ot 0.7 (dotted), 0.8 (dashed), and 0.9 (dot-dashed) with the exact
value (solid).
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FIG. 10. Second moment ofmerging pair at c 0.7 and At 0.005 (dotted) and 0.00125 (dashed) with the
exact value (solid).

identical except for subroutines handling the diffusion. For CCSVM, elements spread and, if
necessary, split. For RWVM, elements undergo random walks. Both programs were compiled
with the same compiler settings on a Sparc 2 workstation without any special vectorization
or parallelization. (Since both algorithms are fully parallelizable and vectorizable, special-
ized hardware is not likely to affect the outcome anyway.) Though both methods would have
benefited from a fusion algorithm, this might have introduced some uncertainty into the exper-
iment because fusion is geometry- and index-dependent. Thus, neither program used a fusion
algorithm. Under these conditions, it was possible to directly compare these two algorithms.

The initial conditions for CCSVM were identical to those of the previous problem. For
N 10RWVM, T vortex elements of width 0.2 and circulation - were placed at (0.8, 0), and

the other -, having the same circulation and width, were placed at (-0.8, 0). Thus, both
methods began with the exact same initial conditions. Since the core sizes were the same,
both methods had the same spatial accuracy during the convective step. Indeed, since both
methods differed only in how they approximate the diffusive term, it was necessary to hold
the core size constant to measure any differences in the methods.

Since the problem size for CCSVM changes with time and the time complexity is O (N2),
a random walk algorithm with size N No should require the same amount of time as
CCSVM with ot chosen so that v/iU No, where (U2) denotes the ensemble average of
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FIG. 11. Two merging patches ofvorticity: comparison ofCPU time expended vs. square ofproblem size for
RWVM (triangle) and CCSVM (diamond).

N2 over time. As predicted, both methods used about the same amount of computer time for
a given problem size. Also, the relationship between N02 and CPU time in Fig. 11 is linear for
both methods as expected. If anything, the core spreading methods ran slightly faster, but one
can safely say that both methods require roughly the same amount of computational effort.

Both methods conserve the zeroth moment, but only CCSVM conserves the first moment
exactly. This is especially evident with smaller problem sizes as in Fig. 12. Using random
walks when the problem size is low can result in very unphysical behavior. Even in larger
simulations, regions of the tlow that are approximated by a low particle density would be
strongly affected by statistical noise [21]. Though both methods suffer from time integration
errors when measuring their second moment, the random walk method appears to suffer more.
Though both methods are convergent, CCSVM converges while conservingthese important
physical properties which are built into the algorithm. Figure 13 displays first and second
moments for relatively large problems sizes.

The final comparison involves measuring the performance of both methods in terms of
uniform error as a function of problem size. To eliminate any CCSVM bias, a random walk
simulation using a large number of particles (N 5000) was run on a Convex C-120 mini-
supercomputer using a small step size (At 0.00125) and treated as an exact solution for
comparison with other data sets. The results, shown in Fig. 14, indicate that CCSVM has
slightly better convergence properties than RWVM as measured by the L norm. For both
methods, the accuracy as a function ofproblem size is similar to that observed by Sethian in his
study of random walk vortex method performance while simulating boundary layer instability
17]. Moreover, using the random walk solution, one obtains the predicted 1 ot2 linear rate
of convergence. Even though both methods appear to indicate the same rate of convergence,
CCSVM is more accurate for a given problem size and so produces better results given a fixed
amount of computational resources, as can be seen in Fig. 15.

6. Conclusion. This paper introduces and analyzes a new vortex method with many
attractive properties. Since both spreading and adaptive spatial refinement are local processes,
this method is well suited for vector and parallel computation. These theoretical findings
are sufficient to assure application-oriented investigators that certain uniform convergence
properties will be achieved. The introduction of the numerical parameter c overshadows the
importance of for viscous computations once is chosen to resolve given flow features.
Finally, the exponential growth in the problem size can be controlled by the fusion process
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FIO. 12. Measurements ofmoments comparing CCSVM with RWVM. Top row: CCSVM with v/(N2) 60.9
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N 220. Left: first x (solid) and y (dotted covered by solid) moment ofCCSVM (solid covering dotted) andfirst
x (dashed) and y (dot-dashed) ofRWVM. Right: second moment ofexact solution (solid), CCSVM (dotted), and
RWVM (dashed).
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FIG. 13. Measurements of moments comparing CCSVM with x/(Nz) 782.8 (or 0.85) and RWVM with
N 800. Left: first x (solid) and y (dotted covered by solid) moment ofCCSVM (solid covering dotted) andfirst
x (dashed) and y (dot-dashed) ofRWVM. Right: second moment ofexact solution (solid), CCSVM (dotted), and
RWVM (dashed).
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FIG. 14. Measurements ofthe uniformfield error ofCCSVM. Left: uniform error as afunction ofproblem size
forRWVM (triangle) andCCSVM (diamond). Right: uniformfield error measuredfrom high resolution random walk
solution as afunction of a for a 0.7, 0.8, 0.825, 0.85, 0.875 (solid) anda least-squared linearfit (dashed).
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FIG. 15. Comparing CCSVMandRWVMsimulationsfor comparableproblem sizes. VorticityfieM with element
positions at 2.5for a smallproblem size (top) anda moderateproblem size (bottom). Plots on the left correspond
to CCSVM while plots on the right correspond to RWVM.
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analyzed in this paper. We demonstrated the accuracy and effectiveness of this method with
nontrivial examples and found the results to be reassuring. Among these are measurements
of the uniform error in the vorticity field in agreement with the derived theory.

While this paper attempts to analyze some important questions about spreading blob
methods, there are still many unexplored areas to study. Only one stable refinement process is
discussed in this paper, but many others are possible. Perhaps there is an optimal one in some
sense. In proving linear convergence for CCSVM in L, a full nonlinear uniform convergence
proof introduces itself as the next challenge to investigators.

Nonetheless, linear convergence is still a useful result. Since uniform convergence of
the vorticity field implies uniform convergence of the velocity field, one could view the full
nonlinear residual operator as the linear theory R with a small perturbation as numerical
parameters approach their limiting values.

Also, Condition A and Condition B can be applied to the convergence of other grid-
free and gridded schemes. While these conditions were applied specifically to CCSVM, the
general framework can be applied to any numerical method. Together, they form the basis for
an alternative convergence theory.

While many investigators have methods for removing extraneous vortex elements from a
simulation, fusion is a general, well-defined method for controlling the problem size. Main-
taining efficient problem sizes during a vortex simulation is crucial because the natural action
of viscosity is to increase the problem regardless of the method used. Furthermore, if one
extends this work to bounded flows, vorticity will be shed from boundaries into the tlow to
satisfy the no-slip condition, increasing the problem size even more. Fusion is a natural way
to recombine redundant elements while conserving several moments. Even without viscosity,
Hou, Lowengrub, and Shelley have demonstrated the importance of splitting vortex elements
to prevent the method from losing accuracy in finite time. As mentioned earlier in 5, it may
be possible to adapt refinement to inviscid flows by computing flow deviations.
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FAST FOURIER TRANSFORM ACCELERATED FAST MULTIPOLE
ALGORITHM*

WILLIAM D. ELLIOTTt AND JOHN A. BOARD, JR.

Abstract. This paper describes an O(p log2(p)N implementation of the fast multipole algorithm (FMA) for
N-body simulations. This method of computing the FMA is faster than the original, which is O(p N), where p is
the number of terms retained in the truncated multipole expansion representation of the potential field of a collection
of charged particles. The p term determines the accuracy of the calculation. The limiting O(p4) computation in
the original FMA is a convolution-like operation on a matrix of multipole coefficients. This paper describes the
implementation details of a conversion of this limiting computation to linear convolution, which is then computed
in the Fourier domain using the fast Fourier transform (FFT), based on a method originally outlined by Greengard
and Rokhlin. In addition, this paper describes a new block decomposition of the multipole expansion data that
provides numerical stability and efficient computation. The resulting O(p log (p)) subroutine has a speedup of 2
on a sequential processor over the original method for p 8, and a speedup of 4 for p 16. The new subroutine
vectorizes well and has a speedup of 3 on a vector processor at p 8 and a speedup of 6 at p 16.

Key words. N-body problem, many-body problem, fast multipole algorithm, fast multipole method, tree codes,
molecular dynamics, fast Fourier transform

AMS subject classifications. 70-08, 70F10, 42A85, 42C10, 82C22, 33C55, 65C20

1. Introduction. The Greengard-Rokhlin fast multipole algorithm (FMA) [6, 9] is an
efficient and inherently parallel algorithm for computing the Coulomb (electrostatic) or New-
tonian (gravitational) potential and forces in many-particle systems. The FMA is an O(N)
solution to the N-body problem, which is a significant improvement in performance over the
simpler but costly O(N2) method of directly computing the potentials and forces between all
pairwise combinations of particles. Applications ofthe FMA include simulations ofmolecular
dynamics, astrophysical processes, and fluid dynamics, and many parallel implementations
have been reported 1, 3, 4, 5, 7, 8, 13, 15, 16].

This paper describes an improvement to the FMA that applies to implementations on
sequential or parallel machines. The improvement is a speedup of the limiting subroutine
in the FMA by converting the computation to the Fourier domain, as described originally
by Greengard and Rokhlin [10]. The speedup also applies to related algorithms, such as
that of Barnes and Hut [2], when these are extended to include many terms in the multipole
expansions.

Section 2 of the paper gives a brief overview of the FMA and describes the limiting
multipole computation. Section 3 describes converting the limiting computation to the Fourier
domain. To ensure a numerically stable and efficient computation, several optimizations are
required on the basic Fourier domain computation; these improvements are described in 4.
Section 5 reports results of running the FFT algorithm on a RISC processor and on a vector
supercomputer.

2. Overview of the FMA. The FMA is described in detail in [6]. We use the language
of electrostatics for our development, because electrostatic applications (such as molecular
dynamics simulations) particularly benefit from the workherein (see 6). The algorithm begins
with a hierarchical spatial decomposition of the computational cube that contains the particles

*Received by the editors March 7, 1994; accepted for publication (in revised form) October 28, 1994. Work was
supported in part by NSF Engineering Research Center grant CDR-8622201, NSF Grand Challenge Applications
Group award ASC-9318159, NIH Research Resource award RR08102-01, and a grant of computer time from the
North Carolina Supercomputing Center.

tDuke University, Department of Electrical Engineering, P.O. Box 90291, Durham, NC 27706-0291
(welliott@ee.duke.edu, jab@ee.duke.edu).
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of interest into successively smaller cells. Each cell is split into eight child cells, allowing a
hierarchical oct-tree representation of the simulation region. With a uniform distribution of
charged particles, a uniform oct-tree is produced; the uniform case is assumed for this paper.
Adaptive variants of the FMA exist for nonuniform particle distributions [5], and the FFT
methods developed here apply equally to that case.

To improve the efficiency of the potential and force calculations, the FMA replaces most
of the particle-to-particle interactions with cell-to-cell interactions by first representing the
aggregate potential field of a group of charges in a cell with an equivalent multipole expansion.
Interactions between cells are then computed by manipulating the coefficients of multipole
expansions.

Multipole expansions corresponding to the cells at the lowest level of spatial decompo-
sition (the leaf nodes of the oct-tree) are computed via (1). For a given leaf cell containing k
particles, the position of the ith particle is given in spherical coordinates by (,Oi, Cti, fli). (I’)
represents the aggregate potential field due to all k particles at any point r (r, 0, 4) outside
the given cell.The infinite multipole expansion describes the potential field exactly. The series
is summed over the defined range of the order (0 < < o) and degree rn (-1 < rn < l) of
the spherical harmonic function y/m (0, q).l Outside this allowed range of values for and m,
y/m is taken to be zero.

(1)
o

1=0 m---I r-Tuf Y[(O’ 4),

(2)
k

M? qiO Yl*m (oti fli ).
i=1

The FMA next computes multipole expansions for all cells higher up the tree at all levels by
translating the origins of the multipole expansions of the eight child cells of each parent cell
to the center of the parent cell using a multipole-to-multipole (M2M) translation in an upward
pass through the oct-tree.

We say that two cells A and B from the same or adjacent levels of the tree are well
separated if they are sufficiently far apart so that the multipole series of A converges fairly
rapidly at the center of B. Pragmatically, A and B are separated by at least two cell widths.
Once all multipole expansions are computed at all levels, well-separated cells interact by
multipole-to-local (M2L) translation. In M2L, a local Taylor series expansion of the cell A
potential is formed, centered on cell B, to evaluate the potential at the particle sites in B
due to all the particles in A. As B interacts with other well-separated cells, the results are
accumulated into a single local (Taylor) series. During the downward pass of the algorithm,
parents pass the Taylor series representing their far-field interactions to each of their children
using local-to-local (L2L) translation; the series is recentered in each child box.

Although computing the cell-to-cell interactions is a complicated procedure compared
with the simpler particle-to-particle 1 computation, for a simulation with a large enough
number of particles, the multipole-based cell-to-cell interactions will run faster. For details
on the FMA, the reader is directed to 1, 3, 5, 7, 8, 13, 15, 16].

This paper will focus on the mathematics ofthe three cell-to-cell translations (M2M, M2L,
and L2L), depicted in Figure 1. In particular, the M2L interaction between well-separated cells
will be discussed because it is the performance limiting subroutine in the FMA computations.

1Consistent with Greengard and Rokhlin’s notation [6], the spherical harmonic functions y/m in this paper omit

the standard normalization factor V/(2/+ 1)/4zr.
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Parent Cell A
Well-Separated Cell

Interaction" M2L

min cell separation 2 cell

Upward Pass: M2M

Children of 11 A

Downward Pass: L2L

Children of Cell B

FIG. 1. FMA multipole expansion translations. The children of cell A use the M2M translation to shift to the
center ofcell A the multipole expansions representing thefar-fieM potential ofthe particles contained in them. The
M2L translation allows well-separated cells to interact by creating a local (Taylor) series expansion ofthefar-fieM
potential ofdistant cellA around the center ofcell B. Using the L2L translation, cell B in turn shifts the center ofthe
local expansion to the center ofeach of its children.

2.1. Contribution to the FMA runtime ofthe M2L subroutine. In the FMA, the M2L
translation, which is the interaction between well-separated cells, consumes the most runtime.
The M2L subroutine dominates the runtime due to the number of cells in the oct-tree and the
number of distant cells with which each cell must interact. If level 0 is the original simulation
space, each level L of spatial decomposition creates 8L new cells. The interaction list of
each cell contains all well-separated cells that have not already appeared in the interaction
lists of i’s parent. (The exact rule for assigning interaction lists is somewhat more complex;
see [6].) Using a well-separated criteria of two cell widths puts as many as 189 peer-level
and parent-level cells in the interaction list of any cell 16]. Figure 2 shows the total number
of M2L interactions (or equivalently, calls to the M2L subroutine) at each level of spatial
decomposition in the FMA. In contrast to the "horizontal" M2L interactions, the M2M and
L2L translations are "vertical" between parent and children only, and thus are performed eight
times at most for each cell. Although the M2L, M2M, and L2L routines have a similar runtime
cost per call, the large number ofM2L interactions causes that subroutine to dominate the FMA
runtime.

Multipole expansions and the three translation operations acting on them in the FMA
are exact in the limit of an infinite series. When truncated to a finite number of terms p, the
relative error in the potential is bounded above by (1/2)P as Greengard and Rokhlin proved [6].
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FIG. 2. M2L interactions in the FMA. The plot shows the rapid growth in the number ofM2L interactions,
measuredby the number ofcalls to the M2Lsubroutine, as the level ofspatialdecomposition increases to accommodate
more particles.

In practice, p is the linear dimension of a 2-D matrix of multipole expansion coefficients;
there are a total of p2 terms in the matrix. Each interaction between a pair of cells in the FMA
requires the translation of the origin of a series representation of the electrostatic field; this in
turn requires a double summation over all terms of the input multipole expansion coefficient
matrix multiplied with a corresponding term in a weighting function matrix to produce each
term in the output coefficient matrix (see (4) below). These operations yield O(p4) complexity
for the series translations.2 These translations resemble 2-D discrete convolution, which is
also O(p4). The complexity of the operations on the multipole expansions, combined with
the requirement to perform a large number of M2L translations for each cell, causes that part
of the FMA to dominate the runtime over the accuracy range (values of p) of interest for
molecular dynamics.

3. Conversion to Fourier domain. The convolution-like form of the computation and
the expense of the M2L translation motivate the conversion of the operation to the Fourier
domain using a 2-D FFT. In a technical report, Greengard and Rokhlin 10] described an FFT
conversion of the FMA. Schmidt and Lee [15] anticipated an FFT conversion of the FMA
as an optimization. Pan, Reif, and Tate [14] described a theoretical parallelized algorithm
based on Greengard and Rokhlin’s FFT conversion that could further improve the runtime of
such an algorithm when parallelized. Here we describe the implementation considerations
and performance of the FFT version of the FMA implemented in an existing version of FMA
code developed by Board and Leathrum [4, 12]. To our knowledge this is the first published
version of the implementation details of an FFT version of the FMA.

3.1. Description ofthe M2L translation. The M2L translation from a distant cell A to a
local cell B, see (3), simultaneously translates the origin O of a truncated multipole expansion
describing the potential field due to the particles in A to a new origin at point O’ (p, or,/3)
at the center of B and converts that expansion to a local Taylor series expansion about the new

2Greengard and Rokhlin have reported a method that takes advantage of symmetry to reduce many of the
translations to O(p2) 11 ].
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origin:

(3)
p-1 p-1

.(r) .’(r’) Mn Yf’(O, qb) m’ m’
r/+l -- Ll’ Yi’ (0’, qb’)rd’.

/=0 m=-l /’=0 m’=-l’

Within the error bound described in 2.1, the local expansion of the potential field at any
arbitrary point (r’, 0’, b’) with respect to the new origin O’ gives the same value for the
potential due to A as the multipole expansion evaluated at the same point (r, 0, b) described
with respect to the old origin O, provided series convergence criteria are met. Cells from
the same level of the tree separated by at least two cell-widths meet the series convergence
criteria. Since the location ofthe evaluation point ofthe potential is arbitrary as far as the M2L
translation is concerned, the translation can be viewed as an operation on only the coefficients
of the input matrix of multipole expansion coefficients M, using a matrix of translation
coefficients TMEL.,.l,m,l,,m as a weighting function, resulting in an output matrix of local expansion
coefficients Ln as shown in (4) (using the notation of Schmidt and Lee [151)"

m’ . ,’I’,M2L(4) L--I’ "l,m,l’,m
l,m

,.I-,M2L(5) l,m,l’,m’

m’ v*m’-m (ol, [(-1)l’+mAAl, l,._bl

Am’-m p/’+/+l
l’+l

(--1)/+m
(6) A’ ff(1 + m)!(1 m)!

These input, output, and translation coefficient matrices are approximately half-filled,
since the coefficients are zero outside the allowed range of and m, where is a nonnegative
integer and -I < m < 1. The spherical harmonic function y/m (0, b) equals zero for index
values outside of this range.

3.2. ConvertingM2L to convolution form. Double summation over an input coefficient
matrix multiplied by a weighting matrix resembles convolution. In fact the M2L computation
resembles linear convolution with what can be considered a 4-D weighting function matrix
t2L the four dimensions are l, m, l’, and m’. In order to reduce the complexity, weightingl,m,F,mI’

coefficients are needed that are not a function of all four indices but are a function only of the
difference between the corresponding indices l’ and m’ m. In that case, the computation
would be a convolution of the 2-D input coefficient matrix with a 2-D transfer function matrix
we will call I-I.

3.3. Warping the coefficients with the An function. Equations (7) and (8) show the
2-D transfer function I-I created by moving to the left side of (4) the terms of Tt2L thatl,m,l,,m
depend on only l’ and m’ and grouping with M the terms that depend on only and m. The
result "warps" the input coefficient matrix with the A normalization function and produces a
warped output coefficient matrix.3 Ofcourse, the output values must be unwarped with the An
function before computing any potentials, but by using warped values, the double summation
of input coefficients multiplied by transfer function coefficients is a 2-D linear convolution
operation. We have

(7) I(-1)-/’ Lm-i’ 1 lm rl’Im’-m ] [(- X)mMma]lAre’it J k"-(F-I)...

3The Al function used here differs slightly from that of Greengard and Rokhlin [6, 9].
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El*m (o/,

The equation in this form can be computed more quickly in the Fourier domain using the
FFT ofthe respective matrices, as shown in (9)-(13). Defining the "warped" functions y(1, m),
h(1, m), and x(l, m), we perform the convolution computation h @x in the Fourier domain by
element-by-element multiplication ofthe matrices H(W-l, O)m) and X (Wl, O)m), resulting in the
output matrix Fourier space matrix Y(W_l, COn). The 2-D FFT of the coefficient matrices has
a complexity O(p2 log2(p)), and the element-by-element multiplication of matrix elements
has a complexity O(p2). We have

(9) y(1, m) [(-1) L-- ]An

(lO) h(1, m) [I-In] Yl*m (ol, [)
Apl+l

(11) x(l, m) [(-1)mMnAn],

(12) y(-l’, m’) h(-(l’ 1), m’ m)x(l, m) h(-l’, m’) (x(l’, m’).
l,m

With the equation in convolution form, the distinction between primed and unprimed values
of and rn disappears, and the M2L translation can be done in the Fourier domain. We have

(13) y(-l, m) h(-l, rn) (x(1, m) Y(Og_l, gore) n(09-1, O)m)X(o)l, O.)m).

The -l terms in the transfer function H and the output Y affect the alignment of those
matrices in coefficient space. Specifically, the transfer function matrix and the output matrix
both will be aligned with the input matrix in the rn direction but reversed in the direction.
The FFT versions of the M2M and L2L translations, shown in the Appendix, are similar to
the M2L equations.

4. Implementation considerations and enhancements. While the mathematics of 3
appear complete, there are several modifications required for actual computation of the FFT
version of the M2L to achieve correctness and numerical stability. Also, to run efficiently
enough to outperform the conventional method of calculating the M2L interaction at low p
values, several optimizations are necessary. This section describes the modifications necessary
for a correct and efficient implementation.

4.1. Linear convolution from FFT circular convolution. Computing the M2L trans-
lation in Fourier space using (13) introduces two side effects that do not occur in the original
coefficient-space computation (3). First, to get the required linear convolution from FFT cir-
cular convolution requires zero padding, which increases the complexity of the computation.
Nominally, zero padding will result in an FFT matrix of size 4p 2p. 4p places are required
in the m direction because the coefficients range from m -(p 1) to (p 1) (including
0) at the widest point and from 0 to (p 1) at the highest point. The second side effect
occurs when FFT convolution produces nonzero coefficients outside the allowed range of
and rn (1 > 0 and Iml < 1); while the FFT method computes values over the full 4p 2p
matrix, the conventional coefficient-space computation of the M2L translation needs to sum
only over the allow ranges of l, m, l’, and m’.
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One problem associated with these side effects is the increase in rumime complexity of
the computation. To illustrate, the FFT of an N x M matrix requires (log2 N + log2 M)
multiplications of complex numbers. For the zero padded 4p x 2p matrix, then, the number
of complex multiplications is 4p2 (2 log2 p + 3) for each matrix. After the FFT, the element-
by-element matrix multiplication requires 8p2 complex multiplications. In contrast, it can
be shown that the original coefficient-space M2L computation requires p4+4p3+5p2+2p

12 com-
plex multiplications. The problem arises because typical values of p are low (p < 16),
and the coefficient-space computations for those p values are less than the equivalent FFT
computations using the full 4p 2p matrix.

Fortunately, halfofthe zero padding can be eliminated as follows. The wrap-around effect
of FFT circular convolution in the m direction of an array 2p wide affects only those values
that are outside of the allowed range of and rn anyway, allowing the FFT matrix to shrink
down to 2p 2p, which eliminates half of the zero padding in the m direction and still gives
correct results. Furthermore, the 1-D FFT in the rn direction contains significant redundancies
due to the following relationships among the values of the coefficients with respect to m:

(14) M-m (-1)mMm, t-i-m (-1)mzm.
This relationship applies to the multipole expansion coefficients and to the local expansion
coefficients as well as the spherical harmonic function:

(15) El-re(O, dp) (-1)mYl*m (o, ).

When converted to the Fourier domain, this relationship results in half of the 1-D FFT coeffi-
cients in the rn direction being equal to the complex conjugates of the other half. Significantly,
this relationship holds even for the 2p x 2p coefficient matrix described above subject to the
wrap-around effect of circular convolution. Thus, one half of the FFT array in the rn direction
contains all of the information about the multipole expansion or local expansion coefficients.
Therefore, only half the array need be computed and stored, saving memory and runtime.
The values of the unused half of the Fourier-space array are needed only implicitly and only
during the FFT and inverse FFT operations. With most of the zero padding in the rn direction
eliminated and redundant terms unstored, all of the information in the FFT matrix can be
stored in a p x 2p block. All the zero padding in the direction is still required.

Another problem arising from the side effects of FFT convolution is the need to zero
out coefficients outside of the allowed range of and rn after the M2L translation is com-
puted. This prevents the full FMA from being computed entirely in Fourier space. This
situation does not occur in the coefficient-space computation because y/m (0, b) equals zero
outside of the allowed values of and m, a property which has the effect of zeroing out
M2L output coefficients values with indices outside of this range. In practice,the coefficient-
space method of computing the M2L translation requires summation only over the allowed
range of l, m, l’, and m’. However, a convolution of the multipole expansion coefficients
computed in Fourier space does not include any consultation with a spherical harmonic func-
tion, and therefore does not restrict values in that way. Rather, the convolution "smears"
the coefficient matrices, resulting in an output coefficient matrix that contains many nonzero
values outside the allowable range of and m. Figure 3 diagrams the smearing effect of
convolving an input coefficient matrix with a transfer function matrix both containing val-
ues for 0 to 3 and rn -l to with running in the vertical direction and rn running
in the horizontal direction. Any further convolution on the output matrix, to perform an
L2L translation, for example (the next step of the FMA algorithm following M2L), will give
incorrect values unless the nonzero coefficients at the out-of-bounds values of and rn are
eliminated.
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Fro. 3. Convolution produces nonzero coefficients outside the allowed range of and m. Thefigure shows input
and output matricesfor the M2L computationfor p 4 with the values running in the vertical direction and the
m values running in the horizontal direction. The dark regions show the nonzero values ofthe multipole expansion
coefficient matrix and the transferfunction matrix. In the output matrix, the dark regions show the locations of the
desired data, within the allowed range of and m, and the shaded regions show locations ofnonzero values resulting
from convolution that must be cleared.

To zero out the coefficients where < 0 or [ml > 1, an element-by-element multiplication
of the M2L coefficient-space output matrix with a mask matrix is required as follows:

1 l>Oand-l<m<l,(16) mask(l, m) 0 otherwise.

Although this can be done in either coefficient space or Fourier space, it is much less
expensive to do in coefficient space. This is because the operation is a direct multiplication of
matrix elements in coefficient space but it is a convolution between the FFT of the above mask
and the FFT of the matrix to be corrected. Incurring the overhead of converting out of Fourier
space, multiplying and converting back to Fourier space is less expensive than convolving in
Fourier space. This situation mirrors the reason for converting the M2L operation into Fourier
space to start with, namely to avoid explicit convolution. The net result of the smearing effect
of FFT convolution is that an inverse FFT (IFFT) must be performed on the M2L results
prior to going on to perform L2L in Fourier space. In general, if all three operations, M2M,
M2L, and L2L, are to be performed in Fourier space, an IFFT]multiply]FFT sequence must
be performed between translations.

Although the coefficients must come out of Fourier space between translations to zero out
the out-of-bounds coefficients, the results of each of the large number ofM2L translations can
be accumulated in Fourier space without any intermediate IFFT operations. This is important
and valuable since the M2L is the most time-consuming portion ofthe FMA, and the repetition
and accumulation reduces the overhead ofconverting the input multipole expansion coefficient
matrix in and out ofFourier space to a small fraction ofthe M2L runtime. The transfer function
matrix still requires an FFT for each M2L computation.

4.2. Numerical instability. Another difficulty in implementing the FFT version of the
FMA is the numerical instability problem observed by Greengard and Rokhlin [10]. This
instability comes from two sources. The first source is the nature of the warping operation
on the multipole expansion and local expansion coefficients. These coefficients are warped
with the A function, which ranges in magnitude from 1.0 to roughly 1//(2p) !. Thus, even
for modest values of p, the range of magnitudes of values in the warped coefficient matrix
exceeds the machine precision using double precision floating point numbers. The other source
of instability arises when the dimensions of the problem are not scaled properly. The range
of magnitudes due to r terms in the multipole expansion coefficients and the 1/,On terms in
the transfer function coefficients will cause numerical instability unless the dimensions in the
problem are scaled to roughly within an order ofmagnitude of 1.0. Because the FFT operation
produces a matrix of Fourier-space values that are linear combinations of the corresponding
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coefficient-space matrix values, combining input matrix values, which vary in magnitude,
loses much of the information contained in the small magnitude numbers.

To make the algorithm numerically stable, Greengard and Rokhlin suggested a polynomial
scaling scheme or a block decomposition of the coefficient matrices, and they implemented
the polynomial scaling scheme. They reported comparable errors for the FFT and original
versions of the FMA at p 8 with single precision.

We implemented a block decomposition of the data for numerical stability and produced
identical results to coefficient space computation out to p 32 at double precision. We
found that the block decomposition scheme provided many advantages including making the
algorithms less sensitive to scaling and providing a speedup in performance by tailoring the
size of the matrices to the nonzero values as described in the next section.

Block decomposition of the coefficient matrices in the direction groups together coef-
ficient values of proximate magnitude. This reduces the range of magnitudes input into the
FFT function but requires several separate multiplications of matrix elements for each block.
In other words, the block decomposition results in a large-grain convolution at the level of
the coefficient blocks. In our implementation we selected a granularity of eight terms in the
direction (four coefficient terms and four zeros for padding) for each block to achieve a

power of 2 for FFT efficiency and to reduce the numerical instability problems while keeping
a large enough block size to minimize the block-level convolution. Figure 4 shows block-level
decomposition for an example where p 16. Each input block and transfer function block
contains four rows of coefficients and four rows of zero padding. In the output blocks the
smearing effect of convolution produces seven rows of useful data in the output blocks, except
in the 0 to three block. We have demonstrated that this level of block decomposition of
the coefficient matrices controls the numerical instability out to at least p 32 for double
precision data.

To demonstrate the numerical stability of the block decomposition scheme, we set up an
experiment to compute the M2L translation between the two cells shown in Figure 5 with
and without block decomposition at various scaling values, and we compared the results
with coefficient-space computation. Each spherical, unit-radius cell contains 100 uniformly
distributed particles. Each particle has a charge of -1.0 or 1.0, and the two values of charge
occur with equal probability among the particles. The cell centers are separatedby a distance of
4.0 along the vector t, which leaves a cell diameter separation between the two cells. Because
of the spherical symmetry, the results are essentially independent of the values of ot and/3.
The results are shown in Figures 6 and 7 at single and double precision. The potential error for
the N particles in cell B was computed by using(17) to compare the local expansion potential
B,local with the direct particle-to-particle potential (I)direct computed at double precision. The
theoretical worst-case error shown in the plots for this geometry is (1/2)P. We have

(17) Errr ( Zq= (o/direct o/B’lcal)2 )z/N= (o/direct)2

The s values in the plots indicate the values at which the dimensions of the cell and
particle positions in Figure 5 were scaled. The scaling values were selected as powers of 2
in order to reflect the relative dimensions of cells encountered in the spatial decomposition of
the FMA simulations region; at each level of decomposition, cells are cut in half in the x, y,
and z directions to create eight child cells in the next level.

The single precision results with no block decomposition in Figure 6 show the polynomial
scaling effect described by Greengard and Rokhlin [6, 9]. A scaling factor of 2-4 provides
stability out to p 16 by offsetting to some extent the 1//(2p)! warping function with sp
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Input Transfer Fcn. Output

Block 0

Block 2 ---->

Block 3

Step Step 2

Step 3 Step 4

FIG. 4. Large-grain convolution at the FFT block leveL In this example p 16, so decomposition of the
coefficients intofour blocks is requiredfor numerical stability. Each input and transferfunction block containsfour
rows ofnonzero data corresponding tofour values. Only halfofthe coefficients are required in the m direction. The
output blocks contain seven rows ofuseful data (exceptfor block O) plus some nonzero values shown in the shaded
regions which are outside the allowed range of and m.

Cell A

." r=l.0

//.." ." /. (p, cz: ) Cell.-. p=4.0 r=l.O

FIG. 5. Geometry ofthe experiment to demonstrate numerical stability ofFFTalgorithms. Two spherical cells,
A and B, each with radius 1.0, are separated by a cell diameterfor a total separation of 4.0 measured at the cell
centers. Each cell contains 100 chargedparticles, uniformly distributed, and any particle is equally likely to have a
charge of- 1.0 or + 1.0.
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Single FFT Block, Single Precision

s=l ............
s=2 .........
s=4
S=8

Worst (theory)
Coefficient-space
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Block Decomposition, Single Precision.........
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4 12 16 20 0 4 8 12 16 20

FIG. 6. Results of the numerical stability experiment at single precision comparing the single block FFT
computation ofM2L (left) to the block decomposition scheme (right) with block size 8. For reference, both plots
include the coefficient-space computation and the theoretical worst-case error (1/2) P. The scaling factors s reflect
the scaling of the hierarchical decomposition ofthe FMA, where each cell is halved in the x, y, and z directions to
create 8 cellsfor the next level. The block decomposition scheme provides stability over a wide range ofgeometry
scales.

0 0

-10

-12

-10

Single FFT block, Double Precision

..........
s=1/2
s=l
S=2
S=4
S=8
S=16

Worst case (theory)
Coefficient-space

12 16 20 24 28 32

-12

-14 -14
0 4 8

Block Decomposition, Double Precision
’<(i.

s=1/2 . .............
s=l .............
s=2
S=4
S=8
s=16

-Worst case (theory)
Coefficient-space
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P

24 28 32

FIG. 7. Results of the numerical stability experiment at double precision comparing the single block FFT
computation ofM2L (left) to the block decomposition scheme (right) with block size 8. Similar to the results in the
previousfigure, the block decomposition scheme provides stability over a wide range ofgeometry scales.

polynomial scaling. The block decomposition method, on the other hand, is less sensitive
to the scale of the geometry of the cells and particles and provides better stability over a
wide range of scaling factors. Similarly, for the double precision case, the single block FFT
provided stability when the geometries are carefully scaled, while the block decomposition
FFT was stable over a wide range of scales. This block decomposition method thus allows all
FMA translations to be computed at the scale determined by spatial decomposition, without
rescaling each set of interactions.

4.3. More efficient block decomposition. In addition to improving the numerical sta-
bility, block decomposition provides a speedup opportunity due to the sparsity of the first few
FFT array blocks. For example, in Figure 4, block 0 of the transfer function convolves only
with input block 0. Both of these blocks could be as small as four units in width and when
convolved together would still give the correct value of their contribution to output block 0.
However, since block 0 of the input also convolves with the rest ofthe transfer function blocks,
its width must be the full size p, which is 16 in the example of Figure 4. Block 0 of the transfer
function, on the other hand, can be handled as if it is only four units wide, which is equivalent
to making periodic replicas of the nonzero values of the transfer function block in the width
of the full-size block.
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Block 0

FFT

Block

FFT 11
FIG. 8. Simplifying the FFT oftransferfunction blocks. Blocks 0 and from Figure 5 shown here handled as

containing periodic replicas in the m direction to reduce the data required in the Fourier domain. Shaded areas of
the Fourier transformed blocks show the locations ofnonzero values.

The advantage to modifying the effective transfer function block widths is in the Fourier
transform of the block. As Figure 8 shows, the FFT of a function that is periodic in the m
direction with a period that is a multiple ofthe FFT array length simplifies the FFT computation
and produces fewer nonzero values for the subsequent matrix multiplication with the input
blocks. Block 1 from Figure 4 can be treated in a similar fashion.

This modification to the transfer function block sizes improves the runtime of the FMA,
because for each call to the M2L subroutine the transfer function is computed, transformed to
the Fourier domain, and multiplied with a multipole expansion coefficient matrix. Shorten-
ing the effective width of the first few transfer function blocks lowers the computation count
of the Fourier transforms and matrix multiplications involving those blocks.

The improved efficiency of the block decomposition method is clear from studying the
operation count. Consider again the block decomposition in Figure 4 with p 16. As
described in 4.1, the fundamental size of the FFT matrix is 2p x 2p, although, because
of the redundancy of the data in the m direction, only p x 2p are required for the matrix
multiplication. The full width of the matrices in the m direction are required implicitly during
FFT/IFFT operations, but only half of the matrices need to be stored. Furthermore, some of
the blocks can be shortened (in Figure 4 the blocks 0 and 1) resulting in storage requirements
diagrammed in Figure 9.

To analyze the operation count of the two principal computations in the M2L interaction,
we consider the blocks to be twice their stored m direction width for the FFT, but equal to the
stored width for the matrix multiplication. Since the full array is required in the m direction
for the FFT, the nonstored values must be recovered from the stored values. Each block in
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Block 0

Block 1

Block 2

Block 3

FIc. 9. Storage requirementsfor shortened FFT blocks holding the transferfunction coefficients. Dark regions
show the location ofthe coefficients and light regions show zero padding.

Figure 9 then requires h2) (log2 h / log2 2w) complex multiply operations to compute the2
FFT, where h and w are the height and width of the individual block. The element-by-element
matrix multiplication, on the other hand, requires only the information stored in the blocks; the
remaining coefficients that make up the 2p x 2p fundamental matrix are accounted for in the
redundancy of the data or in the Fourier-space zeros of the periodic replica scheme described
above. The number of complex multiplications for each block is simply hw.

As an example, dividing a coefficient matrix into four blocks and accumulating the com-
11 log2putations required for the FFT of each block yields p2 7- p ) complex multiplications

compared with 4pZ(log2 p + 1) computations for the FFT of the full 2p 2p matrix. The ma-
trix multiplication requires slightly more computations for the block decomposition scheme
because of the block-level convolution (Figure 4). For the case where the coefficients are
decomposed into four blocks, !p2 complex multiplications are required compared with 2p2

computations for the full matrix of p x 2p nonredundant values. For a concrete example,
inserting p 16 yields a total of 3,392 complex multiplications for the efficient block decom-
position scheme which compares favorably to the 5,632 complex multiplications required for
the FFT computation ofM2L without block decomposition and 6,936 required for the original
coefficient-space M2L computation. As is evident in 5 the operation count discussed above
does not account for all of the speedup in the FFT method over the coefficient-space method.
On one hand, for example, the regular locations of FFT block data allow more rapid computa-
tion on vector and pipelined machines. On the other hand, operations such as zeroing out the
FFT matrix prior to each M2L uses nontrivial amounts of CPU time, and the extra memory
usage required by the FFT version can result in more cache misses for large simulations run
on machines with small caches. In general, however, the FFT version runs faster for any
p>4.

As an added benefit of the block decomposition method, p values other than powers of
2 can be selected with a smaller penalty in terms of extra zero padding. For example, p 12
can be implemented with three blocks, each length 8 in the direction. This eliminates the
wasted zero padding in the direction which would be required for a full 16 x 16 single block
matrix to hold the p 12 data.
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FIG. 10. M2L subroutine performance comparison on IBM RS-6000. The msec/call times are an average
reported by the UNIXprofutility running a simulation of20K uniformly distributed chargedparticles.

5. Implementation and results. Although it is possible to do the M2M and L2L trans-
lations in the Fourier domain as shown in the Appendix, our current implementation of the
FFT version of the FMA does only the M2L translation in the Fourier domain. The M2M
and L2L are done in coefficient space because their runtimes typically amount to only a few
percent of the total. Also, the overhead of the FFT/IFFT conversion is amortized over fewer
accumulated translations for M2M and L2L than for the M2L translation, so the speedup may
not be as substantial.

Figure 10 shows the results of a comparison between the FFT version of the FMA with
the M2L done in Fourier space and the original version of the FMA with the M2L done
in coefficient space. The two versions have identical code from a locally generated FMA
program except for the routines relating to the M2L translation. The plot shows the aver-
age time spent in the M2L subroutine as reported by the UNIX prof utility. The simulation
is a 20K uniform distribution of charged particles, with an equal distribution of- 1.0 and
+ 1.0 charges. The simulation region is a cube in free space. The simulations were run
on a single-processor IBM RS-6000 Model 360. The FFT routines used were derived from
off-the-shelf code, optimized by fully unrolling the 1-D FFT portion of the routines and
eliminating the unnecessary computations arising from the known zeros and data dependen-
cies in the multipole expansion coefficients. On the RS-6000 the results of computing the
M2L translation in the Fourier domain show a speedup factor of 2 measured in millisec-
onds per subroutine call (msec/call) at p 8, and even higher speedup for p values greater
than 8.

An additional benefit of conversion to Fourier space is the vectorizability of the code.
Figure 11 shows the msec/call performance comparison for single-processor runs on a CRAY
YMP-8 vector supercomputer, showing a nearly 3 times speedup at p 8. Other computations
in the M2L subroutine were not vectorized in this implementation (accounting for the faster
msec/call time ofthe RS-6000 over the Cray), but this figure shows the improved vectorizability
of the FFT method with no other changes to the code.

The runtime performance ofany implementation ofthe FMA is dominated by two factors,
only one of which is the subroutine calls to the M2L translations. While M2L dominates the
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FIG. 11. M2L subroutine performance comparison on Cray YMP-8. The simulation is the same as that used
for the previousfigure.

multipole calculations, the direct, particle-to-particle interactions consume significant CPU
time; these computations are necessary for regions where the multipole expansion series
convergence criteria are not met. These regions are the cells at the leafnodes ofthe oct-tree that
are too close together to be put on the M2L interaction list. Particle-to-particle calculations in
these regions are an independent task from the M2L cell-to-cell interactions, and the runtime
of these calculations is dominated by the floating point square root calculation. In fact,
extracting maximum performance from an FMA program for a given number of particles N
and given p for desired accuracy typically results in roughly equal time spent between the
particle-to-particle calculations and the M2L calculations. Thus, efforts to speed up the entire
FMA algorithm by FFT conversion of the M2L are mitigated by the independent task of the
particle-to-particle calculations. Figure 12 compares the speedup in peak particles per second
(particles/sec) for various p values of the FFT version of the FMA code over the original
version with the same particle-to-particle routines in both versions. The simulation is the
same 20K system of uniformly distributed charged particles run on the single IBM RS-6000
processor described above.

6. Conclusion. In this paper we described a faster FMA, accelerated by converting the
most common subroutine, the M2L translation, to the Fourier domain using an FFT. The
result is an implementation that is O(p2 log2(p)N). Conversion of the multipole expan-
sion coefficients to the Fourier domain is satisfactory only after prewarping and zero-padding
the coefficients. Block decomposition provides numerical stability to p 32, and efficient
block sizing reduces the overhead of the FFT enough to outperform coefficient-space convo-
lution at low p values. Our implementation speeds up the FMA for p > 4, and speeds up the
M2L subroutine call by a factor of 2 at p 8 on an RISC processor and a factor of 3 at p 8
on a vector processor.

To our knowledge, this is the first published version of the implementation details of an
FFT version of the FMA, using the convolution form of the FMA computations described by
Greengard and Rokhlin. The efficient block decomposition scheme described here is new.
This block decomposition scheme provides numerical stability for the algorithm at double
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FIG. 12. Speedup ofa full FMA algorithm with FFT version ofM2L on RS-6000/360. The simulation is the
same as previousfigures. The speedup ofthe multipole computationsfrom the FFTenhancements is mitigated by the
necessary particle-to-particle computations in the overall FMA algorithm.

precision out to p 32 over a wide range of geometry scales and provides an opportunity to
restrict computations to the nonzero values in the multipole expansion coefficient matrix.

The speedup of the FMA described in this paper is particularly relevant to electrostatic
applications. In gravitational computations, all the "charge" (mass) is positive, so the lead-
ing monopole term of the multipole expansion is large. Many astrophysical applications of
multipole-based methods in fact retain only the monopole term in their expansions; i.e., they
set p 1. In electrostatics with approximate charge neutrality, the first moment of charge
distributions will be nearly zero, so more terms must be retained in the expansions. Electro-
static applications typically felt the effect of the O(p4) growth in runtime as terms were added
to improve accuracy much more severely than gravitational applications. The runtime reduc-
tions achieved in this paper allow high accuracy electrostatic computations to be undertaken
at moderate cost.

Appendix: FFT version ofother FMA transformations. Multipole-to-multipole trans-
lation (M2M):

(18)
p-1

11 t.v W
[z3 "t" p-1 m’

m, Y1, (0’, (’)
* (r) ,’(r’) EM .-1 EMr r.,l’+l

l,m l’,m’

(19) Mr ETM2M ]wlm
l,m,l,,m,

l,m

(20)

(21)

M2M
l,m,l,,m

(-1)l’-IAr "l’-I
m Yl*m’-m (o[ i)iol’-I

l’ m’ m’[(-1)- Mr ar ]-- [I’Ii,m’_-i m] [(-1)’M?an],



414 W.D. ELLIOTT AND J. A. BOARD, JR.

(22) [ltn] A?Yl.m(ot,

(23) y(1, m) [(-1)lMnAn],

(24) h(l, m) [I-I A’ y;m (C, /)/9

(25) )lMmAm]x(1, m) [(-1 1,

(26) y(l’, m’) h(l’ 1, m’ m)x(l, m) h(l’, m’) @x(l’, m’),
1,m

(27) y(l, m) h(l, m) @x(l, m) +- Y(wt, O)m) H(cot, (.Om)X((Dl, O.)m).

Local-to-local translation (L2L):

(28)
p-1 p-1

m,(r) ,’ (r’) LY’ (0 dp)r Lt, Yi, (0’ -’",q)r
l,m F,m

(29) L, Z ’T’L2L-"l,m,l’,m’L,
l,m

(30) ,r/2/ AIm’ A’’m’ y-fim’ ol [ ol’m’lt’ml A’f

(31) [L,’ I [.-(m’-m) [L’ l
Al, J l.m ] A’Jm’ l-’-(/’-/)

(32) [I-I?] A?Y (oe, l)p,
(33) y(l m)=[ L? ]An

(34) h(1, m) [l-I A’f yn (or, fl)pl,

(35) x(1 m)=[L ]A’

(36) y(l’, m’) Z h(-(l’ 1), -(m’ m))x(l, m) h(-l’, -m’) @x(l’, m’),
1,m

(37) y(1, m) h(-1, -m) @x(1, m) +->. Y(ot, OOm) H(w_t, O)_m)X(O)l, O)m).
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COMPUTATION OF PSEUDO-DIFFERENTIAL OPERATORS*
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Abstract. A simple algorithm is described for computing general pseudo-differential operator actions. Our
approach is based on the asymptotic expansion of the symbol together with the fast Fourier transform (FFT). The
idea is motivated by the characterization of the pseudo-differential operator algebra. We show that the algorithm is
efficient through analyzing its complexity. Some numerical experiments are also presented.
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data processing
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1. Introduction. The theory of pseudo-differential operators (qDOs) has made many
important contributions to the development of partial differential equations. It provides a
natural way to decompose a differential operator, which may be difficult to study directly,
into several pieces with a simple structure. A precise way to describe propagation of sin-
gularities for differential equations is in terms of qDOs. Pseudo-differential operators may
be viewed as spatially varying filters with simple asymptotics at high frequencies. Pseudo-
differential operators differentiate waves and wave-like signals according to directions of
propagation. Pseudo-differential operators also arise naturally in diverse fields (often under
different names!) such as wave propagation, electrical engineering, and geophysics.

Although the theory of qDOs, or, more generally, microlocal analysis, has been well
established since the ’60s, little attention appears to have been paid to the computation of
qDOs. In this paper, we present a simple algorithm for the computation of general qDO
actions. Our idea is based on the following characterization of qDOs.

Fact. The qDO algebra is generated by all differential operators and all powers of the
Laplacian.

More precisely, qDOs and many functions of these (inverse, powers are included in
qDOs in the high frequency asymptotic sense.

See Kohn and Nirenberg [3] for a detailed discussion.

2. Pseudo-differential operators. Here, we shall give a brief introduction to a class of
qDOs. For a complete account of qDOs, as well as the calculus, the reader is referred to
Taylor [5], Nirenberg [4], or H6rmander [2].

We begin with the introduction ofthe Fourier transform and the inverse Fourier transform.
The Fourier transform acting on a "nice" function u defined in Rn is

u (x)e-iX’dx

and the inverse Fourier transform is defined by
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Remark. A number of algorithms for the numerical computation of (discrete) Fourier
transforms have been made available. We shall use a version of the FFT in our numerical
work. A detailed description may be found in Conte and De Boor [1]. See also Van Loan [6]
for the most recent development in the field.

Pseudo-differential operators are usually defined in terms of symbols, which are smooth
functions of both space and frequency variables satisfying certain estimates. More precisely,
q (x, ) is a member of the symbol class S,0(Rn) iff q (x, ) is a smooth function and for any
compact subset K of Rn, and real or,/3, there exists a constant C/,,, such that

IDxDq(x,)l <_ CK,u,(1 -1-I1)m-Il

for all x K and Rn.
In this paper, we shall confine ourselves to a subclass of Sm the class Sm which is1,0’

the most natural class and sufficient for many applications. A function q (x, ) is in Sm if
q(x ) S and there are smooth qm-j(x ), homogeneous of degree m j in for1,0

I1 > 1; i.e.,

(2.2)

such that

qm-j(X, r) rm-Jqm_j(x, ), I1 > 1 r > 1

N

sm-N-1(2.4) q (x qm-j (x 1,0
j=0

where qm (x, ) is called the principal symbol or principal part of q (x, ) that carries the most
important information about q.

Then the operator Q defined by

o(x, f q(x,(2.5) );()eXcl

is called a qDO of order m or Q 0PSm(Rn).
In particular, differential operators with smooth coefficients are qDOs. Indeed, for such

a differential operator of order m, the corresponding symbol is a polynomial in of degree m,
and consequently is a symbol in Sm. The asymptotic expansion of a symbol (2.3) is unique
up to smoothing operators.

3. Algorithm. In this section we describe the algorithm explicitly. Its complexity will
be examined in the section that follows. For the sake of simplicity, we shall only describe
the idea of computing two-dimensional qDOs. Some obvious modifications may be made to
compute qDOs of arbitrary dimension. Throughout, we shall always assume that the action
of Q on u is meaningful. The precise conditions may be found in any one of the references
[2]-[5].

Given a I,DO Q(x, z, Dx, Dz) OPSm whose symbol is q(x, z, , O) and a function
u(x, z), our goal is to compute the action Qu efficiently. Let us assume that the asymptotic
expansion of the symbol is given by

(3.1) q(x, Z, , rl) qm-j(X, Z, , rl)
j>_O

in the sense that

(2.3) q (x, y qm-j (X,
j>_0
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where qm-j(X, Z, r, rrl) rm-Jqm-j(x, Z, , rl) for (11, 101 1). Again, qm denotes the
principal symbol of q.

Knowing the asymptotic expansion of q we compute the DO action Qu through com-
puting Qm-jU for j > 0. We describe the calculation for j 0, as it is representative. That
is, we will describe an algorithm for computing the action of the principal part of a qDO.

Evidently this algorithm could be applied recursively to compute general qDO actions. How-
ever, the principal part gives the dominant effect on high frequency inputs, which is most
important for our intended applications. Thus, for us, computation of the principal part above
is sufficient.

Let

(3.2) =cocos0, O=cosin0, Co=v/2+02.
The homogeneity of qm in and yields

(3.3) qm(X, Z, , O) qm(X, Z, co cos0, co sin0) comm(X, z, O)

where 4rn (X, Z, /9) is defined to be q,, (x, z, cos 0, sin 0).
Since m is periodic in 0, it has a Fourier series expansion as follows:

(3.4)

cx K 2

m(X,Z,O)-- Z Cl(X’z)eilO Cl(X’z)eil
l=-cx l=-K/2

K/2, Cl(X,Z)(COSO +isinO)
l=-K/2

where K is an indicator of the number of terms in the expansion.
It follows from the definition of DO (2.5) that

K/2

Qmu f f ddrlei(x+z) Z comcl(x’ z)(cos0 +i sin0)/t(, r/)
I=-K/2

K/2

Cl(X,z) f f ddrlmei(X+Z)(csOWisinO)l(,O)
l=-K/2

K/2

(3.5)
l=-K/2

el(X, Z ffC’- COm -1- ir])//(, r])],

where, to obtain the last equality, we have used the relations cos0 /co and sin0 /co in
(3.2). Observe that COm-I is the symbol of the (m -/)/2-power of the (negative) Laplacian,
while and 0 are symbols of differential operators Dx -i Ox and Dz -i Oz, respectively.

The procedure implicit in the above formulae leads to an algorithm to evaluate amu
approximately, as follows. Assume that u is sampled on a discrete grid,

(3.6) Ui,j u(xo + (i 1)Ax, z0 + (j 1)Az),
i--1 M, j=l N,

with spacings Ax, Az > O. Assume simitarly that a sampling of tm is given

(3.7) Qi,j,k tm(XO -" (i 1)Ax, z0 + (j 1)Az, kAO)
1 M, j 1 N, k -K/2 K/2.
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With X (M 1)Ax, Z (N 1)Az, the sample rates in the frequency domain are

A 1/X, Arl 1/Z, so the (unaliased) samples of the symbols of the Laplacian, Dx, and
D are

(3.8)
(3.9)
(3.10)

’p,r 2Zr v/(pA)2 q_ (r A/’])2

Ep,r 2zrpA

Zp,r 2re rA0,
p -M/2 M/Z, r -U/2 N/Z,

respectively.

PROCEDURE FOR COMPUTING Qmu
1. Compute the discrete Fourier transform of U.
2. For each 6 1 M} and j 6 1 N}, compute the discrete Fourier transform

K/2 r K/2Qi,j Qi,j,l Jl=-K/2 of Qi,j Zi,j,klk=_g/2.
3. Initialize (QU)i,j 0.0, for 1 M, j 1 N.

DO -K/2, K/2
M U ofa compute the inverse Fourier transform {RI,J }i_-’1,=1

"2m-Ip,r (Ep,r + iZp,r)lJp,r

for p -M/2 M/2 and r -N/2 N/2.
b accumulate

(QU)i,j (QU)i,j --b Oi,j,iR,j
END DO

4. Complexity analysis. We return to the general case. The complexity will be analyzed
by the number of multiplications. We also make a few remarks about the accuracy of the
algorithm.

The direct method of computing the tPDO action is by straightforward discretization of
the definition

Qmu=ffqm(X,)()eiX’d
,’-l[qm(X, )/()]

Let us assume that the input function is discretized on a regular d-dimensional grid, as is
the symbol qm. We denote by N the number of grid points in each direction, assuming these
are roughly similar. Assuming also that the discrete Fourier transforms are computed using
an FFT algorithm. We then have the following result.

LEMMA 4.1. The direct algorithm has O(N2d log N) complexity.
This is an immediate consequence ofthe well-known fact that the FFT exhibits O(N log N)

complexity, where N is the length of the input sequence.
We next discuss the complexity of the new algorithm. For simplicity, we once again

consider the two-dimensional case. The approximate complexity orders of the steps in the
algorithm proposed above are

1. N2 log N;
2. N2K log K; and
3. a. KN2 log N, b. KN2.

Hence the total complexity is O(KN2 (log N + log K)) in two dimensions.
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FIG. 1. The symbol ofa convolutional operator.

In general, when the number of dimensions is d, a similar calculation will give
Lemma 4.2.

LEMMA 4.2. The new algorithm exhibits O(Kd-iNd (log N + log K)) complexity.
Remarks. The new algorithm is significantly superior to the direct method. In prac-

tice, the number of terms K in the finite 0-Fourier series approximation of qm (3.4) ought
to be chosen properly to make the sup-norm error small. If this is the case, the error
in the computation of On, modulo compact operators, will also be small (Taylor [5], p.
52). In particular the error will be small for oscillatory inputs u. Note that K is com-
pletely independent of N in this regard. Thus, in effect, the complexity of our algorithm is
O(NdlogN)!

In actual applications, N is usually big. When N and K are given, the numbers of
multiplications involved in our algorithm and the direct method may be calculated easily.
What makes the real difference is the number K. The theory and our numerical experiments
both indicate that the number K depends only on the smoothness of the symbol, is insensitive
to N, and can always be small.

5. Numerical experiments. In this section, we present the results of some numerical
experiments carded out with the DO algorithm. The class of,DO ofgreat importance in our
applications are microlocal cutoff operators, i.e., operators whose symbols are asymptotically
one in some conic set and asymptotically zero in the complement of a slightly bigger conic
set (essential support or aperture). These are the simplest undecomposable order zero ,DOs.
Our numerical experiments exhibit some interesting features of ,DOs.

We begin with convolutional ,DOs, which are ,DOs that are independent ofspatial vari-
ables. Convolutional operators are natural extensions of differential operators with constant
coefficients. For this class of operators, it is easy to show that

(5.1) .T(Qu) Q()fi(:).

This simple identity is useful in verifying the code. In fact, according to (5.1), one can recover
the symbol from (Qu) and . A symbol that characterizes a microlocal cutoff is specified
by Figure 1, where the symbol is designed to be a C2 function. Figure 2 displays the symbol
function in terms of the angle 0. From this one-dimensional array, the DO algorithm may
be employed to compute the action, and hence the two-dimensional symbol function Q. The
result, Figure 3, shows the symbol when the number of terms in Fourier series expansion of
the symbol K 4. It is easy to see that the symbol in Figure 3 illustrates the right direction
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FIG. 2. The same symbol as afunction ofO: The angle with the horizontal axis.

--4 K’- 16

=8

K=28

FIG. 3. Symbol recovery: k 4. FIG. 4. Symbol recovery: k 28.

but wrong amplitude within the aperture. As the number of terms K increases, the recovery of
the symbol becomes better and better. Figure 4 shows that the symbol is perfectly recovered
after several steps. Again, we want to emphasize that the number K only depends on the
smoothness of the symbol, and particularly is independent of the grid size N.

Another numerical experiment of ours concerns the rotation ofapertures for convolutional
operators. The function plotted in Figure 5 is a slightly smoothed characteristic function of a
circle. We apply a DO cutoff, whose symbol is given in Figure 6, to this function. Just as
the theory predicts, the high frequency information of the resulting function (Figure 7) is well
preserved within the aperture. We then rotate the symbol (Figures 8 and 10), and again the
high frequency information is preserved in Figures 9 and 11, respectively. These examples are
only illustrative, as the discrete Fourier transform allows a very simple and fast computation
of convolution operators.



422 COMPUTATION OF PSEUDO-DIFFERENTIAL OPERATORS

120

100

FIG. 5. Function u.
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FIG. 6. Symbol qo. FIG. 7. The action qou.
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FIG. 8. Symbol rotation 1. FIG. 9. The actionfor rotation 1.

Our next example is meant to illustrate the success ofour algorithm with nonconvolutional
qDOs. Figure 12 shows the symbol of a two-dimensional qDO, which is spatially varying
(in the z-direction). The symbol can be generated from q(z, O) qo(O + 30 sin(zrZ/Zmax)),
where q0 is given in Figure 6, 30 is selected to be zr/2, and z 6 [0, Zmax]. Thus, as z increases,
the symbol rotates smoothly; in particular the symbol will be equal to q0 when z reaches its
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12(t

FIG. 10. Symbol rotation 2. FIG. 11. The actionfor rotation 2.

FIG. 12. A spatially varying symbol.

20 ...-
120

FIG. 13. The actionfor the spatially varying symbol.

maximum. Once again, the function u is the same as before in Figure 5. The result, as shown
in Figure 13, agrees with the theory. Observe that the aperture is vertical for z near 0o The
symbol rotates as z increases, so we start to see some high frequency horizontal components.
When z is getting close to its maximum, the symbol rotates back, and the aperture becomes
vertical again.
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Our final example demonstrates an important application of the qDO algorithm to the
seismic data processing in reflection seismology. The basic objective of all seismic process-
ing is to convert the information recorded in a field into a form that most greatly facilitates
geological interpretation of such a field. Evidently, real reflection data, which carry most of
the information of the mechanical properties of the earth, are what geophysicists are most
interested in obtaining through this process. Thus, an essential object of the processing is to
eliminate or suppress all signals not associated with reflections. Figure 14 displays a seismo-
gram, i.e., the recorded seismic data at receivers on the surface of the earth after an energy
source is fired. The dark region that can be seen clearly contains very strong signals. These
signals represent the early arrivals (direct and head waves). In the region below, there are other
signals (reflections) which are not nearly as strong as the early arrivals. Unfortunately, the
direct and head waves do not penetrate the earth; hence they contain no information about the
subsurface about which we are interested. What contains useful information is the reflection
energy in the lower region.. This can be observed more clearly if one increases the amplitude
of the seismogram as in Figure 15. The question arises: can one remove the early arrivals and
yet keep the useful information of reflections? Applying the DO computation algorithm,
we design a microlocal cutoff (qDO) whose action on the seismogram is shown in Figure
16. The result appears to be very encouraging. The amplitude of the early arrivals is reduced
dramatically, and meanwhile information of reflections is well preserved. We apply the same
DO filter to the data set once more to obtain an even better result shown in Figure 17. Now,
the early arrivals are essentially gone, while again most of the reflections are preserved. We
believe the noise left in the region where the early arrivals resided is caused by numerical
scales; hence they can be eliminated. This processing technique is actually used in reflection
seismology, where it is called "f-k dip filtering," e.g., Yilmaz [7], pp. 69-78. Our DO
algorithm yields an accurate and efficient means of "spatially variable dip filtering," for which
we envision numerous uses. However, the enormous amount of computations of qDOs by
the direct method makes any practical application impossible. Note that in the above exam-
ples, the grid size is taken to be 256 in each direction, which should be much bigger in real
applications. However, the number K may be chosen much smaller than N due to the fact
that K is independent of N.

6. Concluding remarks. A simple algorithm for the computation of a class of DOs
is introduced in this work. We exhibit some of the features of the algorithm. The complex-
ity analysis indicates that the algorithm is much more efficient than the direct computation.
Because of the simple structure, various massive parallel computers may be used to imple-
ment this algorithm so long as a fast FFT routine and fast array operations are available. In
fact, some of our numerical experiments reported in this paper were obtained by using the
Connection Machine.

We anticipate many applications of this algorithm. For example, qDOs are expected
to play an important role in regularizing a class of ill-posed problems in multidimensional
wave propagation that arise naturally in seismic inversion, oil and gas exploration, and many
other related geophysical problems. Our experiment indicates the usefulness of microlocal
(or DO) cutoff in seismic data processing, i.e., sorting of waves according to direction in
seismic data.

Mathematically, this algorithm should provide a way to compute the so-called microlocal
norms of microlocal Sobolev spaces, which in turn would help us test the sharpness of various
results on propagation of singularities for partial differential equations. This algorithm should
also have some impact on signal processing, where DOs form a class of spatially varying
filters.
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BOUNDARY LAYER RESOLVING PSEUDOSPECTRAL METHODS
FOR SINGULAR PERTURBATION PROBLEMS*

TAO TANG AND MANFRED R. TRUMMER

Abstract. Pseudospectral methods are investigated for singularly perturbed boundary value problems forordinary
differential equations (ODEs) which possess boundary layers. It is well known that if the boundary layer is very small
then a very large number of spectral collocation points is required to obtain accurate solutions. We introduce here
a new effective procedure based on coordinate stretching and the Chebyshev pseudospectral method to resolve the
boundary layers. Stable and accurate results are obtained for very thin boundary layers with a fairly small number of
spectral collocation points.

Key words, spectral methods, singular perturbation, boundary layer

AMS subject classification. 65N35

1. Introduction. We consider the pseudospectral (PS) method for the singular perturba-
tion boundary value problem (BVP) given by

(1) eu"(x) + p(x)u’(x) + q(x)u(x) f(x), x (-1, 1), u(-1) or, u(1) =/3,

where e > 0 denotes a fixed (small) constant. In many applications, (1) possesses boundary
layers, i.e., regions of rapid change in the solution near the endpoints, with widths o(1) as
e --+ 0. It has been found that PS methods are attractive in solving this problem (see, e.g., [4]).
By clustering the gridpoints toward the boundaries, for example, as in the Chebyshev method
(Xj COS

yrj j 0, 1 N) PS methods are more efficient than finite difference methodsN’
in resolving the boundary layers. However, in performance they still lag behind collocation
methods with adaptive mesh selection (e.g., COLSYS 1]).

Although PS methods are remarkably accurate in exact arithmetic, there are a number
of difficulties associated with its use. Especially with very small parameter e in (1), large N
is required to obtain accurate.solutions (see, e.g., 11]). In addition, ill conditioning of the
corresponding differentiation matrices with increasing N frequently causes degradation of the
observed precision. Furthermore, as clarified in recent studies by Trefethen and Trefethen and
Trummer [14, 15] the time step restrictions due to this ill conditioning can be more severe
than those predicted by the standard stability theory, if such methods were to be applied to a

time-dependent problem. Therefore, there has been considerable interest in receat years in
developing well-conditioned spectral methods (see, e.g., [5-7]).

If << 1 (e.g,, < 10-6) and the problem possesses a boundary layer ofwidth O(), high
accuracy cannot be expected no matter how stable the spectral method is (see, e.g., [5, 11]).
In the Chebyshev PS method, the spacing between the collocation points near the boundary is
O(N-2). For good resolution of the numerical solution at least one of the collocation points
ought to lie in the boundary layer, which implies that N O(5-!/2). If e 10-8 then about
104 collocation points should be used, which is not practical in most calculations.

The Chebyshev spectral method and the finite difference method with coordinate stretch-
ing [8, 12] are two potentially useful methods for resolving the boundary layers. However,
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neither method works well if e << 1, since in this case N has to be very large. To avoid
this difficulty we combine the two methods (with a new coordinate stretching technique) to
solve (1). The idea is simple: first, the problem is replaced by an equivalent one using a
transformation of the computational domain; second, the transformed problem is solved with
the standard Chebyshev PS method. After the transformation more collocation points lie in
the boundary layer than before, and there are collocation points in the layer even for fairly
small values of N.

2. Transformations. As mentioned in 1, at least one ofthe collocation points should lie
in a small neighborhood of x +/- 1 in order to resolve the boundary layers. Therefore, we in-
troduce a sequence ofvariable transformations so that there are some collocation points within
distance e from the boundaries +/- 1 even for e << 1 and N O (10). These transformations
are iterated SINE functions x gm (Y), m 0, 1 where

(2) go(Y) Y, g(y) sin g_(y) m > 1.

The theorem below characterizes these transformations based on the relative spacing of the
transformed Chebyshev-Gauss-Lobatto nodes.

THEOREM 2.1. Thefollowing two statements holdfor any integer m > 0. (a) The map gm
is one-to-one and gm ([- 1, 1]) [- 1, 1]. (b) Ify cos(@), j 0 N, then

8 (7/’2)
2m+l

gm(YO) gm(Yl) gm(YN-1) gm(YN) - (1 -+- O(N-2)).

Proof For (a) We need to show that g’m(Y) 0 for y 6 (-1, 1), [gm(Y)[ _< 1 and
gm (+/- 1) +/- 1, which can be proved by induction (see also (6)). To establish (b), we note that

rr2 (1 + O(N-2)). Assuming thatgo(Yo) g0(Yl)

8 (2)
2+1

g(Yo) g(Y) - - (1 + O(U-2))

and noting that g(yo) gk+ (Y0) 1, we obtain

g:+(Yo) g:+l(Y) 1 sin -g(y)

8 2 2+

=l-cos ; /,/ (1/
Since gm(Yn) --gm(YO) and gm(Yn-) --gm(Y), the proof of (b) is hereby com-
plete.

From Theorem 2.1 it can be expected that the transformations (2) together with the
Chebyshev PS method can deal with extremely small boundary layers with a fairly small
number of collocation points. For m 1, 2, and 3 (which correspond to one, two, and three
SINE transformations), the distance between each boundary point and its nearest interior point
is O(N-4), O(N-8), and O(N-6), respectively. Therefore, even for very small such as

10-12, at least one collocation point lies in the boundary layer even for moderate values
of N, if two or three SINE transformations are used.
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3. The transformed equations. We transform the singularly perturbed linear BVP (1)
via the variable transformation x -, y(x) (or x x(y)) into the new BVP

(3) ev"(y) + P(y)v’(y) + Q(y)v(y) F(y),

where v is the transplant of u, v (y) u (x (y)). The transformed coefficients are

p(x) y"(x)
(4) P(Y) := y’(x) + ey’(x)2’

q(x) f(x)
(5) Q(y) :-- F(y) "-

y’(x)2’ y’(x)2’

where again x x(y). It is clear from (3)-(5) that for any variable transformation x - y(x)
the two quantities 1/y’ (x) and y"(x)/[y’ (x)]2 are of interest and should be easy to calculate.

We now consider the transformation x x (y) gm (Y) of 2. In this case, the compu-
tation of 1/y’ (x) is straightforward. Differentiating the recursion (2) we obtain

(6) go(Y)- 1, gm(Y) --cos -gm-l(Y) gm-l(Y)’ m > 1.

Since y’(x) 1/g’m(y), we have

m-11

=gl-i: (rr ()))(7)
y’(x) cos gk(y m >_ 1

Now we define the functions hm(x), mapping [-1, 1] onto itself, recursively via

2
(8) ho(x) := X, hm(x) :-- --arcsin(hm_l(X)), m > 1.

LEMMA 3.1. hm gn for m 0, 1

Proof The case m 0 is trivial. For m > 1, we let z hm(gm(y)). It can be shown by
induction that for k 0 m,

(9)

For k m we therefore obtain

gk(z) hm-k(gm(Y)).

gm(Z) ho(gm(Y)) gm(Y),

and, since gm is injective, it follows y z; i.e., y hm(gm(y)). [-]

We now proceed to find a recursion for the quantity h" (x)/[h’ (x)]2. From (8) we obtain

(10) sin hm(x) hm_(x), m > 1.

Differentiating (1O) twice with respect to x yields

hm_l(X),(11)
2
cs

2
re(X) hm(x)--

sin(- m(X))(hm(x)) -}-()cos((12) -hm h_l (x)

Finally, using (11) and (12) we obtain the recursion

h(x’ :rt" (rg )rg (r ) h:_l(X,
(13) (hm(x))2=, -tan -h(x) +--cos -hm(X) (h’m-(x))2.

Note that h’o(X) =_ 1 and hg(x) - O. Since y(x) hm(x), the quantity y"(x)/[y’(x)]2 can be
computed easily using (13).
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TABLE
Maximum errorsfor Example ("-" indicates the error is greater than 10).

N 32 N 64 N 128 N 256 N 512

m----0 4.39(00) 3.02(-01) 1.60(-04) 6.84(-14) 2.36(-13)
e 10-3 m-- 1.50(-01) 4.27(-04) 2.22(-11) 9.30(-14) 2.13(-13)

m 2 2.20(-02) 3.91(-04) 1.74(-09) 5.57(-12) 9.02(-11)

m 8.37(00) 2.60(00) 1.14(-01) 2.32(-05)
e 10-6 m 2 4.77(00) 2.11(-01) 7.50(-03) 6.82(-07) 1.10(-10)

m 3 1.01(00) 1.73(-01) 2.50(-03) 2.59(-07) 1.08(-10)

e 10-9 m 2 6.56(--01) 3.20(--01) 3.03(--01) 9.00(--02) 6.25(--5)
m 3 2.66(00) 9.11(--01) 2.33(--02) 3.06(--04) 1.08(--07)

4. Examples. We denote by QN the space of polynomials of degree < N. We collocate
(3) at the Chebyshev-Gauss-Lobatto nodes yj cos j 1 N 1, leading to theN’
PS method for (3) as follows: find VN QN such that

(14) ev(yj) + P(yj)VN(yj) + Q(yj)vN(Yj)- F(yj), j 1 N- 1;

(15) VN(-- 1)

To solve (14) and (15), we have to solve a matrix equation of the form AV b, where
A 6 RN-1)N-I and V, b 6 RN-l, with V (V1 VN_I)r. The Vj VN(Yj) are
approximations of v(yj). The matrix equation is solved in MATLAB, which uses the standard
LINPACK routines.

Example 1. Our first example has variable coefficients and the solution develops two
boundary layers of width O(e) near x +/-1. The equation is

(16) .u"(x) xu’(x) u(x) f(x)
x + l

1 e-Z-- -2 +1 e

where f is chosen such that the function

(17)
(x+l) x-1

u(x) e- +2e-7-

is an exact solution of the differential equation. The boundary conditions are u(-1) 1
and u(+ 1) 2. Note that function (17) will satisfy these boundary conditions to machine
precision (machine epsilon equals 2..22,10-16 in double precision) for all values of _< 0.05.

This is a difficult problem since high resolution is needed to avoid oscillations in the
middle of the interval. The Chebyshev PS method without transformation fails to resolve
the solution satisfactorily for 10-4, even with N 256 (the maximum error, defined
by maxj v(yj) Vjl}, is approximately equal to 0.13 in this case, compared with errors of
approximately 2 10-12 for rn 1 and rn 2). Table 1 contains the results ofour experiments
for e 10-3, 5 10-6, and e 10-9.

Figure 1 shows the plot of the solution for e 10-9, N 256, and m 3, and Figure 2
shows the corresponding error. It may not come as a surprise to find the major portion of the
error located in the middle of the interval since we have a coarser grid spacing there. However,
it is interesting to note that in this case the strategy of moving points out of the region of large
errors actually helps in the solution process. This indicates that a strategy for adaptive gridding
will have to be rather sophisticated, as it would appear natural to move more points into the
region exhibiting large errors.
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FIG. 1. Numerical solution ofExample for e
10-9, N 256, and m 3.

FIG. 2. Error ofExample for e 10-9, N
256, and m 3.

Example 2. Our second example is a nonlinear one; namely the stationary Burgers
equation

(18) u"(x) + u(x)u’(x) O, x [-1, 1],

with boundary conditions chosen such that the function

x+l)(19) u(x) tanh
2

is an exact solution. This function is 0 at the left boundary, and extremely close to 1 for most
of the interval, with a boundary layer of width O() at x= -1. The transformed equation
with new variable y y (x) is simply

y"(x) l(20) ev"(y)+ y;(x)V(y)+ey/ix)2jv’(y)-O, y e [-1, 1].

The solution is computed by Newton’s method with v as an initial guess; for small
values of the parameter a continuation procedure for to obtain better initial guesses is
advisable, and at times essential. Newton’s method converges quickly and often in monotone
(convergence problems during the first few iterations appear to indicate insufficient resolution
of the discretization). Table 2 lists the results for 10-3, 10-6, and 10-9.

A similar procedure has been applied to obtain numerical solutions for

1 1
(21) u"(x) + -u(x)u’(x) -u(x) O, x [-1, 1],

This problem has the same type of nonlinearitywith boundary conditions u (- 1) u (1) .
as the stationary Burgers equation; it has been studied in detail in [9], and has been solved
with COLSYS [2, pp. 382-383]. We find that for 10-4 and N 64 the method without
transformation is developing oscillations near the boundary layer, whereas the approximation
obtained with one SINE transformation (m 1) easily resolves the boundary layer. Our
results appear to be more accurate than the ones obtained with COLSYS for a comparable
number of collocation points. In fact, with m 2 we have no problem in resolving the
boundary layer with N 128 for as small as 10-8 (see [13] for more details).
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TABLE 2
Maximum errorsfor Example 2 ("*" indicates an error > or convergence difficulties in the Newton process).

N 32 N 64 N 128 N 256

m 0 , 1.8144(-02) 3.6293(-04) 3.3776(-07)
10-3 m 3.5818(-02) 4.5561(-04) 1.3573(-07) 3.4528(-14)

m 2 1.6063(-02) 3.6709(-04) 6.3134(-08) 4.9238(-14)

m , , 4.3554(-02) 1.3762(-03)
10-6 m 2 * 2.5004(-02) 2.4636(-03) 9.7656(-07)

m 3 , 3.7734(-02) 7.1848(-04) 2.3793(-07)

m=l . . * .
10-9 m 2 * . * 6.1103(-03)

m 3 * . 6.7784(-03) 1.0602(-04)

5. Conditioning. Some recent work on spectral methods for BVPs is concerned with
improving the condition numbers of the matrices for which linear systems have to be solved
(e.g., [3, 5, 7]). Since the second-order Chebyshev differentiation matrix has a condition
number O(N4), the corresponding linear systems quickly become very ill conditioned, even
for moderate values of N. Interestingly enough, these large condition numbers do not appear
to affect the accuracy in the solutions nearly as badly as one would expect. This was first
observed by Berrut [3], who transformed the BVP to the circle and solved it with the much
better conditioned Fourier spectral method, without seeing any improvement in the accuracy
of solutions. However, the large condition numbers would be important in time stepping (so
in this sense the PDE case is more difficult than the ODE case), or, if one were to solve the
linear systems by iterative methods.

We would like to give a heuristic argument why our solutions are surprisingly accu-
rate (we get close to machine precision, even in cases where the condition number of
the linear system is approximately 108). Denoting the n-by-n matrix (n N 1)
of our linear system by A, we compute the singular value decomposition A WEVr.
E is a diagonal matrix with the singular values 0.1 _> 0"2 >_ >_ 0"n --> 0 on its di-
agonal. The singular vectors vl, v2 are the columns of V. Both V and. W are or-
thogonal n-by-n matrices. It is easy to see that the maximum magnification of roundoff
errors in the right-hand side occurs when the exact solution u of the system is a multi-
ple of the first singular vector Vl and the perturbation 3u is entirely in the direction of the
last singular vector Vn. Figure 3 shows plots of four of the singular vectors for the ma-
trix A of Example 1, with 10-2. Singular vectors belonging to large singular values
are-highly oscillatory, whereas singular vectors associated with small singular values are
smooth (here, vj has n + 1 j local extrema). This is not surprising, as A is a discretization
of a differential operator, and therefore the statement above holds not only for Example 1.
The exact solution has a substantial smooth component and roundoff errors cannot be ex-
pected to produce a completely smooth perturbation to the exact solutionmon the contrary,
a nonsmooth perturbation is much more likely to emerge. Thus, the actual amplification
of the roundoff error is much smaller than the worst-case scenario of an amplification by
cond(A) O’l/0"n.

The condition numbers of the matrices generated by our repeated SINE transformations
exhibit the same growth rates with N as the matrices for the original problem. The conditioning
problem is largely unaffected by the transformation.

1The vectors are plotted against a stretched version of the interval (0, 1) to make the oscillations near the
boundaries more visible.
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v_l v_12

v_l O0 v_125

FtG. 3. Singular vectors vl, vx2, voo, and v25 ofA ofExample for 10-2, plotted against a stretched
interval (0, 1).

Denoting again the Chebyshev-Gauss-Lobatto nodes by yj cos j 0, N, theN
first-order Chebyshev differentiation matrix D is given by

c/c (--1)j+k
(22) Dcj --, k j,

cj y- yj

Yk k 0, N,(23) Dtk=
2(1_ yk2

2N2 q- 1
(24) Doo -Dst -------,

6

where ck 1, except for co CN 2. It has been observed [4] that for large N the direct
implementation of (22)-(24) suffers from cancellation, causing errors in the elements of the
matrix D. Thus, it is advisable to replace (22) and (23) using trigonometric identities by the
formulas

Ck (--1)j+k
(25) Dkj

cj sin ((k + j)rc/(2N)) sin ((k j)rc/(2N))
k j,

Yk(26) Dkk k O, N.
sin22 /N)

Finally, to avoid computing the SINE of arguments larger than zr/2 in absolute value, one can
take advantage of the symmetry property

(27) DN-LV-j Dgj.

Thus the most accurate method of computing D is using formulas (25)- (26) to find the upper
left triangle of D (i.e., compute Dj with k + j < N), and then use relation (27) for the other
elements. This also appears to be more efficient (at least in our MATLAB implementation).
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It should be noted that the effect of a more accurate matrix D cannot always be felt. To be
noticeable, N has to be quite large, and the approximate solution must be extremely accurate.
For Example 1 (see 4) with e 10-2, N 128, and rn 2, the maximum error is
1.29 10-14, if the more accurate D is used, whereas the error with D computed by formulas
(22) (24) is 1.22.10-13.

6. Conclusions. Very thin boundary layers still must have one or more collocation points
within the boundary layer. This results in extremely fine discretizations if the relative spacing
of the gridpoints remains unchanged. Although the Chebyshev PS methods are more efficient
than finite difference methods in resolving boundary layers, for e << 1 they still may need
extremely large N to produce reasonable results, as discussed in 1. A much better approach
for resolving the boundary layer is to use a mapping. However, a single mapping such as that
of [8] is often not sufficient when e << 1.

To obtain good resolution for boundary layer problems, at least one of the grid points
should lie in the boundary layer no matter how small the boundary layer is. The iterated SINE
transformations introduced in 2 provide a very useful coordinate stretching technique to
achieve this goal. Theoretically, as indicated in Theorem 2.1, these particular transformations
together with the Chebyshev PS method can deal effectively with very small boundary layers
using only a fairly small number ofcollocation points. Even for very small e such as e 10-9,
two or three SINE transformations with N 100 are found to be sufficient to resolve the
boundary layer, while most of the previously reported finite difference or spectral calculations
cannot handle the case when e is as small as 10-9.

Section 3 of this paper gives a practical procedure for implementing the transformations.
The transformation technique is also successful for nonlinear BVPs whose solutions have
boundary layers. To date the most reliable methods for solving two-point BVPs are based
on the collocation method with adaptive mesh selection (e.g., COLSYS [1, 2]). However,
for boundary layer problems the present method is a serious competitor, in particular when
spectral accuracy is a desirable feature.

The ill conditioning of the linear systems to be solved does not appear to be a serious
problem as our experiments and the heuristic argument in 5 indicate. However, care must be
taken if one uses these matrices in explicit time stepping in the time-dependent case, or, in the
ODE case, if iterative methods are employed to solve the linear system.

Many practical problems possess boundary layers. For example, viscous flows have
boundary layers next to solid surfaces where the tangential velocity is reduced to zero. The
use ofthe finite difference method or the Chebyshev PS method is expensive for high Reynolds
number flows. The numerical technique introduced in this work can be applied to solve more
practical problems (see, e.g., 10]).
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TOWARDS AUTOMATIC MULTIGRID ALGORITHMS FOR SPD,
NONSYMMETRIC AND INDEFINITE PROBLEMS*
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Abstract. A new multigrid algorithm is constructed for the solution of linear systems of equations which arise
from the discretization of elliptic PDEs. It is defined in terms of the difference scheme on the fine grid only, and no
rediscretization of the PDE is required. Numerical experiments show that this algorithm gives high convergence rates
for several classes ofproblems: symmetric, nonsymmetdc and problems with discontinuous coefficients, nonuniform
grids, and l;tonrectangular domains. When supplemented with an acceleration method, good convergence is achieved
also for pure convection problems and indefinite Helmholtz equations.

Key words, convection-diffusion equation, discontinuous coefficients, elliptic PDEs, indefinite Helmholtz equa-
tion, automatic multigrid method
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1. Introduction. The multigrid method is a powerful tool for the solution of linear sys-
tems which arise from the discretization of elliptic PDEs [4], [5]. In a multigrid iteration the
equation is first relaxed on a fine grid in order to smooth the error; then the residual equations
are transferred to a coarser grid, to be solved subsequently and to supply correction terms.
Recursion is used to solve the coarser grid problem in a similar way. In order to implement this
procedure the PDE has to be discretized on all grids and restriction and prolongation operators
must be defined in order to transfer information between fine and coarse grids. The basic
multigrid method works well for the Poisson equation in the square, but difficulties arise with
nonsymmetric and indefinite problems and problems with variable coefficients, complicated
domains, or nonuniform grids. In these cases, an effective discretization of the PDE on coarse
grids becomes more complicated than that provided by a naive approach. Some suggestions
on handling discontinuous coefficients are given in 1], while the nonsymmetric case is ana-
lyzed in [9] and 10]. A projection method for the solution of slightly indefinite problems is
developed in [7]. Another projection method for such problems is presented and analyzed in
[3]. These approaches, however, involve specialized and problem-dependent treatment, and
the need for a uniform approach is not yet fulfilled.

Present multigrid procedures are not able to serve as "blackbox" solvers. Special attention
has to be given to the neighborhood of the boundary and to the presence of discontinuities.
In [6], [20], and [21] the algebraic multigfid (AMG) method is developed. This method is
algebraic in the sense that it depends on the discrete system ofequations and not on the original
PDE or the difference scheme for it. It automatically chooses the coarse level variables and
constructs the coarse level equations and the restriction and prolongation operators; hence
it applies to general linear systems of equations. However, the set-up time required is large
(equivalent to about 10 V-cycles).

Multigrid versions whose definition depends on the difference scheme on the original
grid only also exist; these methods, which are called automatic methods in the sequel, reduce
the original grid to further coarse grids and automatically construct the coarse-grid coeffi-
cient matrix and the restriction and prolongation operators. The black-box multigrid method
of 11] applies to problems with discontinuous coefficients and nonrectangular domains and
also to nonsymmetfic problems 12]. Another robust automatic method is presented in [34].

*Received by the editors November 23, 1993; accepted for publication (in revised form) October 25, 1994.
Computer Science Department, Technion, Haifa 32000, Israel (yairs@cs.technion.ac.il, israeli@cs.technion.
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None of these methods, however, handles highly indefinite equations; they use coarse-grid
operators which are derived from a Galerkin approach, resulting in highly indefinite coarse-
grid equations.

All the automatic multilevel methods mentioned above suffer from the disadvantage that
for d-dimensional PDE discretizations the coarse-grid operators involve stencils with 3d co-

efficients even when the original difference equation has a (2d + 1)-coefficient stencil. This
significantly enlarges the amount of arithmetic operations and storage required to generate
and store coarse-grid operators (in comparison to algorithms which use (2d + 1)-coefficient
stencils at all levels). Moreover, it enlarges the cost of a multigrid V-cycle (implemented,
e.g., with a Gauss-Seidel smoother) by roughly 25% and 40% for 2-d and 3-d problems,
respectively. When W-cycles or more expensive smoothers are used the overhead may be
even larger; in particular, the red-black Gauss-Seidel relaxation is not applicable any more
and 2d-color relaxation (whose parallel and vector implementations are more complicated)
must be used instead. Furthermore, since the coarse coefficien[ matrices lack property A,
most of the analysis of [33] for the successive over-relaxation (SOR) method does not apply
(the SOR smoother in multigrid methods is considered in [32]). These difficulties are par-
tially relaxed in the algorithm of [31], where (2d+l 1)-coefficient coarse-grid stencils are
used; this version, however, is not satisfactory for nonsymmetric problems and problems with
discontinuous coefficients.

The aim of this work is to present an automatic multigrid method which does not suffer
from the above difficulties; that is, it uses (2d + 1)-coefficient stencils only and can be used to
solve indefinite problems and several other important classes of problems, e.g., nonsymmetric
problems and problems with discontinuous coefficients and nonrectangular domains. More-
over, coarse-grid, restriction, and prolongation operators are obtained from the linear system
of equations by a simple and inexpensive recursive process; actually, the cost of this recursion
is approximately one work unit, that is, it is equivalent to one fine-grid Gauss-Seidel sweep
(compared to five work units for the method of [31]). This fact is especially important for
implicit time marching in evolution problems with differential operator or boundary varying in
time, where coarse-grid operators are to be reconstructed at every time level. In addition, the
fact that operators on different levels are of the same stencil allows easy programming, with
data structures and smoothing procedures for coarse-grid equations similar to those used for
the finest-grid equation. Like the methods of 11] and [34], the algorithm is robust with respect
to the number of fine-grid points, boundary condition type, and shape of the domain. Unlike
these methods, however, it is not applicable to schemes which use 3d-coefficient stencils on
the finest grid. We call this algorithm AutoMUG (automatic multigrid).

Our numerical experiments show that, for some difficult problems, the basic AutoMUG
iteration may be efficiently accelerated by a Lanczos-type method. It is likely that the existing
automatic multigrid methods can also profit from such techniques; indeed, it is shown in [22]
that even for highly indefinite, nearly singular Helmholtz equations the two-level implemen-
tation of both modified black-box multigrid and AutoMUG can be efficiently accelerated.

AutoMUG is described in 2. In3 numerical examples are presented. In4 the algorithm
and the numerical results are discussed.

2. The AutoMUG (automatic multigrid) method. In this section we define the Auto-
MUG method for the solution of finite difference equations which have (2d + 1)-coefficient
stencils (for d 1, 2) and examine the properties of its coarse-grid coefficient matrices.

2.1. Abstract definition of AutoMUG. We begin with an abstract definition of Auto-
MUG for the solution of the linear system of equations
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The notation of this definition will be useful in the sequel. In the following, "<---" means
replacement, $1 and $2 are some smoothing procedures, and e, Vl, v2, and o are nonnegative
integers denoting, respectively, the cycle index, the number of presmoothings, the number of
postsmoothings, and the minimal order of A for which AutoMUG is called recursively. The
operators R, P, and Q will be defined later.

AutoMUG(xin, A, b, Xout)
iforder(A) < o

Xout <--- A- b

otherwise:

(1)
Xin <--- S1xin (repeat 1) times)
e+--0

AutoMUG(e, Q, R(Axin b), eout) I repeat e timese <-- eout /
Xout <-- Xin Pe

Xout <--- S2xout (repeat v2 times).

For simplicity, we assume in this paper that the method is implemented with a V-cycle (e 1)
and a maximal number of levels (o 2). An iterative application of AutoMUG is given by

x0=0, k=0

while Axk b 112 >_ threshold, Axo b 2

(2) AutoMUG(xg, A, b, X+l)
k<---k+l
endwhile

Below we define the operators R, P, and Q of (1) for the case in which A is a tridiagonal
matrix. Although this is of little significance in itself, it is crucial in the development of the
algorithm for other more complicated cases that arise in practical applications and are treated
next in this paper.

2.2. The tridiagonal case. In this subsection we define the operators R, P, and Q used
in (1) for linear systems which arise, for example, from finite-difference discretization of the
ODE

(3) (au’)’ + cu’ + 3u f
where a, c, fl, u, and f are functions defined on f2 c R and suitable boundary conditions are
imposed on 02 (this illustrative example will be used in the sequel).

For any matrix B, B (bi,j)l<_i<_K, I<j<_L, define

rowsum(B) diag (bi.j)
j=l I<i<K

For a diagonal matrix B, B diag(bi)l<i<K, let

even(B) ----diag(b2i)l<_i<_LK/2j and odd(B) --diag(b2i-1)l<i<[K/2].

Let I denote an identity matrix of a suitable order. Let N be a positive integer, n [log2 NJ,
h 1/(N + 1) be the mesh size, and A be a tridiagonal matrix of order N resulting, for
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example, from a difference scheme approximating (3). For any positive integer K, let M(K)
be the permutation matrix which reorders the variables of a K-dimensional vector such that
odd-numbered variables appear in the first block and even-numbered variables appear in the
second block. Define

(4) A0=AandMi=M(N/2i), O < < n,

where, here and in the sequel, N/2 means an integer division, that is, [.N/2 I. In the following
we give some motivation for the definition ofthe operators R, P, and Q used in (1). Suppose A
has no vanishing diagonal element and let D diag(A). Then, for some bidiagonal matrices
B and C, we have

A=DM( I -B ) ( I -B ) R_I
-C I Mo M(MoDMff -C I Mo Qp-l,

where

( i (, 0 tR (MoDM) C I Mo, Q= 0 I CB

P=M 0 I

Suppose these operators are used in (1). Since Q is tridiagonal, one may repeat the above
procedure with A replaced by Q to generate suitable operators for the recursive call in (1).
With u u. 0 in (1) this yields a direct solver which is equivalent to the cyclic reduction
method [21.

Suppose odd-numbered variables are red-colored. If u 0, u 1, and the smoothing
procedure S of (1) corresponds to the red leg of a red-black Gauss-Seidel relaxation, then an
equivalent algorithm is obtained when the definition of R, Q, and P is modified to read

(;=even(D)Codd(D)-1, R=( I )Mo, Q=even(D)(I-CB), P=M ( B
I ).

Moreover, Q RAP still holds; hence this is an appropriate choice for the operators in (1).
This procedure is equivalent to that used in [26] for tridiagonal systems.

Note that Q is the Schur complement of A relative to the even-numbered variables. These
variables may be viewed as abstract coarse-grid points. Then Q is a coarse-grid operator, R
is a fine-to-coarse-grid restriction, and P is a coarse-to-fine-grid prolongation.

We come now to a precise definition of the operators R, P, and Q used in (1). For
0 < < n, define the matrices Di, Bi, Ci, eA,i+l, Ci, Ra,i+l, Ai+I, and Sa,i+l, in this order,
by

(5)

Di diag(Ai),

ai DiMiT( I -Bi )-Ci I Mi,

PA,i_t_l--MiT(nii),
i even(Di)Ciodd(Di)-1,

RA,i+I--( i I )Mi,

Ai+l I CiBi,

Sa,i+l rowsum(2I Ai+I),

Ai+l even(Di)Ai+l.
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Note that all the Ai are tridiagonal, hence Bi and C are well defined (vanishing of a diagonal
element of Di, for some i, is discussed at the end of 2.3). The operator Sa,i+ is not used in the
present case, but will be helpful in 2.4, where it serves as an approximation to Ra,i+ PA,i+I.
Indeed, when Do is a multiple of the identity,

SA,1 RA,1 PA,1 rowsum(I + CoBo) (I + CoBo)

(6)
( -Co rowsum(CoB0) ) B/0 -X-Xa xx + C-x

which is negligible when operating on functions u for which (au’)’ and cu’ are not too large.
This condition is fulfilled for the solution of the ODE (3), according to the assumptions made
in [1].

Remark. The above definition of Sa,i+l may be replaced by Sa,i+l rowsum(Hi), with

H Ra,i+lPA,i+l, H ea,i+ or H ( Ci I ).
This yields no essential change in either the theory or the numerical results presented in this
paper. The third version is slightly better for indefinite problems, and is used in [23], [24],
and [25].

The AutoMUG procedure, namely

AutoMUG(xin, A, b, Xout),

defined in (1), is called n + 1 times per iteration. In the (n + 1)st time the AutoMUG procedure
is a direct solver. For 1 < < n, the ith call to the AutoMUG procedure is accomplished with
the operators

Q Ai, P PA,i, R Ra,i.

2.3. Properties ofthe coarse-grid operators. In this subsectionweshow that the coarse-
grid operators Ai defined in (5) preserve some desirable properties of A. To this end, we prove
the following lemmas.

For any matrix T let T (i) and T[j] denote its ith row and jth column, respectively,
denote the matrix defined by ITIi,y IT/,yl, and T > 0 (T is nonnegative) hold if all the
elements of T are positive or zero. For any two matrices T and S of the same size let T > S
hold if T S > 0. Let (., .) denote the 12 inner product and e be the vector whose components
are all equal to 1.

LEMMA 2.1. Assume T and S are two matricesfor which the number ofrows ofS is equal
to the number ofcolumns of T. Then

rowsum(ISI) <_ I = rowsum(ITSI) _< rowsum(ITI).

Furthermore,/frowsum(I SI) < I andfor some io rowsum(I SI)io,io < 1 and Ttil :/: 0 then

3 jo s.t. rowsum(ITSI)jo,jo < rowsum(ITI)j0,0.

Proof. Suppose T > 0 and S > 0. Then

rowsum(T S)i,i (T(i), S < (T(i),e) rowsum(T)i,i.

For the second part of the lemma, by assumption there exists a j0 such that Tj0,i > 0.
Consequently,

rowsum(T S)jo,jo (T<j, Stjl) < (Tj, e) rowsum(T)jo,jo.
J
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For the general case, the lemma follows from

rowsum(ITSI) _< rowsum(ITIISI).

This completes the proof of the lemma.
LEMMA 2.2. Let I, be the identity matrix oforder m. For some positive integers k and

let W be a matrix oftheform

where either T and S are bidiagonal matrices satisfying Ti,j 0 Sj,i 0 and Ik 11 <_ 1
or T and S are nonnegative matrices. Then ifW is irreducible, so is It T S.

Proof. For any square matrix U of order m let G[U] be the directed graph defined by

G[U] =- {1,2 m}, {(i, j) Uj,i 0}

where the first set denotes the nodes and the second one the edges of the graph. Irreducibility
of U is equivalent to strong connectivity of G[U], which is equivalent to strong connectivity
of G[I U] (see [30]). From the assumptions of the lemma, there follows, at least for # j,

((Ik+l- W)2)j,i 0 . {::1 m, (Ik+l- W)j,m O, (Ik+l- W)m,i 0}.

Consequently,

1, 2 k + l}, {(i, j) j and m s.t. (I+l W),m 7 0, (Ik+l W)m, O}

C G[(IIc+l- W)21.

Let and i2 be some integers satisfying k + 1 < il, i2 < k + 1. Since G[Ik+l W] is strongly
connected, there exists a path in G[lk+l W] leading from il to i2. From the structure of

Ik+l W this path must include an even number of edges. Hence is connected to i2 also in
G[(Ik+l W)2]. The lemma follows from

((Ik+l- W)2= 0

This completes the proof of the lemma.

0)
LEMMA 2.3. Assume T is an M-matrix and diag(T) I. Then (2I T)T is an

M-matrix.

Proof. From the assumptions of the lemma, we have I T > 0, and, by Theorem
3.10 of [30], p(l T) < 1, where p denotes the spectral radius. Hence (I T)2 > 0 and
p((I- T)2) < 1. Since

(21- T)T I- (I- T)2

the lemma follows from Theorem 3.8 of [30]. This completes the proof of the lemma.
THEOREM 2.4. Assume A is tridiagonal and one of the following: (a) an M-matrix, (b)

a nonsingular weakly diagonally dominant matrix, or (c) an irreducibly diagonally dominant
matrix. Then so are all the matrices Ai+l defined in (4) and (5); moreover, the matrices

Di defined in (5) are symmetric positive definite (SPD) and, in case (a), so are the matrices

SA,i+l.
Proof. The proof is by induction on in (5). For case (a), the SPD property of Di follows

from Ai being an M-matrix, and the M-matrix property of Ai+x follows from Lemma 2.3 and
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(21- D-IAi)DIAi MiT Ci I -C I Mi

_M?( I-BiCi 0 )0 I Ci Bi Mi.

For case (b), the SPD property of Di follows from the nonsingularity and weak diagonal
dominance of Ai, the nonsingularity of Ai+l follows from

--C I

, o)(, o t(’ )-Ci I 0 I CiBi 0 I Mi,

and the weak diagonal dominance of Ai+l follows from Lemma 2.1. For case (c), the SPD
property ofDi follows from irreducible diagonal dominance of Ai, and the irreducible diagonal
dominance of Ai+l follows from Lemmas 2.1 and 2.2. The last part of the theorem follows
from Ai being an M-matrix. This completes the proof of the theorem.

When its assumption holds, Theorem 2.4 ensures that the matrices Bi and Ci of (5) are
well defined and that no division by zero occurs. Otherwise, a diagonal element of Di (for
some i) may vanish; this may be handled by a reasonable definition of the corresponding line
of Ci and colunm of Bi, and, similarly, of the off-diagonal elements in the corresponding line
of RA,i+l and colunm of PA,i+l (e.g., the templates [0, 1, 0] for restriction and [0, 1, 0] for
prolongation).

2.4. The two-dimensional case. In this subsection we define the operators R, P, and Q
used in (1) for linear systems which arise, for example, from finite difference discretization
of the PDE

(aUx)x + (buy)y + CUx + duy + flu f,

where a, b, c, d,/3, u, and f are functions defined on f2 c R2 and suitable boundary conditions
are imposed on 0.

Let U(K, L) be a permutation matrix such that for any vector v defined on a K L grid and
ordered lexicographically rowby row, U(K, L) v is the same vector v ordered lexicographically
column by column. Let

U:,l =-- U(N/2: N/2l), 0 < k, < n

where, here and in the sequel, N/2J means an integer division, that is, [N/2J J. Suppose A is
of the form

(7) A blockdiag(X(J))l<_j<_N + uT,o blockdiag(Y(J))i<_j<_NUo,o

where X(j) and Y(J) are tridiagonal matrices of order N. For example, if

(1-2 /5 2)X(j=Y(j=tridiag h--, h--+-, 1 <j <N

for some/ C, then A represents a central discretization of the Helmholtz equation

Uxx -{- Uyy "47 U f

in the unit square with Dirichlet boundary conditions.
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In the following we give some motivation to the definition of the operators R, P, and Q
used in (1). For simplicity, we treat semi-coarsening in the x-direction only; the y-direction
coarsening is implemented analogously.

By replacing A in (4) with X(j and applying (5) to it one may define

Rx blockdiag(Rxw,1)l<_j<_N, Px blockdiag(Px(J,l)l<_j<_N.

The natural definition Q RxAPx is undesirable because it spoils the tridiagonal structure
of the second term in the right-hand side of (7). In order to avoid this, only the first term in
the fight-hand side of (7) is multiplied by Rx and Px from the left and fight sides, respec-
tively; the second term is multiplied instead by rowsum(Rx Px). According to (6), the relative
error inserted into RxAPx by this approximation is negligible, at least for functions in the
neighborhood of the solution.

In order to perform a y-direction coarsening, the second term in the fight-hand side of
(7) is treated similarly (using restriction and prolongation operators Ry and Py), while not
spoiling the structure of the first tenn. (1) is then implemented with the resulting coarse-grid
operator Q and the restriction and prolongation operators R gyRx and P Px Py.

We come now to a precise definition of the operators R, P, and Q of (1) for the 2-d case.
Define

For 1 n, define the matrices Ri, el, and Ai, in this order, by

For 1 < j < N/2i-l, do (5) with A and replaced by X(2i-lj) and 1, respectively,

For 1 < j < N/2i-l, do (5) with A and replaced by Y(2’-1j) and 1, respectively,

Ri =-- UT blockdiag(Ry2, i)l<j<N/2iUi_l.i blockdiag(Rx2-, i)izjzN/2’-’i,i

Pi =- blockdiag(Px-,i <-J<_/2,- Uir_ ,i blockdiag(Py2,,i j <_N/2’ Ui,i

blockdiag(X2J))zj<_N/2

(8) +-- Ur blockdiag(Sy(2iJ,i))l<_j<_N/2Ui blockdiag(X2J))i<_j<_N/2i,i"

blockdiag(yi(E/J))l<_j<_N/2 --
<--- Ui,i blockdiag(Sx( i))l<_j<_N/2iuT blockdiag(/’i’(E/J))l<_j<N/2ii,i

Ai blockdiag(X2’J))l<_j<_N/2, q- UT blockdiag(Yi(2 J))I<_j<_N/2i" Uii,i" ,"

As in the tridiagonal case, the th call to the AutoMUG procedure in (1), 1 _< _< n, is
accomplished with the operators

Q <-- Ai, P <--- Pi, R <--- Ri.

The following theorem ensures that the coarse-grid operators Ai enjoy a desirable property.
THEOREM 2.5. Assume A is defined as in (7) with X(j) and Y(J) being tridiagonal

irreducibly diagonally dominant M-matrices of order N. Then all the matrices Ai defined
in (8) are irreducibly diagonally dominant M-matrices.
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Proof. Following the route of the proof of Theorem 2.4, by induction on in (8) all
the tridiagonal matrices Xi and Yi are irreducibly diagonally dominant M-matrices and the
diagonal matrices Si are SPD. Hence the Ai are weakly diagonally dominant, with a strict
diagonal dominance for at least one row. Irreducibility of Ai follows from

G[Ai] 1, 2 N/2i} x 1, 2 N/2i},

rv(2il)x{((k, 1), (m, 1)) kAi 3m,k 0} I..J {((1, k), (I, m)) (yi(2’l))m,k 0}.

Hence the Ai are irreducibly diagonally dominant matrices. Since the Ai have positive diagonal
elements and nonpositive off-diagonal elements, it follows from [30] that they are also M-
matrices. This completes the proof of the theorem.

The definition (7) ofthe coefficient matrix A assumes that the grid is logically rectangular.
Problems involving complicated domains may be treated by embedding the original grid into
a logically rectangular grid [28] and appending trivial equations for the redundant variables.
This approach was used in the numerical experiments in 3. Note that these dummy variables,
as well as their corresponding equations, do not have to be stored, since they do not influence
the values of the original variables.

3. Numerical experiments. Our aim in this section is to show the applicability of Auto-
MUG to several classes of problems, including indefinite Helmholtz equations. We compare
the performance of AutoMUG to that of a standard multigrid version which has the same
complexity, that is, uses (2d + 1)-coefficient coarse-grid stencils only (see 1). This version,
denoted by MG, is implemented as follows: coarse-grid operators are generated from the PDE
by the same scheme as that used on the finest grid. Full weighting and bilinear interpolation are
used for restriction and prolongation, respectively. For both AutoMUG and MG the maximal
number of levels (e.g., six levels for 63 x 63 grids) is used, which means setting o 2 in (1);
the only exceptions are examples 13 and 14, where four levels are used.

When implementing MG one must use 2n+l 1 grid points on the finest grid and 2q 1,
1 < q < n, for coarser grids in order to preserve uniformity. Here the even points, which are
taken as coarse-grid points, are always internal points of the original grid. For 2n-point grids,
on the other hand, the last fine-grid point appears as a last grid point in all grids. Hence, coarse
grids are biased towards the boundary. For AutoMUG, on the other hand, grids of both 2n

points or 2n+l 1 points may be used, and actually achieve the same convergence rates; this
is because in the 2 points case AutoMUG automatically chooses in the coarse-grid schemes
the most accurate extrapolation of boundary points. An odd number of points N 63 is used
here for an easier comparison between AutoMUG and MG.

On all grids the smoother was either the one provided by the ILU(1,1) decomposition of
18] and [29] (namely, ILU with no fill-in) or the red-black Gauss-Seidel (RB) relaxation.
ILU was considered as a smoother in multigrid in 16] and 17]. One presmoothing and one
postsmoothing is performed in each level of a V-cycle (e Vl v2 1 in (1)). The initial
guess is random in (0, 1). Double-precision arithmetic is used.

AutoMUG and MG are iterated according to (2) with 10-12 < threshold < 10-14, to
avoid the effect of round-off errors. It was checked that the l norm of the error is reduced
during this process by more than 10 orders of magnitude. Convergence factors are computed
from the last four iterations, namely

( Ilaxlast-bll2 ) 1/3

convergence factor.
IIAxast-3 bl12

where last is the index of the last iteration. When the basic iteration (2) by itself diverges
(denoted by ".") or unsatisfactorily converges, it is also implemented with an acceleration
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TABLE
Convergencefactorsfor MG andAutoMUG (in parentheses: averaged convergencefactors when the TFQMR

acceleration is used).

example
0.067

2a 0.474 (0.148)
2b 0.005
3 0.127
4 0.181
5a 0.235
5b 0.208
6 0.196
7 , (0.525)
8 0.573 (0.159)
9 (0.57)
10a 0.057
10b 0.26
11 ,
12 0.53 (0.246)
13 ,
14 ,

MG MG AutoMUG AutoMUG
ILU RB ILU RB

0.102
0.96 (0.667)
0.99 (0.83)
0.58 (0.330)

0.287
0.49 (0.164)
0.44 (0.159)
0.574 (0.269)

0.886 (0.46)

0.458 (0.427)

0.79 (0.414)
(0.60)
(0.714)

0.068
0.474 (0.148)

0.005
0.127
0.088
0.114
0.112
0.154
0.162
0.220
0.196
0.063
0.120

0.691 (0.243)
0.994 (0.183)

(0.70)
(0.543)

0.096
0.96 (0.667)
0.99 (0.83)
0.58 (0.330)

0.198
0.199
0.198

0.424(0.171)
0.427 (0.192)
0.526 (0.215)
0.526 (0.205)

0.148

0.865 (0.454)
, (0.392)

0.95 (0.314)
0.85 (0.367)

method applied to it. We have used the Transpose-free quasi-minimal residual (TFQMR)
method (Algorithm 5.2 in 15]) which avoids the computation ofthe transpose ofthe coefficient
matrix and preconditioner (the latter is only implicitly given in (1), so its transpose is not
available). As a matter of fact, the TFQMR method may be considered a modification of the
conjugate gradients squared (CGS) method of [27] and [28], which is a generalization of the
conjugate gradients (CG) method to nonsymmetric and indefinite problems. We have found
that the performance of CGS is similar to that of TFQMR; however, we have preferred the
latter because of its smooth convergence curve.

All the above acceleration techniques require an amount of storage and arithmetical oper-
ations comparable to that of CG, namely an additional 1 1.5 work units per iteration. For the
accelerated iteration the convergence factor defined above often oscillates; hence the averaged
convergence factor defined by

averaged convergence factor ( axlast b 2 )axo b 112
is considered instead, and displayed in parentheses in Table 1. When the accelerated iteration
stagnates, the sign "." alone is presented.

The problems solved are of the form

Lu(x, y) f(x, y), (x, y) S2 C R2,

with the exact solution u xy (except of examples 7, 9, 10b, and 12, for which the exact
solution is u 0). Since the initial guess is random and the problem is linear, the rates of
convergence are independent of the specific choice of the solution. A second-order central
finite difference scheme is used. For most examples the region f2 is the unit square, Dirichlet
boundary conditions are imposed, and uniform grids are used. Exceptions to the above are
noted at particular examples.

It is seen from the numerical results that for some examples AutoMUGby itselfdiverges or
unsatisfactorily converges, while when supplemented with an acceleration scheme it converges
quickly; this is apparently because the iteration matrix has some isolated eigenvalues of large
magnitude, while most of its spectrum is clustered around zero.
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List of examples.
1. The Poisson equation L -A.
2. The anisotropic equation

--Uxx O’Uyy 0

with (a) cr 10-2 and (b) a 10-4. This example is more difficult than the Poisson
equation, since error components which are smooth in the x-direction and oscillate
in the y-direction are not easily smoothed by a point Gauss-Seidel smoother; this
difficulty may be handled by employing an appropriate line relaxation [4].

The ILU smoother used here is lexicographically ordered; hence oscillations in the
x-direction are smoothed much better than those of the y-direction. According to
the above remark, it is likely that an anti-lexicographical ordering is more suitable to
this example.

Case (a) is the most difficult one considered in [31]. The convergence factors derived
there are similar to those obtained here.

3. The Poisson equation with a Chebyshev-type grid; it is discretized via central differ-
ences on the two-dimensional grid

1 cos
N + i

Plv(j, k)
2

1 cos
N + 1

2
l<j,k<N.

The matrix operator for this scheme may be used as a preconditioner for a Chebyshev-
collocation discretization of the Poisson equation. (see 19]). Coarse-grid operators
forMGare obtainedfromthe discretization ofthePDEonthe grids Plv/2ij, 1 < < 5.
As in the previous example, the RB smoother is inferior to ILU; the reason for this
is that the equation is locally anisotropic in most of the mesh cells.

4. The Poisson equation in a square with a slit. The actual shape is a 63 x 63 grid minus
a narrow strip of width 2 points and length 32 points emerging from the center in the
x-direction. This problem is considered more difficult than the Poisson equation in
a square (see [5]).

5. The Poisson and definite Helmholtz equations in a domain approximating the North
Atlantic, from about 10 to 53 north. A definite Helmholtz problem of the form

-Uxx Uyy + u f
stems from explicit time-stepping in the quasi-geostrophic version of the shallow-
water equations. The domain is embedded in a Cartesian grid of 45 x 93 points. The
bounding points are assumed to lie on that grid. The cases under consideration are
(a) 3 0 and (b) 3 20.

6. The Poisson equation with boundary conditions of the third kind

0u
+ 1.5u 0,

0n

where denotes the outer normal vector. This example is presented mainly for the
sake of comparison with the next one.

For this example MG was implemented with restriction and prolongation operators
modified near the boundaries such that their rowsums equal 1 everywhere; otherwise,
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much slower convergence occurs. For all other examples, however, MG with this
modification was inferior to MG with the standard bilinear interpolation and full-
weighting restriction.

7. The diffusion equation

-(a(x, y)Ux)x (a(x, y)Uy)y 0

with the discontinuous coefficient

a(x, y) [ ?’1 max(Ix 0.51,otherwise,lY0.51) < 3h,

where h is the mesh size and g 104 and the boundary conditions of the previous
example. It is known [1] that standard multigrid approaches cannot simulate the
problem appropriately on coarse grids.

This problem is similar to Problem 3 in [34] and to the most difficult case of Problem
in [1]. The fine-grid (for MG, also the coarse-grid) discretization is done as in 1].

8. The Poisson equation on the L-shaped region

((0, ) x (0, 0.5)) ((0, 0.5) x (0.5, )).

Dirichlet and Neumann boundary conditions are imposed on

1-" _= ({0.5} x [0.5, ll)U ([0.5, 11 x {0.51)

and 0 fl \ F, respectively. This example is presented mainly for the sake ofcomparison
with the next one.

9. A diffusion equation in the spirit ofKershaw’s problem (Problem 7 in [34]) is solved in
the same L-shaped region as above. The equation is that of example 7 with y 106.
Boundary conditions of the same type as those of example 8 are imposed.

By comparing the results of examples 7 and 9 to those of examples 6 and 8 (respec-
tively) it may be concluded that the discontinuity inserted in examples 7 and 9 does
not affect the efficiency of AutoMUG.

10. The convection-diffusion equation with fan-like streamlines

--U’xx Uyy + O( XUx -1- yUy) f
whose characteristics are rays starting at the origin so that they all intersect a bound-
ary. This kind of equation is hard to solve with the multigrid approach, since error
terms which are smooth in the convection direction and oscillate in the perpendicular
direction are only half-corrected by the coarse-grid term [9].

Two cases were examined: (a) 150, for which diagonal dominance holds and
(b) r/= 300, for which it is violated for most of the equations in the linear system.

Unlike all other examples in this section, MG was implemented with coarse-grid op-
erators derived from an upwind, rather than central, scheme; otherwise, considerably
slower convergence (or even divergence) was reported.

11. The circulating flow equation

sin(r(y 0.5)) cos(zr(x 0.5))Ux sin(zr(x 0.5)) cos(zr(y 0.5))/,/y f.

The region is a square with a 1 x 1 point hole at the middle of it. For this region,
an upwind scheme is inadequate [8]; following 10], we have thus inserted isotropic
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artificial viscosity, the amount of which is locally chosen to be the minimal amount
required for weak diagonal dominance. The results for AutoMUG are far better than
those of the V-cycle in 10]. The coarse-grid operators generated by AutoMUG may
thus be used in conjunction with the defect correction approach of 10] to accelerate
convergence.

For the MG approach divergence was reported no matter whether coarse-grid oper-
ators are derived from the central or upwind scheme.

Convection diffusion equations similar to those considered here are solved efficiently
in [34]. The method of [34], however, uses the incomplete line LU (ILLU) smoother;
this is a robust smoother, which also achieves high rates of convergence when used as
a preconditioner in preconditioned CG (with no multigrid strategy) [28]. Since we are
interested in investigating the efficiency of multigrid methods on their own, we avoid
implementing AutoMUG with smoothers which are also efficient preconditioners.

The last three examples are of special difficulty, involving oscillating coefficients or
indefiniteness.

12. The diffusion equation

-(a(x y)Ux)x (a(x y)Uy)y 0

with the oscillating coefficient

a(t)= 1.05 +. sin (Eh)
(see [13]). The discretization is symmetric, as in [30].

13. The indefinite Helmholtz equation

-Uxx Uyy iu f
with fl 200. Note that for h 1/64 the (k, l) eigenvalue of the Poisson equation,
with (k, l) 6 {(2, 4), (4, 2)}, is equal to

4(kh 1)h2
sin2 -- + sinE 196.8537;

hence, with the above choice for/, the coefficient matrix has nearly singular eigen-
values (see [7]). Furthermore, eight distinct eigenvalues of the Helmholtz equation
are negative; hence the problem is indefinite, and the iteration matrix for either Auto-
MUG or MG often has eigenvalues of magnitude larger than 1 (see [22]-[24]). The
use of an acceleration scheme is thus crucial to ensure convergence.

For the current and the following example only four levels are used, and the fourth-
level equation is approximately solved by 100 Kacmarz sweeps. The reason for this
is that the coefficient matrix for the fifth-level problem is. nonpositive for either Au-
toMUG or MG, hence cannot serve as a suitable approximation to the PDE (see [23]
and [24] for a detailed explanation).

14. The indefinite Helmholtz equation (Example 6.3 in 14])

--Uxx Uyy IU f
with/ 200, complex boundary conditions of the third kind

0u
m_t_ lOiu g, (x, y) [O, 1] x {O},
On
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and Dirichlet boundary conditions on the rest of 0 ft. The mixed boundary conditions
are discretized via a first-order scheme as in 14]. Like the previous problem, this
problem is indefinite, hence the use of acceleration is crucial.

Unlike most of the examples in this section, for the indefinite examples RB is a better
smoother than ILU. We believe this is due to the instability of ILU for coarse-grid
equations; this may be handled by adding some positive weights to main diagonal
elements in the ILU decomposition which become too small.

4. Discussion. AutoMUG is a multilevel method for the solution of finite difference
schemes of (2d + 1)-coefficient stencils which arise, for example, from d-dimensional second-
order PDEs. It is automatic in the sense that its definition depends on the scheme on the
original grid only, and no rediscretization of the PDE is required. Derivation of coarse-grid,
restriction, and prolongation operators for AutoMUG is inexpensive and straightforward. In
addition, property A of the coefficient matrix is preserved at all levels; this simplifies the
programming and enables the use of the RB and SOR smoothers.

The numerical examples show that, when implemented with a suitable smoother, Auto-
MUG gives high rates of convergence for several classes of problems: symmetric, nonsym-
metric and problems with discontinuous coefficients, nonuniform grids, and nonrectangular
domains. When supplemented with an acceleration scheme, high rates of convergence also
are achieved for pure convection problems and indefinite Helmholtz equations.

For some problems AutoMUG is inferior to nonautomatic multigrid algorithms designed
especially for the specific problem. In particular, it is inferior to the method of [7] for slightly
indefinite problems and to that of [10] for problems with circulating flow. In these cases,
it is recommended that the coarse-grid operators of AutoMUG be used in conjunction with
the specific approach, that is, the projection of [7] or the overresidual weighting and defect
correction of [10]. Alternatively, accelerating AutoMUG by a Lanczos-type method also
yields high rates of convergence. For highly indefinite problems, the use of such acceleration
is crucial, since the basic iteration often diverges. Hence for problems which involve several
sources of difficulty, e.g., indefiniteness, convection, jumps, singularities, etc., AutoMUG
supplemented with an acceleration scheme seems to provide an effective solver.

Acknowledgment. We wish to thank Dr. Irad Yavneh for valuable comments and for
suggesting examples 4 and 5.
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Abstract. We study the multicomputer performance of a three-dimensional Navier-Stokes solver based on
alternating-direction line-relaxation methods. We compare several multicomputer implementations, each of which
combines a particular line-relaxation method and a particular distributed block-tridiagonal solver. In our experiments,
the problem size was determined by resolution requirements of the application. As a result, the granularity of the
computations of our study is finer than is customary in the performance analysis of concurrent block-tridiagonal
solvers. Our best results were obtained with a modified half-Gauss-Seidel line-relaxation method implemented by
means of a new iterative block-tridiagonal solver that is developed here. Most computations were performed on the
Intel Touchstone Delta, but we also used the Intel Paragon XP]S, the Parsytec SC-256, and the Fujitsu S-600 for
comparison.

Key words. Navier-Stokes equations, concurrency, parallelism, block-tridiagonal systems, tridiagonal systems,
ADI, alternating directions
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1. Introduction. When using alternating-direction line-relaxation methods for systems
of partial-differential equations discretized on a rectangular grid, one must solve many block-
tridiagonal systems of linear equations in every relaxation step. This type of computation
surfaces in many applications. In our work, we faced it when parallelizing a highly vectorized
solver for the three-dimensional, unsteady, and incompressible Navier-Stokes equations [4]
for use on multicomputers. In this paper, we shall discuss and analyze five line-relaxation
methods and six distributed block-tridiagonal solvers used during the course of this project.
We have measured the performance of several combinations of relaxation methods and block-
tridiagonal solvers on three multicomputers (the Intel Touchstone Delta [5], the Intel Paragon
XP/S [6], and the Parsytec SC-256 13]) and on one conventional vector processor (the Fujitsu
s-600).

Three-dimensional computations are more complex thantwo-dimensional ones because of
additional coordinates for the geometry and the vector fields. Three-dimensional computations
are also algorithmically different, because every line-relaxation step requires the solution of
a larger number of smaller-sized linear systems than a comparable two-dimensional line-
relaxation step. To see this, consider a two- and a three-dimensional problem of the same
size, i.e., with the same number of unknowns. The two-dimensional problem on an M M
grid requires the solution of O(M) block-tridiagonal systems of size O (M), while the three-
dimensional problem on an N N N grid with N M2 requires the solution of O(Nz)
O(M4/3) systems of size O(N) 0(M2/3).

On multicomputers, the reduced system size has a serious impact. There exist many
concurrent algorithms to solve block-tridiagonal systems; see, e.g., [2], [10], [12], [14]-[16].
However, these methods have been studied mainly for very coarse-grain computations, i.e., for
computations in which the ratio ofthe system size over the number ofnodes is high. Bondeli [2]
studied computations with less than 25 nodes and system sizes exceeding 16, 800. Krechel,
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Plum, and Stiiben 14] improved the efficiency of a modified cyclic-reduction algorithm on
the 16-node iPSC/2-VX. Their computations of moderate-to-coarse granularity solved 256
tridiagonal systems of size 128 and the highest-achieved efficiency was about 50%. For
the reasons mentioned above, the granularity of the block-tridiagonal solver in our three-
dimensional application is much smaller when running the code for a grid of fixed size on
all 512 computing nodes of the Delta. Constructing an efficient concurrent program for this
problem is a challenge.

An outline of the paper follows. In 2, a brief description of the implemented relaxation
methods is given. In 3, we shall study algorithm and concurrency issues of several basic
concurrent alternating-direction relaxation methods. Each method is based on a different dis-
tributed solver for block-tridiagonal systems. First, the sequential block-tridiagonal solver is
distributed and pipelined to obtain a concurrent line-relaxation method: Subsequently, we use
concurrent tridiagonal solvers based on recursive doubling, cyclic reduction, partitioning, and
divide and conquer, respectively. Finally, a new iterative tridiagonal solver is developed. In 4,
we analyze the performance on the Delta of the proposed methods applied to a Navier-Stokes
solver. The Navier-Stokes equations and their discretization for an interesting application are
given in 4.1. We give this description for the sole purpose of defining precisely how the per-
formance data were obtained. The fluid-dynamical results of our computations are discussed
in another paper 1]. In 5, computations on the Paragon, the Parsytec, and the Fujitsu are
compared with those on the Delta.

2. Relaxation methods. The discretization of partial-differential equations often leads
to a large sparse system of equations

(1) A-- f.
Classical relaxation methods to solve (1) are obtained by splitting the coefficient matrix A into

A=G+H

with G an easily inverted matrix. This defines the iteration

(2) f- H-,
which converges to the exact solution t* if the spectral radius of G-H is less than one; e.g.,
see 11].

In the description that follows, it is convenient to think of the three-dimensional Poisson
problem discretized to second-order accuracy on a three-dimensional rectangular grid of size
M N K. Then, interior grid points are identified by means of a triple (m, n, k) with
1 _< m < M, 1 < n < N, and 1 < k < K. One unknown and one equation is associated with
each interior grid point.

One elementary line-relaxation step updates all unknowns ofone grid line simultaneously.
For example, an x-line is a set of grid points (m, n, k) where 1 _< m < M and n and k are fixed.
An x-line is, therefore, identified by means of a couple (n, k). An elementary x-line-relaxation
step reduces to the tridiagonal system

(3) am Um-1 + bm Um + Cm Um+l dm, m 1 M

for each x-line. One x-line-relaxation step updates all x-lines ofthe grid once, i.e., it performs
an elementary x-line-relaxation step for all (n, k) with < n < N and 1 < k < K. For
three-dimensional problems, an alternating-direction line-relaxation step consists of an x-
line-relaxation step, a y-line-relaxation step, and a z-line-relaxation step. We restrict our
discussion to the x-line-relaxation step. In matrix-vector notation, the system (3) has the form

(4) T t =,
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with

bl Cl
a2 b2 C2 0

0 aM-1 bM-1 CM-1
aM bM

The right-hand side vector d depends on the boundary conditions, which add the terms

aluo and CMUM+I to the fight-hand side of the first and the last equation, respectively. The
right-hand side vector also depends on neighboring x-lines (n + 1, k), (n 1, k), (n, k 1),
and (n, k + 1). (This assumes a classical seven-point stencil for second-order discretization of
the Poisson equation in three dimensions.) Three variants of the line-relaxation method were
implemented.

When the right-hand side terms for x-line (n, k) are computed exclusively with u-values
that were known before the x-line-relaxation step began, the method is called Jacobi line
relaxation. In this case, all elementary x-line-relaxation steps and all systems (3) are inde-
pendent. In principle, all tridiagonal solves may be performed concurrently provided that the
coefficients of T are not distributed over several processes.

Gauss-Seidel line relaxation assigns an order to the x-lines and uses the updated u-values
obtained in preceding elementary x-line-relaxation steps to compute the right-hand sides ofthe
current elementary x-line-relaxation step. Lexicographic ordering approach enforces a rigid
and sequential ordering on the solution of the tridiagonal systems: (n, k) follows (n 1, k)
and (n, k 1).

For the purpose of vectorization and/or concurrent computing, it makes sense to make
many tridiagonal systems independent ofone another so that they canbe solved simultaneously.
Red-black ordering performs elementary line-relaxation steps first for all x-lines for which
n + k is even and, subsequently, for all x-lines for which n + k is odd.

Lexicographic ordering may be kept provided the relaxation method is modified. For
the x-line-relaxation step, e.g., the systems of grid plane k constant are made independent
of those of grid plane k 1 by using the old u-values of x-line (n, k 1) when computing
the system for the u-values for x-line (n, k). In the remainder of this paper, we call this

half-Gauss-Seidel line relaxation. In principle, grid planes may now be solved concurrently
and/or the solution of all tridiagonal systems (n, k) for fixed n may be vectorized. Because
the nodes of our target computers contain vector processors, all our implementations use the
vectorization in the z-direction for the x-line-relaxation step.

The M x N x K grid is distributed over a P x Q x R process grid. The data distribution
over P processes in the x-direction forces us to use a distributed tridiagonal solver for the
x-line-relaxation step; see 3. For Jacobi and half-Gauss-Seidel line relaxation, the data
distribution over R processes in the z-direction allows us to solve systems (n, k0) and (n, kl)
concurrently if they are mapped to different processes. Systems (n, k) with fixed n mapped
to the same process may be solved using a solver that is vectorized in the z-direction.

For Jacobi line relaxation, the data distribution over Q processes in the y-direction allows
us to solve systems of a grid plane concurrently. For half-Gauss-Seidel line relaxation, how-
ever, the tridiagonal systems within one grid plane k constant still depend on one another,
because system (n, k) depends on (n 1, k). This prevents concurrency within one plane. A
further modification allows us to obtain a concurrent program: at the process boundaries in
the y-direction, we use old u-values for x-line (n 1, k) in the computation of system (n, k).
This modified half-Gauss-Seidel line relaxation allows concurrency and vectorization for all
grid blocks of the P x Q x R process grid.
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We shall also consider one alternative to line relaxation. Segment relaxation avoids dis-
tributed tridiagonal systems by moving terms that couple the system across process boundaries
to the right-hand side. For an elementary x-line-relaxation step, this leads to systems with
coefficiem matrices of the form:

( bl 1
a2 b2 2

a3 b3
b4 6"4
a5 b5 c5

a6 b6

bM-2 CM-2
aM-1 bM-1 CM-1

\ bM CM

Such systems can be solved without any communication and only require solving a tridiagonal
system in each process. In 4.2.4, we shall see that, for our application, the price for simplicity
is a decreased convergence rate and a lack of robustness.

A discussion of point-relaxation methods is omitted, because they diverge when used for
our application. We focus the remainder of this paper on modified half-Gauss-Seidel line,
Jacobi line, red-black line, and segment relaxation. Each has a certain convergence rate, which
is dependent on the particular application. We postpone a discussion ofconvergence rates until
4, where our application is introduced.

For simplicity of exposition, the relaxation methods were described with the Poisson
equation in mind. Their use in our Navier-Stokes application is more complicated, because
every grid point corresponds to four unknowns. In (3), the unknowns Um and the right-hand
side coefficients dm are vectors of dimension 4. The coefficients am, bin, and Cm are 4 x 4
matrices. The coefficient matrix T of (4) is block-tridiagonal instead of tridiagonal, and its
blocks are 4 x 4 matrices.

3. Distributed block-tridiagonal solvers. In this section, we shall present several meth-
ods to solve sets of block-tridiagonal systems (3) defined on an M x N x K computational
grid that is distributed over a P x Q x R process grid. Each solver can be combined with at
least one relaxation method of 2.

In process (p, q, r) of the process grid, we have available an I x J x L subgrid of
the computational grid. The solution of the discretized Navier-Stokes equations requires
alternating-direction line relaxations. Hence, even if the grid is distributed in one dimension
only (say Q R 1 or P Q 1), process boundaries cross the relaxation lines in
at least one direction. We consider only the x-line relaxation with systems of M equations
distributed over P processes; the extension to y- and z-line relaxations and to nondistributed
line relaxations are obvious.

We shall introduce six different distributed tridiagonal solvers. Each can be converted into
a block-tridiagonal solver that can be used to solve the systems that arise in our Navier-Stokes
application. To convert, scalars of the tridiagonal solvers must be changed into 4 x 4 matrices
or vectors of dimension 4. Divisions like

am
Um b---

must be replaced by 4 x 4 systems of equations:

bmum am.
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For the remainder ofthis section, we treat all coefficients and unknowns as scalars and all line-
relaxation systems as tridiagonal. The conversion to block-tridiagonal systems considerably
complicates the implementation, but it does not affect the fundamental algorithmic structure.

3.1. Pipelining. The classical sequential direct solver for tridiagonal systems, sometimes
referred to as the Thomas algorithm, can be used on distributed data. Although a sequential
algorithm, there is sufficient concurrency left, because we must solve many tridiagonal sys-
tems. For all practical purposes, this solver can only be used in conjunction with the Jacobi
line-relaxation method, for which all tridiagonal systems are independent of one another. In
the y- and z-directions, the Jacobi x-line relaxation is concurrent, and the only communication
requirement is a boundary exchange.

An elementary x-line-relaxation step uses all processes (p, q, r) with 0 < p < P and
q and r fixed. We now use the J systems of the y-direction to introduce concurrency in the
x-direction by a pipelining technique (this technique is also studied by Ho and Johnsson [8]).

Assuming that the coefficient matrix T is factored once, the Thomas algorithm solves
tridiagonal systems by means of two elementary sequential loops. After data distribution
over P processes, these loops remain sequential. In process (p, q, r), we must run through
J identical loops..As soon as process (p, q, r) hands over the loop of system j to process
(p + 1, q, r), process (p, q, r) may start evaluating the loop of system j + 1. Filling the
pipeline requires P elementary x-line-relaxation steps.

This procedure is also vectorized in the z-direction: instead of evaluating the loop for
one system, all L loops of the z-direction are evaluated. This also reduces communication
latency, because messages of L systems are combined into one message. On the other hand,
this merging of communication increases the time required for filling the pipeline.

3.2. Concurrent direct tridiagonal solvers. As an alternative to pipelining, it is possible
to replace the sequential tridiagonal solver by a concurrent direct tridiagonal solver. This
avoids the cost of pipelining. However, all known concurrent direct tridiagonal solvers carry a
high floating-point overhead. We have used four different direct solvers. From a fundamental
point of view, all four are equivalent. They solve a tridiagonal system by LU-decomposition
without pivoting, and their operation counts are very similar. Performance differences are due
to technical implementation details.

To identify the different solvers, we follow the nomenclature of Frommer [7] in this
paper. Note, however, that there is no generally agreed-upon terminology in the literature.
For example, the term "recursive doubling" is used for several methods [7], [15]. We shall use
"recursive doubling" and "cyclic reduction" for two variants of the cyclic odd-even reduction
algorithm, first proposed by Hockney [9].

3.2.1. Recursive doubling. By eliminating unknowns and equations, one can obtain
a new tridiagonal system with half the number of unknowns of the original system. This
reduction procedure is repeated until a system is obtained that can be solved immediately.

In the recursive-doubling algorithm, one reduction is computed for each of the M equa-
tions. Hence, we can determine all solution components immediately after the last reduction
step.

3.2.2. Cyclic reduction. The cyclic-reduction method also performs repeated reductions
of the system (3). However, it computes only one solvable equation for the whole system.
Subsequently, the solution is computed through back-substitution.

In general, the number of equations per process, I, is greater than one. Therefore, we
have to distinguish between a local and a global reduction. In the first log2 1 steps, we reduce
the system such that the unknowns are coupled exclusively with unknowns in neighboring
processes. Each tridiagonal system now consists of only one equation per process. In the
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bl
b2

c2
c2
b3 3
a4 b4 C4
a5 b5 c5
a6 b6 6

a7 b7 c7
a8 b8 c8
a9 b9

FIG. 1. Matrix T after eliminating the upper and lower diagonal entries.

subsequent global reduction, we eliminate the remaining equations of the first, second, fourth,
etc. neighbors.

3.2.3. Partition method. In 3.2.2, the local part of the odd-even reduction reduced the
system to a new tridiagonal system with one equation per process. The required communica-
tion and the arithmetic overhead of solving the latter system are high. This problem is avoided
in Wang’s partition method [16].

After an elimination ofthe upper and lower diagonal entries, the coefficient matrix has the
shape given in Fig. 1 for a system withM 9 equations distributed over P 3 processes. The
fill that results from this operation can be stored in the original arrays am and Cm. This matrix
is triangularized and, subsequently, diagonalized. For these operations, Wang transposes T
from a row-distributed into a column-distributed matrix. Because this transposition of the
matrix requires extensive communication, we follow an alternative procedure. We solve the
following tridiagonal system with one equation per process:

(5) a6 b6 c6 u6 d6
a9 b9 u9 d9

which is obtained by collecting the equations of the last row in each process. We solved
the system (5) by recursive doubling, which we found to be most efficient in the case of one
equation per process.

3.2.4. Divide and conquer. In his divide-and-conquer method, Bondeli [2] obtains the
solution of (3) by solving a local tridiagonal system in each process concurrently and a global
tridiagonal system with one equation in the boundary processes and two equations in the inner
processes.

Here, the global problem is solved by eliminating one equation in the inner processes.
Again, we obtain a tridiagonal system with one equation per process which is solved with
recursive doubling.

3.3. Concurrent iterative tridiagonal solver. The direct solvers of3.2 solve the system
(3) to round-off error (if the systems are well conditioned). Here, we propose a concurrent
iterative solver to compute the solution to a certain tolerance.

Splitting the matrix T into a sum G + H, as indicated in Fig. 2, the matrix G contains
globally uncoupled tridiagonal blocks, and H contains the coefficients that couple the systems
across the process boundaries.

This splitting of the coefficient matrix defines the iteration

(6) G () - H (-1).

A multicomputer implementation of (6) is easily obtained and is efficient for several reasons:
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/bl 1
a2 b2 c2

a3 b3

a5 b5 c5
a6 b6

b7 c7
a8 b8 c8

a9 b9

a4
c3

a7
6

FIG. 2. Splitting ofT for M 9 and P 3.

1. Because G contains only the uncoupled tridiagonal matrices, its inversion is trivially
concurrent. The LU-decomposition of G needs to be carried out only once. We can solve (6)
by computing the right-hand.side terms and by evaluating two back-substitution loops in each
process.

2. The matrix-vector operation d- H -1 requires only nearest-neighbor commu-
nication.

3. Only the right-hand side terms of the first and the last row in each process change
within one iteration step. Hence, the arithmetic costs of one iteration step are low.

4. A good initial guess for the iteration is found by solving the system

(7) G 0 d.

5. The iteration (6) is continued until some stopping criterion is satisfied. This criterion
can be chosen to fit the need and, usually, depends on the specific application; see 4.2.5 for
a further discussion.

4. Computational results. In this section, we compare the performance on the Intel
Touchstone Delta of the relaxation methods of 2 implemented using the block-tridiagonal
solvers of 3. All performance data are obtained for a solver of the Navier-Stokes equations
for three-dimensional, incompressible, unsteady, and viscous flows. In 4.1, we describe
the problem in sufficient detail to understand the computational complexity of the applica-
tion. However, fluid-dynamical results obtained with this code are published elsewhere 1].
Additional physical and numerical details are found in [3] and [4].

Our problem sizes and convergence properties are not artificial creations. The problem
size was determined by realistic resolution requirements and was NOT increased to obtain
artificially high efficiency typically associated with coarse-grain computations. Similarly, our
selection ofnumerical methods, i.e., of line-relaxation methods over point-relaxation methods,
was guided by realistic needs. There is no compelling reason to use line-relaxation methods
for the Poisson equation, because one can always use simple point-relaxation methods. This
alternative is not available now, because point-relaxation methods do not even converge for our
application. In 4.2.4, we shall also observe that segment relaxation is not sufficiently robust
for our Navier-Stokes problem. It is very important that our performance measurements are
obtained for a "real" problem. The grid size and the accuracy with which the discrete problems
are solved are dictated by the physics of our application.

In our performance analysis of concurrent relaxation methods, we distinguish between
numerical and implementation issues. Numerical issues primarily determine the number of
relaxation-iteration steps necessary for convergence. This is, of course, extremely application
dependent. Implementation issues primarily determine the execution time of one relaxation
step through cost of communication, load balance, number of processes, etc. This depends
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on the application through computational parameters like grid dimensions and number of
unknowns. Nevertheless, the performance results of one relaxation step are more readily
transferred to other applications. For this reason, we consider these two performance issues
separately.

We shall present the convergence rates for the different relaxation methods in 4.2. Mul-
ticomputer performance of one alternating-direction line-relaxation step will be discussed
in 4.3. Convergence-rate and per-step-performance information are combined into global-
performance results in 4.4.

4.1. Discretization of the Navier-Stokes equations. The Navier-Stokes equations are
a set of coupled nonlinear partial-differential equations, which describe the conservation of
mass, momentum, and energy for continuous media. For an incompressible fluid, a time-
dependent flow in three dimensions is defined by the pressure p(x, y, z, t) and the three
velocity components u(x, y, z, t), v(x, y, z, t), and w(x, y, z, t). In a dimensionless matrix-
vector form, the conservation equations are given by

(8)

where

0 1 0 0 u
p

u
0 0 1 0 Q-- S=

V 1)

0 0 0 1 w w

vu
H

wuF u2 + p G
1)2 + PUV WU

uw vw w2 + p

Breuer and H/inel [4] extended the method of artificial compressibility to unsteady flows.
They define an artificial time r and add a supplementary time derivative/ -r, with

,--r 0 0 0
r0 1 0 0R=
0 0 1 0
0 0 0 1

to the Navier-Stokes equations. The pressure field is now coupled to the velocity distribution,
and (8) can be integrated. Because a steady solution is computed at time r, the additional
terms vanish, and we obtain the unsteady solution of (8) at the physical time t.

Let be an index for the physical time step and an index for the artificial time step. The
approximation

OQ Q+1,+1 Q+1, AQ
Or Ar Ar

leads to an implicit discretization scheme for the artificial time step. In this scheme, the Euler
and viscous fluxes are defined at the new physical time step + 1 and at the new artificial
time step ( + 1. Consider, e.g., the Euler flux F. The implicit discretization uses its value
F+1,(+1 at physical time step / 1 and artificial time step ( / 1. This term is expanded in a
Taylor series with respect to the artificial time r to obtain the following linearization:

F+I,(+I F+I,( + JF+1’ AQ.
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OFHere, JF is the Jacobian matrix of the Euler flux F with respect to Q, say JF --.
resulting discrete system of equationsis given by

(9) LHS. AQ RHS.

The

The right-hand side contains the expressions that arise from the discretization ofthe derivatives
in (8) using a high-order upwind scheme for the convective terms, central differences for the
diffusive terms, and a second-order discretization for the physical time t. The left-hand side
contains first-order spatial derivatives of the Jacobian matrices.

Because the left-hand side terms in (9) vanish for the exact solution vector Q, the discrete
solution has the order of accuracy of the right-hand side. The numerical advantage is that the
spatial discretization of the Jacobian matrices has no influence on the order of accuracy of the
solution. Therefore, we have gained some flexibility in choosing a discretization ofLHS. This
flexibility is used to improve the diagonal dominance of the coefficient matrix and to increase
the size of the time step.

Although central differences would be the most straightforward choice, they do not add
terms to the main diagonal of the coefficient matrix. That is why we use a first-order upwind
formulation combined with a matrix-splitting technique: after splitting the Jacobian matrices
into positive and negative parts, forward differences are applied to the positive parts and
backward differences to the negative parts. Consider, e.g., the Jacobian matrix JF. This 4 x 4
matrix is diagonalized such that

JF MAM-1,

where M is the matrix of eigenvectors of JF, and A is the diagonal matrix containing the
eigenvalues of JF on its diagonal. Let

A=A++A-,
where A+ and A- contain, respectively, the positive and negative eigenvalues. After trans-
forming back to the Jacobian JF, we obtain the splitting

JF MA+M-1 + MA-M-1 J + J.
The spatial derivatives in J- and J/ are discretized, respectively, with forward and backward
differences. This method tends to increase the diagonal entries of the coefficient matrix, and
the resulting system of equations can be solved with a line-relaxation method. For further
details and for a validation of the above scheme, refer to Breuer [3] and Breuer and H/inel [4].

Every solution component consists of four elements: the pressure and the three velocity
components. Hence, when applying the methods described in 3, the system (3) becomes a
block-tridiagonal system, the coefficients am, bm, and Cm are 4 x 4 matrices, and the right-
hand side terms dm are vectors consisting of four components. It follows that the discretized
Navier-Stokes equations require muchmore arithmetic per grid point than, e.g., the discretized
Poisson equation.

All computations of this paper use the above method to simulate the flow of an isolated
slender vortex embedded in an axial flow. The scientific interest in this tlow is the study of
the phenomenon of a bursting vortex or vortex breakdown. Although the initial conditions are
axially symmetric, the flow is fully three-dimensional after vortex breakdown. The boundary
conditions in the outflow plane and on the lateral boundaries are extrapolated from the case of
a free vortex. At the outflow plane, a nonreflecting boundary condition simulates undisturbed
vortical flow through the boundary. At the lateral boundaries, the pressure is imposed such
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FIG. 3. Experimental and numericalflow visualization of bubble-type vortex breakdown: top picture shows
experimental streaklines and bottom picture shows numerical streaklines.

that the bursted part of the vortex lies well within the domain of integration. Breuer [3] gives
complete details on the initial and on the boundary conditions required to simulate this flow.

Figure 3 compares a numerical simulation and an experiment of Althaus et al. 1]. Using
a Reynolds number based on the radius of the vortex core as length scale and the mean axial
velocity as velocity scale, both cases have a Reynolds number of 500. Our simulation uses a
32 x 32 64 rectangular grid with the z-direction being the axial coordinate. The physical time
step is 0.3, and the artificial time step is 100. Althaus et al. 1] perform a detailed comparison
of numerical and experimental results. It is this computation that we use to evaluate the
performance of all our codes.

Depending on the orientation of the relaxation line, we have to solve 32 64 2048
systems of 32 blocks or 32 32 1024 systems of 64 blocks of size 4 4. Our challenge is
to make effective use of all 512 computing nodes of the Delta to solve the block-tridiagonal
systems ofthis moderate size. As discussed in 2, we use a P Q R process grid. Preliminary
tests, which we do not report, showed that three-dimensional grid distributions outperform
one- and two-dimensional grid distributions with P 1 and/or Q 1, in spite of the fact that
the latter can use efficient sequential tridiagonal solvers in at least one direction. This may
seem somewhat counterintuitive. Given a certain number of nodes, choosing P 1 leads to
higher values for Q and/or R. The fact that x-line,relaxation steps are very efficient when
P 1 is offset by the increased load imbalance and the decreased efficiency in the other
directions. Therefore, we always use a process grid with P + Q + R; see Table 1. In all our
computations, each process is mapped to a separate node of the multicomputer.

The experiments of this section were performed on the Intel Touchstone Delta [5], which
consists of an ensemble of 512 computing nodes connected in a two-dimensional mesh. The
computational engine of each node is an Intel i860 processor with an advertised peak perfor-
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FI6. 4. Maximal residual as a function of the number ofmodified half-Gauss-Seidel line-relaxation stepsfor
three different process grids.

TABLE
Process grids used in our computational tests.

Total
Number

4
8
16
32
64
128
256
512

Number of processes in

x-direction (p) .Y.-dire.ctin (Q) I.. z-directin.(R)
4

2 2 2
2 2 4

4 4 4
4 4 8
4 4 16
8 8 8

mance of 60 double-precision MFLOPS. Each node has a local memory of 16 MB. On the
Delta, our standard problem needs a minimum offour nodes because ofmemory requirements.

4.2. Convergence of relaxation methods.

4.2.1. Modified half-Gauss-Seidel line relaxation. The modified half-Gauss-Seidel
line relaxation uses the updated unknowns of the previously computed plane except at process
boundaries; see 2. The convergence rate of the modified method is dependent on the number
of processes and on the choice of process boundaries, because they determine the matrix
splitting underlying the relaxation method. Figure 4 shows the residual as a function of the
number ofrelaxations for some ofthe partitions ofTable 1. Although the convergence depends
on the partition, all computations achieve the required residual of 10-5 within approximately
the same number of iteration steps.

4.2.2. Jacobi line relaxation. In the case of Jacobi line relaxation, all relaxation lines
may be computed simultaneously. The convergence rate of the Jacobi line relaxation does not
depend on the number of processes. Note that the modified half-Gauss-Seidel line relaxation
turns into the Jacobi line relaxation when the number of processes is equal to the number of
grid planes.
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Fla. 5. Maximal residual as afunction ofthe number ofline-relaxation steps in a computation with 64 processes.

In Fig. 5, half-Gauss-Seidel and Jacobi line relaxation on the 64-node partition are com-
pared. The Jacobi method needs about 10% more iteration steps to reach the required tolerance
on the residual.

4.2.3. Red-Black line relaxation. Like the Jacobi line relaxation, the convergence rate
of the Gauss-Seidel line relaxation with red-black ordering does not depend on the number
of processes. We obtained a test program for the red-black line relaxation easily by splitting
the Jacobi relaxation into the two steps explained in 2 and changing the step width of the
inner loops to two. After the first step, the updated unknowns have to be exchanged between
the processes. Besides the required additional communication, there is a loss of performance,
because the inner loops can no longer be vectorized.

For our application, there is no observable difference in the convergence rate between the
red-black and the Jacobi line iteration. The red-black line relaxation is, therefore, not a viable
alternative to the modified half-Gauss-Seidel line method and, because of the communication
and vectorization losses, its global performance is worse than the Jacobi line relaxation.

4.2.4. Segment relaxation. The segment relaxation computes relaxation lines inter-
rupted by the process boundaries. Efficiency and applicability of this method depend on
the convergence rate of the resulting iteration. Consider a segment-relaxation step in one
direction with M grid points distributed over P processes, and let

M
P

be the number of local grid points. For I M, we obtain a sequential line relaxation, while
a Jacobi point relaxation results if I 1.

We implemented an alternating-direction segment relaxation and plot the residual as a
function of the number of relaxation steps for a 256- and a 512-node partition in Fig. 6. The
plot shows that the relaxation fails to converge for the unbalanced 4 x 4 x 16 partition. The
8 x 8 x 8 partition needs about 20% more iteration steps than the modified half-Gauss-Seidel
line relaxation.

We observed a nonconverging iteration even for the 2 x 2 x 8 partition. We conclude that
segment relaxation is not suitable, because robustness of the algorithm cannot be guaranteed.
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FIG. 6. Maximal residual as afunction ofthe number ofline-relaxation stepsforsegment relaxation and modified
half-Gauss-Seidel line relaxation.

Although we achieve convergence when using all nodes on the Delta, it is uncertain whether
the code would converge on a larger configuration of the same hardware. We consider this
nonrobust behavior unacceptable.

4.2.5. Iterative block-tridiagonal solver. The modified half-Gauss-Seidel line relax-
ation of 4.2.1 can also be implemented using the concurrent iterative block-tridiagonal solver
of3.3. Because this methodsolves the system (3) only approximately, one should consider the
effect of less-accurate block-tridiagonal solvers on the convergence rate of the line-relaxation
method.

In Fig. 7, we examine the impact on the number of line-relaxation steps of using the
iterative solver with six block-tridiagonal iteration steps. (The rationale for using six iteration
steps is discussed in 4.3.6.) The curves for the exact and iterative solvers show the same
progress, and the required residual of 10-5 is reached almost within the same relaxation step.

With an increasing number ofprocesses, the initial guess (7) gets worse, andmore coupling
coefficients are set equal to zero to obtain the tridiagonal-iteration matrix. The partition,
therefore, has an impact on the convergence rate. Figure 8 compares three different partitions.
Up to 256 processes, the curves virtually coincide. The computation with 512 nodes requires
only a few additional line-relaxation steps to converge.

4.3. Performance of one alternating-direction line-relaxation step. In this section,
we shall compare the multicomputer performance of one alternating-direction line-relaxation
step, i.e., one line relaxation in each spatial direction. To obtain a dimensionless efficiency
for a multicomputer program, one must relate the execution time to a meaningful reference
time. In principle, this reference time must be the best execution time possible on one node
of the same multicomputer. In reality, one must settle for the sequential-execution time of
a reasonable but not necessarily the best sequential program. For us, even the reasonable
sequential time is impossible, because our problem requires too much memory to solve on one
node. We defined a fictitious reference time in the following manner. To obtain a sequential
time for the relaxation in the x-direction, we distribute the grid only in the y- and z-directions
over the processes. Subsequently, the concurrent-execution time for this partition is then mul-
tiplied by the number of processes. We repeat this method for the y- and z-directions. Our
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FIG. 7. Maximal residual as a function of the number of line-relaxation steps when using the exact and the
iterative block-tridiagonal solver to implement modified half-Gauss-Seidel line relaxation with 64 processes.
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FIG. 8. Maximal residual as afunction ofthe number ofline-relaxation steps to examine impact ofprocess grids
on the iterative block-tridiagonal solver.

sequential-execution time for the alternating-direction line relaxation is the sum of these three
terms. With process boundaries that are parallel to the relaxation lines, the block-tridiagonal
systems can be solved by sequential LU-decomposition, which is the optimal procedure for
sequential computations.

The same reference time is used for all methods, such that the efficiency results can be
compared directly. The efficiency Op of a P-node computation is the ratio

(reference sequential time)
P (execution time of the P-node program)

We shall compare the multicomputer performance by means of two different kinds of plots.
The first kind plots the efficiency r/, as a function of the number of nodes, and the second
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plots the execution time Tp in seconds as a function of the number of nodes. In both plots, a
logarithmic scale is used for the number of nodes. In the execution-time plot, we also use a
logarithmic scale for the second axis such that the line of linear speedup has slope 1. (The
slope is distorted, however, because different scaling factors are used for the horizontal and
vertical axes.)

The increased computational requirements of the discrete Navier-Stokes equations over,
e.g., the discrete Poisson equation actually results in a more efficient computation, because
more arithmetic occurs for the same number of messages. Although the messages are longer
for the discrete Navier-Stokes equations, the latency usually dominates the communication
time, and the length of the messages is less important than the number of messages.

4.3.1. Pipelining. In 3.1, we described a pipelining method for the sequential LU-
decomposition. This makes sense if the number of processes is small compared with the
number of unknowns per block-tridiagonal system [8]. This method, compared with all other
methods we implemented, has the lowest floating-point operation count and requires the least
amount of communication. However, it is less concurrent than some other methods because
of load imbalance. The pipelining implements the Jacobi line relaxation.

Figure 9 shows the performance of the pipelining algorithm. As expected, the algorithm
shows good efficiency for a small number of processes. However, for larger numbers of
processes, the startup time required for all processes to participate in the computation causes
a progressive loss of efficiency.

4.3.2. Recursive doubling. A concurrent implementation of the modified half-Gauss-
Seidel line relaxation with the recursive-doubling algorithm for block-tridiagonal systems
requires more arithmetic and more communication than the pipelining method, but offers
higher concurrency. The recursive-doubling computations in the execution-time plot of Fig.
10 lie on a line that is almost parallel to the line of linear speedup. These lines are parallel and
the efficiency is constant as a function of the number of nodes, because the communication
overhead plays only a secondary role in computations with up to 512 nodes. The vertical
distance between these two lines can be related to the arithmetic overhead, which is mainly
responsible for the disappointing efficiency of about 15%.

4.3.3. Cyclic reduction. The cyclic-reduction algorithm is based on the same reduction
procedure as recursive doubling and is also an implementation of the half-Gauss-Seidel line
relaxation. This method needs less arithmetic, but additional communication for the back-
substitution. Whereas the local part of the cyclic reduction shows a good load balance, the
number of processes that participate during the global part halves after each reduction step.
Both facts lead to a significant loss of efficiency for large numbers of processes (Fig. 10).
However, cyclic reduction always beats recursive doubling. It beats the pipelining method for
computations with all available nodes (see also Table 2).

For the back-substitution, the cyclic-reduction algorithm must store the entries of the
coefficient matrix T and the right-hand side terms in (3), which change after each reduction
step. The additional memory made a run on four nodes impossible.

The dips in the efficiency curves for 32 and 256 processes occur, because we double the
partitions in the x- and y-directions (see Table 1). In these cases, the z-line-relaxation steps
are inefficient compared to the next larger partition (2 x 2 x 8 4 x 4 4 and 4 x 4 16

8 8 x 8, respectively).

4.3.4. Partition method. When modified half-Gauss-Seidel line relaxation is imple-
mented by means of Wang’s partition method, we realize an improved efficiency compared
with the cyclic-reduction algorithm; compare Figs.. 10 and 11. We examined in detail exe-
cution profiles of the z-line relaxation with a 1 x 1 x 8 process grid. In this case, already
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FIG. 9. Efficiency and execution time ofthe pipelining algorithm.

about 40% of the execution time was needed for solving the reduced system computed in the
first part of Wang’s partition method. This step is communication intensive and becomes even
more so when the number of processes is increased further. It is this part of the computation
that is responsible for the gradual loss of efficiency as the number of processes is increased.

4.3.5. Divide and conquer. The performance of the divide-and-conquer algorithm ap-
plied to the modified half-Gauss-Seidel line-relaxation method is given in Fig. 11. Like the
partition method, divide and conquer reduces the size of the tridiagonal systems down to one
block of equations per process.

The communication needed for the solution of the reduced system, obtained again with
recursive doubling, decreases the efficiency of larger partitions in our application. The per-
formance as a function of the number of processes is almost identical to that of the partition
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FI. 10. Efficiency and execution time ofrecursive doubling and cyclic reduction.

TABLE 2
Execution times until convergence on 512 nodes.

Block-tridiagonal Execution time
solver in seconds

Iteration method 10.12
Partition method 11.08

Divide and conquer 12.31
Cyclicreduction 12.44

Pipelining 14.96
Recursive doubling 39.64
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FIG. 11. Efficiency and execution time ofthe partition and the divide-and-conquer method

method. The divide-and-conquer algorithm outperforms the partitioning method on smaller
process grids.

4.3.6. Iterative block-tridiagonal solver. With the iterative block-tridiagonal solver, we
implemented the modified half-Gauss-Seidel line relaxation. Because the iteration method
solves the block-tridiagonal systems approximately, the accuracy requirements are a decisive
determinant for the performance of the iteration method. In principle, it would be possible to
iterate until a certain criterion is satisfied, e.g.,

(10) I (/z) / (/z-1)l E,

where e is a certain tolerance. If e is small, the iterative solver is numerically equivalent to a
direct solver. However, if e is large, the error on the solution of the tridiagonal system may
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have an impact on the convergence rate of the line relaxation. The size of e in (10), therefore,
not only determines the number of block-tridiagonal iteration steps, but also the number of
line-relaxation steps.

In a multicomputer computation, error-adaptive strategies like those suggested by (10)
add significant costs that are difficult to recoup by the expected reduction in the number of
iteration steps: computing error estimates is expensive, because they require global commu-
nication. Therefore, (10) is not used in our final computation. Instead, we are using a fixed
number of block-tridiagonal iteration steps. We found that this is more efficient, while highly
reliable if the number of block-tridiagonal iteration steps is sufficiently large. To determine
an appropriate number, we performed a sequence of experiments on a 1 1 8 process grid.
In (10), we set e 10-6, which is one order of magnitude below the requested residual of
the global relaxation. We found that six iterations were always sufficient to reach the required
accuracy if the initial guess t of (7) was used. The performance results shown in Fig. 12
were all measured with the number of block-tridiagonal iteration steps set equal to 6. With
more than 32 processes, the algorithm is more efficient than the partition method and more
efficient than the divide-and-conquer technique. With 256 processes, the performance is better
than any other concurrent algorithm we implemented.

It was already shown in 4.2.5 that, with six block-tridiagonal iteration steps, there was
virtually no difference in the number of line-relaxation steps between the iterative and the
exact block-tridiagonal solver. Line-relaxation steps based on either solver are, therefore,
practically equivalent. It is possible to reduce the number of block-tridiagonal iteration steps
below six. However, the resulting line-relaxation method is no longer equivalent with the
original method and may require a larger number of line-relaxation steps. On the other hand,
each line-relaxation step may be considerably less expensive. We did not pursue this possibility
of trading off the accuracy of the block-tridiagonal solver with the convergence rate of the
line-relaxation method. However, segment relaxation is equivalent to line relaxation with one
iteration step of the iterative block-tridiagonal solver. Considering the robustness problems
of segment relaxation, at least two block-tridiagonal iteration steps are needed.

4.4. Global performance. The interesting performance of a program is, of course, the
execution time until convergence within tolerance. In Fig. 13, we compare this time for
the Jacobi line-relaxation method implemented with pipelining and for the modified half-
Gauss-Seidel line relaxation implemented with the partition method and with the iterative
block-tridiagonal solver. Here, we focus only on the execution time needed for the relaxation
routines. To obtain the actual time to solve the Navier-Stokes equations, we must add to this
the time for the computation of the right-hand side terms and the boundary conditions, which
are independent of the solution procedure.

The better performance of the iterative block-tridiagonal solver for computations with
more than 256 processes is partially offset by the required additional relaxation-iteration
steps; see 4.2.5. The convergence losses of the Jacobi line relaxation (4.2.2) deteriorate the
performance of the pipelining algorithm. The execution times until convergence on 512 nodes
for all implementations are given in Table 2. The modified half-Gauss-Seidel line relaxation
implemented with the iterative block-tridiagonal solver clearly beats all competitors. As
pointed out before, there are several techniques that could improve its performance even
further. Most importantly, the fastest method is also, by far, the easiest to implement.

5. Computer dependence. The execution time of a program is, by its very nature, a
computer-dependent characteristic. One must, therefore, always question whether or not par-
ticular performance results for a set of algorithms obtained on one computer carry over to other
computers. Although not our main concern here, comparative performance studies can also
be used for computer-evaluation purposes. In a preliminary comparative study, we obtained
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FIG. 12. Efficiency and execution time ofthe iteration method.

some performance data on the Intel Paragon XP/S [6] and the Parsytec SuperCluster 13]. We
also used the Fujitsu S-600, which is a conventional vector processor with an advertised peak
performance of five GFLOPS.

The Paragon design is similar to that ofthe Delta. The i860 processors ofthe Paragon have
a higher clock frequency than those ofthe Delta: 50 MHz instead of40 MHz. In principle, this
increases the advertised peak performance by 25% to 75 MFLOPS per node. Furthermore,
Paragon nodes have larger caches and contain improved communication hardware to reduce
latency and increase bandwidth.

The Parsytec SuperCluster consists of 256 Transputers T-805, which are clocked at
30 MHz. Each Transputer has an advertised peak performance of 2.2 MFlops. With 4 MBytes
of memory per node, our application requires at least 16 Parsytec nodes. Each node contains
four bidirectional communication links, which can be used to configure the nodes into a large
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FIG. 13. Execution time until residual < 10-5.

variety of network topologies. The floating-point performance of the Transputer is consider-
ably less than that of a Paragon or a Delta node. However, the Parsytec has an excellent ratio
of communication versus arithmetic time.

In Figs. 14, 15, and 16, the execution time ofone alternating-direction line-relaxation step
is displayed as a function of the number of nodes. Figure 14 considers Jacobi line relaxation
implemented using the pipelined block-tridiagonal solver on the Delta, Paragon, and Parsytec.
Figures 15 and 16 display execution times obtained with modified half-Gauss-Seidel line
relaxation. Figure 15 is for the program based on the concurrent iterative block-tridiagonal
solver, and Figure 16 for the program that uses the partition method to solve the block-
tridiagonal systems concurrently. In these three figures, the lines of linear speedup are based
on a sequential-execution time obtained for the Delta as explained in 4.3. The lines of linear
speedup for Paragon and Parsytec are parallel to this line, but are not displayed to avoid
crowding the figures; Parsytec efficiency is compared with Delta efficiency in Fig. 17.

In the execution-time plots, the Parsytec computations lie on a line that is almost parallel
to the line of linear speedup. This is most pronounced for the method based on the iterative
block-tridiagonal solver. This is an indication that almost all overhead on the Parsytec is due to
the increased operation count of the concurrent computations and not to communication. This
is confirmed in the efficiency plots of Fig. 17, which displays the efficiencies as a function of
the number of nodes. (Efficiencies are computed using the sequential-execution time on the
computer of the concurrent computation.) The iteration method on the Parsytec has a constant
efficiency of about 40%, which indicates that communication overhead is negligible. When

2.5 times slower thanexecuted on one node, the concurrent Parsytec program is about
the sequential Parsytec program. However, the concurrent program speeds up linearly.

The pipelining method does not have a constant efficiency on the Parsytec. However,
its decrease in efficiency is much less pronounced than on the Delta: communication and
load-imbalance effects are not as important on the Parsytec as on the Delta. This is, of course,
easily explained by the smaller communication-arithmetic ratio of the Parsytec.

Because of the low floating-point-operation count of the pipelining method and the high
communication efficiency of the Parsytec, pipelining remains the fastest algorithm for up to
the maximum available number ofnodes (256). However, extrapolating Fig. 17, we expect that
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the iteration method will perform better than the pipelining method on Parsytec-like computers
with more than 512 nodes.

For our computations, the Delta is about 10-13 times faster than the Parsytec. Based
on the advertised peak performance of their nodes, the Delta should be about 30 times faster
than the Parsytec. The speed difference between Parsytec and Delta is smaller for fine-grain
computations, because the Parsytec is a more efficient computer. The higher efficiency is not
enough, however, to close the speed gap with the Delta.

As mentioned before, our code solves the Navier-Stokes equations to simulate time-
dependent, incompressible, and unsteady flows. Table 3 displays typical execution times to
obtain useful fluid-dynamical results. These require about 1000 physical time steps, and each
time step requires many line-relaxation steps. These execution times also include all other
computations that surround the actual alternating-direction line-relaxation iteration. The most
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FIG. 16. Execution time ofthe partition method.

TABLE 3
Typical execution timesfor the production offluid-dynamical results.

Execution time in hours on
Computer 8 nodes 64 nodes 256 nodes

Intel Paragon XP/S 70.8 14.3
Intel Touchstone Delta 97.2 18.2 9.1

Parsytec SC-256 23512 84.2

512 nodes

Fujitsu S-600 13.1

important factor in these periferal-but-necessary computations is the evaluation ofthe boundary
conditions. For our application, the Fujitsu S-600 is equivalent to about 64 Paragon nodes.
Whereas an individual line-relaxation step is almost four times faster on 256 Delta nodes than
on 64 Delta nodes, only a factor of two is obta’.med in the global computation. This is due
to the increasing influence of the evaluation of the boundary conditions, which introduces
significant load imbalance in finer-grain computations.

6. Summary. We presented several concurrent methods for solving sets ofblock-tridiag-
onal systems on a rectangular grid. Previous studies concentrated on computations of very
high granularity, which we found to be unrealistically high for our application. Therefore,
we tested several methods to solve a larger number of smaller systems. All methods show
a significant speedup on test runs up to 512 processes. On the Touchstone Delta, the best
efficiency achieved was about 40%.

Although problem sizes will significantly increase beyond the size ofthe problem studied
in this paper, we believe that granularity will remain of the same order of magnitude or might
even decrease significantly. For most problems, the total amount of arithmetic increases faster
than linearly with the total amount of data (which itself is proportional to the number of
unknowns). To keep the total execution time reasonable, one should use a number of nodes
proportional to the total amount of arithmetic. Hence, the amount of data per node (the
granularity) is likely to decrease. There is also a numerical reason why fine-grain concurrency
will become increasingly important. To improve the convergence rate, one could consider
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FIG. 17. Efficiency ofpipelining and iteration methods on the Delta and Parsytec multicomputers.

using line-relaxation methods as smoothers in a nonlinear multigrid method. The coarser
levels, however, quickly require computations of fine granularity.

Block-tridiagonal solvers that are efficient for fine-grain computations are difficult to
implement. Nevertheless, it is possible to achieve significant execution-time improvements
through the use of relatively fine-grain concurrency. A significant simplification for future
endeavors is that our best results were obtained with the iterative block-tridiagonal solver,
which is, from an algorithmic point of view, the simplest.
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RUNGE-KUTTA SOFTWARE WITH DEFECT CONTROL FOR BOUNDARY
VALUE ODES*

W. H. ENRIGHTt AND P. H. MUIR

Abstract. A popular approach to the numerical solution of boundary value ODE problems involves the use of
collocation methods. Such methods can be naturally implemented so as to provide a continuous approximation to the
solution over the entire problem interval. On the other hand, several authors have suggested as an alternative, certain
subclasses of the implicit Runge-Kutta formulas, known as mono-implicit Runge-Kutta (MIRK) formulas, which
can be implemented at a lower cost per step than the collocation methods. These latter formulas do not have a natural
implementation that provides a continuous approximation to the solution; rather, only a discrete approximation at
certain points within the problem interval is obtained. However, recent work in the area of initial value problems
has demonstrated the possibility of generating inexpensive interpolants for any explicit Runge-Kutta formula. These
ideas have recently been extended to develop continuous extensions of the MIRK formulas. In this paper, we describe
our investigation ofthe use of continuous MIRK formulas in the numerical solution ofboundary value ODE problems.
A primary thrust of this investigation is to consider defect control, based on the continuous MIRK formulas, as an
alternative to the standard use of global error control, as the basis for termination and mesh redistribution criteria.

Key words. Runge-Kutta methods, boundary value ordinary differential equations, interpolants, defect control,
numerical software

AMS subject classifications. 65L05, 65LI0

1. Introduction. A popular approach to the numerical solution of boundary value ODE
(BVODE) problems involves the use of collocation formulas based on, for example, Gauss
points. Gauss point formulas have been implemented in the widely used code, COLSYS
[Ascher, Christiansen, and Russell, 1981 and its descendant, COLNEW [Bader and Ascher,
1987]. For many numerical methods for BVODE problems, one obtains an approximation to
the solution at a discrete set of mesh points which partition the problem interval.. An advan-
tage of the collocation approach is that a continuous approximation to the solution over the
entire problem interval is obtained as a natural consequence of the standard implementation
of these methods. For a mesh with subintervals of size h and collocation based on Gauss
points with s collocation points per subinterval, the continuous solution provides an approxi-
mation with global error O(hS), while the associated discrete solution at the mesh points has
a global error that is (in the absence of order reduction phenomenon (see, e.g., [Prothero and
Robinson, 1974]) O(h2S), a property known as superconvergence. The continuous solution
approximation can be very useful when the user requires solution information throughout
the problem interval. Furthermore it can also.be useful within the code, itself, for example,
for error estimation, mesh refinement and redistribution, and generation of initial iterates for
Newton iterations. In addition, the presence of a continuous approximate solution makes it
possible to assess solution quality by examining the defect, which is the amount by which the
approximate solution fails to satisfy the BVODE system.

It is well known (see, e.g., [Weiss, 1974]) that the collocation formulas, when applied
to first-order systems of ODEs, can be viewed as equivalent to certain subclasses of implicit
Runge-Kutta formulas. Recently several authors have suggested, as an alternative to the col-
location formulas, other subclasses of implicit Runge-Kutta formulas for use in the numerical
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solution of BVODE problems. These formulas are known as mono-implicit Runge-Kutta
(MIRK) formulas [van Bokhoven, 1980], [Cash and Singhal, 1982a]. A recent investigation
of MIRK formulas is presented in [Burrage, Chipman, and Muir, 1994], where families of
orders one through six are characterized and an order barrier result is presented. An advantage
of these formulas over the collocation formulas is that the calculations on each subinterval,
which use MIRK formulas in the setup ofthe Newton systems, are explicit and therefore can be
implemented more efficiently [Cash and Singhal, 1982b], [Gupta, 1985], [Enright and Muir,
1986], [Cash, 1986, 1988]. The most recent work using these formulas [Cash and Wright,
1990, 1991] makes use of three specific MIRK formulas of orders four, six, and eight within a
software package for the numerical solution ofBVODEs, called HAGRON. An early software
effort, described in [Gupta, 1985], involved modifying the PASVA code [Lentini and Pereyra,
1977] to use MIRK formulas. Both of these codes use deferred correction to provide error
estimation and return a discrete solution approximation.

Unlike the collocation formulas, the MIRK formulas do not directly provide a continuous
approximation to the solution. The idea of extending the discrete solution approximation to
a continuous one has received considerable attention over the last few years, primarily in the
area of initial value ODE problems. In that context, a number of authors have demonstrated
the possibility of generating inexpensive interpolants for general explicit Runge-Kutta formu-
las; see, for example, [Enright, Jackson, Norsett, and Thomsen, 1986], [Gladwell, Shampine,
Baca, and Brankin, 1987], [Owren and Zennaro, 1991, 1992], and [Verner, 1993]. These
interpolants are obtained by performing extra derivative evaluations, within the current step,
thus preserving the one-step nature of the formula. Recently, [Muir and Owren, 1993] have
developed continuous versions of the MIRK formulas. In addition to presenting a general
analysis, they establish order barriers for continuous MIRK (CMIRK) schemes of orders one
through six, and provide characterizations of CMIRK families of these orders. For BVODEs,
the question of extending a discrete solution to obtain a continuous one has received less atten-
tion. Most BVODE codes do not provide a continuous solution approximation. Examples of
such codes are the PASVA code and the modified version mentioned above, some experimental
codes based on special one-sided Runge-Kutta schemes [Kreiss, Nichols, and Brown, 1986],
[Brown and Lorenz, 1987], and the HAGRON code mentioned earlier.

In this paper, we investigate the computation of continuous solution approximations for
the numerical solution of BVODEs based on CMIRK schemes. A primary thrust of the
investigation involves the use of defect control as an alternative to the standard global error
estimate control, for use in both mesh selection and accuracy control. The size of the defect
gives a different measure of the suitability of the approximate solution; it is the amount by
which the computed solution fails to satisfy the system of differential equations. It is a
natural choice for control since it is the defect which arises in the analysis of the mathematical
conditioning of the underlying problem where appropriate condition numbers are introduced
to quantify the sensitivity of the global error to perturbations of the ODEs. See [Ascher,
Mattheij, and Russell, 1988, Chap. 3, 4]. It has been suggested (see, e.g., [Cash and Silva,
1993]) that monitoring the defect may be appropriate in situations where difficulties arise in
estimating the global error. The use of the defect has also been studied in the context of
the numerical solution of initial value ODE problems; see, e.g., [Hanson and Enright, 1983],
[Enright, 1989a, 1989b], and [Higham, 1989a, 1989b, 1991].

This paper is organized as follows. In 2 we describe the use of MIRK and CMIRK
schemes in an algorithm for the numerical solution of BVODEs. In 3 we briefly discuss the
class of CMIRK formulas and describe the specific continuous formulas we have chosen to
implement. In 4, we identify several implementation issues associated with the development
of software based on the algorithm of 2. In 5, we demonstrate the effectiveness of the
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software we have written by applying to some systems of first-order ODEs with uniform
tolerance constraints. We also provide corresponding results from the COLNEW code for
the same test set in order to show that the performance of our software is reasonable. It is
not our intention to conduct extensive comparisons of the two codes. The COLNEW code
has well-known advantages, e.g., it can handle mixed-order BVODE systems with different
tolerance constraints for each component and multipoint conditions. We close, in 6, with our
conclusions and a summary of our plans for future work in this area.

2. The numerical solution of BVODEs using MIRK and CMIRK schemes. In this
section we review an algorithm for solving a system of BVODEs using MIRK and CMIRK
schemes. The basic approach is to use the MIRK formulas to form a discrete algebraic
system which can then be solved with a Newton iteration to obtain a discrete solution. Once
this solution is obtained, a CMIRK scheme is employed to provide a continuous solution
approximation over the problem interval for use in the computation of defect estimates, mesh
redistribution, and initial guesses for subsequent Newton iterates.

We assume that the boundary value ODEs to be solved can be expressed in the general
form,

y’(t) f (t, y(t)), E [a, b],

where y Rn and f R Rn Rn, andwherewe assume for convenience ofimplementation
that we have separated boundary conditions,

g(y(a), y(b))
[

| 0
gl(y(b)),l\

where go Rn Rn and gl Rn Rn and no + n n.
A standard approach for employing a Runge-Kutta scheme to solve such problems can

be described in terms of a two-level iteration scheme:
(0) Prior to beginning the two-level iteration we determine an initial mesh, {ti N}i=0, which

partitions [a, b] with to a and tN b, and an initial discrete solution approximation,
y(0) lY0r(0), Y1(0) Y)]r, where Yi() y (ti), the exact solution evaluated at ti

(1) The first step of the upper-level iteration is the setup and solution of a discrete system,
(Y) 0, where the "residual function"

(I)(Y) [go(Yo), (])1, (])2 (])N-l, gl(YN)lr.

Each vector )i is of size n and is defined by a Runge-Kutta scheme. We solve this discrete sys-
tem using a Newton iteration, which constitutes the lower-level iteration. For rn 0, 1, 2
the Newton system has the form

(’ g (m)
0 0)yo

00 (m) q (m)
0Y0 Yl

0 0 0

\ 0 0 0

0 0

0 0

N-1 (m)

YN-1

0

N-1 (m)

YN

YN

AY(om)

AY(Nm)

( go(Y(om)) ’O(om)

(Nrn)l
\ gl(Y(Nm)) )
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(m+l) (m) (m) .(m) (m)and Yi Yi -[-/..xy 0 N. Here Yi is the ruth iterate value for yi, /--xYi is

the corresponding Newton correction, (m) 0, (m)
andri Oyi OYi+l

are the ith residual function

component and its derivatives evaluated at y}rn) and y(m) and go(y(om)), gl (y(Nm)), Og(m) andi+1’ 0y0
Ogl (m)

are the boundary conditions and derivatives evaluated at yom) and yNm)
When a MIRK scheme is used as the underlying discretization the ith component of the

residual function takes the form

(2.1) ti Yi+l Yi hi brKr,
r=l

where the stages, Kr, are given by

(2.2) Kr f ti + crhi, (1 Vr)Yi q- VrYi+l -+- hi xrjg r 1 s.
j=l

Because the stages are defined explicitly in terms of the unknowns yi and yi+ 1, these methods
can be implemented quite efficiently (see, e.g., [Cash, 1986]). The corresponding partial
derivatives are also easily computed. We get

Oi
-I-hi -br OKr

and
O(i

I-hi -br OKr
(2.3)

Oyi r=l Oyi OYi+l r=l OYi+l

where, for r 1 s,

(2.4)
Ogr

Jr (1 l)r)I -- hi Xrj and Jr l)rI q- hi Z Xrj
YiOyi j=l OYi+l j=l +1

Here Jr is the evaluation of Of(t,y(t)) at the argument of the rth stage of the MIRK scheme, asOy
in (2.2). If the Newton iteration does not converge, we go to step (5), with a new mesh that is
obtained by halving each subinterval of the current mesh, and with the same current solution
approximation.

(2) The converged Newton iteration yields a discrete solution approximation, {yi N}i--0’ for
the given mesh. We next use an associated CMIRK scheme to construct a C1 continuous
solution approximation over the entire problem interval. The CMIRK scheme will usually
employ the stages (2.2) of the MIRK scheme as well as a few additional stages of the same
form as those in (2.2). It is important to note that the evaluation of these additional stages
involves only explicit calculations and these are only performed after the Newton iteration
has converged. As a result, the cost of obtaining the required continuous approximation is
relatively small. On each subinterval the CMIRK scheme provides a polynomial interpolant to
the approximate solution over that subinterval. The interpolant is obtained using information
that is local to the step. (This is particularly relevant for a parallel implementation where it is
important that the calculations for each subinterval be based only on local information.) The
continuous solution approximation, u(t), has the same order of accuracy as the underlying
discrete solution. The defect, (t), is then given by

(t) u’(t) f (t, u(t)), a < < b.

We sample the defect on each subinterval to obtain an estimate of its magnitude on that
subinterval and terminate if this estimate is less than a given user-defined tolerance.
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(3) If the termination condition is not met, the relative sizes of the maximum defect
estimates associated with each subinterval are examined in the mesh selection algorithm to
determine a more appropriate mesh. The basic idea is to redistribute the mesh while possibly
adding or deleting points so that the maximum defect estimates obtained on the new mesh
will be approximately the same on each subinterval (equidistribution of the defect) and will be
bounded by the user tolerance. The maximum defect estimates are employed within a monitor
function which provides the basis for the equidistribution process. Based on these considera-
tions a new mesh is determined by employing standard strategies such as described in [Ascher,
Mattheij, and Russell, 1988, Chap. 9, 1]. The algorithm is terminated, unsuccessfully, if the
predicted number of mesh points for the new mesh is too large (according to a user-defined
storage restriction).

(4) When a new mesh is determined, the continuous solution approximation is used to
compute an initial discrete solution approximation for the next discrete problem and associated
Newton iteration.

(5) This algorithm is then repeated, beginning at step (1), using the new mesh and solution
approximation.

3. CMIRK schemes.

3.1. Overview. In the paper [Muir and Owren, 1993], the class of CMIRK schemes is
investigated and we refer the reader to that paper for a description ofthese schemes. For the ith
subinterval, the basic form of a CMIRK scheme is a polynomial in 0 (where 0 (t ti)! hi),

S*

(3.1) u(t) u(ti -I-Ohi) Yi -t- hi

_
br(O)gr, 0 < 0 < 1, ti <_ <_ ti+l,

r=l

with s* stages, Kr, of the same general form as in (2.2). (Usually the first s stages are those of
an associated MIRK scheme. In such a case, the MIRK scheme is said to be embedded within
the CMIRK scheme.) The main difference between MIRK schemes and CMIRK schemes is
that the weight coefficients, {br }Sr= 1’ ofthe MIRK scheme are replaced by weight polynomials,

S*{br(O)}r=l, in the CMIRK scheme.
In [Muir and Owren, 1993] multiparameter families ofCMIRK formulas having a minimal

number of stages for each order p 6 are presented. Similarly, [Burrage, Chipman
and Muir, 1994] identifies multiparameter families of discrete MIRK schemes having a min-
imal number of stages for each order p 1 6. We will employ in our software the
standard symmetric MIRK schemes of orders four and six. These two schemes are included
in the families presented in [Burrage, Chipman, and Muir, 1994] and were first mentioned
in the literature in [van Bokhoven, 1980]. We choose symmetric schemes since this can be
advantageous (see [Ascher, Mattheij, and Russell, 1988, p. 440]). Since it is efficient to reuse
the stages from the MIRK scheme within the CMIRK scheme, we will embed the MIRK
schemes within optimal CMIRK schemes from [Muir and Owren, 1993], when possible.

In the remainder of this section we will present fourth-order and sixth-order CMIRK
schemes containing optimal embedded MIRK schemes. These representative schemes will
give us the opportunity to assess the role that the order of the MIRK and CMIRK schemes
plays in the overall performance of a BVODE code. We are currently extending the results
of [Burrage, Chipman, and Muir, 1994] and [Muir and Owren, 1993] to develop eighth-order
MIRK and CMIRK families. An eighth-order MIRK scheme has already appeared in the
literature (see, e.g., [Gupta, 1985]).

The coefficients defining a CMIRK scheme are usually presented in the form of a tableau
as in Table 3.1.
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TABLE 3.1

Cl U1 0 0 0 0

C2 U2 X21 0 0 0

Cs-1 ;s-1 Xs-l,1 Xs-l,2 0 0
Cs Us Xs, Xs, Xs,s 0

bl(0) b2(0) bs-l(O) bs(O)

TABLE 3.2
Afour-stagefourth-order CMIRKscheme.

o 0 o 0 o
0 o 0 o

-1

i T o o

3 -9

6- 6-" 0 0

bl (0) b2(0) b3(0) b4(0)

3.2. CMIRK schemes of fourth order. The general form for the family of fourth-order
CMIRK schemes is given in [Muir and Owren, 1993]. It uses four stages and has free pa-
rameters ca, c4, and v4. It is possible to choose ca so that the unique optimal, three-stage,
fourth-order discrete MIRK scheme ([van Bokhoven, 1980], Method VI) is embedded within
this CMIRK family. The first three stages of the CMIRK scheme will be the same as those of
this MIRK scheme and the values of the first three continuous weight polynomials at 0 1
will be the weights of the discrete scheme.

A careful analysis to determine suitable optimization criteria based, for example, on
minimizing the error coefficients ofthe dominant error terms followed by a thorough numerical
investigation would be needed to determine optimal values for the remaining free parameters,
c4 and v4. However, experience with the selection of such parameters for explicit Runge-
Kutta pairs (see, e.g., [Sharp and Smart, 1993]) has indicated that as long as one avoids
"pathological choices" for these parameters, the overall performance of a code will not be
particularly sensitive to the choice of these parameters. After some preliminary testing to

3 and U4
27establish that the choices lead to reasonable schemes, we Chose c4 . This

gives the fourth-order CMIRK scheme, given in Table 3.2, where

0 (20 3)(202 30 + 2)
bl(O) b2(O)

6

02 (9- 200 + 1202)

202 (9- 140 + 602) 1602 (0 1)2
b3(0) b4(0)

3 3

3.3. CMIRK schemes of sixth order. A particular family of eight-stage, sixth-order
CMIRK schemes is given in [Muir and Owren, 1993]. Although the family has nine free
parameters ca, c4, c5, c6, c7, v7, c8, vs, x81, it is not possible to embed within it the standard
five-stage, sixth-order discrete MIRK schemes ([van Bokhoven, 1980], Method VIII). In order
to get a family ofsixth-order CMIRK schemes within which the optimal five-stage, sixth-order
discrete scheme of [van Bokhoven, 1980] can be embedded, it is necessary to look outside
the sixth-order CMIRK family in [Muir and Owren, 1993] and derive a new sixth-order
CMIRK family. An analysis of the continuous order conditions up to order six shows that
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0 0

TABLE 3.3
A nine-stage sixth-order CMIRK scheme.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

9 -3
0 0 0 0 0 0 0

64 64
3 -9

0 0 0 0 0 0 0
64 64
-5 5 2 -2

0 0 0 0 0
24 24 3 3
1547 -1225 749 -287 -861

0 0 0 0
32768 32768 4096 2048 16384
83 -13 283 -167 -49

0 0 0
1536 384 1536 1536 512
1225 -1547 287 -749 861

0 0 0
32768 32768 2048 4096 16384
233 -19 -5 7 -17

0 0 0
3456 1152 72 72 216

bl(0) b2(0) b3(0) b4(0) b5(0) b6(0) b7(0) b8(0) b9(0)

such a scheme may require one additional stage beyond that required by an optimal continuous
CMIRK scheme of sixth-order. Hence we have derived a nine-stage, sixth-order CMIRK
family with an optimal embedded five-stage, sixth-order MIRK scheme, which we present
in Table 3.3. The free parameters have been chosen to avoid "pathological cases," as was
done for the fourth-order case. The first five stages of the CMIRK scheme are the stages of
this MIRK scheme. The first five weight polynomials evaluated at 0 1 are the weights of
this MIRK scheme. Recall, from 2, that the Newton iteration will employ .only the five-stage
discrete MIRK scheme and only after the Newton iteration converges will the extra four stages
be evaluated in order to determine the CMIRK scheme.

The weight polynomials in Table 3.3 are

0 (334530- 12873150- 166210002 + 1004340003- 1146777604 + 406528005)
bl (0)

334530

b2(O)
02 (3083913 253415800 + 6265740002 6287462403 + 2265702404)

2341710

b3(0)
1602 (8505- 694300 + 16878002 16435203 + 5632004)

7965

b4(0)
1602 (8505- 694300 + 16878002 16435203 + 5632004)

7965

bs(0)
202 (8505- 694300 + 16878002 16435203 + 5632004)

2655

b6(O)
102402 (4556802 --458560 q- 7533) (0 1)2

33453

b7(O)
12802 (12802 1280 + 21)(0 1)2

15

102402 (13414402 1321280 + 21609) (0 1)2
b8(0)

234171
b9(0)

1638403 (0 1)3

441
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4. Implementation issues. In this section we comment on several of the .algorithms
and heuristics employed within the software we have written for the numerical solution of
BVODEs, based on continuous MIRK schemes and defect control, for which the general
algorithm was given in 2. The reader is referred to [Enright and Muir, 1993] for further
details related to this discussion.

4.1. The modified Newton iteration. To solve the system, (Y) 0, described in 2,
we use a combination of a damped Newton iteration and a fixed Jacobian iteration, with a
scheme for switching between the two. The switching scheme involves monitoring the rate
of decrease of a function known as the "natural criterion function,"
(see, e.g., [Ascher, Mattheij, and Russell, 1988, Chap. 8]), where y(m) is the ruth iterate, ,(Y)
is the residual function defined in 2, and J (Y) is the Jacobian of (Y).

A point ofsome concern here is the evaluation ofthe blocks ofthe Newton matrix, as given
in (2.3). The literature for initial value ODEs (see, e.g., [Butcher 1987, p. 214]) indicates that
the usual practice is to evaluate of at only one point on each subinterval, with this one valueOy
being used in place of each instance of Jr arising in (2.4). For boundary value ODEs, [Cash,
1986, p. 1037] describes an approach which involves evaluating y once for each subinterval.

This same idea is mentioned in [Ascher, Mattheij, and Russell, 1988, p. 217]. On the other
hand, the COLNEW code performs evaluations Of y at each of the s collocation points of
each subinterval. We implemented both approaches, i.e., a scheme with one evaluation per
subinterval and a scheme with s evaluations per subinterval, as in (2.4). We found major
differences in performance between the two approaches, especially when applied to difficult
nonlinear problems. When using the single Jacobian evaluation per subinterval approach, we
found some savings in the cost of computing the Jacobian blocks, but the resulting degradation
in the performance of the Newton iteration more than offset these savings. Not only was the
rate of convergence for the single Jacobian evaluation approach much slower, but also the
likelihood of achieving convergence was much lower. This suggests that on some problems it
is better to incur the extra cost of using multiple Jacobian values on each subinterval in order
to achieve a lower overall cost, and we have adopted this approach.

4.2. Defect estimation. Both the termination criterion and the mesh selection algorithms
we employ require an estimate of the maximum value of the defect on each subinterval, as
discussed in 2. To avoid excessive computational costs, it is important to obtain an estimate
ofthese maximums by sampling the defect at as few points as possible. In an analogous
setting, COLNEW samples the global error at two points per subinterval but it is indicated in
[Ascher and Jacobs, 1989] that sampling at the s collocation points of each subinterval can
be advantageous. In the initial value ODE setting, defect estimation based on one sample
point per step has been found to be quite reliable (see, e.g., [Enright, 1989b]). Employing a
standard analysis for continuous Runge-Kutta schemes, we determined suitable candidates for
the defect sample points, 0 _< 0* _< 1, within each subinterval, for the two CMIRK schemes
of 3. For the fourth-order CMIRK scheme we choose 0* 0.226, while for the sixth-order
CMIRK scheme we choose 0* 0.716.

We performed numerical experiments to determine the reliability of one-point sampling
and also two-point sampling, with the second sample point chosen to be 0* (due to
the presence of certain symmetries in the form of the defect). We compared the estimates
for each subinterval with a "true" maximum defect obtained by sampling the defect at many
points on the subinterval, and monitored the number oftimes that the estimation schemes were
deceived, i.e., reported amaximumdefect thatwas less than20% ofthe "true" maximum defect.
We found that sampling at two points provided substantially more reliability; the maximum
percentage of deceptions reported by the two-point sampling scheme was usually an order of
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magnitude smaller than that ofthe one-point sampling scheme, and was generally 1% or lower.
Furthermore, although the execution time specifically associated with the defect estimation
module was approximately doubled when two-point sampling was used, the overall execution
cost was approximately the same. This occurs because the availability of a sharper estimate
of the defect profile over the mesh subintervals allows the mesh redistribution algorithm to
determine meshes that are better suited to the underlying solution behavior, thus leading to a
final acceptable solution more quickly.

4.3. Mesh selection. We refer the reader to [Ascher, Mattheij, and Russell, 1988, Chap. 9]
for an overview of a genetic mesh selection algorithm for BVODE codes. The mesh selection
algorithm we have implemented is based on this model algorithm but uses defect estimates
rather than global error estimates as the basis for the equidistribution process. There are several
parameters that control various aspects of the performance of a mesh selection algorithm, such
as the frequency of application of the refinement and redistribution process and the estimation
of the number of points needed for the new mesh. We conducted a number of experiments
to examine several of these parameters and have reported the results in [Enright and Muir,
i993]. One result concerns the parameter which determines when the redistribution is applied.
In COLNEW, the value of this parameter is chosen so that mesh redistribution is used only
when the maximum error estimate over all subintervals is much larger than the average value,
and as a result, mesh redistributions within COLNEW are infrequent. We have profiled our
software and have noted that the execution costs associated with the mesh selection algorithm
are relatively small, so efficiency concerns over execution costs directly associated with the
mesh selection module are not an issue. Further testing has indicated that substantial savings
in overall execution costs are usually obtained when mesh redistribution is employed, and
thus our software invokes its mesh redistribution algorithm for every converged solution. This
makes it possible to adapt the mesh to the approximate solution more quickly than when mesh
doubling is used.

It should be noted that the defect estimate can be computed and the termination criterion
applied whenever a converged solution is obtained on a given mesh. This can be contrasted
with the scheme used in COLNEW where termination occurs only when the current solution
can be compared with the previously computed solution obtained on a mesh which is exactly
half the current one. (That is, the current mesh is obtained by halving each subinterval of the
previous mesh.) This appears to have influenced the choice within COLNEW to favor mesh
doubling over mesh redistribution.

5. Performance analysis.

5.1. Overview. In this sectionwe present some results on the performance ofourBVODE
software, called MIRKDC, which uses MIRK and CMIRK schemes and defect control, as
described in the previous sections. We will present results for 18 test problems selected from
three problem families. In order to demonstrate that the performance of MIRKDC on this test
set is reasonable, we will also present the results of applying COLNEW to this same test set.
It is not the purpose of this paper to conduct a comparison of these codes. See [Pereyra and
Russell, 1982] for a discussion ofthe difficulties involved in such comparisons. The purpose of
presenting these results is to show that the performance of MIRKDC is reasonable, compared
to that ofa well-known, widely usedpackage, for a particular test set. It is essential to have both
codes treat the same problem class and to apply the tolerance request in the same way. Thus
we consider the solution of first-order systems with the same tolerance applied to all solution
and derivative components since this is the problem class that MIRKDC can currently handle.
COLNEW has more flexibility; e.g., it can handle mixed-order multipoint ODE systems
directly and can apply different tolerances to each solution and derivative component.
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We shall quantify the performance according to several criteria. For each test problem, we
will first presem a "performance profile." This traces the sequence of discrete problems that a
code attempts during its efforts to compute a final solution. The performance profile consists
of a list of ordered pairs, (n, q), one pair for each discrete system, where n is the number of
subimervals in the mesh from which the discrete system was derived, and q is the number of
Newton iterations performed on that discrete problem. The profile gives an indication of the
costs incurred by the code in attempting to solve the given problem. In addition to the profile,
our assessmem of the performance of each code on a given problem will include the CPU
time (in seconds, on a DEC Micro-Vax 3800), the global error of the computed solution, and
the defect of the solution. The global error is computed by comparing the computed solution
with a high accuracy numerical solution at one hundred points uniformly distributed over the
problem interval.

An additional difficulty here is that COLNEW controls the global error while MIRKDC
controls the defect. These two measures of solution quality are not equivalent (although they
are related as mentioned earlier and as given in [Ascher, Mattheij, and Russell, 1988, Chap. 3,
4]). COLNEW is not designed to control the defect and would require modification in order
to allow it to compute a continuous solution approximation appropriate for use in a defect
control setting. On the other hand, the global error of the continuous solution produced by
MIRKDC can be measured, even though this quantity is not controlled by the code. Thus
we arrange for each code to return a solution for which the global error on each solution and
derivative componem is within a given tolerance. Since COLNEW is designed to control the
global error, it is straightforward to make this specification to COLNEW. MIRKDC controls
the defect so, for each test problem, we experimentally determine a tolerance for the defect
that will yield a solution whose global error is within the desired tolerance.

COLNEWcanhandle mixed-orderBVODEsystems directly and this is often an advantage
over all codes that can treat only first-order systems. Since MIRKDC can only handle first-
order systems, our set of test problems will be presented as first-order systems. However
there are possibilities for improving the flexibility ofMIRK-based BVODE solvers. When we
consider a BVODE system obtained from the conversion of a mixed-order system to a first-
order system, we note that the matrices that arise during the setup ofthe almost block diagonal
system do exhibit some structure which could be exploited by a special purpose algorithm. We
are curremly investigating matrix setup algorithms which will take advantage of this special
structure. Another approach we are also investigating involves developing extensions of the
MIRK and CMIRK formulas for the direct treatment of higher-order ODE systems (analogous
to the situation for initial value ODE problems where Runge-Kutta-Nystrom formulas are
available).

For each test problem, we require each code to compute two solutions, one with a global
error of less than 10-6 and one with a global error of less than 10-8. For MIRKDC, for each
test problem, we give the tolerance value that was imposed on the defect in order to obtain
a solution with the desired global error. We provide results for both fourth- and sixth-order
methods. A "*" indicates that the Newton iteration for a discrete problem did not converge.
A failure is indicated (by the entry FAIL) if a code required more than 2000 subintervals to
solve the problem. In all cases where failure occurred, the performance profile was always
(10, .), (20, .), (40, .), (80, .), (160, .), (320, .), (640, .), (1280, .), so we do not list it in
the tables.

We make the observation that all the test problems we consider here are single problem
instances, although they are chosen from problem families. In particular, no use is made
of "parameter cominuation," in which the solution and mesh from one problem are used as
the initial solution guess and initial mesh for a more difficult problem from the same family.
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Profile
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TABLE 5.1
COLNEWon Problem 1" fourth order, tol 10-6.

1.0 0.1 0.05 0.01 0.005 0.001

(5,2)
(10, 1)

(5,2)
(10,1)
(20, 1)
(40, 1)

0.0005

(5, 3) (5, ,)(116, 1) (5, ,)(71, 1) (5, ,)(40, 1) (5, ,)(80, 1)
(10, 1) (10, 5) (10, 6)(142, 1) (10, 9)(80, 1) (10, .)(160, 1)
(20, 1) (20, 1) (10, 1) (10,2)(160, 1) (20, ,)(110, 1)
(40, 1) (40, 1) (20, 1) (20, 2)(320, 1) (40, 10)(220, 1)
(80, 1) (80, 1) (40, 1) (20, 1) (40, 1)(440, 1)

(58, 1) (80, 1) (40, 1) (40, 1)
1.415 1.697 2.963 6.869

1.6.10-7 1.8.10-7 1.2.10-7 2.4.10-8

9.4.10-4 2.0.10-3 3.9.10-3 2.1.10-3

0.078 0.313 0.645
8.3. 10-7 2.3.10-7 6.2.10-8

1.0.10-4 2.1.10-4 1.5.10-4

Profile

Time

Error
Defect

TABLE 5.2
MIRKDC on Problem 1: fourth order, error 10-6.

1.0 0.1 0.05 0.01 0.005

6.10-7 8.10-6 2.10-6 2-10-6 3.10-6
0.001 0.0005

4. 10-6 3.10-7

(5, 1) (5, 1) (5, 1) (5,,2) (5, .)(125, 1)
(16, 1) (20, 1) (20, 1) (20,2) (10,2)
(21, 1) (29, 1) (45, 1) (80, 1) (40, 1)

52, 1) (111, 1) (104, 1)

(5, ,)(153, 1) (5, 5)(323, 1)
(10, 4)(175, 1) (20, .)(373, 1)
(40, .)(192, 1) (40, 5)
(80, 4) (160, 1)

0.059 0.078 0.169 0.358
3.7.10-7 9.6.10-7 7.6.10-7 7.2.10-7

3.5.10-7 4.3.10-6 1.5.10-6 3.0.10-6

0.468 1.468 1.667

8.9.10-7 8.4.10-7 8.0- 10-7

4.5.10-6 9.7.10-6 2.0.10-6

This causes the performance of the Newton iteration to play a larger role in determining the
execution time required by the code to solve a given problem. If the performance of a code is
examined in a parameter continuation setting, one expects the initial guesses and meshes will
be sufficiently good that the Newton iterations usually Will converge more readily, and thus
the costs of other parts of the codes will play a larger role in determining overall performance.
Of course, the success of a parameter continuation scheme depends heavily on the strategy
used to select the parameter steps; thus in our current study we avoid the use of parameter
continuation, preferring to study code performance in the simpler setting where each problem
is solved independently.

5.2. Numerical results. For each problem family, the initial guesses for the solution
are chosen to be straight lines through the boundary conditions, where applicable, and zero
otherwise.

The first family oftest problems is the Swirling Flow III family given in [Ascher, Mattheij,
and Russell, 1988, p. 23]. The problem statement given there, however, has a slight error. The
corrected form of the problem, which can be found in, for example, [Batchelor, 1951], is

ef" d- ff’" d- gg’ 0, eg" q- fg’ f’g O,

with

f(0)-- f(1)-- f’(0)----- f’(1) ---0, g(O) f2o, g(1) "1.

For our testing, we chose if20 1 and ’1 --1 (which specifies a counter-rotating disk
problem) and consider values of the viscosity parameter e 1.0, 0.1, 0.05, 0.01, 0.005, 0.001,
0.0005. The results are given in Tables 5.1-5.8.
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TABLE 5.3
COLNEWon Problem 1: fourth order, tol 10-8.

0.1 0.05 0.01 0.005 0.001 0.0005

(5,2)
(10,1)
(20, 1)
(40, 1)

(5, 3) (5, 3) (5, .)(320, 1)
(10, 1) (10, 1) (10, 6)
(20, 1) (20, 1) (20, 1)
(40, 1) (40, 1) (40, 1)
(80, 1) (80, 1) (80, 1)
(160, 1) (160, 1) (80, 1)

(160, 1)

(5, ,)(160, 1) (5, .)(80, 1) (5, ,)(160, 1)
(10, 7)(320, 1) (10,9)(160, 1) (10,,)(160, 1)
(10, 1) (10, 2)(320, 1) (20, .)(320, 1)
(20, 1) (20,2)(640, 1) (40, 10)(640, 1)
(40, 1) (20, 1)(325, 1) (40, 2)
(80, 1) (40, 1)(650, 1) (40,2)
(80, 1) (40, 1) (80, 2)

0.28 1.13 1.15
2.5.10-9 8.6.10-l 4.1.10-9

1.8.10-6 3.4.10-6 1.9.10-5

3.00 3.13 9.73 9.26

2.2.10-9 6.3.10-9 1.0.10-9 5.4.10-9

4.6.10-5 1.8.10-4 2.3.10-4 6.8.10-4

TABLE 5.4
MIRKDC on Problem l" fourth order, error 10-8.

1.0 o. 0.05

7.10-9 8.10-8 1.10-8
0.01 0.005 0.001 0.0005

3.10-8 3.10-8 3.10-8 3.10-9

(5,1) (5,1) (5,1)
(20, 1) (20, 1) (20, 1)
(52, 1) (71, 1) (80, 1)

(92, 1) (168, 1)

(5, 3)(323, 1) (5, 5)(341, 1)
(20, 2) (,10, 2)(397, 1)
(80, 1) (40, 1)
(256, 1) (160, 1)

(5, .)(320, 1) (5, 5)(640, 1)
(10,4)(536, 1) (20,,)(1071, 1)
(40, .)(595, 1) (40,5)(1186, 1)
(80, 4) (160, 1)

0.106 0.259 0.393

1.0.10-8 9.5.10-9 7.0.10-9

9.3.10-9 5.3.10-8 1.3.10-8

1.000 1.390 2.821 4.852

9.9.10-9 9.1.10-9 9.0.10-9 9.1.10-9

2.7.10-8 2.4.10-8 2.8.10-8 3.4.10-9

TABLE 5.5
COLNEWon Problem 1: sixth order, tol 10-6.

1.0 0.1 0.05 0.01 0.005 0.001 0.0005

(5,2)
(10, 1)

(5, 3) (5, 3) (5, ,) (5, ,)(80, 1)
(10, 1) (10, 1) (10, 5) (10, 5)

(20, 1) (20, 1) (20, 1)
(40, 1) (40, 1)

(5, ,)(20, 1) (5, ,)(20, 1)
(10, 9)(40, 1) (10, 11)(40, 1)
(10, 1)(80, I) (10, 1)(80, 1)
(20, 1) (20, 1)

0.178 0.183 0.410 1.053

2.2.10-l 9.6.10-8 1.1.10-8 3.6.10-8

4.3.10-8 1.3.. 10-5 6.4.10-6 9.4.10-5

1.875 2.557 2.646

5.0.10-9 2.3.10-8 1.3.10-7

3.8.10-5 4.1.10-4 2.7.10-3

TABLE 5.6
MIRKDC on Problem 1: sixth order, error 10-6.

1.0 0.1 0.05 0.01 0.005 0.001 0.0005

1.10-4 6.10-5 1.10-4 1.10-5 9.10-6 5.10-6 7.10-6

(5, 1) (5, 1) (5, 1) (5, 2)(42, 1)
(10, 1) (12, 1) (20, 1)
(12, 1) (15, 1) (38, 1)

(5, 3)(49, 1) (5, 14)(74, 1) (5, 11)(82, 1)
(20, .)(53, 1) (20, .)(82, 1) (20, .)(90, 1)
(40, 3) (40, 4)(90, 1) (40, 5)

0.015 0.074 0.090 0.310 0.933 1.232 1.118

6.1.10-7 7.0.10-7 9.5.10-7 5.7.10-7 6.6.10-7 4.9.10-7 9.4.10-7

4.5.10-6 1.1.10-5 2.6.10-5 2.6.10-6 1.8.10-5 3.7.10-6 8.1.10-6

The second problem family is the Swirling Flow I family from [Ascher, Mattheij, and
Russell, 1988, p. 22]. It includes the problem parameters L, the length ofthe problem interval,
and y, the Rossby number. For our testing, we chose L 10.0 and values of 9/ 0.0, 5.0,
10.0, 20.0, 50.0, 100.0. The results are given in Tables 5.9-5.16.
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1.0

(5,2)
(10, 1)

TABLE 5.7
COLNEWon Problem 1: sixth order, tol 10-8.

0.1 0.05 0.01 0.005 0.001 0.0005

(5, 3) (5, 3) (5, ,)(80, 1) (5, ,)(80, 1) (5, ,)(20, 1)
(10, 1) (10, 1) (10, 6)(160, 1) (10, 6)(160, 1) (10, 10)(40, 1)
(20, 1) (20, 1) (20, 1) (20, 1) (10, 1)(80, 1)

(40, 1) (40, 1) (40, 1) (20, 1)(160, 1)
0.169 0.348 0.778 1.955 3.589 4.212

2.2.10-l 1.4.10-9 1.6.10-l 5.0.10-l 8.7.10TM 5.2.10-l

4.3.10-8 4.8.10-7 2.3.10-7 3.5.10-6 1.3.10-6 1.5.10-5

(5, .)(20, 1)
(10, 11)(40, 1)
(10, .)(80, 1)
(20, 3)(160, 1)

4.702

2.5.10-9

1.0.10-4

Profile
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TABLE 5.8
MIRKDC on Problem 1: sixth order, error 10-8.

1.0 0.1 0.05 0.01 0.005 0.001

5.10-7 8.10-7 6.10-7 1.10-7 1.10-7 7.10-8
0.0005

7.10-8

(5, 1) (5, 1) (5, 1) (5, 3)(87, i) (5, 3)(92, I)
(9, 1) (18, 1) (20, 1) (20, 1) (20, .)(104, 1)

(23, 1) (32, 1) (72, 1) (40, 3)

(5, 14)(135, I) (5, 11)(150, 1)
(20, ,)(162, 1) (20, ,)(183, 1)
(40, 4)(178, 1) (40, 5)(201, 1)

0.039 0.125 0.161 0.541 1.178
6.9.10-9 7.2.10-9 8.6.10-9 8.5.10-9 8.6.10-9

8.4.10-8 2.1.10-7 2.9.10-7 3.6.10-8 3.6.10-8

1.886 2.160

8.1.10-9 8.8.10-9

2.0.10-8 3.6.10-8

y=
Profile
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TABLE 5.9
COLNEWon Problem 2: fourth order, tol 10-6.

0.0 5.0 10.0 20.0 50.0 100.0

(5, 7) (5, 5) (5, 6) (5, 10)(320, 1)
(10, 1) (10, 2) (10, 2) (10, 3)
(10, 1) (10, 1) (10, 1) (10, 2)
(20, 1) (20, 1) (20, 1) (20, 1)
(40, 1) (40, 1) (40, 1) (40, 1)

(80, 1) (80, 1) (80, 1)
(160, 1) (160, 1) (160, 1)

(5, 14)(40, 1) (5, 13)(40, 1)
(10, 7)(80, 1) (10, 8)(40, 1)
(10,2)(160, 1) (10, 6)(80, 1)
(20, 1)(320, 1) (10, 2)(160, 1)
(20, 1) (20, 1)(320, 1)
(20, 1) (20, 1)(160, 1)
(40, 1) (20, 1)(320, 1)

0.304 0.988 1.015 1.998

2.4.10-7 4.7.10-8 6.0.10-7 4.8.10-8

7.5.10-5 1.9.10-4 1.6.10-3 1.5.10-3

2.360 3.763

8.1.10-8 5.2.10-8

2.5.10-3 8.2.10-3

tol =#
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TABLE 5.10
MIRKDC on Problem 2: fourth order, error 10-6.

0.0 5.0 10.0 20.0 50.0 100.0

5.10-7 1.10-6 6.10-7 3.10-7 6.10-7 1.10-7

(5, 5) (5, 3) (5, 5) (5, 6)(282, 1) (5, ,)(282, 1) (5, ,)(459, 1)
(20,1) (20,1) (20,2) (20,2) (10,6)(313,1) (10,7)(554,1)
(36, 1) (80, 1) (80, 1) (80, 1) (40, 2)(334, 1) (40, 3)(609, 1)

(111, 1) (163, 1) (234, 1) (160, 1) (160, 1)
0.151 0.730 0.623 0.884 2.303 2.161

9.9.10-7 7.1.10-7 8.9.10-7 7.9.10-7 7.9.10-7 7.0.10-7

6.0.10-7 9.4.10-7 1.2.10-6 3.1.10-7 5.3.10-7 1.6.10-7

The third problem family is the Shock Wave family from [Ascher, Mattheij, and Russell,
1988, p. 21]. It includes the problem parameter, e, the inverse of the Reynold’s number. For
our testing, we chose 1.0, 0.1, 0.05, 0.02, 0.0175. The results are given in Tables 5.17-5.24.
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TABLE 5.11
COLNEWon Problem 2: fourth order, tol 10-8.

0.0 5.0 10.0 20.0 50.0 100.0

(5, 7) (5, 6)(320, 1) (5, 7)(320, 1) (5, 11)(320, 1) (5, 14)(80, 1)
(10,1) (10,2) (10,2)(640,1) (10,3)(268,1) (10,7)(80,1)
(10, 1) (10, 1) (10,2) (10,2)(536, 1) (10,3)(160, 1)
(20, 1) (20, 1) (20, 1) (20, 1) (20, 2)(320, 1)
(40, 1) (40, 1) (40, 1) (40, 1) (20, 1)(320, 1)
(80, 1) (80, 1) (80, 1) (80, 1) (20, 1)(640, 1)
(160, 1) (160, 1) (160, 1) (160, 1) (40, 1)

(5, 13)(40, 1)
(10, 8)(80, 1)
(10, 7)(160, 1)
(10, 2)(320, 1)
(20, ,)(320, 1)
(40, 3)(320, 1)
(40, 1)(640, 1)

0.887 1.948 3.706 4.176 5.096 6.423
9.1.10-10 3.7.10-9 2.1.10-9 1.5.10-9 2.0.10-9 3.3.10-9

1.3.10-6 2.4.10-5 2.5.10-5 5.3.10-5 1.9.10-4 6.7.10-4

TABLE 5.12
MIRKDC on Problem 2: fourth order, error 10-8.

0.0 5.0 10.0 20.0 50.0 100.0

4. 10-9 1.10-8 7.1.0-9 3.10-9 5.10-9 9.10-10

(5, .)(640, 1)
(10, 6)(949, 1)
(40, 2)(1043, 1)
(160, 1)

(5, 5) (5, 3)(356, 1) (5, 5)(516, 1) (5, 6)(752, 1)
(20, 1) (20, 1) (20, 2) (20, 2)(888, 1)
(80, 1) (80, 1) (80, 1) (80, 1)
(124, 1) (278, 1) (320, 1) (320, 1)

(5, ,)(640, 1)
(10, 7)(1508, 1)
(40, 3)(1783, 1)
(160, 1)(1961, 1)

0.235 1.053 1.044 1.713 3.351 3.233

9.0.10-9 6.6.10-9 9.2.10-9 8.3.10-9 9.2.10-9 6.4.10-9

3.6.10-9 8.0. 10-9 7.9.10-9 2.5.10-9 3.9.10-9 9.0.10-10

y=
Profile

TABLE 5.13
COLNEWon Problem 2: sixth order, tol 10-6.

0.0 5.0 10.0 20.0 50.0 100.0

(5, 19)(40, 1)
(10, 2)(21, 1)
(10,1)(42,1)
(20, 1)

(5, 7) (5, 5) (5, 7)(28, 1) (5, 11)(80, 1)
(10, 1) (10, 1) (10, 1) (10, 2)
(20, 1) (20, 1) (20, 1) (20, 1)

(40, 1) (14, 1) (40, 1)
0.433 0.644 0.760 1.524 1.671

7.4.10-8 1.2.10-7 1.1.10-7 6.1.10-9 1.7.10-7

9.6.10-6 2.5.10-5 4.4-"10-4 4.0.10-4 3.6- 10-3
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TABLE 5.14
MIRKDC on Problem 2: sixth order, error 10-6.

0.0 5.0 10.0 20.0 50.0
1.10-5 1.10-5 3.10-5 1.10-5 3.10-5

(5, 5) (5, 9) (5, ,) (5, ,)(61, 1) (5, ,)(63, 1)
(12, 1) (20, 13) (10, 5) (10, ,)(67, 1) (10, ,)(69, 1)
(14, 1) (35, 1) (34, 1) (20, 5) (20, ,)(75, 1)

(38, 1) (41, 1) (52, 1) (40, 20)
0.106 0.624 0.318 0.901 2.013

4.7.10-7 2.0.10-7 8.5.10-7 4.0.10-7 6.5.10-7

2.4.10-6 2.8.10-6 1.9.10-5 3.8.10-6 2.0.10-5

100.0

5.10-6

(5, ,)(89, 1)
(10, ,)(97, 1)
(20, ,)(106, 1)
(40, 12)(116, 1)

1.791

6.0.10-7

3.2.10-6

5.3. Discussion of results. These results demonstrate that the observed performance of
MIRKDC can be comparable to that ofCOLNEW over a range of accuracy requests and prob-
lem difficulties, when we consider first-order systems with uniform tolerance requirements.
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Profile

Time

Error
Defect

tol :=
Profile

Time

Error
Defect

TABLE 5.15
COLNEWon Problem 2: sixth order, tol 10-8.

0.0 5.0 10.0 20.0 50.0 100.0

(5, 7)(20, 1) (5, 5)(23, 1) (5, 7)(40, 1) (5, 12)(40, 1) (5, 19)(40, 1)
(10, 1) (10, 1)(46, 1) (10, 1)(80, 1) (10,2)(80, 1) (10,3)(40, 1)
(20, 1) (20, 1) (20, 1) (10, 1)(160, 1) (10,2)(80, 1)
(10, 1) (40, 1) (20, 1) (20, 1) (20, 1)

(5,,)
FAIL

0.541 1.039 1.354 2.592 2.460
1.0.10-9 1.5.10-9 5.5.10-’10 1.1. 10-10 2.6.10-9

3.3.10-7 2.3.10-6 6.0. 10-6 1.8.10-5 2.0.10-4

TABLE 5.16
MIRKDC on Problem 2: sixth order, error 10-8.

0.0 5.0 10.0 20.0 50.0 100.0

2.10-7 5.10-7 5.10-7 1.10-7 2.10-.7 5.10-8

(5,5) (5,9)
(20, 1) (20, 13)
(25, 1) (53, 1)

(61,1)

(5, ,)(82, 1) (5, ,)(125, 1) (5, ,)(121, 1) (5, ,)(160, 1)
(10,5) (10, ,)(137, 1) (10, ,)(143, 1) (10, ,)(201, 1)
(40, 1) (20, 5) (20, ,)(157, 1) (20, ,)(221, 1)
(75, 1) (80, 1) (40, 20) (40, 12)(243, 1)

0.152 0.756
8.5.10-9 9.1.10-9

7.0.10-8 1.6.10-7

0.627 1.224 2.586 2.880
9.4.10-9 4.6.10-.9 8.9.10-9 6.7.10-9

1.3.10-7 2.7.10-8 9.2.10-8 3.3.10-8

TABLE 5.17
COLNEWon Problem 3: fourth order, tol 10-6.

Profile

Time(sec)
Error

Defect

1.0 0.1 0.05 0.02

(5,4)
(10, 1)

(5, 7) (5, 8) (5, ,)(58, 1)
(10, 1) (10,2) (10, .)(116, 1)
(20, 1) (20, 1) (20, 13)
(20, 1) (20, 1) (20, 2)
(40, 1) (40, 1) (40, 1)
(80, 1) (80, 1) (80, 1)

0.023 0.170 0.186 0.537

7.0.10-7 1.2.10-7 5.1.10-7 2.7.10--7

1.3.10-4 2.5.10-4 2.5.10.-3 2.4.10-3

0.0175

(5,13)
FAlL

TABLE 5.18
MIRKDC on Problem 3: fourth order, error 10-6.

tol =:
Profile

Time(sec)
Error
Defect

1.0 0.1 0.05 0.02

1.10-5 6. 10-6 1.10--6 8.10-7

(5,1)
(11, 1)

(5,3)
(20, 13)
(45, 1)
(53,1)

0.0175

8.10-7

(5, ,) (5, .)(214, 1) (5, .)(242, 1)
(10, 7) (10, .)(235, 1) (10, ,)

(40, 1) (20, ,) (20, ,)
(105, 1) (40, ,) (40, 21)
(128, 1) (80, 18) (160, 1)
(140, 1) (173, 1) (220, 1)

0.013 0.158 0.228 1.074 0.735

7.5.10-7 9.7.10-7 3.7.10-7 8.9.10-7 1.0.10-6

5.8.10-6 3.9.10-6 4.9.10-7 4.1.10-7 4.5.10-7

The mesh selection strategy and stopping criterion ofCOLNEW are conservative and force an
iteration on a final mesh of N subintervals (where N is the number of subintervals reported in
the performance profiles). This final iteration, required primarily to obtain a reliable error
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Profile

Time(see)
Error
Defect

TABLE 5.19
COLNEWon Problem 3: fourth order, tol 10-8.

1.0 0.1 0.05 0.02

(5,4)
(10,1)
(20, 1)
(40, 1)

(5, 7) (5, 9)(320, 1) (5, ,)(160, 1)
(10, 1) (10,2) (10, .)(320, 1)
(20, 1) (20, 1) (20, 13)
(20, 1) (20, 1) (20, 2)
(40, 1) (40, 1) (40, 1)
(80, 1) (80, 1) (80, 1)
(160, 1) (160, 1) (80, 1)

0.069 0.301 0.571 0.865

2.1.10-9 8.0.10-9 6.8.10-10 5.2.10-9

2.1.10-6 3.0. 10-5 3.4.10-5 2.3.10-4

0.0175

(5, 15)
FAIL

:=
tol

Profile

Time(see)
Error
Defect

TABLE 5.20
MIRKDC on Problem 3: fourth order, error 10-8.

1.0 0.1 0.05 0.02 0.0175

1.10-7 3.10-8 1.10-8 6.10-9 5.10-9

(5,1)
(20, 1)
(34, 1)

(5,3)
(20, 1)
(80, 1)
(171,1)
(199, 1)

(5,,) (5,,) (5,,)
(10, 7) (10, ,) (10, ,)
(40, 1) (20, ,) (20, ,)
(160, 1) (40, .) (40, 21)
(348, 1) (80, 18) (160, 1)
(407, 1) (320, 1) (606, 1)

(643, 1) (788, 1)
(742, 1) (866, 1)

0.034 0.289 0.599 1.754 1.281

7.2.10-9 5.3.10-9 5.3.10-9 9.1.10-9 7.1.10-9

7.4.10-8 2.2.10-8 7.3. 10-9 4.3.10-9 2.8.10-9

Profile

Time(see)
Error
Defect

TABLE 5.21
COLNEWon Problem 3: sixth order, tol 10-6.

1.0 0.1 0.05 0.02 0.0175

(5, 4) (5, 8) (5, 10) (5, .) (5, 22)
(10, 1) (10, 1) (10, 1) FAIL (10, .)

(20, 1) (20, 1) (20, 8)
(10, 1) (14,1)
(20, 1) (28, 1)

(56, 1)
0.041 0.102 0.161 0.534

5.8.10-1 5.1.10-.7 3.5.10-7 2.0.10-8

2.2.10-7 2.0.10-4 2.5.10-4 2.1.10-5

estimate (after a convergent solution on N/2 subintervals has been determined), can result in
a solution that is more accurate than requested at a cost that is higher than necessary. This
behavior leads to costs being very sensitive to small changes in the accuracy request (or to
any other problem parameter) and therefore makes direct comparison of results very difficult.
This must be kept in mind when interpreting our numerical results. The error control strategy
and mesh selection strategy of MIRKDC are more flexible than that of COLNEW (allowing
a more finely adapted selection of an. appropriate mesh) and leads to a generally smoother
relationship between the cost and requested accuracy.
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TABLE 5.22
MIRKDC on Problem 3: sixth order, error 10-6.

Profile

Time(see)
Error
Defect

1.0 0.1 0.05 0.02 0.0175

3.10-4 .6.10-5 8.10-5 4.10-.5 2.10-4

(5,1) (5,4)
(15,1)
(19,1)

(5,,) (5,.) (5,13)
(10,7) (10, ,) (20,5)
(23, 1) (20, 21) (40, 22)
(27, 1) (43, 2) (44, 1)
(29, 1) (51, 1) (48, 1)

(52, 1)
0.009 0.066 0.181 0.421 0.760

5.0.10-7 5.8.10-7 1.0.10-6 1.5.10-6 1.3.10-6

9.8.10-6 2.4.10-5 3.1.10.-5 2.2.10-5 3.0.10-5

Profile

Time(sec)
Error
Defect

TABLE 5.23
COLNEWon Problem 3: sixth order, tol 10-8.

1.0 0.1 0.05 0.02 0.0175

(5, 4) (5, 8) (5, 11) (5, .) (5, 22)
(10, 1) (10, 1) (10,2) FAIL (10, .)

(20, 1) (20, 1) (20, 9)
(13, 1) (20, 1) (20, 1)
(26, 1) (40, 1) (40, 1)

(80, 1)
0.037 0.159 0.230 0.650

5.8.10-10 4.7.10-9 7.7.10--9 2.7. 10-9

2.2.10-7 4.0. 10-6 7.7.10-6 7.2.10-6

Profile

Time(see)
Error
Defect

TABLE 5.24
MIRKDC on Problem 3: sixth order, error 10-8.

1.0 0.1 0.05 0.02 0.0175

2. 10-.6 6.10-7 5.10-7 3. 10-7 3.10-7

(5, 1) (5, 4) (5, ,) (5, ,) (5, 13)
(8, 1) (20, 1) (10, 7) (10, ,) (20,5)

(37, 1) (40, 1) (20, 21) (40, 22)
(60, 1) (80,2) (103, 1)

(111, 1) (121,1)
(133, 1)

0.023 0.102 0.228 0.592 1.094

9.6. 10-9 9.5.10-9 9.4.10-9 1.0.10-8 7.7. 10-9

4.1. 10-7 3.9.10-7 6.1. 10.-7 4.1.i0-7 1.5. 10-7

From the results presented here one can observe that MIRKDC can be as efficient and
can exhibit smoother and more predictable behavior as we consider more difficult problems
in the same problem family. There are some instances (for both methods) where the cost is
unexpectedly large or no results are available. By studying the corresponding performance
profiles we see that the former behavior is usually the result of a large number of Newton
iterations associated with a coarse-mesh approximate solution, while the latter behavior is the
result of a Newton iteration failure at all attempted meshes. In practical applications these two
related difficulties are not uncommon, and special method-independent techniques are often
used to overcome them. For example, when the Newton iteration fails to converge for any
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mesh one can obtain more accurate initial guesses by employing continuation with respect to
the problem parameter that quantifies the level of difficulty.

Note that the rather large defects observed in the performance profiles associated with
COLNEW should not be interpreted as a deficiency. This code was not designed to control
this quantity, and a different interpolating strategy would lead to a much improved relationship
between the size of the defect and the requested accuracy. This statistic is only reported to
confirm that MIRKDC is controlling the defect in the way that is intended.

6. Conclusions and future work. In this paper we have discussed an alternative ap-
proach for the numerical solution ofBVODE problems. The major new aspects are the use of
continuous MIRK formulas and the use of defect estimation rather than global error estimation
for accuracy control and mesh selection. The algorithms for this alternate approach have been
implemented in a code called MIRKDC which, in some preliminary testing, has demonstrated
performance comparable to that of the widely used software package, COLNEW. The results
are sufficiently encouraging to indicate that further work in the development of MIRKDC is
worthwhile. Further testing on a larger set of test problems is now proceeding.

There are several aspects of the new approach and software that require further investi-
gation. Foremost among these is the need to explore the space of available MIRK formulas
to select specific optimal formulas of each order. A related question involves a theoretical
analysis of CMIRK schemes containing optimal embedded MIRK schemes. It is clear that the
order barriers in such a case may be different than those of [Muir and Owren, 1993], where
the restriction of an embedded optimal discrete formula is not included. The new nine-stage,
sixth-order CMIRK scheme presented in 3 is an example of this kind of scheme. Subse-
quent to the characterization of optimal CMIRK formulas with optimal embedded discrete
MIRK formulas, a study to explore the parameter space of the CMIRK families to discover
appropriate specific formulas is needed.

Additional areas for future work include further investigation of the parameters which
control the Newton iteration since the overall efficiency and robustness of a BVODE code
is very much dependent on the performance of this algorithm. Further investigation of con-
trolling parameters within the mesh redistribution algorithm and in the algorithm controlling
continuation of solutions and meshes over the discrete problem sequences may also lead to
significant performance improvements. A number of questions remain to be answered con-
cerning the use of defect control in the numerical solution of BVODE problems. A variety
of defect estimation schemes are available and the most appropriate choice for the BVODE
context remains to be established. Also, the use of defect control allows more freedom in
mesh selection, which in turn appears to lead to some performance advantages which must be
further explored.
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THE DIFFERENTIATION MATRIX FOR DAUBECHIES-BASED WAVELETS
ON AN INTERVAL*

LELAND JAMESONt

Abstract. The differentiation matrix for a Daubechies-based wavelet basis defined on an interval is constructed.
It is shown that the differentiation matrix based on the currently available boundary constructions does not maintain
the superconvergence encountered under periodic boundary conditions.
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1. Introduction. Superconvergence is a property of wavelet methods, which is
Daubechies- (see [4]), and spline-based (see [10]), when periodic boundary conditions are
assumed and a Galerkin projection is used. That is, for Daubechies-based methods under the
assumption of periodicity, it was proven in [6] that the differentiation matrix is accurate of
order 2M, even though the highest degree polynomial that can be reconstructed exactly in the
wavelet subspace is of degree M 1, where M is the number of vanishing moments of the
wavelet. For spline-based methods, again assuming periodicity, it was proven in [7] that the
differentiation matrix is accurate of order 2n + 2, even though one can only construct splines
of order n exactly in the underlying subspace. For Daubechies- and spline-based wavelet sys-
tems this approximate doubling of the differentiation accuracy is known as superconvergence,
a name borrowed from the finite element literature.

When periodicity is no longer assumed and one defines wavelets on an interval, one of
the goals when building boundary functions should be to maintain the superconvergence of
the differentiation matrix across the entire interval. It has been proven by Gottlieb et al.
[5] that the superconvergence encountered in finite element methods under the assumption of
periodicity cannot be maintained on the interval if there are characteristics leaving the domain.
Furthermore, it was shown in [7] that for spline-based wavelet systems superconvergence is
lost at the boundaries when the boundary functions are truncated B-splines. The goal of this
paper is to explore the accuracy of the differentiation matrix for Daubechies-based wavelet
systems defined on an interval. In.particular, I will explore the differentiation accuracy of the
differentiation matrices constructed from the currently available boundary constructions for
Daubechies wavelets defined on an interval. The differentiation matrix for the Daubechies-4
(Da)wavelet basis using the boundary functions defined in [3] will be calculated explicitly
and the accuracy will be found. From this explicit example one can see a necessary condition
for superconvergence to be maintained with other boundary constructions.

We begin by defining the differentiation matrix 73 as the product of three matrices: 73

"DC. The three matrices are defined as follows:
The first matrix C is a quadrature matrix mapping from samples in the physical space
to approximate scaling function coefficients at the finest scale: ’ Cf. C can be
derived from the moments of the scaling function. C, also, can be simply the inverse
of the third matrix: C ()-1.
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The second matrix D maps from the scaling function coefficients of a function to the
scaling function coefficients of the derivative of the same function. For convenience
I will, henceforth, refer to this matrix as the "derivative projection" matrix.
The third matrix C is a quadrature matrix mapping from approximate scaling function
coefficients to approximate point values in the physical space: f J’. can be
derived from samples of the scaling function or can simply be the inverse of the first
matrix: C-1.

This paper cOntains the following sections.
1. Introduction
2. Boundary functions. An outline of the boundary functions constructed in [3] is

given.
3. Derivative projection matrix D. The entries of D are defined and calculated. D

has a banded structure due to the local support of the basis functions, but D is
not antisymmetric. The number of nonzero entries in each row of D bounds the
maximum differentiation accuracy for the corresponding row in the differentiation
matrix. Furthermore, the number of nonzero entries in the first few and last few rows
of D are related to the overlap of the boundary functions.

4. Approximating scaling function coefficients. An outline of scaling function coef-
ficien approximation is given.

5. Quadrature matrix C using moments. C performs the mapping C 37 -- g’.
The D4 wavelet has two vanishing moments which yield well-conditioned two-point
quadrature matrices and ill-conditioned three-point quadrature matrices.

6. Quadrature matrix ( using samples, t performs the mapping, t k’ -- 37. For
the D4 wavelet the matrix has three entries in each row and is banded. , however,
is ill conditioned.

7. Examples and order of accuracy. The matrix D is fixed. However, there are many
choices for the quadrature matrix producing many versions of 79. In all cases super-
convergence is lost at the boundaries. Furthermore, choosing among the quadrature
matrices which are not ill conditioned, one gets a differentiation matrix which is es-
sentially full. A banded 79 can be constructed from a combination of the two types of
quadrature matrices C and . The bandwidth from such a construction is large, 9, for
a D4 wavelet and, again, the superconvergence is lost at the boundaries. Inaddition,
all of these matrices display directional dependency. This directional dependency
can be "fixed" by reversing the coordinate system and averaging the appropriate
differentiation matrices.

8. Conclusion. The differentiation matrices for wavelets on an interval using the bound-
ary functions defined in [3] do not maintain the superconvergence encountered when
periodic boundary conditions are assumed. By simply counting the overlap ofbound-
ary functions in other boundary constructions it can be seen that all currently available
boundary constructions fail to maintain the superconvergence encountered under pe-
riodic boundary conditions.

2. Construction of boundary functions. This section is a brief outline of the boundary
function construction proposed by Cohen, Daubechies, and Vial; see [3].

The goal is to build a wavelet basis on an interval where the scaling functions and wavelets
away from the boundaries are the usual Daubechies scaling functions and wavelets. At the
boundaries, boundary scaling functions are constructed such that polynomials of order up to
the number of vanishing moments of the wavelet can be reproduced exactly across the entire
interval.
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The boundary function construction begins by building independent, but not orthogonal,
functions as follows:

(1) (x)-- k O(x + n N + 1),
n--k

where q (x) is the usual Daubechies scaling function andN is the number ofvanishing moments
ofthe associated wavelet. Note that these functions are compactly supported, and their supports
are staggered, i.e.,

(2) supp(qk) [0, 2N 1 k].

The staggered support yields independence, and the boundary functions are then defined by
simply orthonormalizing these functions by a Gram-Schmidt method.

Coefficients hL and hn can be found, see [3], such that the boundary functions are defined
recursively as follows beginning with the left-hand side boundary functions:

N- N+2k

(3) t (X) hkL,lqb(2X) + hkL,mO(2X m),
/=0 m=N

and the equation defining the right-hand side boundary functions is

N- N+2k

(4) hk,l(/)l (2x) + Rhk.mO(2x -F m -F 1).
/=0 m=N

Figure is a plot of the four boundary scaling functions for the D4 wavelet.

3. The derivative projection matrix D. Let us recall the origin of the matrix D. First,
we begin with a function f(x) L2 (R). Next, we want to approximate, or discretize, this
function in a scaling function subspace V0 c L2(R),

d-1

(5) evof (X) Skbk(X),
k=0

where {bk(x)} denotes the basis functions of this finest scale discretization, and d is the
dimension or number of degrees of freedom of the subspace. In the case of wavelets with
periodic boundary conditions bk (x) Ok (X), the usual Daubechies scaling functions, for all
k {0 d 1}. However, in the current scenario of wavelets on an interval, b(x) are
different at the boundaries:

fork =0 N- 1,

for N < k < d- 2N + 1, and

b/ (x) (x)

b(x) dpk(x)

b(x (x

for k d 2N + 2 d 1, where N is the number of vanishing moments of the wavelet.
Under the orthonormality of the current basis set (bk, bl) k,l, where

(6) (g, h) f g(x)h(x)dx,
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RHS Boundary Function 1
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FIG. 1. The boundaryfunctionsfor the D4 scalingfunction.

and fl denotes integration over the interval, we get

(7) sk (bk, f).

Now we differentiate the approximation Pro f(x) to get

(8)
d d-1

d--f Pvf(x) - sk[(x),
k=O
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where/(x) b(x). The derivative takes Pvof(X) out of V0. Projecting back into V0 we
get,

(9) Pyo -x Pvf(x) E -x Pvof bl bl(x)
l=O

or

(10)
d-1 d-1

Pro -x Pvf(x) ZE Sk [k, bl bl(x).
/=0 k=0

The elements (/k, bl) comprise the derivative projection matrix D. Ifwe let k’ denote the vector
of the scaling function coefficients sg, for k 0 d 1, then D maps from the scaling
function coefficients of a function at the finest scale to the scaling function coefficients of the
derivative of the same function:

D, in effect, contains all the derivative information in a wavelet expansion. The elements of
D contain the numerical values of the derivative of each scaling function projected onto all
scaling functions in the basis. Due to the compact support of the basis functions, the matrix D
has a band diagonal form. The following matrix illustrates the form of D for the D4 wavelet
basis with boundary functions defined as in the previous section:

L ,0L oiL 0 0 0 0 0 0 0P0,0 1,0 2,0

poL, L L L 0 0 0 0 0 0/91,1 2,1 3,1

0,2 fl ro rl r2 0 0 0 0 01,2

0 filL,3 r-1 ro rl r2 0 0 0 0
0 0 r-2 r-1 r0 rl rE 0 0 0
0 0 0 r-2 r-1 r0 rl r2 0 0

0 0 0 0 r-2 r-1 r0 rl /R 01,4

0 0 0 0 0 r-2 r-1 r0 fir fir1,5 0,5

0 0 0 0 0 0 O/R O/g R R
4,1 5,1 /91,1 /90,1

0 0 0 0 0 0 0 OR R R
5,0 Pl,0 Po,o

where the coefficients r are the derivative projections due to scaling function interaction,
the coefficients p are the projections of the derivatives of boundary functions projected onto
boundary functions, and the coefficients ot and fl contain the interactions between derivatives
of boundary functions and scaling functions.

In the following subsections the entries of D will be found.

3.1. The equations for the derivative projections. To find the elements of D one needs
to find the interaction of the derivative of each basis function with every other basis function.
Due to the local support of the basis functions, the left-hand side (LHS) boundary functions
and the right-hand boundary functions do not interact. (Assuming, of course, that one does
not choose an unreasonably small domain relative to the support of the scaling functions.)

Each entry in the matrix D must be found separately, but the calculations are straightfor-
ward. A sampling of the relevant derivations will be given below.
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3.1.1. Derivation ofthe LItS equations. Recall that the LHS boundary functions qL (x)
are generated by

(11)
N- N+2k

(X) hkL,l(2x)+ Lhk,mC(2X m).
/=0 m=N

Differentiate the above equation to get

(12)
N- N/2kd

hk,lq (2x) + hk,mqb(2x m).x rPg x 2/ z, z, 2e/ r

I=0 m=N

Multiply q L
k (x) by bp (x) and integrate to get

(13)
N-1N-1

(x)p (x)dx 4 hk,lhp,i (l
l=O i=O

N+2k N-

+ 4 h,ihkL,m fl dpiL (2x)q(2x m)dx
m=N i=0

N- N+2p

hk,lhp,q l (2x)p(2x q
/=0 q=N

N+2k N+2p

+4 / / f/ht,mhp,q 4(2x m)q(2x q)dx.
m=N q=N

Rename the integrals as

(14)

(16)

(17)

to get the following system of equations:

(18)

N-1 N-1 N-1 N+2k

p,p -hkL,lhp,iPl,i @ - -L -L Lnp,i nk,mOtm,i
i=0 m=N

N-1N+2p N+2k N+2p

+ - I,, L l,, L RL
,,,k,l,,p,qt_,l,q + -- L Lht,mhp,qrm,q

/=o q=N m=N q=N

The numerical values of the coefficients.{r} were found in [2], and the numerical values of the
coefficients pL, ot, and fl will be found in the following subsections.

3.2. The coefficients pL for 0, 1. In this subsection we will find the comer diagonali,i
elements of D. These elements represent the projection of the derivative of each boundary
function onto itself.
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3.2.1. The coefficients pZ and p1.1 For simplicity, allow the lower limit to be 0 and0,0

the upper limit be x in the definition of pLk,k

Apply integration by parts to this equation to get

(19)

or

(20) 2pk,k (b(x))l.

Lk (x) is 0 at x oo leaving only the value at the lower limit

(21)

That is, p,g is determined by the value of the boundary function at the boundary. Before

evaluating the boundary functions at the boundary it will be shown that P0,0 and Px,l are
related by a constant multiple.

3.2.2. The relationship between P0,0L and Pl,I’L In (11) set x 0 to get

(22)
2+2k

b(0) hkL,llL (0) - Z Lhk,m(--m).
/=0 m=2

For k 0 we get

(23) b (0) (hob(0) + hO, ltf (0))

which yields

(24) blL (0) cLtp (0),

where

(25) c

Recall from above that the pL ’Sk,k can be found from the boundary functions evaluated at the
boundary. Combine this information with (24) to get

(26) plL, (cL)2 L
P0,0"

That is, we only need to evaluate one of the boundary functions at the boundary in order to
know p and p The following subsection will evaluate the boundary function p(x) at0,0 1,1"
X 0o
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3.2.3. Evaluation of the boundary function qS(x) at x 0. In this subsection
the straightforward evaluation of the boundary function b (x) at x 0 will be given.

In (11) let k 1 and x 2 to get

(27) L(2) /(hlL,3q(1) -+- hl,4b(O)).

The values of the scaling function p(x) in the above integers are p(0) 1/2(1 + /) and
p(1) 1/2(1 /); see [9]. Using these numbers and the coefficients provided in [3] we
get bl (2) -.3654971039. Similar to above, let k 0 and x 1 in (11) to get

(28) Lb(1) /-h, 1pl (2) + /h0,eb (0),

and evaluate to get p (1) -1.1265992786. In this way, one can get the following values
for the boundary functions: p(1) 1.4058555636, p(1/2) .4123639530. Now we
have two values for p (x) at x 1/2 and x 1. Furthermore, the two boundary functions
are lines between x 0 and x 1. We can, therefore, find the value of b(x) at x 0:
p(0) 1.9513271847. As outlined in the previous subsection we now have sufficient
information to find L and L

/90,0 /91,1

Po.o 1.9038388908

and

OLI,1-- --.04295212263.

The calculation of the remaining elements of the derivative projection matrix is straight-
forward and will not be given. The next subsection provides the complete matrix D.

3.3. The complete matrix D. This section of the paper will be concluded by giving a

10-by- 10 version of the matrix D. Only four-digit accuracy will be given for the comer entries
p, or, and ft. The entries r are known exactly.

-1.9038 .9444 -.2565 0 0 0 0 0 0 0
-1.5163 -.0430 .6752 -.0832 0 0 0 0 0 0
.2565 -.6752 0 0 0 0 0 0

12

0 0 0 00 .0832 -- 0 12

0 0 0 00 0 1"- -- 12

0 00 0 0 1- --g 0 12

0 --.0765 00 0 0 0 1- -g
0 0 0 0 0 L -g 0 .5825 -.039712

0 0 0 0 0 0 .0765 -.5825 .0899 .3150
0 0 0 0 0 0 0 .0397 -.7936 .6369

Note that, as expected, away from the boundaries D is the same as the derivative pro-
jection matrix which was found for periodic boundary conditions; see [6]. Also, note D is
not antisymmetric, but is banded. D is not in itself the differentiation matrix, but D is the
component of the differentiation matrix, 79 C-1DC, which does the differencing. Later in
this paper it will become obvious how one can simply "look" at D in order to tell the maximum
differentiation accuracy at the boundaries. The next section begins the discussion of choosing
a quadrature matrix C.



506 LELAND JAMESON

4. Approximating scaling function coefficients. Once again, let us work with only the
D4 wavelet. Recall, as constructed in [3], that there are two boundary functions at each end of
the interval, as well as the usual D4 scaling functions away from the boundaries. Let N denote
the number of degrees offreedom of the approximation space V0. Our function f(x) L2(R)
is then discretized as follows. (In order to simplify the presentation I will let the "interval"
be [0, N], and there will be no overlap between left-hand boundary functions and right-hand
boundary functions.)

First, the LHS,

(29)
N

(X)f(x)dx,

then the right-hand side (RHS),

(30)
N

si

where 0, 1. Next, discretize in the middle with the usual scaling functions

(31)
N

sk p(x k)f(x)dx

fork 2 N-4.
Now we will assume that f(x) is defined on a discrete evenly spaced grid f(xi) for
1 N. Therefore, we must approximate the above three integrals by an appropriate

quadrature matrix.
In the following two sections two types of quadrature matrices will be considered. The

first type is constructed using the moments of the scaling function and is represented by

(32) J’-- Cf.

It will be seen that two-point quadrature matrices for this method are well conditioned, whereas
three-point quadrature matrices are ill conditioned.

The second type of quadrature matrix is constructed from samples of the scaling function
and boundary functions and is represented by

(33)

It will be seen that this type of quadrature matrix is always ill conditioned.

5. Quadrature matrix C using moments. The quadrature matrix C maps from evenly
spaced point values f(xi) of a function to the approximate scaling function coefficients at the
finest scale k’. The quadrature matrix depends on three quantities: the number of vanishing
moments of the wavelet, the grid that the function f (x).is defined on, and which grid points
are used to approximate each scaling function coefficient.

5.1. Moments of scaling and boundary functions. The moments of the D4 scaling
functions were calculated in Appendix A of [6]. The first three moments are M0 1,
M1 .6339745962, and M2 .4019237886.

We will concentrate here on calculating the moments of the boundary functions.
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5.1.1. Moment 0 of LItS boundary functions. The 0th moment of the boundary func-
tion k is

(34)
c

f0x
2+2k

f0xfo (x)dx /- hkL, tp(2X) q- hkL, q(2x m).
/--0 m=2

Now, adopt the notation m f4(x)dx and let y 2x where appropriate in the above
integrals to get

(35)
2+2k c

/m hkL,lm d- hkL, f (x)dx.
/=0 m=2

The integral f-m p(x)dx is 1 since rn > 2, and the scaling function, as defined here, is
supported on [-1, 2]. Equation (35) defines the following 2-by-2 system:

(36) 0,L hL
0,1 m

1,0 1,1 ml -h h02 h1,2 1,3 1,4

The solution to the above system is

m .3620520589,

rn 1.001445402.

In a similar fashion all moments can be found for the LHS and RHS boundary functions.

5.2. The choice of grid points. In this subsection the affect of the choice of different
grid points on the quadrature matrix will be illustrated. For simplicity, in this subsection we
will work with only eight basis functions and eight grid points. The interval will be [0, 8].
When choosing our grid points to approximate the scaling function coefficient si we must use
only the grid points that lie within the support of the basis function bi (x). That is, the inner
product that is being approximated is

S bi(x)f(x)dx,

and the data that is available to approximate S must be limited to function values defined
within the support of bi (x). The support of each of the eight basis functions is

supp{tpbd} [0, 2],

supp{tp2d} [0, 3],

supp{tp3 1, 4],

supp{tp4} [2, 5],

supp{45} [3, 6],

supp{q6} [4, 7],

supp{47bd} [5, 8],

supp{48bd [6, 8],

where the superscript "bd" denotes a boundary function.
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The following subsections will consider a few of the possible quadrature matrices corre-
sponding to the following two grids:

(37) 2

and

.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5

8/7
2,8/7
3,8/7(38) Y- 4,8/7
5,8/7
6,8/7

8

5.2.1. The entries of the quadrature matrices. Now, one must use the scaling function
and boundary function moments and at least two grid points contained within the support of
each basis function in order to build the quadrature matrix, The first row of the quadrature
matrix will estimate the basis function coefficient for the boundary function with the smallest
support bld. Suppose we have chosen grid Y. We know that for the D4 wavelet that constants
and lines can be represented exactly in the wavelet subspace V0. There are only two grid points
within the support of 41d. Therefore, the solution to the following linear system will yield the
two coefficients Cl, and Cl,2 in the first row of the quadrature matrix. The linear system is

(39) [ f dpbd (x)dx 1

f qe(x)xdx ] [ 1

In a similar manner all the entries of a quadrature matrix can be found once one has
calculated the moments of the basis functions and chosen the grid points. The following
subsection will illustrate a few of the quadrature matrices associated with various grid choices.

5.2.2. All grid points contained in scaling function support. As a first possible choice
of grid points, let us use every grid point that is contained within the support of the respective
basis functions. Such a quadrature matrix will the following structure:

g-,3pt(40) "-1

Cl,1 Cl,2 0 0 0 0 0 0
C2,1 C2,2 C2,3 0 0 0 0 0
0 C3,2 C3,3 C3,4 0 0 0 0
0 0 C4,3 C4,4 C4,5 0 0 0
0 0 0 C5,4 C5,5 C5,6 0 0
0 0 0 0 C6,5 C6,6 C6,7 0
0 0 0 0 0 C7,6 C7,7 C7,8
0 0 0 0 0 0 C8,7 C8,8

For both of the grids and the matrix F’3pt is ill conditioned. The condition number is"-’1

proportional to N2, where N is the number of grid points, and inversion of ,3pt unacceptably’1
corrupts the differentiation matrix.
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5.2.3. Two-point quadrature at boundary and three-point otherwise. The auadrature
matrix has the following structure:

(41) (3pt
"-’2

CI,1 C1,2 0 0 0 0 0 0
0 C2,2 C2,3 0 0 0 0 0
0 C3,2 C3,3 C3,4 0 0 0 0
0 0 C4,3 C4,4 C4,5 0 0 0
0 0 0 C5,4 C5,5 C5,6 0 0
0 0 0 0 C6,5 C6,6 C6,7 0
0 0 0 0 0 C7,6 C7,7 0
0 0 0 0 0 0 C8,7 C8,8

This matrix is also ill conditioned for both grids and . Again, the condition number is
proportional to N2.

5.2.4. A first option using a two-point quadrature. We have

(2pt(42) "-’1

C1,1 C1,2 0 0 0 0 0
0 C2,2 C2,3 0 0 0 0
0 0 C3,3 C3,4 0 0 0
0 0 0 C4,4 C4,5 0 0
0 0 0 0 C5,5 C5,6 0
0 0 0 0 0 C6,6 C6,7
0 0 0 0 0 C7,6 C7,7
0 0 0 0 0 0 c8,7

This quadrature matrix is well conditioned for both grids and y.
5.2.5. Second option for two-point quadrature. We have

(2pt(43) "2

CI,1 C1,2 0 0 0 0 0
C2,1 C2,2 0 0 0 0 0
0 0 C3,3 C3,4 0 0 0
0 0 0 C4,4 C4,5 0 0
0 0 0 0 C5,5 C5,6 0
0 0 0 0 0 C6,6 C6,7
0 0 0 0 0 0 7,7
0 0 0 0 0 0 C8,7

This quadrature matrix is also well conditioned for grids . and .

0
0
0
0
0
0
0

C8,8

0
0
0
0
0
0

C7,8

C8,8

5.3. Conclusion. In this section a variety of structures for quadrature matrices have been
shown where the matrices are found by using the moments of the scaling function. In general,
the pattern is that three-point quadrature matrices are ill conditioned and two-point quadrature
matrices are well conditioned.

The next section will explore quadrature matrices constructed from the samples of the
scaling functions.

6. Quadrature matrix using samples. Let g(x) denote the projection of f(x)
L2(R) in V0:

(44)
N

g(x) Pvof(X) E Skbk(X).
k=l
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The quadrature formula based on samples of the basis functions can be found from

(45)
N

g(xi) Pvof(Xi) Skbk(Xi).
k=l

In matrix form the quadrature formula is

^..
(46) g Cs,

or let t7 be the approximation of k’ to get

(47) f ,
where for an 8-by-8 case the quadrature matrix is

(48)

tk (Xl) elL(X1) 0 0 0 0 0

Ck(x) (x) (x) o o 0 o
0 Cf (X3) 2(X3) 3(X3) 0 0 0
0 0 t2(X4) 3(X4) (4(X4) 0 0
0 0 0 t3 (Xs) 4(X5) 5(X5) 0
0 0 0 0 t4(X6) 5(X6) IR (X6)
o o o o o (x7) (x)
o o o o o o (x8)

Now will be found for the two previously defined grids 2 and .

0
0
0
0
0
0

(x7)
(x8)

6.1. A quadrature matrix based on grid ,. Finding the explicit form of the above-
defined t for the grid 2 is relatively simple since we only need the numerical values of the
scaling functions and boundary functions halfway between the integers.

6.1.1. The numerical values ofthe scaling function. Using the definition ofthe scaling
function supported on [0, 3],

3

(x) hk(2x k),
k=0

we get

(49) (5/2) /h3(2) .06698729811,

(50) b(3/2) /(hlb(2) -t- h2b(1)),

and

(51) (1/2) ffho(1)= 9330127019.

The numerical values of at the integers are provided in [9]"

(1) 1/2(1 + ff-)

and

(2) 1/2(1 v/).
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6.1.2. The numerical values of the LHS boundary functions. Given the numerical
values of the scaling function q (x) on grid one can now find the numerical values of the
boundary functions on grid from the expression

(52)
2/2k

p x ’ hkL, qb 2X d- Lhk,m(2X m).
/=0 m=2

In a similar manner one can find the numerical values for the RHS boundary functions to
get the quadrature matrix of the next subsection.

6.1.3. The complete quadrature matrix for grid . An 8-by-8 example of the quadra-
ture matrix for grid : is

(53) C=

.4124 .8495 0 0 0 0 0 0

.2062 -.0077 .9330 0 0 0 0 0
0 .0669 0 .9330 0 0 0 0
0 0 .0670 0 .9330 0 0 0
0 0 0 .0670 0 .9330 0 0
0 0 0 0 .0670 0 .8561 0
0 0 0 0 0 .0670 .3270 .4451
0 0 0 0 0 0 -.1406 .8902

This matrix is ill conditioned just as the three-point quadrature formulas were for the
quadrature matrix derived using moments.

6.2. A quadrature matrix based on grid. Using the definition of the scaling function

3

k=0

one can set up a matrix such that the eigenvector for the eigenvalue . 1 gives a scalar multiple
of the scaling function p(x) at x i/7 for 20. The eigenspace for the eigenvalue
;L 1, however, is two dimensional. To avoid this complication one can approximate the
numerical values of p(x) at x i/7 for 1 20 by generating p(x) at a large number
of diadic points; in this case 214 points were chosen. This approximation is sufficient to
understand the character of the quadrature matrix, specifically if it is well conditioned or not.
Once the numerical values of the scaling function are known then we can find the numerical
values of the boundary functions.

6.2.1. The numerical values ofthe LI-IS boundary functions. As before, the numerical
values of the LHS boundary functions on grid can be found from

2+2k
p x v/ hkL, q 2X if- v Lht,m(2x m).

l=0 m=2

The numerical values in terms of the scaling function values on grid are

Ltp(8/7) /(h,1tP1(16/7) + h0,2tP(2/7)),

(54) tp(8/7) (h,ltP(16/7 -b h1,2tP(2/7) -t- h,3tP(-5/7)),

b(16/7) (hL h,4q (4/7))1,3t (11/7) -[-

As with grid : the quadrature matrix produced using grid is ill conditioned. Recall from
the previous section that all three-point quadrature matrices were ill conditioned. Therefore,
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I conclude this section with the observation, not a proof, that quadrature matrices for wavelet
bases on an. interval using the construction in [3] should be constructed using moments and
that the number of grid points used to approximate each scaling function coefficient should
be equal to the number of vanishing moments of the corresponding wavelet.

7. Order ofaccuracy. In this section the order of accuracy for a few ofthe differentiation
matrices that can be constructed from the derivative projection matrix D and the quadrature
matrices constructed in the previous three sections will be found. We begin with the differen-
tiation matrices constructed using grid followed by the differentiation matrices constructed
using grid .

7.1. Accuracy using grid . Recall that grid is comprised of the points halfway be-
tween the integers and, consequently, the spacing between the grid points is the same as the
translation distance for the scaling functions on the finest scale. Furthermore, this grid does
not provide a grid point at the boundary itself. This lack of a grid point at the boundary makes
this grid an unlikely choice, but I have chosen to study the accuracy as an experiment. Let us
begin by giving a few explicit examples of differentiation matrices.

7.1.1. Differentiation matrix (ClPt)-IDC21pt, grid . Note the unusual form of the fol-
lowing matrix. It is essentially upper triangular in form. This form is due to the inversion
of 12pt

"-’1 From Table 1 it can be seen that this differentiation matrix does not maintain the
superconvergence at the boundaries. That is, the differentiation is first-order accurate at the
boundaries, whereas it is fourth-order accurate at the middle 50% of the grid points. The total
differentiation accuracy across the entire domain, therefore, is second-order accurate. We have

-25.33 42.38 -20.77 3.73 -6e-4 0 0 -7e-4 7e-3 -9e-3 2e-5 3e-3

-5.71 -1.59 8.35 -1.04 -le-3 0 0 -2e-3 .02 -.02 3e-5 6e-3

1.05 -8.11 .05 8 -1 0 0 -3e-3 .03 -.04 7e-5 .01
0 -8 0 8 -1 0 -7e-3 .07 --.09 2e-4 .03
0 0 -8 0 8 -1 -.02 .16 -.20 3e-4 .06
0 0 0 -8 0 8 -1.03 -.34 -.43 7e-4 .13
0 0 0 0 -8 0 7.93 -.28 -.94 2e-3 .29
0 0 0 0 0 -8 -.16 9.56 -3.02 3e-3 .62
0 0 0 0 0 0 -8.35 3.36 3.65 -.99 1.33
0 0 0 0 0 0 0 .25 -.76 -8.37 6.02 2.86
0 0 0 0 0 0 0 -1.62 16.61 -33.66 11.96 6.71
0 0 0 0 0 0 0 .53 -5.47 2.78 -3.27 5.43

7.1.2. Differentiation matrix (cpt)-IDCpt, grid . Now we use the quadrature matrix
2pt
2 But the results are similar to the previous matrix. The structure is unacceptable and the

superconvergence is lost at the boundaries as can be seen from Table 1. We have

-12.21 7.44 10.48 -6.44 .74 0 0 0 0 0 0
-10.99 -11.15 44.98 -24.53 1.70 0 0 0 0 0 0
-2.50 -1.01 -3.50 8 -1 0 0 0 0 .01 -.01
.46 .07 -7.54 0 8 --1 0 0 0 .01 -.02
0 0 -8 0 8 -1 0 -.03 .02 -.04
0 0 0 -8 0 8 -1 -.01 .05 -.09
0 0 0 0 -8 0 8 -1.01 .11 -.19
0 0 0 0 0 -8 0 7.97 -.75 -.41
0 0 0 0 0 0 -8 -.06 8.53 -1.89
0 0 0 0 0 0 0 -8.13 1.14 6.09
0 0 0 0 0 0 0 0 .73 -5.53 -3.12
0 0 0 0 0 0 0 0 -.24 2.74 -16.75

0
0
0
.01
.02
.04
.09
.19
.04
-.11
7.93
14.26
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TABLE
Differentiation accuracyfor Daubechies wavelets defined on an interval using gridpoints halfway between the

integers.

Differentiation
matrix

(cPt)-IDCpt

Grid

(cPt)-IDCpt

Grid

Grid Boundary Error
size error ratio

16 .0066
32 .0032 2.06
64 .0016 2.00
128 7.85e-4 2.04
256 3.81e-4 2.06
512 1.69e-4 2.25

16 .0091
32 .0047 1.94
64 .0024 1.96
128 .0012 2.00
256 6.08e-4 1.97
512 3.22e-4 1.89

16 .0038
32 .0019 2.00
64 9.23e-4 2.06
128 4.64e-4 1.99
256 2.32e-4 2.00
512 1.18e-4 1.97

Inner Error
11 error ratio

2.86e-4

3.20e-6 89
2.10e-9 1524
2.80eTM 75
1.75e-12 16.0
1.07e-13 16.4

2.71e-5

3.13e-7

5.92e-10

2.80e-11

1.75e-12

1.07e-13

86.58
529
21.1
16.0
16.4

6.52e-5

1.60e-5 4.08
3.95e-6 4.05
9.83e-7 4.02
2.45e-7 4.01
6.12e-8 4.00

Total Error
ll error ratio

.0024
5.73e-4 4.19
1.41e-4 4.06
3.50e-5 4.03
8.53e-6 4.10
1.94e-6 4.40

.0026
6.78e-4

1.72e-4

4.33e-5

1.10e-5

2.89e-6

3.83
3.94
3.97
3.94
3.81

.0013
3.15e-4 4.13
7.87e-5 3.99
1.97e-5 3.99
4.92e-6 4.00
1.22e-6 4.04

7.1.3. Conclusion for grid . Recall that in the construction ofthe differentiation matrix
that the middle matrix D is fixed. Table 1 contains the accuracy for two well-conditioned

l2pt and 12ptquadrature matrices ’1 "2 In addition, as an experiment I have combined two ill-
conditioned matrices: one mapping from 37 to and the other mapping from k’ to 37.

First the noteworthy points are that in all three cases the accuracy at the boundary is
first order. Recall that when periodic boundary conditions are imposed that the differentiation
accuracy is fourth order for the 04 wavelet. This loss ofsuperconvergence is a serious problem.
Furthermore, note from the table that the two well-conditioned quadrature matrices maintain
the superconvergence away from the boundary. But in all three cases the total error of the
differentiation matrix across the entire domain is one higher than the boundary accuracy; i.e.,
we get second-order differentiation accuracy.

Note: Inner accuracy is calculated at the middle 50% of the grid points, and boundary
accuracy is calculated at the two outermost grid points at each end of the interval.

7.2. Accuracy using grid .. We now study the differentiation accuracy where we have
included a boundary point at each end of the interval in the grid and the remainder of the grid
points are required to be evenly spaced across the interval. This choice of grid is a much more
likely choice than grid . However, superconvergence again is lost at the boundary. This
reduces the total accuracy of the differentiation to second order as with grid :. Again, let us
note a few explicit examples of differentiation matrices.

7.2.1. Differentiation matrix (cPt)-IDCIpt, grid. Again note the unusual, and unde-
sirable, form ofthe following matrix. As canbe seenfrom Table 2, again, the superconvergence
is lost at the boundary. We have
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-1.99 3.33 -1.60 .26 -2e-4 -le-4 -6e-5 -4e-5 le-4 -2e-4 6e-5 2e-5

-.46 -.14 .72 -.13 -le-3 -6e-4 -3e-4 -2e-4 7e-4 -le-3 3e-4 le-4

.08 -.63 -.02 .70 -.12 -2e-3 -le-3 -7e-4 2e-3 -4e-3 le-3 3e-4

0 .07 -.63 -.02 .69 -.12 -3e-3 -2e-3 7e-3 -.01 3e-3 le-3

0 0 .08 -.63 -.02 .69 -.11 -5e-3 .02 -.03 9e-3 3e-3

0 0 0 .08 -.63 -.02 .69 -.12 .05 -.08 .02 7e-3

0 0 0 0 .08 -.63 -.02 .68 5e-3 -.18 .05 .02
0 0 0 0 0 .08 -.63 -.04 .94 -.50 .12 .03
0 0 0 0 0 0 .08 -.69 .52 -.12 .15 .07
0 0 0 0 0 0 0 -.03 .43 -1.54 1.00 .14
0 0 0 0 0 0 0 -.20 2.12 -4.25 2.05 .29
0 0 0 0 0 0 0 .44 -4.62 7.00 -2.83 8e-3

It has been mentioned many times that the structure is undesirable. This is due to the
lack of directional independence of the matrix. One "fix" for this problem is given in the next
subsection.

7.2.2. The no-preferred-direction (NPD) differentiation matrix (cPt)-lll2pt’’’l grid
y. It is possible to fix one of the problems with the above matrices: the problem of directional
dependence. That is, a general differentiation matrix should never treat data coming from the
right differently than data coming from the left. This problem can be "fixed" if one simply
turns the basis around and builds another differentiation matrix. That is, turn all the inner
scaling functions around and interchange the role of the RHS and LHS boundary functions.
The new differentiation matrix 7) can be found from the unreversed differentiation matrix 79
by first flipping the matrix by a middle horizontal axis and then by a middle vertical axis and
then negating. That is,

(55) flipud(fliplr(79)),

and we build a new NPD differentiation matrix by averaging these two matrices:

1
(56) 79vPo (79 + 7)).

TABLE 2

Differentiation accuracyfor Daubechies wavelets defined on an interval using grid points at the boundaries
and all other gridpoints evenly spaced across the interval.

Differentiation Grid Boundary Error
matrix size ll error ratio

(cPt)-IDCpt

grid

NPD of

(cPt)-IDCpt

grid

16 .0181
32 .00933 1.94
64 .00474 1.96
128 .00238 1.99
256 .00117 2.03

16 .0211
32 .0116 1.82
64 .00606 1.91
128 .00310 1.95
256 .00156 1.99

Inner Error
ll error ratio

8.70e-4

2.31e-4 3.77
6.04e-5 3.82
1.49e-5 4.05
3.73e-6 3.99

6.82e-4

1.42e-5

5.88e-6

1.43e-6

3.50e-7

48.0
2.41
4.11
4.09

Total Error
11 error ratio

.00598

.00162 3.69
4.26e-4 3.80
1.089e-4 3.91
2.72e-5 4.00

.00692

.00191
5.05e-4

1.30e-4

3.29e-5

3.62
3.78
3.88
3.95
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The following NPD matrix treats data coming from the left in the same manner as data
coming from the right. Note that this matrix is full.

)NPD

-12.00 36.96 -51.58 29.30 -2.67 -7e-4 -3e-4 -2e-4 8e-4 -le-3 4e-5 le-4

-4.47 13.12 29.85 13.47 1.22 -4e-3 -2e-3 le-3 4e-3 -7e-3 2e-3 6e-4

-.39 -9.77 9.11 1.62 -.54 -.01 -6e-3 -4e-3 .01 .-.02 7e-3 2e-3

-.43 -.43 -3.01 -3.24 8.30 1.16 -.02 -.01 .04 -.07 .02 6e-3

-.20 -.70 3.44 -9.44 .12 7.96 1.15 -.03 .11 18 .06 .02
-.09 -.32 1.09 .42 -7.86 -9e-3 7.94 1.16 .28 -.47 .14 .04
-.04 14 .47 -.28 1.16 -7.94 9e-3 7.86 -.42 1.09 .32 .09
-.02 -.06 .19 11 .03 1.15 -7.96 12 9.44 -3.44 .70 .20
-6e-3 -.02 .07 -.04 .01 .02 1.16 -8.30 3.24 3.01 .43 .43
-2e-3 -7e-3 .02 -.01 4e-3 6e-3 .01 .54 1.62 -9.11 9.77 .39
-6e-4 -2e-3 7e-3 -4e-3 le-3 2e-3 4e-3 1.22 13.47 -29.85 13.11 4.47
-le-4 -4e-4 le-3 -8e-4 2e-4 3e-4 7e-4 2.67 -29.29 51.58 -36.96 12.00

Table 2 gives the accuracy results for two differentiation matrices constructed from the
2ptwell-conditioned quadrature matrix "--1

Again, Table 2 shows the loss of superconvergence at the boundaries regardless of the
differentiation matrix. Also, note that for grid the superconvergence is not even achieved
away from the boundary as it is for grid . Inner error and boundary error are defined in the
same manner as for the previous table.

In conclusion, in this section I have presented a number of differentiation matrices along
with the orders of accuracy of the differentiation. In all cases the superconvergence that is
encountered under periodic boundary conditions is lost.

8. Other constructions and conclusion. In this paper I have explored the differentiation
matrix for Daubechies-type wavelets defined on an interval using the boundary construction
defined in [3]. The exploration has been limited to the wavelet with two vanishing moments
usually referred to as the D4 wavelet. It was seen that the superconvergence encountered with
periodic boundary conditions which was proven in [6] is lost with this boundary construction.

There are other boundary constructions available for Daubechies wavelets, see 1], [8], but
none of the constructions can maintain the superconvergence. There is a very straightforward
way to find the maximum accuracy at the boundary for a given boundary construction. That is,
when the basis functions are orthogonal under translation, as they are for Daubechies wavelets,
one can simply count the number ofbasis functions whichhave support overlapping the support
of the outermost boundary functions. This defines the number of nonzero entries in the first
and last rows of the middle matrix D referred to here as the derivative projection matrix. All
differencing in wavelet differentiation is done by D, and, therefore, the differentiation accuracy
at the boundaries cannot exceed one less than the number ofnonzero entries in the first and last
rows of D. Of course, this argument holds for every row of D, but I am particularly concerned
with the boundaries here.

Perhaps it is not possible to construct boundary functions for wavelets which give every-
thing. That is, boundary functions which maintain the wavelet structure, which maintain the
approximation properties across the entire interval, and which maintain superconvergence.
This conjecture is based first on the fact that to date there is no boundary construction which
satisfies these criteria for either Daubechies wavelets or spline-based wavelets; see [7]. In
further support of this conjecture, in a paper by Gottlieb et al. [5], it is proven that it is not
possible to construct boundary functions for a finite element subspace which maintain the
superconvergence encountered with periodic boundary conditions if there are characteristics
leaving the domain. Note that the finite element subspace is the same as the first-order spline
wavelet subspace; see [7].



516 LELAND JAMESON

In conclusion, under the currently available boundary constructions the superconver-
gence, which is encountered under periodic boundary conditions, is not maintained at the
boundaries. In the case of the 04 wavelet under the boundary construction examined here one
gets fourth-order differentiation away from the boundaries and only first-order differentiation
at the boundaries producing a scheme with only second-order accurate spatial differentiation.
It remains to be seen if it is possible to construct boundary functions for a wavelet subspace
which can maintain superconvergence at the boundaries.
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A DATA SMOOTHING TECHNIQUE FOR PIECEWISE
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Abstract. A data smoothing technique for piecewise convex/concave curves is developed and its computational
aspects are discussed. Some of its statistical properties are determined and the difficulty in computing the general
expression for bias and the mean squared error are illustrated throughan example. A variety ofexamples are considered
to demonstrate the potential of the proposed smoothing technique, and the behavior of the piecewise convex/concave
smoother is shown by Monte-Carlo simulations. We also give a detailed comparison between the proposed smoothing
technique and spline smoothing.

Key words, nonparametric regression, divided difference, monotone regression, convex regression, quadratic
program, piecewise convex/concave curve, spline smoothing, Monte-Carlo simulation, mean squared error, bias
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1. Introduction. Givenasetofsampledata {(Xi, Yi) 1 <_ < n}, where Yi f (xi)nt-rli
with some piecewise monotone or convex/concave function f (x) on a closed interval [a, b]
and r/i is the random noise induced by the sampling process, we want to estimate the original
function f (x). Classical examples of regression by piecewise monotone or convex/concave
functions are monotone regression and convex regression, which are two important cases in
regression under order restriction. In certain applications, the number of extreme points or
inflection points of the underlying function is very important for any useful estimator of f (x).
For example, in the processing of a digitized image of a profile curve of a mechanical part, one
can have an a priori estimate of how many inflection points the curve has. As a consequence,
one expects to have a curve with the same number of inflection points as an approximation
of the profile curve. Levels of certain hormones in a woman are to go up and down during a
one month period. Therefore, it is a practical need to model the hormone level by a function
that has one inflection point in a month. For the problem of estimating the hazard rate of
change, one wants to find the location of the extrema of the derivative f’(x) (or the maximum
jump of f’(x)). Miiller and Wang [30], [31] proposed the following nonparametric approach
for solving the change-point problem: (1) find anonparametric estimator f(x) of f(x) from
the given sample; (2) use the change-point of f(x) as an estimator of the change-point for

f(x). They used this model to analyze life expectancy of 65 patients with acute lymphocytic
leukemia after bone marrow transplantation. Note that ifone knows that f’ (x) has one extreme
point, then it is wise to use an f(x) that has only one inflection point as an estimator of f (x). In
fact, a recent study by Cuevas and Gonzalez-Manteiga [4] revealed that the weak convergence
of a sequence of density functions {fn (x)} is equivalent to the strong convergence of {fn (x)}
if all density functions have the same number of inflection points. Moreover, under certain
conditions, the inflection points of fn (x) converge to the inflection points of f(x). Roughly
speaking, forcing constraint on the number of inflection points yields more reliable estimators.
As pointed out by Cuevas and Gonzalez-Manteiga [4], an interesting consequence is that the
bumps and the dips (i.e., the intervals of concavity and convexity) of f(x) can be estimated
consistently from those of j’)(t); therefore, an inflection-point-preserving regression method
is well suited for the so-called bump-hunting problem 16], [39], [32]. There are both practical
and theoretical reasons for finding an estimator of f(x) that resembles f(x) geometrically.
In this paper, we propose an efficient algorithm for fitting f (x) by an estimator f(x) that has
an a priori given number of inflection points.

*Received by the editors November 2, 1992; accepted for publication (in revised form) October 31, 1994.
Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529.
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The geometric shape parameters for a piecewise monotone or convex/concave function

f(x) are given by

and

I (g) := inf {m there exists a partition of [a, b] into m
intervals T1 Tm such that g(x) is convex
or concave on every T/for 1 rn

M(g) "= inf {m there exists a partition of [a, b] into m intervals T1
Tm such that g (x) is monotone on every T/for 1 m}.

The integer l(g) behaves like the number of inflection points of g(x), and M(g) like the
number of relative extrema of g(x). Let Zm := {g(x) :g(x) 6 V and I(g) m} and
.A4,n := {g(x) :g(x) 6 142 and M(g) m}, where V; is a given set of functions. Then,
consider least squares fitting with constraints on I (g) or M(g):

min (g(xi) yi)2(1)
g E’JW[

i=1

or

min (g(xi) yi)2,(2)
gEZm

i=1

where m is a given positive integer which controls the fitting scheme and V represents either
a parametric or a nonparametric model. Let

Sn {g(x) g(x) is a linear spline with knots Xl < X2 "< < Xn},

i.e.,.g(x) 6 Sn if and only ifg(x) is a continuous function on [Xl, Xn] and is a linear polynomial
on each subinterval [xi-1, xi]. For )42 Sn, (1) and (2) are the piecewise monotone and
convex/concave data smoothing methods, respectively, proposed by Demetriou and Powell
[9], [7]. Here we consider Sn R, the n-dimensional vector space, since every g(x)
in Sn is uniquely determined by its values at X Xn. In particular, for W S and
rn 1, (1) is the classical monotone regression problem and is considered an important
case of statistical inference under ordered restrictions. The monotone regression problem has
been thoroughly investigated and documented [1], [35]. For W Sn and rn 1, (2) is the
classical convex/concave regression problem which was first introduced by Hildreth [21] for
the estimation of production functions. Twenty two years after that, Hanson and Pledger 17]
established the consistency of concave regression estimators while Demetriou and Powell
[10] provided an algorithm suited specifically to this problem. Some more applications of
convex/concave regression canbe found in [28], [27], and [8]. Eventhough the convex/concave
regression problem is a standard strictly convex quadratic programming problem, the ill-
conditioned nature of the second divided difference matrix could cause some difficulty for
efficient computation of the solution [25], [10], [5], [28], [24]. Moreover, even if W S,
neither .m nor Zm with rn > 2 is a polyhedral set. In fact, they are not convex sets. Hence
it becomes extremely difficult to find a numerical solution to (1) or (2). In a recent paper,
Demetriou and Powell [9] developed a dynamic programming procedure with complexity
O(n2 +mn Inn) for solving (1) with 42 Sn. However, for rn > 2, (2) presents a challenging
computational problem (cf. [22], [6] and Chap. 6 of [7]).
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While (1) or (2) provides a practical means to compute a regression estimator with certain
geometric shape from the sample data {(xi, yi)}, it is important to ensure the consistency
of piecewise monotone (or convex/concave) regression estimators. Motivated by Holm and
Frisbn’s work, Mammen [26] considered the following regression problem:

(3) min (g(xi) yi)2,
g7-(k,m,O

i=1

where, for k > 1,

and

!
7"[.k,m, o i g(x) I (g(k-1)) < rn and there exists a scalar

suchthat sup
g(k-1)(Xl) g(k-1)(X2)

-y _D
X1X2 Xl X2

-0,m,D :--" { g(x) M (g) <_ m and SUPx g(x) infx g(x) <_ D ]
Mammen [26] proved that, for every function g(x) ]"[k,m,D, there exists a spline function(x)
of order k such that g(xi) ,(Xi) for 1 < < n and k(x) is a piecewise constant function.
Mammen [26] also established an asymptotic stochastic bound for the distance between the
regression function f(x) and the 7-[k,m.O least squares estimator. However, computationally,
(3) seems to be more difficult than (2). In fact, Mammen [26] suggested considering g(x) as
a function defined on the design points {Xl Xn and replace the (k 1)th derivative by
divided difference of order (k 1). With such a discretization for k 1 and rn 2, Mammen
[26] uses a successive projection method introduced by Dykstra [13] (cf. also [11] and [12])
((n 2) times!) to find the corresponding regression estimator and compares it with a kernel
estimator by simulations for two regression functions on [0,1].

Our research interest on piecewise convex/concave regression was motivated by the k-
convex regression problem [5], [24]:

(4) min (Oi yi)2
i=1

subject to the following constraints on the kth divided difference of {0 }"

(5) AkO >_ O,

where Ak is the kth divided difference matrix defined as follows:

(mkO)j Oi H(Xi Xs)-1

i=j s=j
si

j--1 n-k.

nHowever, due to the stringent constraints (5), the mean least squared error Z i=1 Oi f(Xi))2
is usually too large in comparison with the noise level. Therefore, we want to relax the con-
straints and find a method which can produce a curve with a given number of convex/concave
pieces. For convenience, we will identify a vector 0 "= (01 On) with its unique spline
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interpolator O(x) in S so that I(0) and M(O) can be defined for vectors (01 On). With
such a convention, we propose the following nonparametric data smoothing method:

(6) min (0 yi)2,
-e<AkO<e,l(O)=m

i=1

where e is a nonnegative scalar. One could consider (6) as a discretized version of least squares
fitting by functions whose kth derivative is bounded by e:

(7) rain (O(Xi) yi)2,
OEB,I(O)=m

i=1

where Be := {g(x) Igk)(x)l < e}. Note that (7) is actually (2) with W --- Be. When k 1,
{g(x) IgCk)(x)l < e, I(g) m} is more or less the same set as "/1,m,e. In a sense, (6) is a
variation of (3). However, as we mentioned before, (6) is a computationally difficult problem
even without the constraints on the kth divided difference of 0. Therefore, we replace (6) by
the following least squares problem:

(8) min (Oi Yi
i----1

where e controls the smoothing process. However, we still want to produce an estimator with
m convex/concave pieces by an appropriate choice of e. Note that (8) is actually a regression
by polynomials of degree at most (k 1) when e 0. In general, the estimator is smoother if
e is smaller. On the other hand, the least squared error will be reduced if e is increased and is
zero if e is large enough. Therefore, in order to make a good fit to the sample data, we want to
make e as large as possible; meanwhile, we want to control the magnitude of e to produce a
smooth estimator. Hence, it seems a good idea to choose the largest e such that I((e)) rn
for the solution (e) to (8). Such a strategy for the selection of e reflects the following concern
about the selection of a smoothing parameter. Theoretically, under certain assumptions, one
can establish some kinds of asymptotic results to justify a particular strategy for selection of
the smoothing parameter (or the bandwidth) for a nonparametric regression method. However,
for practical applications, the choice of the smoothing parameter is mainly a delicate balance
between the fidelity to the sample data and the visual smoothness of the fitting curve. Based
on the consistency results established by Cuevas and Gonzalez-Manteiga and by Mammen, it
is a statistically sound decision to choose the largest e such that I (O(e)) m. Our strategy
for selection of the smoothing parameter is very similar to Silverman’s bandwidth selection
for a kernel smoothing method [37], [38]. See 2 for more details.

For a given e, one can find O(e) by any algorithm designed for strictly convex quadratic
programming problems. However, the difficulty is how to find the largest e such that I((e))
m. In 2, a continuation approach is used to implement the strategy for the selection of e based
on control of I (0). Further discussions of (8) as a nonparametric smoothing method are also
given in 2.

Section 3 is devoted to the related statistical properties of the piecewise convex/concave
smoother.

Most nonparametric smoothing techniques studied in the literature are linear for any fixed
smoothing parameter (cf. [19]), whereas the proposed smoother is nonlinear with respect to
the raw data. However, some similarity with spline smoothing is discussed in 4. Some
discrepancy in using the classical "leave-one-out" cross-validation scheme to determine the
smoothing parameter for spline smoothing is pointed out. It is noted that for a spline version
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of the proposed smoother the classical cross-validation technique can be correctly adopted.
The detailed analysis of this observation will be done later and reported elsewhere.

In 5 we consider eleven simulation models studied by previous authors and apply our
smoothing procedure on them. These models are included to study the effect of the variance
of noise, the location of xi ’s, the sample size, the shape of the underlying smooth curves, and
outliers on the smoother. Several performance parameters, which are important and essential
in any simulation analysis of a model, are included in the study. Also, we repeat the numerical
simulations done by Mammen [26] to show that (8) with the proposed strategy for the selection
of e is very similar to (3) with k 1.

Some final conclusions and future research problems are presented in 6.

2. A piecewise convex]concave smoother. We first give a detailed description of the
proposed data smoothing algorithm controlled by I (0). Then a continuation approach is
given to implement the computation of the piecewise convex]concave smoother.

In the introduction, for convenience, we identified a vector 0 with its linear spline inter-
polator so that I (0) and M(0) can also be defined for vectors. However, for piecewise linear
functions, I (0) and M(0) can be computed easily. Given a vector z Rn, we say that z has
rn sign changes, if there exist indices 0 i0 < < < im < im+l :-- n such that the
following hold:

1. for any given s, zj’s are not all zeros for is < j <_ is+l;
2. zi zj <_ 0 for is-1 < <_ is, is < j <_ is+l, and 1 _< s _< rn.

Then one can verify that 1(0) m if and only if A20 has (rn 1) sign changes and
M(O) m if and only if A 10 has (rn 1) sign changes. Therefore, for a given vector 0, it
is very easy to compute I (0) and M(0), and our regression scheme based on control of I (0)
can be stated as follows.

A piecewise convex/concave smoothing scheme. Let 0(6) denote the solution to the
following least squares problem:

n

(9) min (Oi yi)2.
-<A3.<- i=1

Given a positive integer rn and a positive integer r,
1. set "= x,-xl, j := 0, and 60 := 0;n

2. compute (60) and so, the number of sign changes of A2(60);
3. reset j := j + 1;

1), if6 > r"4. set 6j := 6j--1 + (, if 6 < r; or 6j :--" 6j-1 (1 + ?-
5. compute g(6j) and sj, the number of sign changes of A2(6j);
6. if sj >_ m, then output the smoother "= (6j_1) and stop; otherwise, go back to

step 3.
Remarks. 1. Note that the scalar is the average length of the subintervals [xi, Xi+l].

Let Oi g(xi)for 1 < < n Then (A30)i (3)(i) for some i between xi and Xi+3.
The uncertainty of i produces a possible error of magnitude . Therefore, () and (’) are
regarded as "indistinguishable", if I1 ’ _< . However, if we only use 6 := 6_ + i to
increase the bound on the third divided difference, then it might take thousands of iterations
in the above regression scheme to find the right value of . This is not practical. Therefore,
we allow a relative error tolerance in of 100 %. i.e., if I1-’11 < 100

-7- I111 -7 %, then (6) and

1), 6j grows exponentially asare considered as indistinguishable. With 6j := 6j_1 (1 + 7
j increases. This enables the scheme to handle problems with a large optimal smoothing
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parameter defined by

g := sup {" A2() has at most (m 1)sign changes or I(()) < m}.
Notice that a larger r produces a more accurate choice of ; while smaller r means less
computational cost.

2. If possible, we want to compute (g). If I (()) is a nondecreasing function of, then
the above regression scheme does produce (g) with reasonable error tolerance as explained
in remark 1. To prevent the case in which we might miss a larger with I (()) < m, we
actually computed a few more (up to 25) (j) ’s after we found 6 in our preliminary numerical
tests. However, all of those I ((j)) ’s are larger than I (6). Therefore, we are confident about
the above regression scheme even. without the proof that I(()) is a nondecreasing function
of.

3. Note that, ife > A3y o, then (eo) y. It seems a good idea to use bisection
of the interval [0, coo] to find the optimal smoothing parameter , under the assumption that,
in general, the number of sign changes of A2(e) is a nondecreasing function of e. However,
we can use the Lagrange multiplier of (ej_ 1) as an initial guess of the Lagrange multiplier
of (ej) to achieve a very efficient implementation of the above regression scheme. This is

in essence a continuation method. In order to compute (ej), we start with the polynomial
fitting (0) which is extremely easy to compute, then gradually move to the solution (ej) as
e changes from 0 to ej.

4. When A2(ei) has at least m sign changes and A2(ei-1) has at most (m 2) sign
changes, we know that neither (ej-1) nor (ej) has the required structure and the smoothing
process has failed. In this circumstance, under-smoothing seems to be more desirable than
over-smoothing. Therefore, one might select (el) as the smoother instead of (ei-1).

5. In our preliminary numerical tests, we also tested (8) with different k’s. For k > 3, the
solutions are more or less the same, while the solutions are a little bit rougher if k < 2. Since
a larger k increases the ill-conditioning of (8) [24], [5], we choose k 3.

6. One might also use M(0) to control the smoothing process. However, I (0) provides
an implicit control on M(0), since M(0) < I (0) + 1. But one can construct 0 such that I (0)
is large and M(0) 0. Hence it is more effective to use I (0) as a geometric shape parameter.

7. Let Kh (x) be a kernel smoother of y with the standard normal density as the kernel
function, and vk (g) denote the number of sign changes of the kth derivative of g(x). Then
Silverman [37] proved that v, (Kh) is a right continuous decreasing function of h and used the
modes to control the kernel smoothing process in the same way as we use I (0)" for a given
set of sample data (xi, Yi)}, find Khn where hn is defined as

hn := inf {h gh has at most m modes}.

Silverman [37], [38] used hn to test the null hypothesis that f(x) has m modes against the
alternative in which f(x) has more than m modes. For density function estimation, Cuevas
and Gonzalez-Manteiga [4] also proposed to use the minimum h such that Kh has m inflection
points.

The algorithm for computing (ej) is essentially the same algorithm proposed in [24] for
solving the k-convex approximation problem. In order to understand why the continuation
method works here, we need a dual reformulation of (8) as an unconstrained minimization of a
strictly convex quadratic spline function. First, one could verify that the Kamsh-Kuhn-Tucker
condition of (8) is equivalent to the following system of piecewise linear equations:

(10) 0 y + Aw, w (Bw + c)+ (d- Bw)+,
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where B "= I -OtAkAff, I is the (n k) x (n k) identity matrix, ot is any positive
scalar, c, d Rn-k, with ci := c(-e (AkY)i) and d/ := ot((AkY)i e), 1/7 in Rn-k is the
Lagrange multiplier, A denotes the transpose of the matrix Ak, and z+ is the vector whose
ith component is max{z/, 0}. Let o(w) := w (Bw -t- c)+ -!- (d Bw)/. Then o is a linear
transformation of the gradient of the following quadratic spline function:

1 r 1 1
(11) (w) := -w Bw- ll(Bw / c)+ll2- ll(d- Bw)+ll 2,

where Ilzll 2 _,i1 Izi 12. The explicit relation is the following:

(12) (I)’ (w) Bqg(w).

If0 < ct < mkmff -1, where Ilmkmff is the spectral radius of AkA, then B is nonsingular
and is a strictly convex spline function. Therefore, (8) is equivalent to the following
unconstrained minimization problem:

(13) min (w).
wER

n-k

Hence, if tb is a solution of (13), then t "= y + A) is the solution of (8). See [24] for the
implementation of a Newton method for solving (13), which uses only finitely many flops (in
exact arithmetic) to find the solution.

Now, if le7 j-ll is very small, one can actually prove that the difference between the

corresponding Lagrange multipliers (w’s) is also small. Therefore, the Lagrange multiplier of
0(e7_1) is an excellent initial guess of the Lagrange multiplier of (ej). This makes the above
regression scheme computationally much easier than it appears to be.

3. Some statistical properties. It is not an uncommon practice in statistics to first reduce
the noise in data using some smoothing techniques and then fit a model on smoothed data for
further analysis (cf. [29]). Suppose the function g(x) is a polynomial in x, ofdegree (k- 1), and
it is contaminated by a very noisy error variable. Suppose we observe the data Yi f(xi) + rli,

1 n. If we fit a polynomial model of degree (k 1) in x for these data yl Yn,
the solution is given by Py, where the matrix P X(X’X)-Ix’, X being the matrix of
polynomial terms of x Xn i.e.,

1 XI X12 X-1

X-- 1 X2 X2
2 Xg-1

2 k-11 Xn Xn Xn

Instead of this, noting the noisy appearance of the data, suppose we first smooth the data
using a piecewise convex/concave smoother and then fit the polynomial model. It can be
easily shown that the result is again Py. At least in this special case we see that no useful
information is lost in the smoothing process.

Two important measures for the precision of an estimator are bias and mean squared error
(MSE) of the estimator. In the present case, the bias (or the squared bias) of f is measured by

(14)
1

liE(:2) fll 2 [E(?(xi)) f(xi)]2
n

i=l

and the MSE is measured by

/ nl(15) E[[]- fl[2 E Z[?(xi)- f(xi)]2
n

i=1
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Again assume that f(x) is a polynomial of degree (k 1) in x. Then it can be shown that the
bias (14) is zero. In order to prove this, we reformulate (8) to get a better understanding of
the relationship between y and f.

From the Karush-Kuhn-Tucker conditions we know that (8) is equivalent to the following
problem:

(16) min IIAffwll 2 subject to _< Aiy + AtAw _< ,
in the sense that f y + A[ if and only if 6) is the solution of (16). Note AkX 0, which
implies Aky Akr/. Therefore, (16) can be rewritten as

(17) min IlA[wl[ 2 subjectto - < Air/+ AtAw < e.

Since (17) is invariant if we replace r/by -r/and w by -w, the solution t(-- t(e, r/)) of (16)
is an odd mapping of r/; i.e., ff)(, -r/) -t(e, r/). Therefore, if the density function of r/is
an even function, then E(t) 0, which implies E(3) E(y + Ait) E(y)+ AIE(Fv)
E(y).

Now let us assume that y f(x) + 0 as before and the kth derivative f(t)(x) of f(x)
exists. Then using Taylor’s expansion we can write

f"(J)
(x $)2f(x) f(Y) + f’(Y)(x Y,) + 2!

f(t-1) ()
(x 2)t- + f((t)+"" +

(k 1)---. (x y)i,

where n- Ei= Xi and is some point between x and . This can be rewritten as

f x o + i X "+" I2X? At’’’’-- ik X
-1 -- ik X

where iki f(i)(ti)k! and ti is between X and $ for 1 n.
Thus we have Yi f(xi) + r/i or y X/ + d + r/, where

d’ =(dl dn), and di ikixki
Ifwe set u y d, then we have u X/ + r/, which is the polynomial model considered

,2 2kas before, and for this we know E(u) E(f). Thus, bias (14) is 1 Ein__l PkiX which is in
terms of the kth derivative of the function f(x).

Computation of bias in general is not easy. It involves the expected value of a certain
truncated distribution. Even in the simplest of cases, computation of MSE would be difficult.
We consider the following simple example which indicates how the bias and the variance
(MSE-Bias2) of the estimator depend on a certain truncated distribution.

Let yl :-- Cl -1- r/1 and y2 := CE + r/E, where Cl and cE are real numbers and r/1 and
r/2 are two independent N(0, 1) random variables. Then (8) reduces to the following simple
problem:

(18)
1 )2 1 )2min (yl --/91 -I- (Y2 02 subject to e _< 02 -/91 < 6.

It is easy to verify that the solution should satisfy the following conditions: if 0, then
1 2 Y+Y2. if lYE Yll < , then 1 Yl and E y2; if y2 Yl > 6, then2

1 andS2 ++ " if 2 2 "2 -- 2 , YE--Yl < thenl + andrE yl+y2

If we denote the solution of (18) by (1 (e), 2(e)), then

1() ..+. Y,Y2,
Y+Y ,

2

if Y2 yl < -e,

if [Y2 Yl[ < e,

if y2 Yl > e,
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and

y+y2- e_ if Y2- Yl <--{5,2 2’

2({5)- z_+2 iflY2-Yll_<{5,
if y2 yl >{5.

Now we want to compute the mean and the variance ofi ({5), 1, 2, and also the covariance
between 1({5) and 2({5) For this, write 1({5) u + v and 2({5) u v, where u := Y+Y

2
and

if y2 yl < {5,

if -{5 < y2 yl <_ {5,

if Y2 Yl > {5.

We observe that E(/l({5)) E(u) + E(v), E(2({5)) E(u) E(v), var(l({5))
var(O2({5)) var(u) + var(v), and c0v(1({5), 2({5)) var(u) var(v). Furthermore,
E(u) c+c2 var(u) 1/2, and

E(v) E[vI{y2_y,<_6} -k- E[vl{-6<_y2-y,<_6}]-[- E[vI{y2-yl>6}]

E [(y2 Y1) 1{-6 <6 Pr[y2 y > {5 ],Pr[y2 Yl < -{5] g <yz-y,

where Ia is the indicator of the event A; i.e., Ia 1 if A is true and 0 otherwise. Notice that
the middle term is the expected value of the truncated normal distribution with mean c2 Cl,

variance two, and truncated at -{5 and {5. (For a discussion ofthe truncated normal distribution,
see [23].) Therefore, we can write

{5 2 1 (tl) (t2) {5
E(v) (tl) 2 2 (t2) (tl) (1 (t2)),

where

1 _t2/2, fr(t) -e (t) := (slds,

--{5 (C2 Cl) {5 (C2 Cl)
tl:’-- /

and re:-

Similar calculations show that

var(v) 1 -- p(t2)-(t) (P(t2)-(tl)

+T(tl) q- -[1 (P(t2)].

In the special case when 1 C2, we see that E(v) 0 and

var(v) --q(-{5/v/) + . 1

Since the first term in var(v) tends to zero as {5 --+ 0 as well as {5 ---> o,

() ()
lim 1, and lim
-0+ (P(e) 0.5 -+ q(e) 0.5

=0,
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we obtain

1
lim var(v) 0 and lim var(v)

The above calculations show that i (6)’S are unbiased estimators of 0 ’S only when

6 b(tl) )(t2)
-(tl)
2 2 (I)(t2) (I)(tl) 2

(1 (t2)) O,

i.e., when c 2.
This simple example indicates how difficult it is, in general, to compute the bias and the

variance of the estimator. Therefore, in the numerical examples that we consider later in 5,
we use Monte-Carlo simulation to compute the bias and the MSE. That is, we compute Bs :--

n .__1 ( [f(xi)- f(xi)[2) wheretheexpectedvalue,1 Z/=I [Ef(xi)-f(xi)[2andEs E E7=1
E(.), is the average over 1,000 simulations.

4. Comparisonwith spline smoothing. Althoughwetreat our piecewise convex/concave
smoother as a shape preserving estimator of the underlying function f(x), (8) can also be
viewed as a nonparametric regression method with e as the smoothing parameter. Nonpara-
metric smoothing is very useful and flexible for exploring a general relationship between two
variables or a general pattern in data. Every nonparametric model is tuned by some smooth-
ing parameter (such as e in (8)) which balances the degree of fidelity to the data against the
smoothness of the estimated curve (cf. [19]). Most nonparametric smoothing techniques,
such as moving averaging, k-nearest neighbor estimates, kernel smoothing, orthogonal series
estimates, spline smoothing, etc., are linear in the sense that the estimator is a linear mapping
of the raw data for any fixed smoothing parameter (cf. 19]) except median smoothing and
M-smoothing. As we mentioned before, the proposed data smoother is nonlinear with respect
to the raw data. However, despite its nonlinearity, it is very similar to spline smoothing mod-
els. In this section, we try to analyze the similarity and the difference between (8) and spline
smoothing.

Let Sn,k be the space ofall splines oforder (k+ 1) and with knot sequence x <z < Xn on
[a, b]; i.e., g 6 Sn,k if and only if g(x) is a polynomial of degree at most k on each subinterval
[xi-1, xi] for 2 < < n, and the (k 1)th derivative g(k-1)(X) of g(x) is continuous. The
spline smoothing model can be formulated as follows:

(19) min (Yi g(xi))2 "]" [g(’)(x)12dx,
g6Sn.,

i--1

where ) is the smoothing parameter. The solution of (19) is called the smoothing spline.of
Schoenberg and Reinsch by de Boor (cf. pp. 235-237 in [2]), due to the fact that Schoenberg
[36] and Reinsch [33] were the first to study such a smoothing technique. However, the idea
goes back to Whittaker [42], who proposed the following data smoothing scheme:

(20)
n n-k

min Z(y Oi)2 + Z(AkOi)2.
i=1 i---1

First, note that the kth divided difference in (20) is replaced by the kth derivative in (19)
and that the summation in (20) is replaced by the integration in (19). Therefore, (19) can be
considered as the spline version of (20).
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It is well known that, for each , >_ 0, there is a unique e >_ 0 such that (19) is equivalent
to the following constrained optimization problem:

(21)
rain ,in=l(Yi g(xi))2

subject to g Sn,k and fba Igk(x)lEdx <_ .
Note that a smaller e in (21) (corresponding to a larger , in spline) yields a smoother spline
fitting of y. While e provides explicit control on the magnitude of the 2-norm of gk) (x), (19)
is much easier to solve than (21).

Similarly, if we define IlYllo maxl<i<n lYi I, then the penalty function formulation of
(8) yields the following unconstrained minimization problem:

(22) min (yi Oi)2 ’]- ,llmk011o,
i=1

where ) is some nonnegative number. Notice the similarity between (22) and (20). In essence,
(22) is (20) with’the/o-norm replacing the/2-norm. Hence, (8) can be viewed as the discretized
version of (19) with the/z-norm being replaced by the/o-norm. As a consequence of this
observation, the spline version of (8) should be the following:

(23)
rain ff-in__l (Yi g(xi))2

subject to g Sn, and -e _< g’(x) < e for x :/: xi, 1 < < n.

Recall that g(x) is a polynomial of degree at most k on each subinterval [Xi-1, Xi]. Thus,
gg (x) is constant for x 6 [xi-1, xi for a fixed i. Therefore, (23) is actually a convex quadratic
programming problem with (n 1) linear constraints. Similarly, (23) can be reformulated as

(24)
n

rain (yi g(xi))2 -Jr- max Ig<k(x)l.
gESn,k

i--1
a<x<b

Since the constraint in (21) is a differentiable mapping of g, the penalty function approach
yields a simple smooth unconstrained minimization problem which is very easy to solve.
However, the penalty function approach applied to (8) or (23) transforms a linearly constrained
quadratic programming problem into a nonsmooth unconstrained minimization problem (22)
or (24), which seems more difficult to solve than (8) or (23).

Our numerical experiments indicate that it takes about O(n2) flops to solve (8) (cf. [24]
and Table 1), which is comparable with the computational cost of solving (19). We believe
that the computational cost of solving (23) is more or less O(n3) flops, due to a full constraint
matrix. One difference between (8) and (19) is that e directly controls the magnitude of the
kth difference of the fitting curve in (8), while ) indirectly controls the magnitude of the kth
derivative of the fitting curve in (19). Practically, they both achieve the purpose of controlling
the smoothness of fitting curves. For example, the shape control strategy in the previous
section can be modified to determine the smoothing parameter ) in (19). However, there is
some fundamental difference in statistical analysis of a constrained data fitting model and its
penalty function reformulation.

Suppose we want to fit data by a model F(ot) involving the parameter or; i.e., for a fixed
or, F(ot) is a set of fitting curves. Then the classical "leave-one-out" cross-validation scheme
is a means to determine which ot provides the best model for the given data.

Consider the "leave-one-out" cross-validation scheme for the determination of . in (19)
and e in (21):

(25) fa
b

min (Yi g(xi))2 + Ig<(x)12dx
gESn,k

i:l,ij
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Model m
8

2
3
4
5
6
7
8
9
10
11

TABLE
Numerical simulation results.

Eo Es Bs es Rs EI nI eI RI N No CPU
0.40E-01 0.47E-02 0.93E-03 0.38E+01 88% 0.40E-02 0.41E-03 0.50E+01 89% 409 4.6 2.3
’0.10E+01 0.72E-01 0.86E-05 0.65E+01 92% 0.61E-01 0.60E-05 0.00E+00 93% 167i2.1 0.4

3 0.23E-05 0.22E-06 0.87E-090.61E+00190% 0.16E-06 0.17E-07 0.35E+00 92% 167 3.8 0.7
3 !0.34E+00 0.33E-01 0.92E-02 0.78E+02 90% 0.22E-01 0.41E-02 0.94E+02 93% 406 2.9 2.0
4 0.10E-01 !0.14E-02 0.81E-05 0.45E+03 86% 0.95E-03 0.12E-03 0.27E+03 90% 573 3.5 3.0

0.91E+01 0.31E+00 0.13E-02 0.14E+02 96% 0.27E+00 0.14E-02 0.27E+00 97% 250 2.2 1.2
8 0.10E+01 0.51E-01 0.98E-02 0.34E+03 94% 0.49E-01 0.20E-01 0.16E+03195% 728 4.2 8.2
9 0.10E-01 0.11E-02 0.58E-03 0.12E+03 88% 0.85E-03 0.18E-03 0.31E+03191% 601 4.5 6.7
9 0.25E+00 0.12E-01 0.60E-03 0.25E+03 95% 0.92E-02 0.20E-02 0.76E+02 96% 685 4.4 7.7

0.10E-01 0.39E-03 0.38E-05 0.32E+02 96% 0.22E-03 0.35E-04 0.15E+02 97% 427 3.7 4.5
0.25E+00 0.79E-02 0.20E-03 0.27E+02 96% 0.49E-02 0.58E-03 !0.15E+02 98% 385 3.2 4.0

and

(26)
min --in=l,ij(Yi g(xi))2

subject to g E Sn, and f [g()(x)12dx < e.

Notice that, for the same e, the equivalent penalty function reformulation of (26) has different. values for different missing indices j. Therefore, the "leave-one-out" scheme has different
meanings depending on whether it is applied to (19) or (21). From the data smoothing point of
view, it seems easier to explain the statistical meaning of applying the "leave-one-out" scheme
to (21). Since the fitting curve belongs to a class of spline functions whose 2-norms are
bounded by, the scheme is to determine the ability of this class to predict a missing value.
However, when applying the "leave-one-out" scheme to (19), the 2-norms of the fitting curves
produced by (25) depend on the missing index j; i.e., for different indices, the fitting
curves produced by (25) have different "degrees of smoothness." If one tries to explain
the "leave-one-out" scheme to spline from the classical point of view, it will be difficult to
figure out which parametric family of models is involved. Therefore, there is a fundamental
difference between applying the "leave-one-out" scheme to (19) and to (21). However, the
generalized cross-validation derived from applying the "leave-one-out" scheme to (19) is an
effective way ofselecting the smoothing parameter in (19) (cf. [40] and the references therein).
Also, it is very interesting to see that, for a fixed ., the smoother defined by (19) is a linear
mapping of y, while the solution of (21) is a nonlinear mapping of y for a fixed e.

5. Numerical examples. In this section, we discuss the numerical performance of the
proposed regression scheme. In order to understand how the smoother is affected by different
aspects of the contaminated data y, such as the variance of noise, the location of xi’s, the
sample size n, the shape of the underlying smooth curve, and outliers, we select the following
eleven simulation models considered earlier in the literature to test the proposed regression
scheme. For each simulation model, we have performed 1000 simulations.

Numerical simulation models. Assume that ]i ’S are independent normal random vari-
ables with mean 0 and variance 1. ,We use x U (0, 1) to denote that x is a random variable
which has the uniform distribution in the interval (0,1).

1. Wahba and Wold’s simulation model (cf. [40] or [41]): n 100, cr 0.2,

f(x) "= 4.26(e -4e-2x -t- 3e-3X),
Xi 3.25i__i. and yi f(Xi "at- O" l]i 1 _< _< n.
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2. Cleveland’s simulation model [3]: n 50, cr 1,

f(x) :=x,

xi
i and yi f(xi) + rOi l < < nn

3. Rice’s simulation model [34]: n 75, a 0.0015,

f(x) := x3(1 x)3,
xi

i-__A1 and Yi f (xi + cr Oi 1 < < nn

4. Friedman’s simulation model (cf. [15] or [19]): n 100, cr 1,

f(x) := sin (2zr(1 x)2),
xi U(O, 1) and Yi f(xi) + tTXiOi, 1 < < n.

5. H/irdle and Bowman’s simulation model [20]" n 100, r 0.1,

f(x) "= sin (4zrx),

Xi
/- and Yi f(Xi) "- t7 ]i 1 < < n
n

6. H/irdle’s simulation model I (cf. p. 77 of 19]): n 200, cr 1,

f(x) 1 x -I- e-200(x-)

xi U (0, 1) and Yi f(xi) + cr Oi, 1 < < n.

7. H/irdle’s simulation model II [18]: n 100, cr 1,

f(x) := sin(zrx),
xi U(O, 1) and ti U(0, 1),

{ ff(xi)-I-croi, ifti>O.X
Yi (Xi) + 9a rli, if ti <_ O. 1,

1 < < n.

8. Mammen’s simulation model I-1 [26]" n 200, a 0.1, f(x) is the broken line
joining the points (0,0),(0.3,-1),(0.7,1), and (1,0),

X and Yi f(xi) + O’Oi, 1"< < n.
n

9. Mammen’s simulation model I-2 [26]" the same as Mammen’s simulation model I- 1,
except a 0.5.

10. Mammen’s simulation model II-1 [26]" n 200, cr 0.1,

f(x) 15x(x 0.5)(1 x),

xi
i and Yi f(xi + a Oi 1 < < nn

11. Mammen’s simulation model 11-2 [26]" the same as Mammen’s simulation model
II-1, except cr 0.5.

Figures 1-7 correspond to the simulation models 1-7. The contaminated data (xi, Yi)}
are plotted as little circles, the smoother {(xi, (e)i)} is plotted as the solid line, and the
original curve (xi, f(xi)) }’ is plotted as the dashed line.

Wahba and Wold’s simulation model 1 is for comparison between our data smoothing
model and the spline smoothing model. It is interesting to note that our smoother is almost
identical to the smoother produced by Wahba and Wold (cf. Fig. 1).
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FZG. 1. Simulationfor f(x) 4.26(e -4e-;zx + 3e-3X).

Simulation models 3 and 5 are for recovery of smooth regression functions without a

"fairly flat" segment and we see that our procedure produces curves almost identical to the
original curves (cf. Figs. 3 and 5).

Simulation models 2 and 7 are considered to study the effect of outliers or very noisy
data (large variance relative to the signal) on the procedure. Simulation model 2 was used by
Cleveland to illustrate locally weighted scatter plot smoothing (LOWESS) proposed by him.
Our procedure identifies the underlying function fairly closely (cf. Fig. 2). Simulation model
7 was considered by Hirdle to study the behavior of a kernel M-smoother on the data with
outliers. Application of our procedure to this data indicates that the procedure is quite resistant
to the presence of outliers. We want to point out that about 10% of the observations in this
data set are extremely large in absolute magnitude as compared to the rest of the observations.
However, our procedure is able to identify the true function hidden in this highly scattered
cloud of data (cf. Fig. 7).

Simulation model 6 represents a somewhat extreme case where most ofthe signal is buried
in the noise. Hirdle contends that these types of data are not uncommon in practice. Even in
this case our method is able to pick up the signal which is fairly close to the original curve
(cf. Fig. 6).

Simulation model 4 was considered by Friedman to illustrate the behavior of a smoother
introduced by him called supersmoother. Figure 4 indicates that our smoother picks up the
original function well and is not sensitive to the location of xi ’s.

Simulation models 8-11 are used to compare our piecewise convex/concave smoothing
method with Mammen’s piecewise convex/concave smoothing method. The mean squared
errors, produced by our piecewise convex/concave estimator and by Mammen’s piecewise
convex/concave estimator, are comparable; this indicates that the proposed regression scheme
is very similar to (3) with k 1 and D c.



A PIECEWISE CONVEX/CONCAVE DATA SMOOTHER 531

0

0.0

o
o

o o

o o o oo
o o

_0 0 000
0

0

_
0

0
0

0
0 0 0

o o o o

o

o

o

0.2 0.4 0.6 0.8

X

FIG. 2. Simulationfor f(x) x.

1.0

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000
o

o

o o

oo

o

I
/ o

o
o

Oo

o

oo o
o oo

o

o

o o
o

o

X

FIG. 3. Simulationfor f(x) x3(1 x)3.



532 W. LI, D. NAIK, AND J. SWETITS

1.5

1.0

-2.5 ,
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Simulationfor f(x) sin(2zr(1 x)2).

1.0

0.2 0.4 0.6 0.8 1.0

FIG. 5. Simulationfor f(x) sin(4zrx).
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The only parameter needed for the regression scheme is the number of sign changes.
When the structure of f(x) is visible in {(xi, Yi)}’ (such as Rice’s simulation model 3 and
the Hiirdle-Bowman model 5), it is not difficult to find the right choice of m. However, in
general, the parameter m is a means for exploring the structure of the underlying curve f(x).
In each ofthe above simulation models, we select the integer rn such that the regression scheme
produces (.i-1), which is closest to {f(xi)}’. Our purpose is to show that the regression
scheme does have some kind of ability to recover the original curve with an appropriate choice
of the number of sign changes of the second divided difference of the fitting vector. For each
model, we determine the best choice of rn by experimenting on a set of simulation data and
then use the same rn for all 1000 simulations. The simulations indicate that, for a particular
function f (x), there is a corresponding optimal choice of rn which will produce a curve closest
to f(x). The most interesting part is that, with appropriate choice of m, the corresponding
smoother O(es) is more or less the same as the ideal smoother O(eI), which is the solution
closest to f(x) among all 0(e)’s. As a consequence, we can conclude that one can find the
best fitting of f (x) among all 0(e)’s by selecting an appropriate rn instead of e. This is a very
important property of our smoothing process, since the range of rn is discrete and the range
of e is continuous. In a practical situation, it is easy to experiment with a few different values
of rn to decide which rn produces the most desirable estimator.

There are several key performance parameters we want to measure when the regression
scheme is applied to produce a smoother:

1. E0 1E (Z/--1 lYi f(xi)l z) the mean squared error between f and the con-
taminated data y;

2. es the smoothing parameter determined by the regression scheme;

(3. ls E 2= Ig(es) f(xi)l z the mean squared error between f(x) and the

smoother (es);
4. Bs := - i= IEg(es)i f(xi)l, the squared bias of the smoother g(es);
5. Rs (Es E0)/E0, the rate of noise reduction by the smoother g(s);
6. I the ideal smoothing parameter;
7. EI E =1 I(t)i f(xi)l2 the mean squared error between f and the ideal

smoother g
8. B1 Ei= lEO(e1)/- f(xi)l z, the squared bias of the ideal smoother
9. 11i "= (EI E0)/E0, the rate of noise reduction by the ideal smoother

10. N the number of Newton iterations involved in the algorithm (for solving (13))
which is used in step 5 of the piecewise convex/concave smoothing scheme;

11. N0 the average number of iterations involved in a line search for each Newton
iteration;

12. CPU: the average CPU time (in seconds) for solving a simulation problem;
where the expected value, E (:), is the average over 1000 Monte-Carlo simulations, and e1 is
the so-called ideal smoothing parameter in the sense that

10()i f(xi)l2

i=1

is minimum when e 6I. The parameter RI is a measurement of the capability of (9) as a data
smoothing model, while the comparison of Rs and RI provides a sense of intelligence of the
regression scheme in determining the optimal smoothing parameter. The computational cost
is about O(nNoN) flops [24], while CPU provides a sense of the amount of computer time for
the computation of the smoother O(es). The computation is done on an IRIS Workstation and
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the random noise is generated by DRNOR(.), which is a subroutine in the SLATEC library
and generates random numbers with the normal distribution of mean 0 and variance 1. The
random design points xi U (0, 1) are generated in the following way:

1. for 1 n, generate Xi ;’-- DRAND(0) until Ixi xjl > for all 1 < j < i;
2. rearrange xi’s such that xi < Xi+l for 1 < < n 1.

Here DRAND(.) is the standardFORTRAN 77 function which generates uniformly distributed
random numbers between 0 and 1. Note that we reject randomly generated xi if it is too close
to previously generated xj ’s, since the smoothing result would not be very satisfactory if

min IXi Xi_l[ / max [x Xi_ll
2<i<n 2<i<n

were too small. We consider as a reasonable lowerbound for the minimum distance between
in the worst case. Here we are nottwo consecutive Xi S, since max2<i<n IXi Xi-ll could be

particularly interested in how the estimator will be affected by the design points. The purpose
of including xi U (0, 1) is to see whether unequally spaced design points will affect the
smoothing process or not.

In summary, we can conclude from our numerical simulations that
1. Es EI and Rs RI in all cases;
2. RI is more or less in a neighborhood of 90%;
3. the smoother (es) is not very sensitive to the variance of the noise or outliers;
4. the smoothing process is not affected by the location of xi’s as long as the ratio

min2<i<n Ixi xi-ll/ maxz<i<n Ixi Xi-ll is not too small;
N r is very small and it only took a5. in all testing cases, g < 8 and No < 5; in general, g

few seconds to find O(es);
6. the smoothing process can not effectively produce a satisfactory estimator with de-

sirable shapes, if the underlying regression function f(x) has a "fairly flat" segment.
The numerical results indicate that the computational cost of the regression scheme is

about O(n2) flops (cf. [24] and Table 1), which is far less expensive than we expected. More
importantly, it seems very easy and effective to use (m 1) (the number of sign changes of
the second divided difference) to tune the smoothing process. First of all, one can always
have a reasonable estimate of the number of inflection points that the original curve has. Even
if the estimate does not produce a smoother with the desirable shape, it is easy to adjust m
accordingly and recalculate the new smoother.

6. Conclusions and comments. We have proposed a smoothing technique controlled
by the number of convex/concave pieces of the fitting curve. The smoother is fairly easy to
calculate, it has many good properties a smoother should have, and it has statistical properties
similar to that of polynomial regression in some situations.

Extensive numerical simulations indicate that our piecewise convex/concave smoothing
scheme does produce a fairly good piecewise convex/concave fitting in many different circum-
stances. However, the smoothing process might not be able to produce a satisfactory estimator
with a desirable shape if the original regression function f(x) has a "fairly flat" segment. A
remedy to this deficiency might be an adaptive smoothing process as follows:

min E= (Yi 0i)2
subject to < Ak0 _<. u,

where and u are column vectors with (n k) components. Then, if necessary, one can
make li ui 0 for those xi’s in the x-range where f(x) is supposed to be flat. From
our simulation experiments, we notice that, in most cases, the smoother is not sensitive to an
overestimation of rn by 1. That is, if we increase rn by 1 in our simulations, the mean squared
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errors will be more or less the same and, visually, one can hardly see the difference between
the old and new smoothers.

It may be pointed out that the emphasis of this paper is on the computation of a piecewise
convex/concave estimator. Much more is to be done about the smoothing procedure proposed
here. For example, the monotonicity of I (()) as a function of, construction of a confidence
band for the curve, perhaps using bootstrap techniques, and use of the method for prediction,
etc., are yet to be explored. Note that Mammen [26] proved that, under some mild conditions
on 0i which guarantee that the distribution of Oi does not have heavier tails than a Gaussian
distribution,

1
(,n(Xi)- f(xi))2 < g)p (rnO)n-,+2

t’/
i=1

where ,, is the solution to (3) and An Op(Bn) means that there exists a positive constant
C such that, for any 3 > 0,

Pr <C >1-3

for sufficiently large n. It would be interesting to see whether similar results hold for (7) or
(6.

The objective function considered in this article is the negative log likelihood function of
normal errors. Hence the problem (9) can be viewed as a constrained maximum likelihood
problem, that is, maximizing the likelihood function subject to certain constraints. One can
take any one-dimensional exponential family of distributions instead ofthe normal distribution
and maximize the likelihood function subject to the restrictions we have considered. Adoption
of the algorithm to this case can be done, for example, by using sequential programming
techniques (cf. 14]).

Adno-ledgement. The first author would like to thank the Research Foundation of Old
Dominion University for its support during the summer of 1992.
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AN ANALYSIS OF APPROXIMATE NONLINEAR ELIMINATION*
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Abstract. We present a method for solving systems of nonlinear equations suitable for problems where conver-
gence of an approximate Newton method is initially slow. The method, nonlinear elimination (NIEm), eliminates the
nonlinear equations and appropriate variables deemed to be causing the problem. An analysis of the method is given
and leads to a detailed algorithm that reduces automatically to an approximate Newton method near the root of the
system of nonlinear equations. Several examples are given that demonstrate the efficacy of the method.
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1. Introduction. We consider the numerical solution of a system of nonlinear equations

(1.1) g(w) =0,

where g (gl, g2 gn)T and w (Wl, w2 Wn) T. Generically we consider the
methodology of 1] and the analytic framework presented there. This setting ensures that for
any w0 in some set S, a sequence of iterates wk will converge to w* S and g(w*) 0. The
iterates are defined as

(1.2) Wk+l w + tx,

where x approximates zk in

(1.3) gz =-g,

g, gtt (wk), and g g(wt), and t (0, 1] is chosen to force

(1.4) Ilg+lll < 011gkll

for some 0 < 0 < 1. The sense in which x approximates z of (1.3) is measured by

(1.5)

and all ot < c0 < suffices for convergence (for some sequence of t). We call this
algorithmic approach GAN, for global approximate Newton, "global" referring to the set S
which can be ]R under appropriate conditions.

Such variations ofNewton’s method have beenused successfully in significant technology
areas including circuit and device simulation [2, 5]. The trick in any of these applications is in
picking an "inner" solver for (1.3) to make otk --+ 0 and t --+ 1 to ensure (1.4) and superlinear
convergence. This can be particularly challenging in practice since we often cannot be sure a
priori that the sufficient convergence conditions are satisfied, nor can we wait for k --+ cxz.

The use of nonlinear elimination (N1Em, en-lem) is motivated by problems in which
convergence seems to be interminably tedious and yet there is no evidence of ill conditioning
(or singularity). This leads us to believe that the nonlinearities in g are unbalanced, by which
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we mean some "subfunction" gl (u, V) regarded as a function ofu given v causes tk to be small.
We propose to eliminate g as an inner iteration.

Consider g(w) to be partitioned as

g(1/9) (gl(U, V), g2(u, 1))) T,
(1.6) w (u, v)r.

This leads to a block Jacobian

(1.7) g,(u v) [ gll(U, V) g12(u, v) ]gZl(U, V) gZZ(U, V)

where gij (u 1)) o_N_ (u 1)). For conciseness we write gij =- gij (u, v).Ogj
For smooth gl (/,t, 1)) the solvability of gl (/, v) 0 for l) in an appropriate set leads to an

implicit function h(v) such that

(1.8) gl(h(v), v) 0.

Differentiating (1.8) as a function of v leads to

(1.9) gllh’(v) -+- g12 0,

and if g11 (h (v), v) is nonsingular, then

(1.10) h’(v) --gi-llgl2

Indeed the operational equation (1.10) and the existence of the unique mapping h (v) consti-
tute the essence of the implicit function theorem, see [12, Thm. 5.2.4], which requires the
nonsingularity of gl 1.

Assuming that u h(v) exists on an appropriate set, we attempt to solve equation (1.1),
which can be rewritten as

(1.11) f(v) =0,

where f(v) =- g2(h(v), v) for v using GAN. To use GAN we must compute the Jacobian
f’(v); differentiating (1.11) yields

(1.12) f’(v) g21h’(v) + g22,

where g21, g22 are evaluated at (h(v), v). Making the substitution (1.10), we obtain

(1.13) f’(v) gEE gElg-{11g12

and we recognize the right-hand side of (1.13) as a Schur complement. More precisely we see
that the Newton direction equation associated with (1.11), namely,

(1.14) f’(v)Av --f(v),

can be embedded into the larger matrix equation

(115) [gll g12 ][ Au ]g21 g22 Av --g2

where all functions are evaluated at (h(v), v) and gl(h(v), v) 0. Equation (1.14) arises
from block Gaussian elimination on (1.15) as indicated by (1.13). This is computationally
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attractive since nonlinear elimination leads to the same algebra as GAN on the whole system,
but now applied at the point (h(v), v). To summarize there are two nonlinear solve processes:
an "inner" equation solve to evaluate h(v) from (1.8) and an "outer" Newton iteration to
solve (1.11) via (1.15). When h(v) is evaluated "exactly," i.e., gl (h(v), v) 0, then we show
(Theorem 4.2) that the outer GAN (1.15) converges quadratically to the solution gE(h(v), v)
0 as expected.

Note that when a sparse matrix package can be used for GAN, it is also applicable for
N1Em. That is, starting at the point (h(v), v), both N1Em and GAN would need to solve the
system (1.15). It is unimportant that the variables be ordered so that the Au variables are first.
In fact it is easy to imagine cases where such an ordering would lead to significant fill. After
the linear system is solved the Av variables can be gathered easily.

Many investigators have studied nonlinear elimination for particular applications. We
discuss two of these applications here. The first is macromodeling circuits. A circuit can
be thought of as a k-terminal device. In modeling the circuit the user wishes to know how
changing the voltage at some of the input terminals affects the voltage at other terminals. The
number of unknowns for the system is then k plus the number of internal unknowns in the
device. In [6] the authors show how to eliminate the internal unknowns from the system of
nonlinear equations that must be solved at each time step. More recent work on applying
N1Em to circuit simulation is reported in 13].

A second widely used, although only tangentially connected, application of nonlinear
elimination is in nonlinear least squares. Consider the problem of finding (u, v) such that

(1.16) IlY g(u, v)l12

is minimized, where y 1R x is a set ofobservations and g ]Rp --, 1Rn is nonlinear. Consider
the case where

(117) g(uv)=_l(v)u=[g11(v) ]gZl(V) U.

When v is fixed in equation (1.17), equation (1.16) turns into a linear least squares problem.
The problem given in (1.16) may then be rewritten as

(1.18) min IIY g(h(v), v)l12,

where

(1.19) h(v) (l(v) r/(U)) -1 l(v) y.

We have assumed, as in [10], that l(v) has full column rank. The case when l(v) does not have
full column rank is handled in [7, 8]. The difference between this approach and our approach is
that we eliminate variables and equations so that f(v) is still a system ofp nonlinear equations
in p unknowns.

Nonlinear elimination arises naturally in constrained optimization and can be viewed in
the context of Lagrange multipliers. Most authors do not choose such an exposition; see [3,
p. 141] for a related discussion. We remark also that Brown’s method [4] can be regarded as
a specialization of nonlinear elimination as discussed in 12, NR 7.14-15, pp. 227-229].

This paper is organized as follows. In 2 the N1Emalgorithm is presented along with
a simple example. Sections 3-5 contain an analysis of the whole procedure, presented as
constructively as possible. Since we suggest that N1Em can be part of a general algorithmic
strategy for solving nonlinear systems, this analysis presents conditions that ensure conver-
gence in a way that is compatible with the theory presented in 1]. Section 4 discusses the
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Input: w0 (u0, v0) and g.
1. Choose gl equations splitting g(w) into gl (u, V) and g2(u,

By gl (u, v) we mean that if gl ]n j, then u J.
2. Given the initial v0, solve gl (h(vo), v0) 0 for h(vo).
3. k--0
4. repeat until convergence
5. Solve

g11 g12 l[ Attk ]_ I --gl ]g21 g22 J Ark --g2

with gll, g12, g21, g22, and g2 evaluated at (h(vk), Vk).

Find tk (0, 1] such that
IIg(h(vg + tkAVk), V + tgmvg)ll < OIIg(h(v), v)ll

Note: a solve for u h(vk / tkAv) of
gl(U, Vk d- tkAVk) 0
is required for every tg.

Vk+ Vk + tgAvg
Note: h(Vk+l) is implicitly determined in step 6.

Fro. 1. Outline ofthe NlEm algorithm.

case when (1.8) is solved exactly and 5 discusses how accurately (1.8) must be solved to
retain the higher-order convergence of Newton’s method. The analysis in 5 leads to a refined
algorithm in 6 that tmifies N1Em and GAN into a single methodology. Section 7 contains
several computed examples.

2. Implementation overview. In this section we give a brief overview of how to imple-
ment the N1Em algorithm along with an illustrative example. In 6, a detailed algorithm is
presented that unifies GAN and NIEm.

2.1. NIEm algorithm. The outline of the algorithm is given in Figure 1.
Often the hardest part of the implementation is in step 1, since determining the set of

equations that belong in g is usually problem dependent. Once the set is chosen the solve in
step 2 moves the initial point (u0, v0) to a new point in the domain (h(vo), vo). There may be
an increase in the overall norm of g at this new point; i.e.,

(2.1) IIg(h(o0), v0)ll > IIg(u0, 0)11.

However, the norm of g decreases monotonically thereafter under appropriate conditions.
There are times when the set ofg equations may be changed dynamically after the algorithm
has been started. However, arbitrarily changing the set of equations represented by g could
lead to thrashing (i.e., the norm of g goes down for a while, but the g equations are changed
causing g to be as large or larger than previously).

The computation in step 6 implicitly requires a solve of the g equation. That is, to
compute h (vk + tkAVk) the g equation must be solved. Step 6 is potentially expensive, since
every new choice of tk requires a solve of the g equations. Note that in step 6 we are trying
to make the overall norm of g go down. This is necessary since g 0 in practice. When
gl 0 we only have an approximation to h(v), say/t(v). Thus, g2(h(v), v) is approximated
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FIG. 2. Convergence ofGAN overlaid on log(llfll -t- 1).

by g2(/(V), V). A decrease in Ilg2((v), v)ll does not imply that ]]g2(h(v), v)]l has decreased;
see 5. Therefore, we enforce norm reduction on all of g.

2.2. A simple illustrative example. We believe N1Em will be helpful when the system
of equations has some badly scaled components. The poor scaling is not in terms of normal
linear misscaling, rather it is due to the nonlinearity of the problem. In this section, we present
a simple example demonstrating how N1Em helps.

Consider the system f of two equations given by

f (u, v) (u 1)7) -- 113
(2.2) fz(u, v) (u +,v) + 1.

When viewed in terms of norms the curve u 117 v is close to the bottom of a very steep
valley. A GAN iterate in the valley causes the Newton direction to point tangent to the valley.
Since the valley curves and the Newton direction points in a direction nearly tangent to the
bottom of the valley, only small values of the damping parameter can be chosen; larger values
give an increase in Ilgll. In Figure 2 the starting point (-17.085938,-1.5) leads the GAN
iterates into the steep curved valley. GAN takes 32 steps to converge to the solution (0, 1).

To use N1Em we must first decide on the equation to eliminate. For this problem it is
clear that the first equation is causing the difficulties; that is, movement away from the curve
u 117 causes a large increase in the norm of the system. This is not true for the second
equation. Having decided on the equation to eliminate, we must then decide on the variable to
be eliminated with it; in this case we choose to eliminate the u variable. In realistic problems
the variable eliminated will be more obvious. For a given v we will solve for a u such that
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FIG. 3. Convergence ofNIEm overlaid on log(llfll + 1).

gl (u, v) 0. Solving for u in the first equation means that u h(v) 1)7 V. The eliminated
system, gz(h(v), v) v7/5 q- 1, is a much simpler problem to solve. In Figure 3 we see that
the number of N1Em iterations from the same starting point drops to three.

3. Preliminaries. Recall that our objective is to solve (1.11) using Newton’s method.
This section givesa review of the GAN convergence theory and provides results used in later
sections.

3.1. Analysis of GAN. The following analysis of GAN is derived from [1]. Let gk -=-
g(wk) with w0 some initial guess for the solution. There are three basic assumptions used to
prove convergence of GAN.

Assumption A1. The closed level set

(3.1) So- {w IIg(w)ll < Ilgoll}

is bounded.
The following assumption is equivalent to Assumption A2 presented in 1].
Assumption A2. g is differentiable, the Jacobian g’ (w) is continuous and nonsingular on

So, and the sequence IIx is uniformly bounded, i.e.,

(3.2) IIx < ka Iig

for kl >_ 0 and w E So.
Assumption A3. The Jacobian g’ is Lipschitz; i.e.,

(3.3) IIg’(y) g’(z)ll < k211y
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for

(3.4) y, z S1 {y Ilyll sup Ilzll + kxllg011}.
zSo

To continue the analysis of GAN we define the quantities

(3.5)

where we have assumed gk O. The quantity Ok defines the relative size ofthe linear residual.
Following the analysis of 1], the mean value theorem yields

(3.6) gg+l gk + fo g’(Wk -t- StkXk)(Wk+l Wk)dS.

Adding and subtracting g’k(Wk+l Wk) on the right-hand side yields

(3.7) gg+ gk d- gk(Wk+l Wk) -I- [gZ(Wk at- StkXk) gtk] (Wk+l Wk)dS.

Recalling that Wk+l Wk "1- tkXk we have

(3.8) gk+l (1 tk)gk + tkAllgkll + tBkllgll.
And finally taking norms we are left with

(3.9)

Under Assumptions A1-A3,/k can be shown to be bounded, fit _< k2k2/2. It is usually
possible to control the size of tk by computing xg more accurately. This is the case when
an iterative method is being used to solve the Newton equations. It is clear from (3.9) that if

oek < 1 then there exists a t, such that Ilg/lll < IIgll.
Convergence of GAN is given by the following proposition and theorem.
PROPOSITION 3.1 (see 1]). Assume that Al-A3 hold and that all < o. Ift is chosen

appropriately, then
1. all Wk So, the sequence gk is strictly decreasing, and Ilgk 0; furthermore,
2. Ilgk+lll/llgll 0 iffa -+ 0 andfor anyfixed p (0, 1],

(3.10) IIg+lll clllgll x+p,

(3.11) < c2llgll p

for positive constants c and c2.
THEOREM 3.2 (see 1]). Under the conditions ofProposition 3.1,
1. there exists a w* So with w* lim wk and g(w*) 0;
2. on So the convergence of {w} to w* is superlinear or Q-order (p + 1) ifot - 0 or

otk < C2 ]]gk p, respectively.
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3.2. Additional results. We conclude this section with results that will be used in sub-
sequent sections.

PROPOSITION 3.3. Assume that GANstartingfrom wo is convergent to w* with g(w*) O.
Letllg’-l(w)ll < M,foru So, andllgi+lll < OIIgillforeveryi, where gi =_ g(wi)andO < 1.
Then

1
(3.12) IIw0- u:*ll MIIg(wo)ll.

1-0

Proof. Since GAN is assumed to be convergent, we know that 1/) S0 for all i. Thus.

ti A ll)i

0

MIIg(wo)ll. U]

The proofs in this paper are complicated somewhat by the changes in sizes of norms.
We will address this problem by restricting the matrix norms we consider to p-norms. These
norms have the following properties.

Property P1. Let u m, and v [0, 0 0, u]r n; then

(3.13) Ilull

For example,

(3.14) u lip w/ w/ + 0p o lip.
i=1 i=1 i=m+l

Note that (3.13) holds however the elements of u are distributed in v.
Property P2. Let u m, v [u, 0, 0 0]r n and w [u, y]r n; then

(3.15) Ilvllp Ilwllp.

The following lemma can easily be verified to show that Properties P1 and P2 carry
through to matrices.

LEMMA 3.4. Let A Jk, j, k < n; then

B C ,nxn.where o m
We will refer to (3.13) as Property P1, and (3.15) as Property P2 without distinguishing

between matrices and vectors.
LEMMA 3.5. Let the nonsingular A ]nxn be partitioned as

All A12 ]A21 A22
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with A 11 IJ J and nonsingular. If A- ill < k andproperties P1 and P2 holdfor II, then

(3.16) ]](Azz A21A-{11A1z)-III < k.

Proof

IIA-(3.17) < k. q

o ](A22 Azl A-{ll A I2) -1

PROPOSITION 3.6. Ifg is Lipschitz on a bounded set S, then Ilgll is bounded.
Proof Since S is bounded, there exists k + such that w y _< k for all w, y S.

Let wo be a particular member of S with g(wo)II C. Then, forany w 6 S, we have

(3.18) IIg(w)ll IIg(w) g(wo)ll + IIg(wo)ll tllw woll + C tk + C,

where L is the Lipschitz constant. [3

PROPOSITION 3.7. Let M(w) ]lnxn with M(w) Lipschitz on some convex set with
Lipschitz constant ko. IfM(w) is partitioned as

(3.19) [ M11(t) M12(w) 1M21 (to) M22(w)

with Mll(W) jxj and IlMi-]l(w)l[ k, then the Schur complement of M(w) is also
Lipschitz with Lipschitz constant

(3.20) ko(1 + klk2)2,

where IIM(w)ll k2.
Proof Applying Proposition 3.6 gives us [IM(w)II k2. Using Properties P1 and P2, we

know that IIMi2 _< k2 for i, j 1, 2. Let A M(Wl) and B _= M(w2).

(A22 a21a-{llal2) (B22 n21n-lnl2)II
_< A22 B22

+[[B21BllB12 B21Bf11A12 + B21BllA12 A21A-f(A1211
_< ko[[x y -[- B21B (B12 A12) -+- (B21B A21A-I1) A12[[
_< kolix

q-I[ (B21B A21B] + A21B A21A]-I1) A12[[
_< kollx yll / k2klkollx Yll

/kzll (n21 A21) B]II] + kzllA=a (ni] A]-I)
< kollx Yll + k2klkollx YI] + k2klkollx YII
/ kllnXllllA-{llll (nll All)II

2 2< kollx Yll
(3.21) ko(1 + kk2)211x YII.

4. Exact NIEm. The exact N1Em algorithm is Newton’s method applied to the equation

(4.1) f(v) =-- g2(h(v), v) O.
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To show that the algorithm converges, we need to show that, under appropriate conditions, h (v)
exists and that the basic Assumptions A1-A3 hold on the function f (v). These assumptions
and making ok --+ 0 ensure that Proposition 3.1 and Theorem 3.2 hold.

First, assume that GAN is convergent on g and that from any point (u, v) in a given set,
GAN converges on gl giving gl (t, V) 0 where t h(v). For clarity sake, let So(g) be the
set So given in (3.1) and let Sl(g) be the set $1 given in (3.4). Because of the partitioning of
g, projections of sets are needed. In particular, let

(4.2) S(g)- {1)] (u, u) ( Sl(g) l) n,-j}.

The following assumptions are required for proof of the convergence ofGAN applied to (4.1).
Assumption A1 remains unchanged and for Assumption A2 we make the stronger restric-

tion that IIg’-’ _< kl over So(g). Assumption A3 is modified below.
Assumption A4. Let

(4.3) I1111 max Ilgl(w)ll;
weSi(g)

then the set

(4.4) S0(gl)- {(u, y) ly e S21(g) and ]]gl(u, v)ll [lll]}

is bounded.
Assumption A5. The function g is differentiable and gll is continuous and nonsingular

on S0(gl), and

(4.5) Ilg]-11(to)ll k5, to E S0(gl).

Since convergence of the g system is required only on the projection of S0(gl), i.e.,
g (u, v) 0 is solved with v fixed; the projection sets of So(g) are defined as

(4.6) S(gl)- {u (u, v) e S0(g), u e J},
(4.7) S02(gl)- {v (u u) e S0(gl), o e ]ln-J}.

This leads to a modification of Assumption A3 given previously.
Assumption A3. The Jacobian g1 is Lipschitz with Lipschitz constant k2 on

(4.8) Sl(gl) {(u, u) u S(gl) and Ilull max Ilwll + kllffll},
oS(g)

where 111 is defined as before.
The sets S0(g), S (g), S0(g), and S1 (gl) are illustrated in two dimensions in Figure 4; the

u-axis is horizontal and the v-axis is vertical. Note that So(g) need not be connected. Under
Assumptions Al-A5, there is a root of g in both of the disconnected regions. The sets $1 (g)
and Sl(gl) are both convex, but the set Sl(gl) has a capsule shape because it is stretched in
the direction of the eliminated variable.

These sets come into play during various phases of the solution algorithm. Initially wk
is in So(g). The approximate Newton direction is computed and a potential W+l produced.
The potential W+l w + txk may be outside So(g), but is within Sl(g) (of course, when
the final W+l is determined it must be in So(g)). At this point in the algorithm, a root u is
sought for gl (u, V) from a starting point in Sl(g). This root will be somewhere in S0(gl).
The Newton method used to find that root may generate points in Sl(gl) (in the same way as

w + tixi may be outside of So(g)).
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SO(g) Sl(g) SO(gl) Sl(gl)

FIG. 4. Illustration ofthe sets So(g), Sl(g), SO(gl), and Sl(gl) in two dimensions.

that
LEMMA 4.1. Consider Assumptions A3-A5. For v S21(g), there is a u S(gl) such

(4.9) gl(u, v) 0.

Thus, h(v) existsfor v S(g) and

(4.10) h’(v) -g-{11(h(v), v)g12(h(v), v).

Proof Let

(4.11) IIg’(wx) g’(w2)ll /211w1 wzll

hold for satisfying Properties P1 and P2. Let//31 (U 1, V) and//32 (U2, V). It follows
that

(4.12) Ilgll(Wl) gll(W2)ll k2llUl uzll.

Assumptions A4 and A5 and (4.12) represent the conditions for Proposition 3.1 and Theorem
3.2 to hold. Thus gx (u, v) has a root for fixed v 6 S(g). The remainder ofthe lemma follows
from the implicit function theorem.

THEOREM 4.2. Consider Assumptions A1-A5. If (uo, vo) So(g) with gl (uo, vo) O,
and at every iteration (1.15) is solved exactly, then GANconverges to the solution off(v) 0
and, furthermore, convergence is quadratic (Q-order 2).

Proof The proof will show that Assumptions A1-A3 hold for f(v) and that otk 0
as defined in (3.5)).

(A1) Let z So(f) {olllf(v)[I < IIf(vo)ll}, then by Property P1,

(4.13) IIg(h(z), z)ll IIf(z)ll IIf(vo)ll IIg(h(vo), vo)ll.

Thus, (h(z), z) So(g) and by Property P2, So(f) is bounded.
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(A2) Since (h(z), z) So(g) for z So(f), we know that

(4.14) A < Ilxkll < klllg(h(Vk), Vk)ll klllf(vk)ll,

using Properties P1 and P2 where appropriate.
Define

(4.15) Sl(f) {v Ilvll < sup Ilwll-+klllf(vo)ll}.
wSo(f)

(A3) From AssumptionA5 g]-i (h(v), v) exists and is bounded. Note that S1 (f) C S02(gl)
and gl (h(v), v) 0 for v Sg(gl); thus

(4.16) (h(v), v) S0(gl) C Sl(gl).

These observations and Proposition 3.7 gives

(4.17) Ilf’(vl) f’(v2)ll < k2(1 + ksk3)211(h(Vl), Vl) r (h(v2), v2) r

for 1)1, 1)2 S1 (f).
By the triangle inequality and Property P1 it follows that

(4.18) [ h(vl) h(v2) 1 < IlVl v211 + IIh(v) h(v2)ll.
k U1 1)2 .J

Since bounded derivative implies Lipschitz continuous (see Theorem 3.2.4 [12]) and

(4.19) IIh’(v)ll II- g-{ll(h(v), v)g12(h(v), v)ll < ksk3,

we know that

(4.20) IIh(vl) h(v2)ll < kTIIVl v211.

for some k7.
Putting these results together gives

(4.21) IIf’(vl) f’(v2)ll < (k2(1 + ksk3)2(1 + kT))1101 v211 ksllVl v211.

Finally, since in the exact case AVk f,-’ fk, it follows that Ok O. Therefore, Proposition
3.1 and Theorem 3.2 hold for f(v). 71

5. Approximate NIEm. In an approximate Newton method, the Newton correction is
computed by

(5.1) MkXk --gk,

where Mk is an approximation of g. Convergence of this method is given by showing that
Ck < 1 in (3.5).

Recall that N1Em can be viewed as GAN applied to (1.11). The Otk for this nonlinear
system is

(5.2) Otk
Ilf(vk) + f’(v)Avll

IIf(v)ll
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In approximate N1Em, (1.15) and g (u, Vk) 0 are not solved exactly. Since the g system
is not solved exactly, the actual h(vk) is not computed at iteration k. Thus, verifying otk < 1
is impossible because the actual f and f’ are not computed. Denote by (v) the computed
approximation to h (v). Although h (v) was continuous and differentiable, h (v) may be neither.
In the remainder of this section we will use ffk, , lk, 2k, 11k, 12k, 21k, 22k to denote
g, g’, gl, g2, gll, g12, g21, g22, respectively, evaluated at (h(v), v). Recall that at each step
of N1Em, a linear system is solved. Define the residual of this solve in the approximate case
to be

(5.3) r g Av + "
In this section, a bound is given for the k in (5.2). This bound will allow us to show

that in the limit quadratic convergence is attainable if the g system and (1.15) are solved
accurately enough. The analysis of the convergence of approximate N1Em proceeds in two
stages. In the first stage, an expression is derived that bounds the k in (5.2) in tes of the
accuracy of solving the g system of equations, i.e., Ilgl II. In the second stage, the terms
of that expression are bonded in two ways with two theorems. The first theorem is existen-
tial, giving the conditions der wch approximate N1Em attains higher-order convergence.
These conditions are not verifiable. The second theorem gives computable conditions for
approximately deteining .

5.1. Bounding k.
LEMMA 5.1. Under the assumptions ofTheorem 4.2, the of(5.2) can be bounded by

llfl llgll ggl gl(h + s(h ), v) 11 (h )ds

+

+ll(g= - _
g21kgllkgl2k) (22k Vkg21glg) A

(5.4) +llr 21kkrlk II,

where we have partitioned rk into rlk, r2k corresponding to the blocking ofg.
Proof Recall that

(5.5)
Oekllfkll- otkllg2kll--11(g21kh’ -t-g22k)Avk -t-g2kll

(g22k -1g21kgllkg12k)AVk q- g2kll

where, from (5.3), AVk satisfies

(5.6) [ gllk 12k
g21, g22k

Auk
Ark ]q_[ lk rlk

That the ijk exist, for i, j 1, 2, and ffllk nonsingular follows from

(5.7) ((vt), Vk) So(g) C So(gl).

From (5.6) it follows that

(5.8)
Ark (22k ~-1 -1g21kgllkgl2k) (,2k 21k,-l:lk)

-1-(22k 21k711kff12k)-l (r2k ff21kff 711krlk)
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We begin by deriving an inequality relating g2k in terms of 2k. Applying the mean value
theorem gives

(5.9)

Similarly, for gl,

(5.10)

0 glk lk -Jr- llk(h h)

"+" gll(f’/ + s(h it), Vk) llk (h [t)ds.

We derive an expression for g2k by solving for h t in the secondterm of (5.10) and substituting
into (5.9). The expression is given by

(5.11)

21k-k [gll(f/ + s(h -f’/), Uk) llk] (h -fl)ds

01-- [g21(f/ + s(h f-/), Uk) 21k] (h ’l)ds.

Inequality (5.4) is determined by substituting (5.8) and (5.11) into (5.5) and applying the
triangle inequality.

PROPOSITION 5.2. Under the assumptions of Theorem 4.2, the ofLemma 5.1 satisfies

(5.12)

cgllg2kll k2(1 + ksk3)2clllllllmvgll
k3 + ksk 2 2-- IIlkll + (1 + kaks)llrkll,

2

where c 1_o.
We preface the proof with a few remarks. Previously we noted the existence of ijk and

the nonsingularity of 11. The assumptions allow us to actually bound these quantities. That
is, IIij _< k3, i, j 1, 2, and I1-11k _< ks. Note also that

(5.13) (fl(Vk) -I- tkAUk, l)k -+- tkAVk) E Sl(g) C S0(gl).

Thus we may use Auk to generate a starting guess for the solution of gl (u, Vk + tkAVk). The
algorithmic implication of this point is that in the regime of quadratic convergence of (the
whole) g, N1Em need not do a solve of the g equations; they will already be small enough.
Finally, note that

(5.14) (h(Vk), Vl), ((Vk), Vl) So(g1);

thus

(5.15) ((v) + s(h(v) (v)), Ok) S1 (gl)

for 0 < s < 1 and therefore the Lipschitz condition holds along the line segment.



552 P.J. LANZKRON, D. J. ROSE, AND J. T. WILKES

Proof The proof proceeds by bounding each of the terms of (5.4). Expanding norms and
applying the Lipschitz condition to the first term in (5.4) yields

(5.16) ll2 ~-1 2
lkgllk gll(/ + s(h ), l)k) llk (h )dsll _< ks-llh 11

Similarly, the second term can also be bounded yielding

f0t[ ] k3 2(5.17) g21(/t 4- s(h it), vk) fi,21 (h [t)ds < llh 11

Applying Proposition 3.7 and Property P1 to the third term of (5.4), we get

-1(5.18) I1(g22 g21gllgl2) (22 21k]-11/12)]1 < k2(1 4- ksk3)21lh tll.
The fourth term is bounded by applying Properties P1 and P2 to note that

(5.19) Ilrz 21kfi,-{?krlk < Ilt-lllllrll,

where

[ , 0](5.20) L-- 21k]-1 I

Thus

(5.21) Ilr2k 2 ~-1lkglrlkll < (1 + k3ks)llrk[[.

Collecting (5.16) (5.21) gives

kllg2kll <_ k2(1 / ksk3)2[lh llll/Xvll
k3 + ksk(5.22) /--IIh 112 / (1 / k3ks)llrll.

2

Since h(v) is the root of the equation g (u, vk) with v fixed and the assumptions assure that
GAN converges from h(v), we may apply Proposition 3.3 to conclude that

(5.23) IIh ll < clllll.

Substituting (5.23) into (5.22) gives the desired result.

5.2. Convergence theorems. We continue by giving conditions for bounding the terms
of Otk in (5.12). Two theorems are presented. The first theorem gives the conditions under
which higher-order convergence can be expected; however, the result is existential. It is not
possible to verify the conditions computationally. The second theorem gives a method for
testing the size ofc computationally.

THEOREM 5.3. Under the assumptions ofProposition 5.2, ifconditions
CI" [Igl(t(vk), p)ll [Ig2(h(vg), Pk)ll, and
C2" [Irgll < IIg2(h(vg), Ok)l[ (I+p)

hold, then

(5.24)

otk [Ig2k (1 + k3ks)IIg2k +p

4- (2klk2(1 4- ksk3)2Cl 4-
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where

k3 2 2(5.25) I111 < (1 -t-kscl)llg2ll + - llgzll

Proof The theorem follows from Proposition 5.2 by bounding the quantities IIlll,
zXv II, and 2 II. The bound for lk is given by condition C 1.

By Assumption A2 we know that

(5.26) Au:
Av ] < kl IIT II.

Applying Properties P1 and P2 and condition C1 it follows that

(5.27)

All that remains is to bound IIT2 II. We apply the mean value theorem to give

f01 [ ](5.28) 2k g + g;(h + s(t h), v) it -d h ds.

Following the methodology that led to inequality (5.17) and applying the triangle inequality
and (5.23) gives

(5.29) k3
IITzll IIg211 + ksclllTlll + c211111.z-

Finally, applying condition C 1 yields the inequality (5.25).
Neither condition C1 nor C2 are verifiable. The following theorem gives conditions that

are verifiable.
THEOREM 5.4. Under the assumptions ofProposition 5.2, ifconditions
Cla: the gl equation is solvedfor [t(v) so that Ilgl(/t(v,), v)ll _< IIg2((v), v)ll, and
C2a: IIrll <_ IIg2(/t(v), o)ll (I+p

hold, then

oe IIg= (1 + k3k)IIh l+p

( k3nt-ksk )(5.30) + 2klk:(1 -+-ksk3)2c1 nt- TCl I1=11 =.

The proof of Theorem 5.4 follows directly from the proof of Theorem 5.3. The intention
of Theorem 5.4 is twofold. First, if IIb. is small enough, then at the very least c < 1
and, therefore, the method is converging (cf. Proposition 3.1). Second, in the limit when
IIr _< I1 =, quadratic convergence is attained.

Note that in the statement of Theorem 5.4 we write that g should be solved so that
Ilgl(h(o), v)ll < IIg2(h(v), o)11. Unfortunately, this inequality can only be checked after
a function evaluation is done to determine g2(h(vt), v). To avoid having to recompute g9.

every time a new h(v) is generated, i.e., after every iteration of GAN on the g system, we
suggest that gl be solved so that Ilgl((v,), v)ll < Ilgz(/t(vn-1), V-l)ll z.

COROLLARY 5.5. Under the conditions of Theorem 5.4, with p 1, if Cla is replaced
with

Ilgl((o), v)ll- O(llg2(t(V-l),
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then when Ilg2(ft(Vk-1), Vk-1)ll is sufficiently small, i.e., close enough to the root, the conver-
gence ofthe method is quadratic.

Proof. The proof follows from Theorem 3.2 with the observation that sufficiently close
to the root

(5.32) IIg2(ft(o,), )11 O(llgE(ft(v,-1), v,-1)l12),

and therefore condition C1 holds.

5.3. Accuracy requirement for gl system. As pointed out in 2, inaccuracies in com-
puting fk cause a practical problem in the solution process. Even if the seemingly fortuitous
inequality

(5.33) IIg2((v), v)ll < IIf(v)ll

holds, there might not be any tk such that

(5.34) Ilg2(h(Vk+l), v/)ll < llg2(h(v), v)ll.

Algorithmically, failure to satisfy equation (5.34) for a given choice oft leads to two options.
The first is to keep trying smaller tk ’s. The second is to go backto the previous iteration because
the g system was not solved accurately at that point. This section gives an approximate
formula for determining whether 11111 is close enough to zero to make ll2/lll < 112kll a
possibility. Satisfying this formula will give the user confidence that a norm reduction will
eventually occur for t small enough.

PROPOSITION 5.6. Recall f =-- g2(h(v), v). Define to be an approximation of fk.
Let

(5.35) 3 A A II.

IfO < k, tk+l < 1, and Ilf+lll xlI3]l,/Zl < 1, then

(5.36) A+II _< tz2 A II,

where

(1 +k)
(5.37) /z2 A z A II.1

Proof. We have

(5.38)
113 All +

/xkllfkll + xllAII (1 + k)llAII;

adding fk+ fk/ to both sides gives

(5.39)

solving for f+111 gives

(5.40)
(1

IIf+lll </Zl I tk+111fll.
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NIEm (/, W tol, MAX)/* at the outer level, 1 */

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

if gl consists of no equations, return.
NIEm(/+ 1, el+l(wl), tol_l, MAX_l)
Note that this call to N1Em changes the WTM unknowns.
k O, wlo Wl
while ((llgl(wl)ll > tot) and (k < MAX))

compute x
repeat

choose a tk
1)+1 Wlk -- kX

NIEm(I + 1, el+l(l+l), tolk, MAXk)
until (11 gl (t+1) < 0 gl (Wlk)ll) or t i8 too small
if t is too small, return with w unchanged

+ 1,
if (k > max) return with w unchanged
return with w wl

Fro. 5. A detailed view ofthe NlEm algorithm.

For our purposes we will assume that there is some/x2 we wish to achieve. We compute
a candidate f+l, yielding a/Zl. We are then able to determine if/z2 is achievable. Recall
from (5.11) and subsequent analysis that

(5.41) 112 g2ll < CIIh 112 + 1121-111 II.

An estimate for a can be obtained by dropping the C h -/t 2 term. Hence

(5.42) - 21-111
112 21k-klkll

where the denominator is an O(llh tll 2) approximation for gE(h(l)k), Vk).

6. Implementation details. While the outline of N1Em given in 2 is sufficient for a
programmer to generate a piece of code, we have noticed certain improvements that make
the transition from N1Em back to GAN transparent. Thus, in this section we present a more
detailed algorithm and address certain issues raised in 5.

The algorithm in Figure 5 is a recursive algorithm that allows N1Em to be performed on
more than two levels; i.e., N1Em is used to solve the g equations. One place we view this as
a possibility is on a system of nonlinear PDEs. The g equation at one level might be one or
more of the PDEs, while the g equation at the next level might be the equations associated
with some of the grid points. While we believe this to be a case where nested N1EM might be
useful, we have not actually implemented N1Em for this problem.

Define by gl the set of equations associated with level I. g is the full set of equations.
Define pl+l to be a projector function that, when applied to the variables w (the variables
associated with level l), returns wl+1.

There are several interesting points about this routine.
1. If g2 consists of no equations then the code above is GAN.
2. Notice that after computing x, all of t+ is updated. When the answer is close

enough to the root that GAN is in the regime of quadratic convergence, the call
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to NIEm at the next step will (if the tolk is chosen reasonably) return doing no
computation. Thus, the transition from N1Em back to GAN is achieved with just the
cost of an extra function call.

3. We make tolk smaller and MAXg bigger as t, decreases. As pointed out in 5 there
is a problem with determining whether norm reduction fails because t, has not been
made small enough, or if the g equations were not solved accurately enough at the
previous level. While solving the g equations more accurately at this level does not
help the problem of failure at the moment, we have more confidence that it will not
be a problem on the next iteration.

4. The maximum number of N1Em iterations needs to be set carefully. MAX_I should
be set very high so that N1Em does not give up too early trying to solve them. On the
other hand MAXk should be set to a small level (increasing as tk decreases). Long
periods oftime should not be spent trying to get solutions for t’s when some smaller
tk will get an answer faster. We know that the answer can be found for some smaller
t since the u from the previous iteration can be used if tg is sufficiently close to 0.

5. It is sometimes the case that g2 is not known before beginning. In that case g2 would
be calculated before the initial call to NIEm. It is important that g2 not be changed
after this. If for some reason the user does wish to dynamically change g2, it is
important to check that after the initial call to NIEm there has been a norm reduction.
If this is not done, thrashing can occur and the code will not terminate.

7. Examples. In this section we give examples showing the performance of N1Em. The
first two examples demonstrate how N1Em is used for a system of nonlinear equations arising
from the discretization of an ODE. The first example shows that N1Em can improve perfor-
mance on a problem where grid refinement might otherwise have been used. That is, the user
would recognize that most of the action is taking place at some set of points and the rest of the
domain is quiescent. Instead of gridding the domain differently, a fine uniform grid is used,
and more computation is done on the points of interest. The cost of the algorithm is improved
by five times. The second example shows how N1Em can be used to solve problems where
too few grid points are used. When too few grid points are used, the steep valleys as seen in

2 sometimes occur. N1Em can be used on the "bad" grid points giving results where GAN
fails. The third example is a simple 2-D semiconductor device. By eliminating two of the
PDEs, we get convergence with an example that would not converge using GAN.

7.1. Elimination by grid 1. Consider the nonlinear boundary value problem given by

-u"+u+ 4(x 0"5)2
-2x 10.4 u-lff’e-t-i- =0,

10
(7.1) u(O) =0, u(1) =0.

This has the solution

(7.2) u(x)-- 103e-)2

The action in this problem is around x 0.5, where a large spike occurs.
We give a few details about this example using 100 discretized equations. An initial

guess for U l... U l00 is made. The gl system is the discretized equations 49-52. Using the
initial guess for u48 and u53 as fixed values, the nonlinear subsystem gl is solved to a very
high accuracy (e.g., 10-12 for the norm of the residual). Following this initial solve of the
g system, the main loop begins. The entire system g is evaluated at the new point; that is,
Ul u48 and u53 Ul00 are unchanged and/’/49 bt52 have the values just computed. The
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TABLE
Comparison ofNlEm to GANfor example given in 7.1. "Points" refers to the number ofgrid points in the

domain. "its" refers to the number ofiterations required. The gridpoints between LEFTand RIGHTare in gl.

Points GAN time GAN its N1Em time NIEm its LEFT RIGHT
100 0.15 10 0.03 5 48 53
500 1.47 10 0.17 5 240 261
1000 2.81 10 0.32 5 480 521
5000 10.7 10 1.66 5 2400 2601

Jacobian is computed and the Newton equations are solved, giving the update vector Au. Then
a damping parameter is chosen, and u48 + Au48 and u53 + Au53 are computed. These
are used as fixed values in the g solve, as above, except that the accuracy of the solution is
relaxed, to say (llgll/llgil[)2, where gi is the residual at the initial guess. Although we
used the damping parameter to control the accuracy, any function of can be used that shows
similar behavior; i.e., the accuracy requirement is increased for smaller and is relaxed when t
approaches 1. This ensures that as the regime of quadratic convergence is approached, few (if
any) iterations of Newton’s method on equations 49-52 are required. The main loop repeats
when a damping parameter is chosen so that a norm reduction for the whole g has occurred
following the gl solve.

In Table 1 we see that N1Em runs about five times faster than GAN. It is so much faster
because in the first few iterations of GAN, very small values of the damping parameter are
required. The very small damping parameters mean that the function must be evaluated many
times. N1Em also has touse small values for the damping parameter for the g equations, but
performing a large number of function evaluations on four percent of the points is not very
costly.

7.2. Elimination by grid 2. Consider the nonlinear boundary value problem given by

-u" + t(x)u’ + u3eu + k(x) O,
u(0) -0, u(1) =0,

9 x-0.5,2 { -01606(7.3) c(x) 10 e-t--) v/Ix- 0.51 k(x) x < 0.5,
x >_ 0.5,

where u’ is discretized using central differences. Fifty grid points were used on this problem;
but because central differences were used, this was not enough grid points. Using the same
code as in the previous example, the computed solution under these circumstances shows
ringing around 0.5. GAN is unable to solve this problem. N1Em solves the problem in 17
iterations. Both methods solve the problem when more grid points are used.

7.3. Example from semiconductor device simulation. One of the areas in which we
have been directing the application of this method is semiconductor device simulation [9].
N1Em was implemented in the semiconductor device simulator SIMUL 11]. In the example
presented here, the equations take the form

(7.4) V" (e V u) + n p + N 0,

(7.5) Jn q- Rn (n, p) O,
(7.6) Jp + Rp(n, p) O,

where u, n, and p are functions in space (for the example we present here, (x, y) 6 2), e
and N are spatially related constants, Jn and Jp are electron and hole current densities, and
Rn and Rp are recombination terms.
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gate
source Oxide drain

1.0" 10"* 18 y
__

1.0" 10"* 18

-1.0"10"’16

substrate

FIG. 6. NMOS transistor. The numbers represent the background dopings ofthe N and P regions.

These steady state equations are usually solved using GAN. Under certain circumstances
GAN fails to converge or converges too slowly. In these cases, other methods are employed to
generate a good initial guess so that GAN converges well. These methods include nonlinear
Gauss-Seidel and continuation in the boundary conditions. In nonlinear Gauss-Seidel each
equation is solved in turn using the most recent values for the other variables as constants.
Sometimes nonlinear Gauss-Seidel also fails in which case continuation in the voltage at the
contacts is employed.

The example given in Figure 6 is anNMOS transistor. The voltages at the various contacts
are source=0, gate 1, substrate=0, and drain= 1 volts. The problem was originally solved using
a combination of nonlinear Gauss-Seidel and continuation in 235 seconds. When the system
is solved with N1Em, with the g equations being the electron and hole continuity equations,
the solution time is 36 seconds. Other choices for the g equations did not perform as well.
In the experience of the author of SIMUL, choosing electron and hole continuity equations to
be g works in many cases. We also point out that when the problem is easy, e.g., for drain
voltage of 0.1 volts, N1Em takes longer than GAN. We reiterate that N1Em should be used in
cases where GAN is having difficulties.

Acknowledgment. We are indebted to Stephan Miiller for implementing N1Em in the
semiconductor device simulation package SIMUL and for patiently helping the authors find
an interesting example. We also thank Wolfgang Fichtner for allowing us to spend time with
his student.
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THREE-DIMENSIONAL STEADY FLOW IN A DIVIDING CHANNEL USING
FINITE AND PSEUDOSPECTRAL DIFFERENCES*

ROLAND HUNTt

Abstract. A numerical solution for the flow of a steady incompressible fluid in a general symmetric three-
dimensional bifurcation having uniform thickness is presented for Reynolds numbers up to 100. The physical region
is divided into three subdomains, each of which is transformed onto a rectangular parallelepiped upon which the
calculations are made. The Navier-Stokes equations are differenced using standard second-order differences in the
direction of each tube and pseudospectral differences in the two transverse directions. The use of such differences
in the transverse plane greatly reduces the number of nodes required for a given accuracy, and this particular mix
of differences minimizes the CPU time requirement when Newton’s method is used to solve the resulting algebraic
system. Two bifurcations have been considered with daughter tubes angled to the main tube at 60 and 90,
respectively. By comparing results on different sized grids the estimated relative accuracy is typically of order 10-3.
The resulting flows display novel three-dimensional features not present in two-dimensional flows. In particular, as
fluid passes from main to daughter tubes it twists in a fairly complex vortex-like fashion.

Key words, pseudospectral methods, three-dimensional flow

AMS subject classification. 65N35

1. Introduction. In a previous paper [11] we presented the numerical solution of the
steady incompressible flow in a three-dimensional tube having.general specifiable boundaries
using ajudicious combination of finite and pseudospectral differences. The ensuing nonlinear
systemwas solvedusing Newton’s iteration. This blendoffinite andpseudospectral differences
meant that it was possible to obtain results of reasonable accuracy on a workstation.

The aim of that paper was first to examine the possibility of using such a mix of finite
and pseudospectral differences. Along the tube second-order central finite differences are
employed but in the two transverse directions pseudospectral differences are used (see [7]
for an overview). For a given tolerance this particular mix of differences is optimal in the
sense that it gives a minimum CPU requirement when Newton’s method is employed to solve
the resulting algebraic system which was the method adopted. The use of pseudospectral
differences across the tube, rather than finite differences, greatly reduces the number of nodes
required for a given accuracy which, in turn, greatly reduces the CPU requirement. Typically
for an accuracy of 10-3, the number of nodes required across the tube is 10 compared with 50
for finite differences which leads to an enormous saving of storage (typically 500) and CPU
time (typically 10000). However, replacing finite differences by pseudospectral differences
along the tube can considerably increase the CPU requirement. It was shown that using
pseudospectral discretizations in all three directions can result in the CPU time being increased
by asmuchas a factor of60. This is because the Jacobianmatrixemployed inNewton’s method,
which is banded when pseudospectral differences are only used across the tube, now becomes
full.

A second aim was the use and suitability of Newton’s method for solving the algebraic
system resulting from a three-dimensional flow problem. The use of Newton’s iteration to
provide a numerical solution for fluid flow problems was pioneered by Fornberg [3]-[6] and
studied by the author [9], 10]. The advantage of using Newton’s method is that it is second-
order convergent. This means that provided a suitable starting iterate is available, which is not
a difficulty for flow problems of this type, the iteration always converges and, furthermore,
only requires three or four iterations for a tolerance of 10-6. This contrasts with traditional
SOR methods in which, for large Reynolds number, some kind ofadditional artificial viscosity

*Received by the editors July 23, 1994; accepted for publication (in revised form) February 16, 1995.
Department of Mathematics, University of Strathclyde, Glasgow, Scotland (r.hunt@uk.ac.strath).
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d

FIG. 1. The geometry ofthe bifurcation showing (a) side view and (b) plan. The bifurcation is symmetric about
AC and KL. The coordinates usedfor the three domains ABGH, BEFG, and BCDE are shown inside each domain.
The physical coordinates are shown outside the domain.

or upwinding is necessary, the introduction of which can seriously degrade the accuracy of
the solution [4], [9]. The cost of each iteration in terms of CPU time is high but, because of
the few iterations required, the total time is comparable with that needed by an SOR method
for a two-dimensional flow and somewhat higher for three dimensions. A disadvantage of
the method is that the Jacobian is so huge that it needs to be stored outside the memory of
the computer; for example, on a hard disk. However, by transferring data in large batches the
program can be made very efficient.

This study of the flow in a tube was a precursor to the study of the flow in a three-
dimensional bifurcation in which three tubes are patched together. This is the subject of this
paper. The motivation for such a study is the simulation of blood flow through an arterial
bifurcation which is known to be a preferred site for atherosclerosis (see 12] for a review).
The vast majority of numerical fluid flow calculations have two space dimensions and little
has been done in three dimensions. A physical arterial bifurcation is three dimensional and
it is known that the flow contains significant secondary circulations not present in a two-
dimensional representation and hence the need for a full three-dimensional numerical study
of the problem.

In this paper we present the numerical calculation ofthe three-dimensional, steady, incom-
pressible flow in a symmetric bifurcation having constant thickness (Fig. 1). The bifurcation
is divided into three domains labeled I, II, and III, and the flow in each domain is solved
numerically in a similar manner as for the generalized tube. First each domain is mapped
onto a rectangular parallelepiped having a rectilinear grid on which the governing equations
are solved. Because the mapping is quite general the boundaries CD and FH can be specified
arbitrarily. Second, as for the generalized tube, the derivatives of the governing equations
are approximated by second-order central differences along the tube and by pseudospectral
differences in the two transverse directions. And, finally, the resulting nonlinear system of
equations is solved using Newton’s method.

2. The governing equations, their transformation and differencing. The equations
governing the flow of an incompressible fluid are given by the Navier-Stokes equations. In a
steady state these are
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(2.1a) V.u 0,
1

(2.1b) (u.V)u + -Vp vV2u,
P

where (2.1a) is the continuity constraint and (2.1b) the momentum balance. The symbols
p, u, p, and v are the density, velocity, pressure, and kinematic velocity, respectively. If
U and L are representative of the central velocity and typical "width" of a tube then we
nondimensionalize the equations using

pU2p(2.2) u Uu’ p

to give

(2.3a) V.u 0,

(2.3b) R(u.V)u + Vp V2u,

where the dashes have been dropped for clarity and R UL/v is the Reynolds number. The
pressure has been nondimensionalized in this manner so that setting R 0 in (2.3b) gives the
Stokes equation.

To solve equations (2.3), each domain (I, II, or III) is first transformed onto a rectangular
parallelepiped such that the original boundary is transformed onto a boundary of the paral-
lelepiped. We will use (x, y, z) or (x 1, x2, x3), as shown in Fig. 1, to denote the original
coordinates and (, r/, ) or ( 1, 2, 3) as the coordinates in transform space. Similarly the
velocity components in the (x, y, z) directions will be denoted by (u, v, w) or (u 1, u2, u3).
Then equations (2.3) are

(2.4a)

Ou
(2.4b) RugxJ +

Obt J

OX g

Op 02u
Ox OxJOxJ’

where I 1, 2, 3 and repeated superscripts are summed from 1 to 3. The transformed
equations then are

8K 8u s
(2.5a)

Ox g Or

(2.5b) Rug oK OU Or Op
OX J OK OX OK

=0,

OK OL 02hi 02K OU
+OXJ OXJ OKOL OXJOxJ OK"

The transformations used in this paper are expressed algebraically and the terms Or/Oxg and
02K/Oxg Oxg were determined using the symbolic algebraic package Maple [2]. The terms
OuI/OxK and O2uI/Oxr Oxr are approximated using difference formulae.

The grid employed in transform space is shown in Fig. 2. In the direction the spacing
A is uniform and the transformation is chosen such that A 1. We will assume, without
loss of generality, that 0 has domain 0 _< r/ _< and choose the Gauss-Lobatto collocation
points as nodal values; that is

(2.6) /’]j 1-cos j --0, 1 n
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Outer boundary

X’ X

X X X

j=o
Inner boundary

(b)

k-O
X X X

Outer boundary

Fro. 2. Sections of the grid in (a) the -rl planes and (b) the - planes showing the position of the velocity
nodes O’illed circles) andpressure nodes (crosses). In (b) the dashed line shows the axis ofsymmetry.

for a specified integer n. Similarly the domain for " is 0 < < 1 but, in order to take full
advantage ofthe symmetry about 0, we will use the Gauss-Lobatto points on 1 < _< 1;
namely,

zrk
(2.7) (k sin, k 0, 1 m

rn

for which we regard k -m, -m / 1 1 as auxiliary fictitious nodes. These will enable
us to have difference formulae of optimum accuracy in the direction.

On the grid the velocity components u are associated with integer points (i, j, k), 0 <
<l+l, 0< j <n, 0<k <m, and the pressure p with points (i + 1/2, j, k), 0 < _< l,

1 < j < n- 1, 1 < k < rn 1 where denotes the integer collocation points in the
direction. For fluid flows there is no physical boundary condition for the pressure similar to
the no-slip condition for the velocity, although one can be derived from the Navier-Stokes
equations. This poses considerable numerical difficulties, first, in setting up a complete set of
algebraic equations and, second, in obtaining a stable solution due to the presence of several
spurious pressure modes 1]. Both of these problems can be overcome by simply not using
the pressure collocation points on the boundary (j n or k m) and using an interpolant
of one degree less in the r] and directions. This avoids the need to supply a pressure
boundary condition and there will be no spurious pressure modes since there no longer exists
a nonconstant pressure solution which vanishes at all interior collocation points. In fact an
attempt to include boundary pressure points resulted in a highly oscillatory saw-tooth solution
which clearly shows the presence of unstable modes. Another possibility which would have
a similar effect would be to use a staggered grid for the pressure similar to that originally
proposed by Harlow and Welch in their "marker and cell" method [8]. This would be more
difficult to program without any obvious advantage. However, we use half-integer points for
the pressure in the/-direction since this gives a more accurate difference formula for the first
derivative in direction.

The derivatives of u in the direction are approximated by second-order central differ-
ences which about the point (i, j, k) are

Ou 1 02ul
H 2u[ j k -1- uli-l,j,k(2.8)

O - a (U[+I,j,k U[_l,j,k), 02 1,1 uli+l,j,k

and in the r] direction by pseudospectral differences given by
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where D)n, jj and E,jj are the first- and second-derivative pseudospectral collocation matrices
using the points (2.6). In the direction using all the fictitious nodes we have

(2.10)
o bl

tn

O( l’)k’kklgi’j’kk"
kk--m

is symmetric for I 1, 2 and antisymmetric for I 3 we haveNoting that ui,j,k

(2.11)
m

G (o,mkk "Jr" Ok,2m_kk) Ut,j,kk
kk=-O

where "+" is used for I 1, 2 and "-" for I 3 and ’ denotes a summation whose first
term is halved. Similarly,

(2.12)
02ul HI _f Ek,2m_kk) Ui,j,kk.0 ’2 3,3 (E2,nk -4-- 2m

kk=-O

The second-order mixed derivatives are obtained by applying the appropriate first derivatives
twice and are

(2.13a)

(2.13b)

(2.13c)

02u

O2l

021g

1
H . U tll k)1,2 Oj,jj ( i+l,jj,k i-l,jj,

jj=0

rn

HI 1 yf (D,nk 4- 2m ) (uiI+l, -ill k)Dk,2m-kk,, jj,k i- 1,jj,1,3
kk=-O

1 - 2m"-- H’12,3 O;,jj (o,mkk Ok,2m_kk) uli+l,jj,kk"
jj=O kk=-O

For the pressure we have

Op
(2.14a)

(2.14b)

(2.14c)

P1 Pi+1/2,j,k- Pi-1/2,j,k,

019 P2 =- - Fjn,jj Pi+1/2,jj,k + Pi-1/2,jj,kO jj=O

m-1
__0P 1 Z, /]tz,2m_2 ..[_ .772m-2 ](pi + Pi- )," k,kk k,2m-kk] + 1/2,j,kk 1/2,j,kkO(

P3 =-- - kk=O

where Fjn,j- is the first-derivative collocation matrix using the points (2.6) excluding j n
since there is no pressure collocation point on the boundary. Because p is not defined at
integer points in the direction, it has been represented by the average of its two nearest
neighbors. Substituting equations (2.7)-(2.14) into (2.5b) we obtain the difference equations
for the momentum balance at each interior node as

(2.15) (RuJ 02K ) oK HI OK oL o
OXJx J GIK -[- PKx K,L OX J OXJ

where u and the derivatives of K are evaluated at i, j, k and the repeated suffices J and K
are summed from 1 to 3.
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The continuity equation (2.5a) is to be satisfied at the pressure collocation points. Hence
the derivatives at (i + g, j, k) are approximated by

(2.16a)

(2.16b)

(2.16c)

OU

0
U 1,j,k i,j,k,

Ou 1
ojn, jj " i,jj,k)’(l,liI+l,jj,k U

O0 2
jj=O

m
2m

U
Ou’ 1 E’ (D,mk + Dk,2m-kk) (Ui+l,j,kk " i,j,kk)"
O( 2

k=O

Substituting into (2.5a) gives

(2.17)

uj 0 jj0 Or/(U:+l,j,k i,j,k) x + - Dj,jj (U:+l,jj,k -4" U Ji,jj,k) OX J

1 Z’ (O,t + O,mm-kk) (u/+ 1, j,kk + U Ji,j,kk)
0+ =o

o

where the repeated superscript J is summed from 1 to 3. The discretized equations (2.15)
and (2.17) are applied to the interior points of each grid. In order to complete the system of
equations we now consider the boundary conditions.

3. Boundary conditions. Referring to Fig. 1 the boundary conditions are as follows.
(i) CD and FGIt. On these boundaries we have the no-slip condition u 0; that is

(3.1) u(
t,j,k O.

(ii) AHandDEEAtthe ends ofthe tubes we will suppose that the inlet and outlet pressures
are prescribed; that is p Ps and p Pf on AH and DEF, respectively. For the numerical
difference scheme to be closed we need to supply additional velocity boundary conditions.
Assuming that far upstream and downstream the tube, and consequently the flow, is uniform
we will impose velocity boundary conditions Ou/Ox 0 and v to 0. Numerically these
give

(3.2a) U gl
O,j,k gl,j,k 0, U:+l,j,k l,j,k O,

(3.2b) u2 u 3 3
O,j,k O,j,k --O, U+l,j,k --Ul+l,j,k O,

1,j,k Ps O, Pl+1/2,j,k Pf O.(3.2c) Pl+

(iii) AB and BE. These are interior boundaries and hence require that the dependent
variables should be continuous and have continuous normal derivatives. For BE this is

(3.3)

g2 g3

Og2 Og3 ] g u, w, p

Oy2 Oy3

V2 1)3

01)2 01)3
Oy2 Oy3

where the suffixes 1, 2, and 3 refer to grids I, II, and III in Fig. 1. The y derivatives are
calculated numerically at j 0 using

(3.4)
Og O Og Or/Og O( Og



THREE-DIMENSIONAL FLOW IN A DIVIDING CHANNEL 567

FIG. 3. (a): The geometry ofthe overlap region between domains and II. (b): The definition ofxo(), Xl (),
and Yl ( illustrated.

where O/Oy, O0/Oy, and O(/Oy are known algebraically and Og/O, Og/Orl, and Og/O( are
approximated using formulae similar to (2.8), (2.9), and (2.11) except that the pressure p is

in these equations).rather than (i.e., replace by +centered at +
The boundary conditions on AB are similar and, taking into account the symmetry about

this line, give

(3.5)
Ogl

O, g u, w, p, 1) O.
Oyl

(iv) BC and BG. The interior boundary BG is chosen to occur at the end pressure colloca-
tion points. In order to apply the discretized momentum balance equation near this boundary
it is necessary to extend the grids by half a grid spacing so that grids I and II overlap as shown
in Fig. 3(a) in which BG is now labeled ON. The values of u at A, B, C, D, and E (illustrated
as n 4 in Fig. 3(a)) for grid I are obtained from the values of u at A’, B’, C’, D’, and E’ using
interpolation. In order to preserve pseudospectral accuracy in the r direction, the interpolating
polynomial is of degree m using all the nodal points (1, j, k), j 0, 1 m for fixed k.
The x and y coordinates for grids I and II do not coincide and hence the velocities on grid II
calculated at positions A, B, C, D, and E need to be resolved in the directions of the velocities
on grid I, using the formulae

U --U2 COS ( -- 1)2 sin

(3.6) v U2 sin 4) + v2 cos

1/31 //)2.

Similarly, boundary values along FG for grid II in Fig. 3(a) are obtained from grid I using
interpolation. Finally, the boundary BG in Fig. 1 is treated in a similar way to that described
for BC. The two grids involved, corresponding to grids I and II for BC, will be grid III and its
reflection about BG.

4. Geometry of the bifurcation. The shape of the boundaries CD and FGH in Fig. 1,
together with the parameters dl, d2, d3, and 4), are arbitrary and, hence, user specifiable. To
illustrate the numerical solution we suppose that the boundaries GH, FG, and CD for the three
grids are given by
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(4.1) sinh[b(y d)]sinh[b(y cose x cose d)] sinh2(bh)

where d dl, h h2, and e q for grids I and II and d d2, h h2, and e r 2q for
grid III. This produces a curve which asymptotes exponentially quickly to the lines y d and
y cos e x cos e d; that is, the inlet and output tubes are essentially uniform away from the
bifurcation. The parameter b controls the rate at which the curve approaches the asymptote,
and h controls the sharpness of the "comer" at the bifurcation.

The grid employed is specified by three functions x0(), the distance from the origin along
the center line, and x () and yl () representing a point on the curve (Fig. 3(b)). Because the
main changes in the flow occur near x 0 we require a transformation in which gives close
grid spacings at small x and wider spacings at large x where the flow is essentially uniform.
Hence a suitable choice of function for x0() is

(4.2) xo() A sinh[k( 1/2)]
13 1+1where 0, 1 + 1 give the velocity collocation points and , the

pressure points. If Xs is the length of grid I, Ax0 is the width of the spacing at x 0, and l0
is the number of grid spacings in grid I, then the parameters A and k are obtained iteratively
from the equations

(4.3) Ak Ax0, A sinh(/0k) -Xs.

Ifxf is the minimum length of grids II and III then the number of grid spacings in these grids
is the smallest integer such that the lengths of the grids is at least xf. The functions x () and
Yl () are chosen such that AB in Fig. 3(b) meets the boundary curve at right angles, these
being found numerically using Newton iteration. Hence, the transformation is

(4.4)
X rlXl() --[- (1 t])X0(),

Y =/TYl (),
z =d3,

from which the transformation functions 0//OxJ and 02K/OXJ OXJ can be found. The
algebra is formidable and consequently they were obtained using Maple. In this paper we
consider two grids with (i) 4 60 and (ii) 4 90 having parameters

(4.5) xs 3 xf 3 + g R, Ax0 0.5//0, dl d2 d3 0.5, b 4,

Ps 15(Xs + xf), hi 0.2, (i) h2 0.2, or (ii) h2 0.

The resulting grids for l0 20 and rn 8 are shown in Fig. 4.

5. Newton’s method and its implementation. Equations (2.9), (2.11), and (2.12) form
a closed set for the unknowns u[,j,k and Pi+1/2,J,k which can be written as

(5.1) f(u) 0

where f contains the right-hand sides of the equations and u the unknowns U[,j,k and Pi+1/2,,j,k"
Equation (2.17) has been solved using Newton’s method, which is

(5.2a) U(s+l) u(s) + Au(s), s 0, 1

(5.2b) JAu() -f(u(s))

where J is the Jacobian 0f/0u evaluated with u u().
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FIG. 4. Section ofthe grid used in the x-y plane with 10 20 and rn 8for (a) 4 60 and (b) 4 90.

The variables bl and Pi "k are ordered such that is the "outermost loop" whichi,j,k +,j,
varies the least. The order commences with the collocation points of grid I for l0 4-
1, l0 4- , l0 , 0 and the points of grids II and III are ordered together, that is, in par-

1, /4-1allel for 0, , 4- 1. This ordering causes the Jacobian J whose size
N 4nm(lo 4- 2/) to be banded. The semibandwidth W 5nm for the elements re-
sulting from the equations from grid I and W 9nm for grids II and III with a signifi-
cant increase in width near the boundary of the two grids. Equation (5.2b) is solved using
Gaussian elimination. The number of multiplications in reducing the Jacobian to triangu-
lar form W2N and the storage requirement for the reduced matrix is 4WN bytes
assuming four bytes per word. (The calculation is performed entirely in double precision,
but it is sufficient to store the Jacobian on the hard disk in single precision.) For one of
the cases depicted in the computer log (shown later), l0 60, 74, rn 14, and
n 7 giving N as 83594, the maximum value for W as 1267 requiring 225.6 Mbytes
for the reduced Jacobian. The reduction of the Jacobian to triangular form has been per-
formed efficiently taking into account the "jaggedness" of the banding. The following were
adopted:

(i) After each row of J is calculated, that row is immediately reduced using forward
elimination and then transferred to the hard disk. This minimizes the number of disk transfers
required and only the reduced Jacobian needs to be stored.

(ii) Transfers to the hard disk are done in large batches which take up less than 1 percent
of the total CPU time.

(iii) The elimination process consists of three nested DO loops, with the inner loop being
the most expensive. This inner loop is only performed when it makes nonzero changes, that
is only for nonzero multipliers and then only up to the last nonzero element of the pivotal
row.

(iv) Pivoting was not used except in the case ofa zero pivot. It was found to be unnecessary
(although it could be switched on if required) since pivoted and unpivoted reductions were
essentially the same.

The implementation of the above resulted in a considerable reduction in the CPU time
compared with the case when the "jaggedness" is not taken into account.

In order to test the validity of the code, a comparison with an analytical solution of
equations (2.5) given by
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(5.3)

u ex cosh y cos z,
v ex sinh y cos
w -,/ex cosh y sinz,

1Re2X (cos2 ,/z cosh2 y)p=

has been performed. The boundary conditions (3.1) and (3.2) are replaced by Dirichlet bound-
ary conditions whose dependent variables are given by (5.3) and the interior discretizations
(2.15) and (2.17) remain unchanged. The exact solution for the interior is then given by (5.3)
and a comparison with numerical results can be made. Setting R 2 gave results which
demonstrated that the differenced equations (2.15) and (2.17), which form the most complex
part of the program, are indeed correct.

In order to estimate the error in a particular set of results with, say, array parameters
(l, m, n), three further sets of results were obtained to see the effect of altering l, m, and
n in turn. To assess the effect of the choice of on accuracy we compare the results with
those obtained with half the number of grid points in the direction, that is with parameters
(El, m, n). Because central finite differences are used in the direction, which are second
order, we can estimate the error using the formula

(5.4) l[q(l,n m)-q(l n m)3

where q(l, n, m) and q(l, n, m) are two estimates for any variable q at a common location.
For the pressure each grid location on the coarser grid coincides with a grid location on the
fine grid. For the velocity, however, the points do not coincide and we use cubic interpolation
to compare these values.

We can assess the effect of the choice of n and rn on accuracy by obtaining results by
varying these two parameters over a range of values. Numerical experimentation indicated
that it is sufficient to alter these parameters by one in order to obtain a reasonable estimate of
the accuracy. Hence, by obtaining results with parameters (1, rn 1, n) and (1, m, n 1), the
error due to changing each of these parameters in turn can be estimated by simple differences,
that is

(5.5) Iq(1, n, m) q(l, n 1, m)l and Iq(l, n, m) q(l, n 1, m)l

at a common location. Because the collocation points in the r/and ( directions do not coincide,
we evaluate these differences by comparing the results at the collocation .points on one grid
with the interpolated solution from the other grid. Formula (5.4) estimates the error on the
finer grid, but (5.5) estimates the error on the coarser and, hence, it is anticipated that the actual
errors in the r/and ( directions will be significantly smaller than those given by (5.5).

To apply Newton’s iteration we need a starting iterate u in (5.2). For this we choose
the velocity u[,j,k 0 everywhere and Pi+1/2,j,k to vary linearly with x from Ps to Pf. For
convergence to a specified tolerance (see later), typically four to six iterations are usually
required depending on the value of R. However, for each case considered, four sets of results
are obtained in order to estimate the accuracy. Hence once a set of results has been obtained
an accurate starting value u is available by interpolating these results. Thus the number
of iterations required in the last three runs is considerably reduced and typically two or three
iterations is sufficient. Below are shown some elements of the computer log for the case
R 20 when l0 60, rn 14, and n 7.

10=60, 1=74, rn= 14, n--6.
Jacobian: Size 71652, semibandwidth 1086, storage 165.8 Mbytes.
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Iteration CPU Error
1 4208 2.40 (-!-1)
2 4232 1.86 (+1)
3 4209 8.92(-1)
4 4210 7.49 (-3)

Newton accuracy 5.27 (-7)

10=60, 1=74, m=14, n=7.

Jacobian: Size 83594, semibandwidth 1267, storage 225.6 Mbytes.

Iteration CPU Error
1 6699 3.25 (,3)
2 6699 4.81(-6)

Newton accuracy 1.05 (- 11)

10=60, I=74, m=13, n=7.

Jacobian: Size 77623, semibandwidth 1176, storage 194.2 Mbytes.

Iteration CPU Error
5354 1.40 (-3)

2 5345 4.16 (-6)

Newton accuracy 3.69 (- 11)

I0=30, I=37, m=14, n=7.

Jacobian: Size 42826, semibandwidth 1267, storage 114.8 Mbytes.

Iteration CPU Error
1 3339 1.02 (/0)
2 3338 7.24 (-3)

Newton accuracy 3.62 (-7)

The order in which the runs have been made is chosen to reduce the CPU time as much as
possible and the results (l, m, n), which take the most time per iteration, are performed second.
The error recorded at each iteration is Es II/xu) whichestimates the maximum absolute
error in us, that is, the previous iteration (see (5.2a)). Newton’s iteration is theoretically
second order and we have observed that as Es -- 0 this is indeed the case to a reasonable
degree of accuracy. Hence assuming that the iteration does perform as second order we
can estimate the error in us+l) using the formula Eest [E(S)]3/[E(S-1)]2. The runs were
terminated when either E < 10-4 or Eest < 10-6. In the log the item "Newton accuracy" is
the value of Eest for the final iteration and shows that all the runs are accurate to at most 10-8.
Also in the log are details of the Jacobian, its size, bandwidth, and storage requirement.

It is possible to speed up the program using a quasi-Newton iteration technique in which
Newton’s method is applied for two or three iterations and subsequent iterations use the L and
U factors from the last full iteration. This approach avoids the costly inversion of the matrix
J at each iteration, and, although the iteration is now first order, the convergence is usually
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TABLE
Central inlet and outlet velocities oftheflow, daughter tube length, and endpressure ofthe main tubeforselected

values ofR.

End tube velocities

p 60
R Inlet Outlet

0 1.7035 0.8518
10 1.9234 0.9618
20 2.0448 1.0225
30 2.1317 1.0660
50 2.2145 1.1074
70 2.2410 1.1206
100 2.2461 1.1232

q 90
Inlet Outlet

1.8068 0.9034
2.0157 1.0079
2.1264 1.0633
2.1932 1.0967
2.2412 1.1208
2.2463 1.1233
2.2423 1.1213

Daughter Inlet
tube length Pressure

3.000 90.00
5.680 130.19
7.331 154.97
9.462 186.94
13.875 253.13
17.909 313.63
20.346 350.19

rapid. As discussed in a previous paper [11] this technique was found to save significant
CPU time after the initial few full iterations had been performed. Because, for each case,
the last three runs only take two or three iterations to converge, the technique could only be
applied to the first run which typically requires four to six iterations. For ease ofprogramming,
quasi-Newton was not used in these calculations.

The calculations were performed on a DEC Alpha. The 0.5 factor used in the formula for
Ax0 in (4.5) was chosen because numerical experimentation indicated that this gave the most
accurate results. Also the values of l, m, and n employed (see next section) are the maximum
values allowed by the limits of the machine. A typical run required 16-20 hours of CPU time
and up to 300 Megabytes of disk space.

6. Results and discussion. Results have been obtained for R 0, 10 100 using
l0 60, m 14, and n 7 for the case q 60 and 10 60, rn 12 and n 8 for the
case tp 90. Table 1 shows the central inlet velocity of the main tube and the central outlet
velocity ofthe daughter tubes as obtained from the results for selected values of R. Also shown
are the lengths of the daughter tubes used and the pressure Ps applied at the end of the main
tube. The length of the main tube Xs is set at three and the pressure at the end of the daughter
tubes is zero. Tables 2 and 3 list the maximum and average errors resulting from changing
the values of l, m, and n in turn as given by equations (5.4) and (5.5) for the two cases of b
considered. The velocity error recorded is the absolute error (since the velocity is order unity
throughout the flow), but the pressure error is relative to the average drop in pressure per unit
distance, i.e., (Ps Pf)!(xf + Xs). Average errors for the velocity are at most a few times
10-4 and for pressure a few times 10-3, with maximum errors about a magnitude higher. As
expected the errors increase as the Reynolds number increases.

The results for b 60 with R 50 are shown in Fig. 5. The diagram traces the paths
of streamlines showing them from four viewpoints, namely, side elevation, end elevation,
plan, and in the direction of the axis of the daughter tube. The magnitude of the velocities
is indicated by the distance between arrowheads shown in the side elevation. More precisely
the arc length between arrowheads is proportional to the velocity magnitude in the x-y plane
i.e., /u2 / v2, evaluated at the tail-end of the arrow. The arrow shown between side elevation
and plan has unit velocity. As the flow passes through the bifurcation it twists in a fairly
complex fashion. The nature of this twist can be shown by placing a uniform grid in the flow
far upstream (Fig. 6(a)) and comparing it with the resulting distorted grid far downstream
(Fig. 6(b)). The comers ABCD become mapped into A’B’C’D’. A careful examination
of the diagrams shows that it is very unlikely that, at this Reynolds number, there are any
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TABLE 2
Maximum andaverage errors in velocity andpressurefor4 60 resultingfrom changes in the tubeparameters

l, m, and nfor selected Reynolds number R.

0 Max
Ave

10 Max
Ave

20 Max
Ave

30 Max
Ave

50 Max
Ave

70 Max
Ave

100 Max
Ave

Velocity

m n

3.8 (-4) 1.5 (-5) 5.4 (-5)
4.8 (-5) 9.8 (-7) 2.8 (-6)

5.0 (-4) 1.2 (-5) 6.0 (-5)
6.6 (-5) 8.8 (-7) 2.9 (-6)

9.0 (-4) 9.7 (-6) 6.4 (-5)
9.0(-5) 8.7(-7) 3.4(-6)

1.3 (-3) 2.4 (-5) 9.0 (-5)
1.2 (-4) 1.3 (-6) 5.1 (-6)

1.6 (-3) 5.2 (-4) 5.9 (-4)
1.6 (-4) 1.9 (-5) 2.6 (-5)

1.9 (-3) 2.6 (-3) 1.9 (-3)
1.9 (-4) 1.3 (-4) 9.3 (-5)

2.5 (-3) 5.7 (-3) 6.5 (-3)
2.2 (-4) 2.8 (-4) 3.3 (-4)

Pressure

m n

1.7 (-4) 8.1 (-5) 6.7 (-5)
4.7 (-5) 5.0 (-6) 5.0 (-6)

2.8 (-4) 5.4 (-5) 5.7 (-5)
1.0(-4) 4.4 (-6) 4.9 (-6)

7.5 (-4) 9.3 (-5) 1.3 (-4)
2.0 (-4) 5.4 (-6) 1.1 (-5)

1.7 (-3) 2.2 (-4) 5.4 (-4)
3.4 (-4) 9.9 (-6) 3.0 (-5)

4.5 (-3) 4.0 (-3) 3.2 (-3)
7.1 (-4) 1.6 (-4) 2.8 (-4)

7.9 (-3) 2.4 (-2) 1.4 (-2)
1.2 (-3) 1.1 (-3) 9.5 (-4)

1.3 (-2) 7.0 (-2) 5.9 (-2)
1.9 (-3) 2.7 (-3) 3.8 (-3)

TABLE 3
Maximum andaverage errors in velocity andpressurefor4 90 resultingfrom changes in the tubeparameters

l, m, and n for selected Reynolds number R.

0 Max
Ave

10 Max
Ave

20 Max
Ave

30 Max
Ave

50 Max
Ave

70 Max
Ave

100 Max
Ave

Velocity

m n

4.6 (-4) 9.9 (-5) 3.6 (-5)
5.5 (-5) 5.8 (-6) 1.6 (-6)

6.7 (-4) 7.2 (-5) 3.9 (-5)
6.7 (-5) 4.6 (-6) 1.7 (-6)

7.7 (-4) 4.1 (-5) 4.1 (-5)
8.5 (-5) 3.9 (-6) 2.0 (-6)

1.0 (-3) 3.9 (-5) 4.7 (-5)
1.0 (-4) 4.0 (-6) 2.6 (-6)

1.2 (-3) 1.9 (-4) 9.4 (-5)
1.3 (-4) 1.2 (-5) 7.5 (-6)

1.3 (-3) 1.5 (-3) 6.1 (-4)
1.4 (-4) 6.6 (-5) 4.0 (-5)

1.6 (-3) 5.3 (-3) 2.2 (-3)
1.6 (-4) 2.8 (-4) 1.6 (-4)

Pressure

m n

2.8 (-4) 3.7 (-4) 4.2 (-5)
6.6 (-5) 3.4 (-5) 2.2 (-6)

3.3 (-4) 2.8 (-4) 8.3 (-5)
1.2 (-4) 2.7 (-5) 4.5 (-6)

6.9 (-4) 2.9 (-4) 1.3 (-4)
2.2 (-4) 2.2 (-5) 1.0(-5)

1.4 (-3) 3.9 (-4) 2.6 (-4)
3.0 (-4) 2.2 (-5) 1.8 (-5)

3.7 (-3) 6.8 (-4) 1.0(-3)
4.5 (-4) 6.8 (-5) 9.1 (-5)

6.4 (-3) 6.3 (-3) 3.8 (-3)
6.8 (-4) 5.1 (-4) 4.5 (-4)

1.1(-2) 3.0(-2) 2.2(-2)
1.1 (-3) 3.1 (-3) 2.3 (-3)

recirculation regions in the flow. The pressure contours on the plane of symmetry (z 0)
and on the plane passing through the edge z are shown in Fig. 7. These are typically
as one would expect, that is, decreasing pressure from upstream to downstream, with a local
maximum at the apex (y z 0 with x on the boundary) since the flow is slow within this
neighborhood.
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FiG. 5. Streamlinesfor tp 60 at R 50. The diagram shows side elevation, end elevation, andplan. The
insert at the top left shows the view along the daughter tubefor which the points A’B’C’D’ correspond to the points
ABCD in side elevation. Dashed lines are lines ofsymmetry. The component of the velocity magnitude in the x-y
plane is shown by the distance between arrowheads in side elevation. Unit velocity is shown by the arrow between
side elevation andplan. The streamlines shown commence downstream at y 0.1, 0.2 0.9 and (a) at z 0.125,
(b) at z 0.375, (c) at z 0.625, and (d) at z 0.875.

B

13 C

D’

FIG. 6. The distortion ofa uniform gridfar upstream: (b) which was originally placed perpendicularly in the
flowfar downstream (a)for tp 60 at R 50. The points ABCD are transformed into A’BCtlY.
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FIG. 7. Pressure contoursfor 4 60 at R 50 in the plane: (a) z 0 and (b) z 0.5. The contour levels
are equally spaced with Ap 5. Two values ofthe contour levels are givenfrom which the others can be determined.

Figures 8 and 9 show the velocity streamlines and pressure contours for 4 90 with
R 50. The characteristics of the flow are similar to those described for q 60 with the
similar twisting of the flow as it passes through the bifurcation. As the Reynolds number
increases, the twisting of the flow becomes much more pronounced and is illustrated in Fig.
10, which shows the streamlines of the flow for R 100 and 4 60.

7. Conclusions and future work.
(i) Numerical results have been obtained for the steady incompressible flow in a symmet-

ric three-dimensional bifurcation having uniform thickness and specifiable boundaries in the
x-y plane. This is accomplished by dividing the physical region into three domains each of
which is transformed onto a rectangular parallelepiped upon which the calculations are made.
The results have acceptable relative accuracy of 10-3 for Reynolds number up to 100 with
daughter tubes orientated at 60 and 90 to the main tube.

(ii) The results show that there are significant flow features which do not appear in a
corresponding two-dimensional flow model. In particular as the flow moves from the main
tube to the daughter tubes it twists in a vortex-like fashion.

(iii) We have only considered a steady solution leaving the unsteady pulsatile case, which
is a characteristic of blood flow, to a future study. However, the steady case does represent
the "time averaged" situation and should be capable of predicting the areas of high/low wall
shear stress where atherosclerotic lesions can occur.

(iv) Instead of using second-order differences along the tube, it would be feasible to use
fourth-order central differences in order to increase the accuracy in this direction. Equations
(2.8) would then encompass five nodal points rather than three with the result that the width
of the Jacobian would double. This would lead to a fourfold increase in the CPU time and
a doubling of the storage requirement. To be competitive with second-order differences it
would be necessary to decrease the number of nodes along the tube to be at least a factor four
while maintaining the same level of accuracy. It is unclear whether this is the case and would
require further investigation.

(v) Although only two tubes of constant thickness have been considered, the strategy can
deal with any bifurcation that is symmetric in the y and z planes. The boundaries can be
specified quite generally and then the coefficients 0/OxJ and 02r/Ox Ox of equation
(2.5) can be found using a Maple program designed for the purpose. Such a program produces
Fortran coding which is then used directly in the main fluid flow calculation.

(vi) In two-dimensional flow the CPU time requirement is proportional to N2 for both a
Newton- and a Gauss-Seidel-type method where N is the total number of nodal points. In
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FIG. 8. Streamlinesfor b 90 at R 50. The diagram is similar to Fig. 5 except the insert is no longer
necessary: (a) at z 0.125 and (b) at z 0.375. Streamlinesfor b 90 at R 50: (c) at z 0.625 and (d) at

z 0.875.
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FIG. 9. Pressure contoursfor 90 at R 50 in the plane: (a) z 0 and (b) z 0.5. The contour levels
are equally spaced with Ap 5.

three dimensions the time requirement is proportional to N7/3 and N5/3, respectively, making
Newton’s method the more expensive. It is hoped that we can investigate the possibility that
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FIG. 10. Streamlinesfor 60 at R 50: (a) at z 0.125 and (b) at z 0.375. Streamlinesfor 60
at R 50: (c) at z 0.125 and (d) at z 0.875.

a combination of a Newton- and a Gauss-Seidel-type method would pick out the best of both
methods in terms of speed and stability.

(vii) In the future we hope to extend the method to include cylindrical-like tubes and
nonsymmetric bifurcations from which we should be able to obtain results for a realistic
arterial bifurcation. Also the code needs adapting to cope with slender bifurcations (e.g.,

30) which gave disappointing results.
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A STABLE PENALTY METHOD FOR THE COMPRESSIBLE NAVIER-STOKES
EQUATIONS: I. OPEN BOUNDARY CONDITIONS*

J. s. HESTHAVENt AND D. GOTTLIEBt

Abstract. The purpose of this paper is to present asymptotically stable open boundary conditions for the
numerical approximation of the compressible Navier-Stokes equations in three spatial dimensions. The treatment
uses the conservation form ofthe Navier-Stokes equations and utilizes linearization and localization at the boundaries
based on these variables.

The proposed boundary conditions are applied through a penalty procedure, thus ensuring correct behavior of
the scheme as the Reynolds number tends to infinity. The versatility of this method is demonstrated for the problem
of a compressible flow past a circular cylinder.

Key words, open boundary conditions, stable penalty methods, Navier-Stokes equations
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1. Introduction. In the present paper, we discuss boundary conditions for dissipative,
wave-dominated problems, exemplified by the Burgers equation and the three-dimensional,
compressible Navier-Stokes equations given in conservation form. The emphasis is on de-
riving open boundary conditions that ensure the continuous problems are well posed and on
devising asymptotically stable semi-discrete schemes for imposing these conditions. The
boundary conditions and the semi-discrete schemes are valid even in the limit of vanishing
viscosity.

When addressing exterior wave-dominated, dissipative problems, one is often forced to
introduce an artificial boundary for computational reasons. This introduces the well-known
problem of specifying appropriate boundary conditions at the artificial open boundary. For
purely hyperbolic problems, it is well known that enforcing these boundary conditions through
the characteristic variables leads to a stable approximation. However, for dissipative wave
problems the procedure is considerably more complicated.

Naturally, we require that the boundary conditions lead to a well-posed, continuous prob-
lem. For wave problems of dissipative type, the problem must, in order to be compatible with
weak boundary layers, remain well posed even in the limit where the dissipation vanishes and
the problem becomes purely hyperbolic. In addition to this, we want the discrete approxi-
mation of the problem to be asymptotically stable and the boundary conditions to be easily
implemented.

For general nonlinear problems the issues of well-posedness and asymptotic stability are
very complicated and for most problems only very little is known. However, as discussed by
Kreiss and Lorenz 1], we may, for a large class of operators, simplify the problem signifi-
cantly if the solutions are smooth. It was shown that in this case it is sufficient to consider
the questions of well-posedness and asymptotic stability for the locally linearized, constant
coefficient version of the full problem.

The energy method is applied to the linearized, constant coefficient version of the contin-
uous problem in order to obtain energy inequalities which bound the temporal growth of the
solutions to the initial-boundary value problem. This technique allows the handling of such
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complex problems as the Navier-Stokes equations and is in general applicable to symmetriz-
able systems of conservation laws for which an entropy function can be defined [2].

The usual way to enforce the boundary conditions in the numerical scheme, once their
proper form for the continuous problem is known, is to solve the equation in the interior of
the computational domain and then enforce the boundary conditions at the boundary points.
However, this approach does not take into account the fact that the equation should be obeyed
arbitrarily close to the open boundary. To circumvent this problem, Funaro and Gottlieb [3, 4]
and Carpenter, Gottlieb, and Abarbanel [5] developed the penalty method, which enforces
the boundary conditions as well as considers the equation at the boundary. They showed
asymptotic stability for the scheme applied to scalar hyperbolic equations and systems of
hyperbolic equations. Don and Gottlieb [6] showed how this idea can help in applying the
Legendre collocation method on the Chebyshev grids.

The proofs presented in this paper are all done for semi-discrete schemes. The relation
between the stability of the semi-discrete and the fully discrete scheme was recently discussed
by Kreiss and Wu [7].

The issue of well-posed boundary conditions for the compressible Navier-Stokes equa-
tions was previously considered by Gustafsson and Sundstr6m [8], Oliger and Sundstr6m
[9], and Nordstr6m 10, 11]. They all used the energy method to derive boundary conditions
for the linearized, constant coefficient Navier-Stokes equations in the primitive variable for-
mulation. Dutt 12] introduced an entropy function, which allowed him to derive boundary
conditions for the nonlinear problem, ensuring that the solution remains bounded in an en-
tropy norm. Halpern 13] has devised well-posed artificial boundary conditions that remain
valid in the limit of vanishing viscosity. He approached the problem by viewing the linearized
Navier-Stokes equations as a hyperbolic system subjected to an incomplete elliptic pertur-
bation and obtained nonlocal as well as local open boundary conditions by considering the
Fourier-Laplace transformed problem in the semi-infinite half-plane. However, for most of
the previous work only few suggestions are given on how to enforce the derived boundary
conditions in a natural and consistent way.

The remaining part ofthis paper is organized as follows. In 2 we review some well-known
results on Legendre polynomials and collocation methods. Section 3 discusses the Burgers
equation and boundary conditions that ensure well-posedness of the problem are derived. We
continue by proposing an asymptotically stable penalty method through which the boundary
conditions are enforced. This scheme ensures the correct behavior even in the limit, where the
problem becomes hyperbolic, and may in general be applied to any nonlinear scalar equation.
The penalty method for linear scalar hyperbolic, parabolic, and advection-diffusion equations
is briefly discussed and the proposed scheme is evaluated by numerical tests. The importance
ofproperly choosing the penalty parameter is addressed in 4, where we discuss the effect ofthe
penalty method on the Courant-Friedrichs-Levy (CFL) condition when using explicit Runge-
Kutta methods for time-stepping linear problems. We show that the results from the linear
analysis carry over to the nonlinear case by performing simulations of the Burgers equation.
We briefly discuss the equivalent penalty method for Chebyshev collocation methods. In 5
we derive open boundary conditions for the compressible Navier-Stokes equations given in
conservation form and propose a penalty method for enforcing these boundary conditions.
We derive the symmetrized form of the Navier-Stokes equation in conservation form and
prove well-posedness for the continuous case and asymptotic stability of the proposed semi-
discrete scheme using a Legendre collocation method. The boundary conditions and the
semi-discrete approximation remain valid in the limit where the Reynolds number approaches
infinity. The performance of the scheme in direct simulations of the Navier-Stokes equations
is illustrated by simulating compressible flow around a circular cylinder using a Fourier-
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Chebyshev collocation method. Section 6 concludes the paper and discusses the application
of the scheme in finite difference/finite element simulations.

2. Legendre polynomials and collocation methods. The schemes, whichwe analyze in
the present paper, are all basedonLegendre collocation methods. This choice is dictated merely
by a wish to obtain analytical results, and the methods extend trivially to other collocation
methods and even to finite difference/finite element methods.

The Legendre polynomial of order N, Pv (x), is defined as

1 dv
Pv(x)

2VN dxV
(x2- 1)v

where Ix _< 1. In what follows, we will only consider collocation methods where the col-
location points are given as the Legendre-Gauss-Lobatto points, defined as the roots of the
polynomial (1 x2) Pv(X). There is no known explicit formula for these roots.

Associated with the Gauss-Lobatto points is the quadrature formula, stating that if f (x)
is a polynomial of degree 2N 1, then

V’r f_l(1)
z_., v_x:_o9: f( d
k=0

wherex are the Legendre-Gauss-Lobatto collocation points, and the Gauss-Lobatto weights,
ogg, are given as

2 1
(2) o9= l<k<N-1

N + 1 Pzv(xk) P_x(X)
2

O)0 O)N
N(N + 1)

For further details on the properties of the Legendre polynomials, we refer to 14].
In a Legendre collocation method, the function, f(x), is approximated by a grid function,

f f(x), where the grid points are the Gauss-Lobatto collocation points. Thus, we
construct a global Legendre interpolant, Iv, to obtain an approximation to the function as

N

f)(x) y A h(x)(Iv
k=0

where the interpolating Legendre-Lagrange polynomials are given as

h,(x)
(1 -x2)p,(x)

N(N + 1) (x x)Pv(x,)

We note that by construction,

(Iv f)(x) f
To seek equations for an approximate solution, (Iv f)(x), to a partial differential equation,
we need to obtain values for the spatial derivatives at the collocation points. This is done by
approximating the differential operator by a matrix operator, with the matrix entries given as

)kl htl(Xg)

For the explicit expression of the entries, we refer to 15, 16].
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3. The Burgers equation. In this section, we consider the Burgers equation

(3)
8U 8U 82U

-Uox Ixl_< 1 t>0
0t

where e > 0. The initial condition is given as

U(x, 0) f(x)

with boundary conditions of the form

(4) oeU(-1, t)
ox

8U
=0(5) ?,U(1, t),-[- 8-X x=l

When addressing the issue ofwell-posedness it is sufficient to consider the linearized, constant
coefficient version of the Burgers equation

(6)
Ot t-)8x =e-x2 Ixl _< 1 > 0

Here L U0 is the uniform solution around which we have linearized. Equation (6) is also
known as the linear advection-diffusion equation.

The four real constants, c, /, ?’, and 8, in the boundary conditions, (4) and (5), may not
be chosen arbitrarily, since the resulting problem should be well posed. Bounds yielding a
sufficient condition for well-posedness are given in the following lernma.

LEMMA 3.1. Equation (6), with boundary conditions given by (4) and (5), is well posed
ifone ofthefollowing conditions holds:

(i) /=0, 8=0.
(ii) /3 7 0 8 0 and ( )) + 2/ > O.
(iii) /3=0 0and(e+.)+2,/>0.
(iv) /3 # 0 # 0 and 2( Z),/ + 2(e + .)ot//3 + 4(c9/)/(/3) > ..

Proof Construct the energy integral as

1 d 1 [_)U2d-llU[[2 -) (U, Ux) + e (U, Uxx) - + 2eU Ux]_ ellOxll 2

Here we have introduced

(U, V) U V dx (U, U) g 2

Following an analysis similar to that in 17], we apply the following

-llUxll _< -[u(1) u(-1)]=
Following this, the condition for well-posedness becomes

=.zdtllfll21d <_ 1 [_,U2 -[- 2eU Ux]l_l [U(1) U(-1)]2 _< 0

Condition (i) implies that U(- 1) U(1) 0 such that

ld
---IlUll = _< 0
2dr
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For condition (ii) we obtain U(1) 0 and thus

ld

2dt 1( C)u_<-g
yielding the condition

e .+2
t
m>0

Likewise, for condition (iii) we obtain

l d 1( Y)U2(1)<0d-TIIUII2<- e/)v+2
showing that this choice yields well-posedness. For condition (iv) we obtain the constraint

ld

2dr 1( )U2 1(---IlWll 2 _< - e . / 2 (-1) + eU(-1)U(1) e + +2 U2(1) < 0.

This is obeyed if

e2- e-)+2 e+)+2 _<0

implying

2(e ,k)?,/a + 2(e + )v)ot//3 + 4(ot?,)/(/36) > .2 I-1

3.1. The semi-discrete scheme. Equation (3) will be solved using a Legendre collocation
method where the collocation points are the Legendre-Gauss-Lobatto points. This involves
finding an Nth degree polynomial, u (x, t), satisfying

(7)
Ou Ou 02U
m+u__=e at X=Xk k6[1 N-l]
Ot Ox x2

in the interior. The boundary points are given by boundary conditions of Robin type

Ou
u(xo, t) 3e-x gl (t)

xo

Ou
g2(t)tl(Xu, t) -t- 8X XN

where g (t) and g2 (t) are prescribed boundary conditions. The traditional method ofimposing
the boundary conditions is to solve (7) in the interior and enforce the boundary conditions at
the boundary points only. However, this approach does not take into account the fact that the
equation must be obeyed arbitrarily close to the boundary. In addition to this, it has proven
difficult to implement Robin boundary conditions consistently when using spectral approxi-
mations of nonlinear problems. To. overcome these problems, we follow the line of thought
initiated by Funaro and Gottlieb [3, 4] and propose a penalty method for approximating the
Burgers equation at the Legendre-Gauss-Lobatto collocation points, x xt, k 6 [0 N],
as

Ou Ou
(8) + u

ot Ox
02u
OX2

"1 Q- (x) otu(xo, t) fie-x xo
gl

g2(t)22 Q+(x) ’Ig(XN, t) + 6e-x xu
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where

(9) Q-(x)
(1 x)Pv(x Q+(x) (1 + x)Pv(x
2P(-1) 2P(1)

These two functions have the property of being zero at all the Legendre-Gauss-Lobatto col-
location points except at the two endpoints of the domain. Although Q- and Q+ here are
defined as delta-functions at the boundary, we may also choose other definitions. As shown by
Don and Gottlieb [6], this approach may also be applied for implementing Legendre methods
at Chebyshev grids.

We note here that the penalty method as given by (8) combines the boundary conditions
and the governing equation into one equation. When using the penalty method, the boundary
conditionsare only enforced weakly at the boundary. However, the method remains spectrally
accurate, as we will soon illustrate. One may also observe that the scheme is equivalent to the
traditional way of imposing boundary conditions as rl, r2 approach infinity.

The parameters, r and r2, are then to be determined such that the semi-discrete approxi-
mation to the initial-boundary value problem is asymptotically stable.

In order to obtain the energy inequality, we consider only homogeneous boundary condi-
tions. As discussed in 1], this is not a restriction, since we may always introduce a variable
transform such the boundary conditions become homogeneous. In the following lemma we
state the bounds on "t" and "t’2 which ensure that the linearized,constant coefficient version of
(8) is asymptotically stable.

LEMMA 3.2. Assume u (x t) exists and let ra-,b and r+ be defined asa,b

75a’b web
1

a,b- web

[e + 2x 2V/X2 + ex 1/2ewl)l]

[e + 2x + 2v/xz + ex 1/2ewl)vl]

where coa/b and

N(N + 1)

is the Legendre weight at the endpoints.
if

Z’y, <Z’2 < V+

then the linearied constant coecient version of(8) is asymptotically stable and the solution
is bounded as

ld

2dt N-I(OX )2
k=l

Proof We start by defining the discrete, weighted inner product as

N

(U, U)N Z U(Xk) U(Xk) (.Ok (U, U)N IlullZN
k=0

and note that since we are using a Legendre collocation method, we have, through (1), the
identity

(U, l)x)N (U, gx)
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This makes it straightforward to apply partial differentiation. Following the results stated
previously, it is sufficient to obtain the energy estimate for the linearized, constant coefficient
version of (8) with homogeneous boundary conditions:

ld )

d---llull2N ----[u2]l_ nt- 8[U Ux]l_l 811Uxll 2N
--rlO)U(--1)[CtU(--I) fleUx(--1)] z’2o)u(1)[Fu(1) + 6eux(1)]

Here the subscripts designate differentiation, and o) is the Legendre weight at the endpoints
(2). Using the quadrature rule allows for rewriting as

N-1
2 2 2Iluxll2N Ux(--1)) + Ux(1)) + Z Ux(X’)&

k=l

Contrary to the approach followed by Funaro and Gottlieb [3, 4], we recast the problem of
stability into an algebraic eigenvalue problem. For the present problem, this may seem an
additional complication. However, we find that for more complicated problems this approach
greatly simplifies the proofs.

Isolating the terms contributing to stability at each boundary, we obtain two conditions
for asymptotic stability:

ur H-u_ < 0 u+ u+ < 0

where u_ [u(-1), Ux(-1)]r, u+ [u(1), Ux(1)l r, and
1 [ ,k 2otooz17-/- -e(1 flr.or)

-e(1 ]0)Z’I) ]
-2eoo J

7_/+_ 1[ -,k-2yor2 e(1-&oz2) ]e(1 aoor2) -2eco

Since both matrices are symmetric, e problem is reduced to euring that - and+ are
negative, semi-definite. The eigenvalues of the two matrices are found to be

1( : )2 )p,2(-) g -g- (g- + 16e(fl2wzer 2w(fle + 2w)r +2 + e)

1 (-(+;((+)2pl,2(+) + 16e(a2w2er 2m(ae + 2m)r2 2m + e)

where - -2 + 4we + 4wr and + 2 + 4we + 4Vwr2. It is evident that negative
semi-definiteness is ensured, provided - > 0 and + > 0, if

The roots of the two polynomials are

e + 2z_ 2 2 + ez_ 1/2ewk

# )e + 2z+ 2 + ez+ + 1/2ew
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where x_ coc//3 and to+ oy/3. We introduce

1
ra’b web

1
-t5 +a,b- web

where x oa/b. Since

[e + 2x 2V/x2 + ex 1/2eool.l]

[e + 2tc + 2v/x2 + etc 1/2ewlk]]

IZl _ble 1
ra’b >-- a o-5

for e << 1, this ensures (- > 0 and (+ > 0.
Hence, stability is ensured for

with the solution being bounded as

ld N-1
2

2 dt Ilullzu -< -e y Ux(X,)o
k=l

3.1.1. Remarks on the penalty method for linear equations. The results stated in
Lemma 3.2 allows us to derive the appropriate penalty parameter for a large class of linear
equations. We consider the general linear advection-diffusion equation, (6), with the Robin
boundary conditions given in (4) and (5). Solving this problem by a penalty method, equivalent
to that given by (8), requires bounds on the penalty parameters in order to ensure stability of
the scheme.

In what follows we will give these bounds for reference and will return to the numerical
validation of these results in 4. Some of these results may be found in [3, 4, 6], but are given
here in a more general framework. Remember that w-1 O(N:Z).

Hyperbolic equations. (e 0.)
1. . > 0. Well-posedness is ensured by choosing c > 0 and/ F 3 0.

Thus, for this case we will only need bounds on rl:

Z"+r,0 2o9c ,0 oo

The scheme for the hyperbolic case is stable for

OO > "el >
2oot

2. ) < 0. Well-posedness is ensured by choosing , > 0 and c =/3 6 0.
Thus, for this case we will only need bounds on 2:

rr’ 2w, r,0 oo

The scheme for the hyperbolic case is stable for

I1
OO > "g2 >

2w,
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Parabolic equations. (. 0, e > 0.) Necessary and sufficient conditions for well-
posedness may be obtainedby choosing the four parameters, or, fl, ,, and 3, properly
as stated in Lemma 3.1 [17]. We only state the results for the bounds of rl, since the
results for r2 are equivalent.

1. Dirichlet boundary condition (c > 0, / 0).

e 1
ra’ 4or 0)2 a,0 (X)

Stability is ensured for

e
O >_ "1 >

4o 0)2

2. Neumann boundary condition (c 0, fl > 0).

1 1’+ro,- o,

Stability is ensured for

3. Robin boundary condition (c > 0, /3 > 0).

1[e + 2to 2V/2 + etc]

[e+2z+2+e]

where z /fl. Stability is ensured for

Advection-diffusion equations. () 0, e > 0). Again we must ensure well-posed-
ness by proper choice of the four parameters as given by Lemma 3.1. We only state
the results for the bounds of rl since the results for r2 are equivalent.

1. Dirichlet boundary condition (or > 0, fl 0).

+ r+r’ 2c 0) 4c 0)2 a,0 cx

Stability is ensured for

O > Z’I >
I.1__1

_
E 1

2cr 0) 4or 0)2

2. Neumann boundary condition (or 0, fl > 0).

o? ,o , o, + V -Stability is ensured for

1 /21XI0) 1 21XI0)/’--W 5/ Z Z’I >_
/0) 5/2

3. Robin boundary conditions, ot > 0, fl > 0. Results are given in Lemma 3.2.
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3.2. Numerical tests. Because we aim to solve the full nonlinear Burgers equation, and
not the linearized, constant coefficient version, we need to validate the results obtained from
the linear analysis. We have solved the Burgers equation using the scheme given by (8) and
employ a standard Legendre collocation method as described in 2 15, 18].

The Burgers equation, (3), has a rightward traveling wave solution (see, e.g., [1]) of the
form

(10) x--ct)U(x,t)---atanh a
2e

+c ,x[-cxz, cxz] ,t >0

where the free-stream values

lim U(x,t)-b_ lim U(x,t)=b
X --0 X O@

are associated with the wave-speed, c, and the constant, a >_ O, as

b_ +b b_ b
c= a--

2 2

Following the results in Lemma 3.1 (condition (iv)" c ), fl 1, y 0, 1), we
expect the nonlinear problem to be well posed for boundary conditions of the type

OU(-1, t) OU(1, t)
)U(-1, t)-e =gl(t) e=g(t)

Ox Ox

where >_ 0 is the value around which we have linearized locally. In the present study we
have used the free-stream value at the inflow, i.e., ) b_. Since we know an exact solution,
the boundary conditions may be given exactly at all times using (10). As the initial condition
we use

U(x,0)--atanh a +c

The solution is time-stepped using a classical fourth-order Runge-Kutta method, where the
boundary conditions are imposed at the intermediate time levels.

Using the values of the penalty parameters given in Lemrna 3.2 results in a stable scheme.
However, the CFL number, relating the maximum allowable time-step to the spatial resolution
as

Atmax < CFL x rain
lu(x)l +

e

k AkX (AkX)2

will have to be very small in order to ensure stability. Here lu(x)l signifies the local absolute
value of u and Ax represents the local grid spacing. Thus, with the theoretical value of the
penalty parameter, the proposed method compares unfavorably with the traditional method
because of severe time-step restrictions. Fortunately, the limits of the penalty parameters,
in between which asymptotic stability is ensured, are obtained as a result of a conservative
energy estimate and, hence, are not strict bounds.

We have used the values of the penalty parameter (see Lemma 3.2) as

4
"t’0,1
4

These values are found to lead to a stable scheme, provided the cell Reynolds number
ReN )/(eN2) << 1. The constraint simply states that increasing the Reynolds number
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FIG. 1. Traveling wave solution ofthe Burgers equation.

TABLE
Error in the spectral simulation of the Burgers equation using the penalty method. The maximum error (L)

occurs at the boundary.

N L2
16 3.41E-03
32 2.43E-05
64 1.09E-09
128 4.98E-12

3.26E-02
3.50E-04
2.21E-08
7.62E-11

requires increased spatial resolution, which is a natural restriction. For advection-dominated
problems, stability is obtained by increasing the penalty parameters toward the values stated in
Lemma 3.2.

With these values ofthe penalty parameters, we have been able to perform the simulations
with a CFLnumber of4, which is equivalent to what is usually allowed whenusing a traditional
method. Thus, by fine-tuning the penalty parameters we were able to avoid any effect of the
penalty method on the CFL condition. The following section contains a study of the effect of
the penalty method on the CFL condition and guidelines for fine-tuning the penalty parameter
for practical applications.

In Fig. 1 we show the temporal evolution of the traveling wave solution when using the
scheme given by (8). The simulation is done with N 64 and e 0.1. We observe no
spurious reflections from the open boundary and the kink is seen to travel undisturbed out of
the domain. Table 1 shows the error at T 1.00, where the kink has propagated halfway
through the boundary. It is evident that the proposed scheme maintains the spectral accuracy.
The time-step is small enough to neglect time-stepping errors.
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4. CFL restrictions for the penalty method. As discussed briefly in the previous sec-
tion, choosing too large a penalty parameter results in severe CFL restrictions. For this reason,
it is vital to understand how the penalty method alters the eigenvalue spectrum of the operators
and consequently changes the CFL restriction.

In the present section we will study these effects for the linear advection and diffusion
operators for Legendre collocation methods. For completeness, we will also give the results
for Chebyshev collocation methods, which are widely used for solving nonlinear partial differ-
ential equations. The analysis will include both third- and fourth-order Runge-Kutta methods,
which are often employed when addressing problems of the type considered here. At the end
of the section we will compare the results from our linear analysis with simulations of the
nonlinear Burgers equation.

Consider now the semi-discrete linear, constant coefficient problem

(q)t ENq xk S2 > 0

(11) q=0 xk t=0
BNq 0 Xk F > 0

where q (q(x0) q(Xg))T, -’N is the discrete approximation of the continuous operator
for the interior, E, and/N determines the appropriate discrete boundary conditions by ap-
proximating the boundary operator,/3. We assume that the semi-discrete approximation is a
consistent approximation of the continuous problem. A time-differencing scheme, where the
boundary conditions are enforced exactly at the boundary points, may then be expressed as

qn+l KN(At, N)qn
lNqn+ 0

Here qn signifies the solution vector at time-step n. Thus, for strong stability we must require

IKN(At, N)I < 1

However, employing the penalty method changes the time-stepping scheme to be

qn+l KN(At N Z]N)qn,

and strong stability is ensured if

IKN(At, EN- VBN)I < 1

explaining why the CFL condition depends strongly on the correct choice of the penalty
parameter.

Inthe following analysiswe consider explicit Runge-Kuttatime-stepping methods, which,
for time independent operators, may be expressed as

P 1
K;(At, IN) E (AtcN)i

i=0

where p is the order of the scheme. We have for simplicity assumed that the boundary
conditions are included in the operators. Assuming EN ,NAN,-,C’ 1, where ISNI and IS11
are bounded independently of N, strong stability of the Runge-Kutta schemes is obtained if

IKv(At, EN)I- Sg 1 )i
i=0 -" (AtAN i=0 " (AtAN)i <1.
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TABLE 2
Scaling constantsfor the advection operator. The proper boundary conditions are ofDirichlet type (D).

Advection Operator CL Cc
0 e 0 3rd RK 4th RK 3rd RK 4th RK
Exact BC 21 35 27 32
yBC 10 17 10 11

TABLE 3
Scaling constants for the diffusion operator. Results are given for possible combinations of Dirichlet (D),

Neumann (N), and Robin (R) boundary conditions.

Diffusion Operator C/
)=0 e>0 3rdRK 4thRK
D-D/D-N/D-R Exact BC 99 109

Pena-fi-y BC 81 123
N-R Exact BC 99 109
P 130 135

R-R Exact BC 99 109
P 130 141

Cc
3rd RK 4th RK

53 58
56 84
53 58
91 96
53 58
93 97

Hence, the problem is reduced to finding the eigenvalue spectrum of the operator/N and
choosing At accordingly.

In the present study we consider the linear advection-diffusion operator

O O2

Ox Ox2

with the Robin boundary condition operators

0
/3+

0
B- o e-x y + e

Ox

The boundary conditions for the exact method are enforced through the operator as described
in [18].

In order to compare time-step restrictions found for the two different approaches, we now
define the two CFL-like constants, CL and Cc, as

CL CCAtL < Atc <
)N(N + 1) + eNE(N + 1)2 ,kN2 --t- eN4

where the subscripts refer to Legendre (L) and Chebyshev (C) operators, respectively. These
constants are determined by solving the eigenvalue problem and calculating the maximum At
which ensures stability and, hence, supplies an upper bound on the time-step.

Tables 2 and 3 show the calculated values of C. and Cc for the advection and the diffusion
operator. The results are the same for the full advection-diffusion operator as for the diffusion
operator, provided ReN << 1, and are therefore omitted.

It is clear from Table 2 that using the penalty method to enforce boundary conditions
on purely advective problems results in a significant reduction of the maximum allowable
time-step. However, more importantly, Table 3 shows that for problems where the diffusion
operator dominates the eigenvalue spectrum, the penalty method may allow for increasing
the time-step as much as 50%. The effect is most pronounced when using a fourth-order
Runge-Kutta method for time-stepping a Chebyshev collocation scheme.

In order to explain the results in Tables 2 and 3, we compare in Fig. 2 the spectrum of
the Legendre collocation advection (Fig. 2a) and diffusion (Fig. 2b) operators when enforcing
Dirichlet boundary conditions through the exact method and the penalty method.



592 J.S. HESTHAVEN AND D. GOTTLIEB

100

50

0

-50

-100
-100

10000

Penalty BC

(a)

7500

5000

2500

-2500

-5000

-7500

-10000
-10000 -7500 -5000 -2500

(b)

50 O0

Exact BC

Penalty BC

N=24

2500 5000 7500 10000

Fc. 2. Eigenvalue spectrum ( r -I" )i for the Legendre advection operator (a) and the Legendre diffusion
operator (b) as obtained by using exact boundary conditions (o) and the penalty method (o).
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For the advection operator (Fig. 2a) we observe that the effect of the penalty method is to
introduce an extreme, purely imaginary, complex conjugate eigenvalue-pair, which dominates
the spectrum and consequently determines the maximum allowable time-step. This results in
the decreased CFL number observed in Table 2.

The effect on the diffusion operator is more complicated and depends strongly on the value
ofthe penalty parameter. As proved by Gottlieb and Lustman 17], the diffusion operator with
exact Robin boundary conditions has a real, negative, and distinct eigenvalue spectrum. This
property is preserved if a sufficiently large value of r is used in the penalty method. However,
by decreasing the penalty parameter the two dominating eigenvalues split into two pairs of
complex conjugate eigenvalues, which move toward the imaginary axis as r is decreased. In
Fig. 2b weshowthe eigenvalue spectrum for the optimal choice of r. The important observation
to make is that moduli of these new eigenvalues are smaller than the original extreme negative
real eigenvalue. Additionally, since the dominating eigenvalue now is complex, it clearly
becomes advantageous to use the fourth-order Runge-Kutta method because of the increased
extension of the stability region along the imaginary axis as compared to the third-order
Runge-Kutta method. Thus, we conclude that for diffusion-dominated problems, the penalty
method may allow for a significant increase in the maximum CFL number when applied in
conjunction with the fourth-order Runge-Kutta method. This is true for Legendre as well as
Chebyshev collocation methods.

The validity of this conclusion is, however, strongly dependent on the proper choice of
the penalty parameter. The values derived in the previous section do indeed ensure asymp-
totic stability, but result in a significant reduction in the maximum allowable CFL number.
Fortunately the limits of the penalty parameters are based on a conservative energy estimate
and, consequently, are not very strict. In what follows we give the penalty parameters used to
obtain the results given in Tables 2 and 3. These values result in a stable scheme as long as the
problem is purely advective or ReN << 1, and allow in most cases for a significant increase in
the time-step.

Legendre collocation methods.
1. Dirichlet boundary conditions.

2IZl N(N + 1) + (N + 1)2r --- --N
2. Neumann boundary conditions.

3. Robin boundary conditions.

Chebyshev collocation methods.
1. Dirichlet boundary conditions.

N(N + 1)

IZl e N4

2. Neumann boundary conditions.

8
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FIG. 3. Temporal evolution ofthe Burgers equation with initial conditions given by (12).

3. Robin boundary conditions.

otN2

r- r,____ with c-
4 /5

Note that the only difference between the parameter values quoted here and those found in
Lemma 3.2 is a factor of 1/4 on those terms related to the diffusion operator. This reduction
is found to lead to optimal time-step restrictions.

We would like to stress the importance of choosing the appropriate value of the penalty
parameter. It is our experience, that this is best done by deriving the theoretical value of
this parameter through an analysis similar to that done in 3.1. This leads to a parameter
which scales correctly with the resolution and other significant parameters. If the time-step
restriction is dominated by a viscous time-scale, it is very likely that the theoretical estimate
leads to severe time-step restrictions. However, the theoretical value may often be decreased
considerably, and good results may be obtained after only a few tests. As we have seen for
the Burgers equation, decreasing the penalty parameter four times leads to acceptable CFL
restrictions. We are not aware of any systematic way to determine the optimal factor by which
the theoretical value can be decreased, but it may usually be determined by trial and error
through a few tests.

To conclude our study we have solved the Burgers equation, (3), with initial condition

(12) U(x, 0) (1 x)(1 x2)
and homogeneous Dirichlet boundary conditions. A typical temporal evolution is shown in
Fig. 3. In Table 4 we show the maximum CFL number resulting in a stable scheme. This result
confirms that the results from the linear analysis carry over to the scalar nonlinear problem.
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TABLE 4
Maximum allowable CFL number obtainedfrom direct numerical simulation ofthe Burgers equation.

Exact BC
Penalty BC

Legendre
3rd RK 4th RK
3.50 4.00
3.90 4.50

Chebyshev
3rd RK 4th RK
4.25 4.50
4.75 6.75

5. The compressible Navier-Stokes equations. In the present section, we obtain energy
estimates for the solution of the three-dimensional compressible Navier-Stokes equations
given in conservation form. Additionally, we derive open boundary conditions taking into
account the full stress-tensor, and prove well-posedness for the continuous problem. The
derivations follow the approach introduced in [8, 9]. The main differences are that we develop
the theory for the conservation form of the Navier-Stokes equations and that we include the
off-diagonal terms of the stress-tensor in the full derivations. In the second part of this section
we continue by showing how to apply the boundary conditions and prove asymptotic stability
of the semi-discrete scheme.

Consider now the nondimensionalized, compressible Navier-Stokes equations given in
conservation form

OF 0G OH
(13)

0q

Reref
+ +

with x 6 [-1, ]3. The state vector, q, and the inviscid flux vectors are given as

pu pv pw
pu2 + p puv puw

q- pv F- puv G pV2 + p H pvw
pw puw pvw pw2 + p
E (E + p)u (E + p)v (E + p)w

Here p is the density, u, v, w are the three Cartesian velocity components, E is the total energy,
and p is the pressure. In the remaining part of this paper we will use (x, y, z) and (Xl, x2, x3)
interchangeably to denote the spatial coordinates. The total energy

e-p +w

and the pressure are related through the ideal gas law

P-- (F -1)pT

where T is the temperature field and F Cp/Cv is the ratio between the heat capacities at
constant pressure (cp) and volume (cv), respectively, and is assumed constant.

The viscous flux vectors are given as

0

Fv Vyx Gv

rxxl,! -- 7y V -}- rzx 113 -- Fk or
Pr -x

0

75xyll -1t- yyU -- zyW -Jr- yk or
Pr --0

yk OT
75xztl + Syz U " "gzz w "l- "
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Considering only Newtonian fluids, the stress-tensor elements are given as

where/z is the dynamic viscosity, . is the bulk viscosity, and k is the coefficient of thermal
conductivity.

The equations are normalized using the reference values, Uref u0, Pref P0, Pref
POU, Tref u/c,, and a reference length L, where (P0, u0) is some uniform state, e.g., the
ambient free-stream conditions of the flow. This gives a Reynolds number as Re
and a Prandtl number as Pr CplZO/ko. Note that the Reynolds number in (13), Reref, based
on the reference values, in general is different from Re. In the remaining part of the paper
we shall refer to the latter as the Reynolds number unless clarification is deemed necessary.
With this normalization we need to specify the Math number, M, the Reynolds number, Re,
the length scale, L, and a dimensional temperature, To.

5.1. Well-posedness and open boundary conditions for the continuous problem.
Consider the linearized, constant coefficient form of (13). The viscous fluxes are split as

0
(. + 2/z) Ou

Ov

Ow

Ou Ov Ow vk OT( + 2/x)u +/zv +/zw T-x + Pr x
0

Oy
Ouz +
0

Ov Ouu + tzv

0

Ow Ou)U-z + lxw

G. + +

0

Ow

Ou Ov Ow ),k aT
>U57y + (. + 2>)v + >ww + Pr W

0 0
3o 0

ax -Jr- Oz
Ov0 x

Ou Ov Ow Ov,kv -ff-x + tZU x ,kV -z + tzw
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0

0 +
Ox

Ou Ow)w +

0
0

Oy
Ov Ow)Wy + lZv -ffy

Introducing the transformation Jacobians

OF 0G 0H
ftl- .A2- .A3 =-z-

0q 0q

0Fp 0Gp 01-1p
Bll- Oqx Oqy Oqz

allows us to write Navier-Stokes equations as

0q 3 0q

/=1 OXi
1 3 3 02q

i= =i Oxi

It is well known that the Navier-Stokes equations, although not of hyperbolic nature, support
waves very similar to those encountered in the hyperbolic Euler equations. For hyperbolic
systems, Gottlieb, Gunzburger, and Turkel 19] have shown that enforcing the boundary con-
ditions through the characteristic variables of the system results in a stable approximation.

For Navier-Stokes equations, we linearize around a uniform state, q0, by fixing all the
matrices. We transform into characteristic variables by diagonalizing 1 through a similarity
transform A S-1A1S, where A is the eigenvalue matrix and S and $-1 are the matrices of
right and left eigenvectors, respectively. These matrices are given in the Appendix. Applying
this, the symmetrized, linearized set of equations transforms into

(14) Qr Q OR
3 OR

i=1

3 3

EEi5
2R

Reref i= j=i Oxi Oxj

where R S-lq are the characteristic variables. We have introduced a positive definite,
symmetrizing diagonal matrix, Qr Q, given as

1 0 0 0 0
0 2 20. 0 0

0 0 V=-f 0 0
0 0 0 2 0
0 0 0 0 1
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where co /?"po/Po is the uniform state sound speed. Additionally we define the sym-
metrized matrices

The explicit forms of the symmetric matrices are given in the Appendix. The characteristic
variables, R [R1, R2, R3, R4, R5] T, are given as

(/,/ -I- 1)1 + //31)p /,/opU l)opl) WOpl/))pu uop + y-=J- E + -co
pv- vop

7-1 (E _.1 U -- 113) blopU l)OpU 1130p113)R P- 4, P(" +
pw- wop

+ + .op.-(pu uop) + L:A (E + pco

We are now ready to state the following lemma.
LEMMA 5.1. Assume there exists a solution, q, which is periodic or held at a constant

value at the y- and z-boundary. If the boundary conditionsin the x-direction are given such
that

1 2 3 0R
V(y, z) E "2y x 2 -- RrftR- Reref .=

RTj jXj
x=-I

<_ 0

and thefluidproperties are constrained by

yko
lzo > O Xo <_ O Xo + lzo >0 >0 y > 1

Pr

then (14) constitutes a well-posedproblem and the solution is bounded as

ld

2dt RII= _< Rerefl f2(ORTo Oxjxj)-’--.. ]ii d’2 < 0
i=1 j--i

Proof Construct the energy integral as

1_ =fo( 3 OR 1 33

OX Xl )2dr
IIQRll2 E Rr’Ai x/+ R--ree EERrBJ 02R

dr2
i=1 i=1 j=i Oj

RrAR RrBj dydz-- Reref .= X:--I

eref i=1 S=i
B

where f2x x ’y X ’2z. In deriving this expression, we use partial integration and assume
the solution to be periodic or held at a constant value along the y- and z-boundaries, i.e.,
contributions from these boundaries cancel. This is not a severe restriction, as this assumption
is valid for a large variety of situations where open boundary conditions are applied.

It is evident that if we can prove

(15)
Reref i= j=i

]’ij df2 >_ 0
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then well-posedness may be ensured by properly constructing the boundary operator at the
x-boundary.

Since the matrices, Bij, are all symmetric, (15) may be rewritten in a block-quadratic
form as

f rT-lSd > 0
2Reref J2

where we have introduced

We observe that 7-/s is a 15 x 15 symmetric block matrix, ensuring that the eigenvalue spectrum,
p(7-ls), is real. Hence, if 7-/s is positive semi-definite, (15) is obeyed. The eigenvalue spec-
trum, p(7-/s), may be found to be

/91-- /92 /93 0

p4 2(/20 .o)

/95= P6 2(,ko + 3/20)

P7 P8 3/20 V//2o2 + 2(/20 + .o)2

/99"-- /910 3/20 + V//2 + 2(/20 + 0)2

/911---- 7/20 + 4)o V//2g + 4(/20 + .o)(3/2o + 2.o)

/912- 7/20 + 4.o + X//2g + 4(/20 + ,.o)(3/2o + 2.o)

P13=p14=p5=
(Y-l)2 +1 Pr

Here subscript "0" signifies the parameter values in the uniform state around which we have
linearized. For most real fluids under nonextreme conditions, it is true that/20 is positive, )o
is negative, and the following relationship is obeyed [20]"

(16)
9//2o > .o + 2/20 >/20Pr

A simple investigation of the eigenvalues reveals that 7-/s is positive semi-definite under these
conditions. Thus, (15) is true provided

yko
/20 >0 ,ko < O ,o + /2o >0 >0 y > 1

Pr

These conditions are only natural as discussed in [21]. In fact, if they are not obeyed, Navier-
Stokes equations violate the second law of thermodynamics.

We now obtain that well-posedness is ensured under the additional condition

1[(y, z) y x z RrAR- Reref2 13 "J0RI1R o
x----1
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with the solution being bounded as

ld

2dt--II RII
2

Reref "x/jisj xj d" _< 0
i=1 j=i

where QR QS- q. [’-1

As stated in Lemma 5.1, appropriate boundary conditions at the x-boundary have to obey

We now define

3 OR

j=l

where

(17)

)o+lo (0R2 + 0R4)

ko(y 1) 0’1 0 + 2/zo 0(2
2poPr Ox 2po Ox po

where we, for simplicity, have introduced

(1 R1 + R5
2co

Some physical meaning can be given to the components of G. The three components G1, G3,
and G5 account for effects caused by the normal heat flux and stress, whereas the remaining
two, G2 and G4, are a consequence of tangential stress at the boundary.

This formulation allows for rewriting the constraint on the boundary contribution as

1QT RtAR_
2 RT,G Q_<0

2 Reref

where A is the diagonal eigenvalue matrix obtained from the similarity transform. Because
QrQ is positive definite, this inequality may be reformulated as

(18) 211-?l(([i’Ri--E[i[ai)2i=l )1i
(Eai)2 <__ 0

-1

where ’i are the wave speeds by which the characteristic variables are advected, as given by
the diagonal elements of A, and we have introduced e Reref-1. This formulation makes it
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straightforward to devise inflow-outflow boundary conditions, which are maximal dissipative
and ensure well-posedness of the complete problem.

We note in particular that this formulation takes into account the off-diagonal terms of
the stress-tensor, which are neglected in most previous work [8-10]. These terms may be of
importance if the artificial boundary is introduced imo a strongly vortical region of the flow,
e.g., a wake flow behind a Mum body.

Inflow boundary conditions. At x 1, (18) becomes

1/1 Iil
Gi (8Gi)2 < 0"

,. , Ri e- )v---’,

Subsonic inflow: 1 > 0 )v2 > 0, )v3 > 0, /.4 > 0, .5 < 0.

(19)

),,1R1 e-G1 0

),,2R2 e-G2 0

),,3R3 e-G3 0

),,4R4 e-G4 0

e-G5 0

Supersonic inflow: /.1 > 0, .2 > 0, 3 > 0, .4 > 0, )V5 > 0.

(20)

IR1 e-G1 0

,2R2 e-G2 0

,3R3 e-G3 0

,4R4 e-G4 0

,ksR5 eG5 0

Outflow boundary conditions. At x 1, (18) becomes

1/1 I)vil
Gi (e-Gi)2 < 0

Subsonic outflow: 1 > 0 .2 > 0 3 > 0 )V4 > 0 5 < O.

(21)

e-G2 0

eG3 0

e-G4 0
I,ksIR5 + eG5 0

Supersonic outflow: .1 > 0, )V2 > 0, 3 > 0, )V4 > 0, 5 > 0.

(22)

e-Gl O e-G2 =0
e-G2 O e-G3 =0

or
e.G3 =0 e-G4 O
e-G4 0 eG5 0

We note that for both types of outflow boundary conditions, it is only necessary to specify
four conditions, since e-G3 0 = e-G1 -e-Gs. Due to the special structure of G we also
observe that adding an extra condition on e-Gl at the outflow does not place extra conditions
on the solution, since such a condition is redundam. This observation will be used later.
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It was shown by Strikwerda [22] that the proper number of boundary conditions for an
incomplete, parabolic system as the compressible Navier-Stokes equations is 5 in the inflow
region and 4 in the outflow region. Our result clearly conforms with that.

We also note that in the limit of infinite Reynolds number, these boundary conditions
converge uniformly toward the well-known characteristic boundary conditions for the com-
pressible Euler equations [23]. This property is important in order to avoid weak boundary
layers of the.order exp(-x/e) (see [8]).

5.2. The semi-discrete scheme. Following the line of thought that led to the asymp-
totically stable scheme for Burgers equation, we now propose a penalty method for enforc-
ing open boundary conditions to a Legendre collocation approximation of the compressible
Navier-Stokes equations

Oq OF OG OH
+ + + Oz

Here Q- (x) and Q+ (x) are given by (9) and ,5 is the right eigenvector matrix as given in the
Appendix. The boundary conditions for the state vector are given through the two vectors,
gl(t) and g2(t), which we for convenience assume to represent a uniform state outside of
the computational domain. The four matrices 7g-, 7-g+, -, and + are chosen to construct
the appropriate boundary operator as derived in the previous section. Hence, we have for the
inflow region

.t 0 0 0 0 1 0 0 0 0
0 ;2 0 0 0 0 0 0 0

7"g-= 0 0 )3 0 0 -= 0 0 1 0 0
0 0 0 )4 0 0 0 0 1 0
0 0 0 0 c)5 0 0 0 0

where c 0 for subsonic conditions and oe 1 for supersonic conditions. Likewise we
define

0 0 0 0 0
0 0 0 0 0

7+= 0 0 0 0 0 +=
0 0 0 0 0
0 0 0 0

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

where/5 1 for subsonic conditions and/3 0 for supersonic outflow conditions.
We have to choose rl and r2 such that the semi-discrete scheme is asymptotically stable.

The proper choice is stated in the following lemma.
LEMMA 5.2. Assume there exists a solution, q, which is periodic or held at a constant

value at the y- and z-boundary, and that the fluid properties of the uniform state, q0, are
constrained by

’ko
lzo > O )o <0 )o + lzo > O >0 y>

Pr

and related as

Ytzo
Pr

> .o + 2/xo >/zo
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The linearized, constant coefficient version ofthe scheme given by (23) is asymptotically stable
at the inflow/f

Here

( ) )O)K O)K

e yko
2o9 Prpouo

This result is independent ofwhether the inflow is subsonic or supersonic.
For supersonic outflow

1+ >_r2>_ 1-

For subsonic outflow

( ) 1
O)K

1 +tc /1 +x)
The solution to (23) is bounded in theform

ld

2dr

N-1

ff2 f2 I- 3.ii oRT ORIReref 1 r-Ok
i--1 "=" "--xi ]3ij Xj dy dz < 0

Proof Write (23) in its symmetrized, linearized, constant coefficient version

OR 3 ORQrQ- + Ai axii=1

3 3 02R

i=1 j=i

(Qr QTC-R 1

Reref

_rzQ+(x) QrQT+II +
Refer

where, without loss of generality, we have assumed homogeneous boundary conditions. We
construct the energy integral, apply the Gauss-Lobatto quadrature rule, and use partial inte-
gration to obtain

(24)
ld

2dt
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where we have used the assumption about periodicity or constant value at the y- and z-
boundary. Additionally, we have introduced e Reref-1 and w, which is the Legendre weight
at the endpoints and applied the definition

3 ORr G 1=B
Using the Gauss-Lobatto quadrature rule allows us to write

(25)

Here xk signifies the Legendre-Gauss-Lobatto collocation points. The inequality follows
from the analysis done in the proof of Lemma 5.1 and is ensured provided the fluid properties
are constrained by

?’k0/z0>_0 .0_<0 .0+/z0>_0 >0 ?,>_ 1
Pr

It was shown by Abarbanel and Gottlieb [20] that ifa scheme is stable without the contributions
from the off-diagonal stress-tensor terms, then it will remain so even if the these terms are
included. This is a consequence of the general relation

y/z0
_> )0 + 2/,0 >_/z0

Pr
which roughly gives the relation between the eigenvalues of the normal stress-tensor elements
and the off-diagonal elements. Thus, it is sufficient to prove stability in the absence of the
off-diagonal contributions.

The penalty parameters, rl and 2, must be chosen such that the boundary term of the
energy imegral does not destroy the stability ofthe Cauchy problem. We treat the two boundary
contributions separately.

Inflow condition. The contribution of the boundary term at the inflow (x -1) follows
from combining (24) and (25) and neglecting the off-diagonal contributions to obtain

RT( ls 627, ) (Z "ClO)-) Bll 0X-A 1510) QT- R- eRT
OR

where 2- is the identity matrix.
First we note that

ORr OR

OX2 OX2
ORr B OR

eO) 33 OX3OX3

3 ORr OR
80.) -Xi 3ii OXii=1

/91 (2) /91(3) 0

,03(:2) P3(/3) 2
Po

,o5(B2 (_ + 1 pd’r

since 2 and {3 are positive semi-definite with an eigenvalue spectrum given as
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Since all matrices are symmetric, the remaining part of the constraint may be expressed in
block-quadratic form as

where

1 I A 2rlCOQTQ-- -e(1 ’lO))Jl
-e(1 ’1o))1 ]

--2eO9/ J
where we have used - 27. 7-/- is a 10 10 symmetric block-matrix Similar to the
approach applied in 3.2, we have transformed the problem of stability into proving that 7-/-,
for a suitable value of Vl, is negative semi-definite. The eigenvalue-spectrum, p(7-[.-), can
be found by doing an LU-decomposition. Since - is symmetric, the eigenvalues appear as

Pi (7-[.-) Uii, i.e., the diagonal elements of the upper triangular matrix.
We will not give the general form ofthe eigenvalues here, since they are rather complicated.

However, straightforward but very lengthy algebra shows that all eigenvalues are negative if

Vl is chosen such that

( ) 1( )1 1 +to +1 +c > Z’I > 1 +c /1 +to
(_OK (.OK

where

e yk0
2w Prpouo

This result is independent of whether the inflow is subsonic or supersonic.
Outflow condition. Neglecting the contribution from the off-diagonal terms yields a

criteria for stability at the outflow (x 1)

_RT(ls QT,A --]- "g2o) 7",+ R + eRT
0R 3 ORT OR

il <0Bii OX

Similar to the approach followed in the previous part of the proof, we see that the contributions

from/2 and/33 are always negative and independently ensure stability.
We now rewrite the remaining part ofthe condition at the outflow in block-quadratic form:

where

+ 1 [ -A 2v2wQTQT"+

L e(1
e(1 20))’1 ]

To form 7-(+ we have assumed+ 27. The additional boundary condition introduced by this
replacement is redundant, as discussed in 5.1, and, hence, no extra restrictions are put on the
system by this approach. The eigenvalue spectrum, p(+), may again be found through an
LU-decomposition. We state here only the bounds on r2 that ensure negative semi-definiteness
of 7-/+ for supersonic outflow

1+ >r2 > 1-
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For subsonic outflow the bounds become

( ) 1 (1
l+x+/l+x >r2 >- 1+c-/1%

O)K

Combinin (24) and (2), we obtain a bound fo the gowth of the solution

< ay az < o
Reref oxi

ij
i1 "" X=Xk

We wish to emphasize that the bounds on r and r given in Lena 5.2 remain valid in the
limit when the Reynolds number approaches infinity. This is easily realized by expanding the
bounds for << i to obtain

1

>rl+z
in the inflow region and

1 1
>r>- >r+z

for supersonic and subsonic outflow, respectively. The linearized, constant coefficient version
of the Euler equations may be trafoed into 5 independent hyperbolic equations for which
we should expect the bounds on the penalty parameters to be given by the resul in 3.1.I. We
observe that the bounds given above converge unifoly to the expected values in the limit of
vanishing viscosity and, thus, the scheme remains stable. The obseation that no bounds are

necessa on r for supersonic outflow simply reflects the fact that no bounda conditio
are required for the Euler equations at such a bounda.

5.3. Numerical tests. The proof given in the previous section is only strictly valid for
the linearized, constant coefficient version of Navier-Stokes equations. To validate the resul
and show that it caies over to full nonlinear Navier-Stokes equations, we have implemented
the scheme in an existing spectral code (see [24] for details), originally developed for studying
two-dimensional compressible flow around an infinitely long circular cylinder.

For the spatial approximation scheme we used a standard Chebyshev-Fourier collocation
scheme in polar coordinates, (r, ), with a third-order Runge-Kutta method for time-stepping.

The new scheme is simple to implement in existing codes, because we only need to apply
a coection of the flux of the state vector at the bounda. Following the scheme, given by
(23), we need to derive the two vectors R and G. The characteristic variables are given as

PR (mr pUr) +
o

R mo puo
PR3 p c

PR4 -(mr pUr) +
co

where c0 is the unifo state sound speed.
We have for convenience introduced

U UOI + VO2 /’/0 UO2 VOl
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which are the radial and azimuthal velocity components, respectively, of the uniform state,
and

mr mug nt- mvc2 mo mu2 mv
which are the radial and azimuthal components of the momentum of the flow field. Here
k (1, :2) signifies an outward pointing normal-vector at the boundary. The linearized
pressure, p, is given as

[1 ]p=(y-1) E + -p(u + v$) Uomu vomv

The eigenvalues corresponding to the characteristic functions and determining the direction
and propagation velocity of the characteristic waves are

,1 fir -l-Co .2 3 Ur )4 Ur --Co

Following the approach outlined in the previous section, we have likewise derived the viscous
correction vector, G, at the outer boundary as

1 (9/- 1)ko O(r(1) 2 O(r(2) 1
G1 L --por 2Pr Or - Or 3

63

por Or 6 O0

(- 1)ko 10(r)
Pr 2coPo r

(y 1)ko O(rl)
2Pr Or

1
G4

por

where again we have defined

2c0
1 RI +R4

Or
2 0 (r’2) 1 OR2
3 he Or +g/z0---.]

where N is the number of Chebyshev modes, 2/LD is a result of the radial mapping of LD
into [-1, 1], and

eN2 yko
2 Prpo[ur

4to LD
N2 2
----(1+-41+x)

2and applied Stokes hypothesis to obtain ) -5/z. We note that only two extra calculations
of derivatives, (Op/Or, Op/O0), are needed in order to form the two vectors, since the radial
and azimuthal derivatives at the boundary of the remaining variables are calculated during
evaluation of the interior dynamics when employing a global scheme. Thus, compared with
evaluation of the flux, the computational requirement for enforcing the boundary conditions
through this new method is negligible.

The boundary conditions are enforced at each intermediate time-step of the Runge-Kutta
method. Simulations were done with a Reynolds number of 100, a Mach number of 0.4, a
diameter (L) of the cylinder of 6.10 mm, and a reference temperature of 300K. These param-
eters ensure that the flow field remains subsonic. The resolution was 96 Fourier modes, 72
Chebyshev modes and the radius (LD) ofthe computational domain was 20 cylinder diameters.

As penalty parameters we used
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P/P0 P/P0

FIG. 4. Contourplots ofthe normalizeddensity, p/po, and the normalizedpressure, p/po, at the nondimensional
time T 143.5for aflow at Re 100, M 0.4, D 6.10 mm, and To 300K.

This choice appears natural from the results stated in Lemma 5.2 and the experience gained in
4, indicating that for dissipative problems we may reduce the penalty parameter by a factor
of 4 to obtain the optimal value of r. With this choice of penalty parameters we were able
to perform the simulations without any reduction in time-step as compared with the exact
method of enforcing the boundary conditions. It should be mentioned that in the original code
only characteristic boundary conditions for the Euler equations were enforced. Comparing
with results discussed in 4, we observe that for third-order Runge-Kutta methods we should
expect the two methods to impose almost equivalent time-step restrictions. This is confirmed
by the simulations and shows that the results from the simple linear analysis carries over to
the full nonlinear Navier-Stokes equations in this case.

In Fig. 4 we show contour plots of the normalized density and the pressure at T 143.5,
corresponding to approximately 23 shedding cycles. The von Karman vortex street is clearly
demonstrated, and we observe that the boundary conditions at the outflow boundary affect
the flow only slightly. The Strouhal number for the shredding frequency is found to be
St 0.163, which is in full accordance with experimental findings [25] and we observe no
spurious frequencies or reflections from the artificial boundary back into the flow field (see
[24] for a further discussion of this).

6. Concluding remarks. The purpose of the present paper has been twofold. The first
goal has been to develop boundary conditions for wave-dominated problems, leading to well-
posed total problems. It was argued that for smooth solutions and the class of operators we
have considered here, it is sufficient to consider the problem of well-posedness for the locally
linearized, constant coefficient version ofthe nonlinear initial-boundary value problem. Using
this allowed the derivation of proper boundary conditions to the Burgers equation and to the
three-dimensional, compressible Navier-Stokes equations, and these boundary conditions
were shown to ensure well-posedness of the total problem. It should be stressed that the
boundary conditions derived for the Navier-Stokes equations take into account all elements
of the stress-tensor, and only very light assumptions were made to derive these. Additionally,
they remain valid even in the limit of vanishing viscosity.
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Having derived appropriate boundary conditions naturally leads to the question of how
to enforce these in a discrete approximation of the problem. This has been the second,
and main, contribution of the paper. Results [7] on the connection between stability of dis-
crete and semi-discrete approximations suggest that it is sufficient to consider asymptotic
stability for the semi-discrete approximation. We have only considered Legendre colloca-
tion methods here. This choice is dictated merely by a wish to obtain analytical results
and we have indicated, by numerical tests, that all results carry over to Chebyshev collo-
cation methods. The stability proofs for the semi-discrete approximations to the linearized,
constant coefficient versions of the Burgers equation and the compressible Navier-Stokes
equations are all completed by using the classical energy method. We emphasized that
the proposed schemes remain stable even in the limit where the problems become purely
hyperbolic.

The proposed penalty method changes the eigenvalue spectra of the discrete approxi-
mations of the operators considerably. In order to understand this, we performed a detailed
investigation of the effect of the penalty method on the eigenvalue spectra of linear oper-
ators. It has been shown that the value of the penalty parameter, which is obtained from
the theoretical analysis, often implies that the maximum allowable time-step compares un-
favorably with that allowed for more traditional methods. However, we discussed in detail
how to remedy this and showed that choosing the penalty parameter properly may in some
cases allow for increasing the maximum time-step by as much as 50%. Although we are
not aware of a systematic way of determining the optimal value of the penalty parameter,
we do not see that as a significant disadvantage. Our experience tells that once the theoret-
ical values of the penalty parameters are obtained, only a few tests are needed to obtain the
optimal value. Additionally, this has to be done only once, and since only a few hundred
time-steps are required to test whether the scheme is stable, we consider this an insignificant
problem.

Most of the theoretical results, obtained for linearized, constant coefficient versions of
the equations, are confirmed by numerical simulations of the full nonlinear equations. It is
stressed that the proposed penalty method is very easy to implement in existing codes, which
is an attractive feature.

Although all results and numerical simulations in this paper are obtained using spectral
collocation methods, the main conclusions carry over to finite difference/finite element meth-
ods. The derivation ofthe proper boundary operators, for either the Burgers equation or for the
compressible, Navier-Stokes equations, is obviously unaffected by the choice of the spatial
approximation method. The proposed penalty method for enforcing the boundary conditions
may be applied in exactly the same manner as discussed here when using alternative spatial
discretization methods. The only difference is the value of the penalty parameter, which will
depend strongly on the order of the method. Thus, applying another method requires one to
derive this penalty parameter. This may be done by an approach equivalent to the one utilized
here.

In a future paper [26], we will extend the penalty method developed here to include
multidomain solutions of the compressible Navier-Stokes equations in general curvilinear
coordinates.

Appendix: Symmetric matrices for the Navier-Stokes equations. Consider the lin-
earized, constant coefficient compressible Navier-Stokes equations in conservation form given
as

3 Oq
Ot

i----1 OXi

3 3 02q

i--1 j--i
OX OXj
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The matrix, 41, diagonalizes under the similarity transform, A t.-l41., where the right
eigenvector matrix, S, and the left eigenvector matrix, S-1, are given as

ot 0 1 0
o(u + c) 0 u 0 o(u c)

otv 1 v 0 oev
otw 0 w 1

_2 a,fZ (H cu)ot(H + cu) v c 1,, w ot

fl "’(,(>,- 1)c2M2- cu) -((>,- 1)u- c) -(y- 1)v -fl(T- 1)w ,8(y- 1)
-v 0 0 0

1-1/2(F- 1)M2 Ku Lv Kw
-w 0 0 0

fl (1/2(r 1)czM2 + cu) -fl((y 1)u + c) -,6(?’ 1)v -fl(y 1)w fl(y 1)

Here

1

2c c

Introducing this transformation into the Navier-Stokes equations yields

QTQ0R
3 OR

-07 + Ox-Si=1

3 3 2R- isj
0

Reref i= j=i Oxi Oxj

where R are the characteristic variables and QT Q is a positive definite, symmetrizing diagonal
matrix.

The symmetrized matrices

,A QT Qs-1.A S ]3i T s-1]3 S

are given as

u+c 0 0 0 0 v c 0 0 0
0 2u 0 0 0 c 2v 0 0 c

2c 2cA= o o 7-_u o o A= o o v o o
0 0 0 2u 0 0 0 0 2v 0
0 0 0 0 u-c 0 c 0 0 v

to 0 0 c 0
0 2to 0 0 0

2c0 0 7-:f_ w 0 0
c 0 0 2w c
0 0 0 c w

(L + 2/,) + 0 0

1
0 4/2
2c 0 011 )’61 0

-(Z + 2/,) + 0 0

2c 19-7:-f 0
0 0

4c

(r_)
O 0

41
2c 0-7=--f 0

-(,k + 2/z) + 0
0
2c 0

(z + + o
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/z+0 0 2c 0 0 -/z+0

1
0 4(, + 2/z) )61 0 0
2c 4c 2c

(F-l)  0-1Vo 0 o 0 o
0 0 4/z

+0 0 r-"2ClO 0 / +0

2c 0/z+O 0 -27 0 -/z+O
0 4/, 0 0 0

3-- ----0 0 (y_1)24c20 0 F-2c 0
0 0 4() "t- 2//.,) O

+o o o

We have for convenience introduced

y-1 yk

F Pr

0 1 0 0 0 0 0 0
1 0 0 0 -1 k+/x 0 0 0
0 0 0 0 0 J3 0 0 0
0 0 0 0 0 P 1 0 0
0 -1 0 0 0 0 0 0

1
0
0
0

-1

0
0
0

-1
0

0 0 0 0 0
0 0 0 2 0
0 0 0 0 0
0 2 0 0 0
0 0 0 0 0
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SEMICIRCULANT SOLVERS AND BOUNDARY CORRECTIONS
FOR FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS*
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Abstract. Fast solvers for systems of partial differential equations (PDEs) in two space dimensions are con-
sidered. The solvers are used as direct solution methods or as preconditioners for a conjugate gradient (CG)-like
iteration. Mainly first-order PDEs are considered, but second-order terms may be included. Employing a semi-
circulant framework, PDEs with constant coefficients in one space direction and arbitrary boundary conditions are
considered. A factorization of the inverse of the difference approximation matrix is described. This factorization
is exploited to derive a direct solver, where the complexity for the first right-hand side is (.9(n3/2 log n), but only
O(n log n) for subsequent right-hand sides. From the factorization an iteration resembling the Schur complement
matrix method known from domain decomposition is also constructed. The eigendecomposition of the iteration ma-
trix is investigated. The new solution methods are compared with iterations with semicirculant preconditioners and
to Gaussian elimination. An application solving the time-dependent, almost incompressible Navier-Stokes equations
is also studied.

Key words, first-order PDE, finite-difference discretizations, fast solvers, low-rank corrections
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1. Introduction. We study the solution of time-dependent and time-independent PDEs
on the unit square:

Su ) 8u 82u 8u 82u-- 1 -A2 --" ,2 =g"- -" ’ml
0x1 x2 x22

+ (boundary condition)l
+ (boundary condition)a.

(1)

Here .Ad .md(x1, x2) and td d(X1, X2) are nc x nc matrices, u is an nc-vector containing
the solution functions, and (boundary condition)d denotes a set of boundary conditions in the
xd-direction. Our main interest is to develop efficient solution methods for first-order systems
of PDEs, exploiting centered finite-difference approximations. Then artificial viscosity must
usually be added to damp high-frequency oscillations. Hence, it is important to take second-
order terms into account. The methods presented are applicable bothto problems with viscosity
in the PDE and to first-order PDEs where artificial viscosity is added only in the difference
approximation.

The PDE (1) is discretized using a five-point stencil on a uniform rn x rn2 grid. Note that
nonuniform grids may be accounted for by solving a transformed PDE on a grid with constant
stepsize. The methods presented here can be generalized to a (2ql d- 1) (2q2 + 1) rectangular
stencil. Thus, it is possible to treat higher-order approximations and mixed second-order
terms. Furthermore, nonrectangular grids may be handled by using a domain decomposition
technique. These generalizations will be described and analyzed in future work.

We use the notation

/1
/1 ’1 0/1

diagj,m (]j) ... ptridj,m (otj,/j, ?,j) or2 ". ".

/m "" "" ’m-1
’m Om /m
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At the boundaries we impose the restriction that the difference stencil may not be wider than
the five-point stencil used in the interior. Hence, e.g., periodic, Dirichlet, and Neumann
boundary conditions are allowed. Also numerical outflow boundary conditions may be used
in the difference approximation. Note that for hyperbolic PDEs, outflow boundary conditions
are always required for the characteristic variables corresponding to outgoing characteristics.
Outflow boundary conditions may also be needed for incompletely parabolic problems, e.g.,
the Navier-Stokes equations.

An approximate solution u of (1) is obtained by solving

(2) M-1Bu M-lg.

Here B is the coefficient matrix arising from the discretization of (1), andM is a preconditioner
matrix. If we order the n ncm lm2 unknowns in u first by equation in the system of PDEs
and then lexicographically in the domain, B has the following structure:

B ptridk,m2 (B,-1, Bk,0, B,I),

where Bk,-1 diagj,m (vj,,-2) and B,I diagj,ml(vj,g,2). The matrix B,0 is given by
B,0 ptridj,ml (vj,:,-1, vj,,o, vj,:,l). Here vj,,r, r -2 2, are nc x nc matrices. The
matrices B or B,0 are periodic tridiagonal only if the PDE is subject to periodic boundary
conditions in the x2- or xl-direction.

The matrix B is very sparse and highly structured. The number of nonzero elements
is only 5ncn. For the PDEs we are interested in, B may be highly nondiagonally domi-
nant. If we impose the restriction that B is nonperiodic tridiagonal, then B is a band matrix
with semibandwidth ncm 1. Using band Gaussian elimination with pivoting, the storage and
arithmetic requirements grow rapidly with increasing problem size. Instead it is natural to
study iterative methods, since multiplying a vector by B requires only lOn.n arithmetic
operations (a.o.). However, iterating on the matrix B, the number of iterations required will
generally grow when the problem size is increased. A preconditioner M must be employed
to attain acceptable convergence rates for large problems. The preconditioner solve has to be
performed by an efficient algorithm. The preconditioner is introduced to obtain acceptable
execution time and not to minimize the number of iterations. The preconditioner must also
exploit the sparsity of B, so that the storage requirement does not become prohibitive. Many
approaches for constructing preconditioners have been considered, e.g., incomplete LU fac-
torization [VdVo82] and polynomial preconditioners [Ashby87]. We use a PDE approach;
i.e., M is defined by the system of equations

(3) Mu g,

arising from a PDE closely related to (1). The objective is to find simplified PDEs such that
it is possible to solve (3) efficiently, and that the number of iterations required to solve (2) is
independent of problem size. Apart from yielding preconditioners, efficient solution methods
for (3) may also be directly applicable to some PDEs of practical interest.

For constant coefficient elliptic PDEs subject to periodic or Dirichlet boundary conditions,
M has a circulant or Toeplitz structure. Then (3) can be solved in O(n log2 n) complexity
using a fast Poisson solver based on fast trigonometric transforms [VLoan92]. For constant
coefficient hyperbolic or incompletely parabolic PDEs subject to periodic boundary condi-
tions, M again has a circulant structure allowing a solver based on fast Fourier transforms.
However, for PDE problems subject to Dirichlet boundary conditions, this is not the case.
As previously mentioned, numerical outflow boundary conditions must be supplied in the
difference approximation. Thus, the Toeplitz structure of M will be disturbed at the entries



SEMICIRCULANT SOLVERS 615

corresponding to the boundaries. The purpose of this paper is to study solvers for problems of
this type. We use the fast transform framework but extend it to allow the disturbances arising
from the outflow boundary conditions.

In previous papers we have described semicirculant (SC) solvers. Here, we use a specific
SC solver describedby M(sc corresponding to a discretization ofaPDErelated to (1) butwhere
two approximations are introduced. The coefficients are approximated by constants in the Xl-
direction, and the boundary conditions in the same space direction are changed to periodic. In
[HoOtto92], [Otto97], and [HoOtto94], SC solvers are used as preconditioners for problems
of type (2), where B corresponds to first-order time-dependent and time-independent PDEs
subject to Dirichlet boundary conditions. Empirically, the number of iterations required is
found to be independent of problem size for both problem types. In [Otto97] and [HoOtto94],

-1it is also proved that both the eigenvalues and the eigenvectors of M(scB are "improved"
compared with those of B. The SC solver is the basis for the new solution methods presented
in this paper, and it is briefly described in 2.

In 3 we present the boundary corrected semicirculant (BCSC) framework. Also the
matrix M(scsc corresponds to a PDE closely related to (1). We approximate the coefficients
in the xl-direction by constants, whereas the original boundary conditions are retained. The
basis for the BCSC frameworkis a factorization for MfBXCsc, givenby the Sherman-Morrison-
Woodbury formula. This factorization could be used in different ways. We first derive an
efficient direct solver for (3). We also use the factorization to construct an iteration for
(3), which resembles the Schur complement matrix method used in domain decomposition
[KeyGr87]. In 6 we prove that the eigendecomposition of the iteration matrix is closely

-1related to that of M(scM(scsc. This makes it possible to exploit theoretical results for model
problems derived in [Otto97] and [HoOtto94].

In 4 we summarize the arithmetic complexities and storage requirements for the solvers,
and in 5 two model problems are presented. Sections 7 and 8 contain numerical results for
these PDEs. Finally, in 9 the BCSC solver is employed to solve the Navier-Stokes equations.

2. The SC solver. In this section a brief review of the SC framework is given For a
more complete discussion on SC preconditioners and some numerical results, see [HoOtto90],
[HoOtto92], [Otto97], and [HoOtto94].

Define the circulant tridiagonal matrix ctridm (or,/3, ,) by

ctridm(ot,/3, 9/)

The matrix M(sc) is defined by

(4)

where

,B y o

11/I"(SC) Mk,1)M(sc ptrid,m (M,-1 .... g,0

t(sc ctridm (Pk,-1, Pk,0, Pk,1) Mk,1 Imi ( Ok,2Mk,-1 Im Pk,-2 ....k,O

The matrix M(sc) is as sparse as B and completely described by the 5m2 nc x nc matrices
Pk,r. Several choices for these parameters are possible [HoOtto92], but when using the PDE
approach a natural choice is

l ml

tOk,r )j,k,r, k 1 m2, r -2 2,
ml j=l
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where )j,k,r is a set of matrix entries forming the matrix B, corresponding to the difference
approximation of (1), but subject to periodic boundary conditions in the x1-direction. Thus,
M(sc) is a discretization of the PDE

(5)
0u+] u Ou u :u

aX1 OX12 aX2 X22
+ periodic bounda conditions in the x-direction
+ (boundaw condition)2.

Here ,d ,,a(x2) and/a /a(x2) are defined as averages over Xl of ,Ad(Xl, X2) and
Id(X1, X2).

The reason for introducing circulant matrices in M{sc) is that such matrices are diagonal-
ized by using discrete Fourier transforms, which are performed by the fast Fourier transform
(FFT) algorithm. For each new SC preconditioner, i.e., each new set of parameters Pk,r,
k 1 m2, r -2 2, a factorization phase requiring O(n) a.o. is performed once.
The arithmetic complexity for each SC solve is (.9(n log2 rn 1), and the memory requirement is
O(n).

3. The BCSC solver. We now study solution methods for (3), arising from the discretiza-
tion of the PDE

(6)

811 ) 8U O2U OU 0211
-57+ 1 +tl +0XI X2 0X

=g

+ (boundary condition)l
+ (boundary condition)2.

The direct BCSC solver is derived, but also an iterative solver is described. The matrix M(BCSC
is defined by

(7) ll/I(BCSC) mk,1)M(BCSC) ptridk,m (mk,-1, *’*k,O

where Mk,_ and M,I are defined in (4), and aa(csc) is given by

&,o + ,o
Pk,-1

ll/l(BCSC)
"*k,O

Pk,1 + k,1
&,o lOk,

Pk,-1 Pk,o
Pk,-1 + (k,-1

Pk,1
&,O + ,0

The disturbances of the Toeplitz structure arising from (boundary condition)l are now ac-
counted for.

The solution methods for (3) described below are based on SC solves. We first note that
M{csc) M{sc) is very sparse, and

(8) E =-- M(BCSC)- M(sc) SVT,

where S Ira2 (R) s and V diag,,m2 (vt). Here s and vl are ncml x 2nc matrices given by

S
T (Inc 0 0 0

\ 0 0 0 Inc)
and

T ( k,O k, O O 0 --Pk,-1)Vk --Pk,1 0 0 0 k,-1 k,O
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Exploiting the Sherman-Morrison-Woodbury formula, a factorization for MBlcsc) is
obtained:

(9)

where

MBlcsc) (M(sc) 4. svT)-1 (I -1 -1 -1M(sc)SP Vr)M(sc),

(10) P I 4. VT -1M(sc) S.

This factorization can be used in several ways. We first describe the BCSC solver. The two
-1 in (9) can be performed as SC solves. Exploiting the sparsity of V,multiplications by M(sc)

it is relatively cheap to form the 2ncm2 2ncm2 matrix P. For simplicity, we only show the
computation of P for the case nc 1, but the generalization to blocks is straightforward. The
algorithm is given in a MATLAB style.

ALGORITHM FOR COMPUTING P
for 1 to 2m2 do- S(:, e)z- M(sc)

for k 1 to m2 do
kl (k 1)ml
P(2k 1, e) k,0z(kl + 1) + k, lz(k 4- 2) pk,-z(k 4- ml)
P(2k, ) --Pk, lZ(kl 4- 1) 4- (k,-lZ(kl 4- ml 1) 4- (,oz(kl + ml)

endfor
endfor
P=I+P

Using SC solves, O(m2n log2 rn 1) a.o. are required to form P. The factorization P LU can
be computed in 0(m32) complexity. In 6 we prove that p-1 exists for some first-order model
problems. Now u MBlcsc)g is computed according to the following method.

BCSC SOLVE

-1u -- M(sc)g
Z -" SU-1L-1VTu

-1z -- M(sc)z
u---umz

Here O(n log2 rn 1) a.o. are required. Note that, excluding storage required for the SC solver,
only storage for the factorization of P and an auxiliary vector of length n is required. Hence,
the storage requirement for the BCSC solver is O(n).

If it is considered too expensive to form P, P- may be approximated by some matrix H
which is cheaper to form. Then the matrix M;I (i M(-sc)l SHVT M(-sc)I could be used as a

preconditioner in an iteration for (3). It is a trivial matter to show that rank(M;i M-BIcSC) <-
2ncm2, implying that MlM(Bcsc) has at most 2ncm2 eigenvalues separated from 1. Note
that the choice H 0 yields M/4 M(sc).

It is also possible to utilize the factorization (9) to derive another iteration for (3), which is
in some sense related to the Schur complement matrix method used in domain decomposition.
When computing u Mlcsc)g, operations of the type x p-ly must be performed.
If we solve Px y using a CG-like iterative method, P need not be formed, since only
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TABLE
Arithmetic complexitiesforfactorization.

Solver Arithmetic operations

bandGE between 2ncmln2 and 4ncmln2
SC (32ne 21n + 3)n
BCSC ((10log ml + 48nc + 4)ncm2 + 32nc 21nc + 3)n

16+ 24ncm +wncm 2ncm

TABLE 2
Arithmetic complexitiesfor substitutions.

Solver Arithmetic operations

bandGE 6nmln
SC (5 log m + 24nc -t- 2)n
BCSC (10log2 ml +48nc+5)n+8ncm

TABLE 3
Storage requirements.

Solver Memory positions

bandGE 3ncm n
SC 6ncn
BCSC (6nc + 1)n + 4ncm

T -1multiplications by P I + V M(sc)S are required. Due to the sparsity of S and V, y
Px can be performed using basically one SC solve. Multiplying a vector by S requires no
arithmetic, and the complexity for a multiplication by Vr is only O(m2). Note that x and y
are 2ncm2-vectors. We iterate on the boundaries in the x1-direction, whereas an exact solver
is used in the interior of the domain. This iteration could be used for solving (3) or as an inner
iteration for the preconditioner when solving (2).

4. Summary of arithmetic and storage requirements. In [Holm92] the implementa-
tion of the SC solver is considered, and savings in arithmetic complexity, generalizations,
and parallelization are discussed. In Tables 1 and 2, we summarize the arithmetic complex-
ities for the Gaussian elimination (bandGE), SC, and BCSC solvers. In Table 3 we give the
corresponding storage requirements for the implementation used here.

In 7 and 8, we use the restarted GMRES method denoted by GMRES() [SaadSch86].
The average number ofarithmetic operations required for one iteration is (2+ 10)n, excluding
the work required for the matrix-vector multiplication and preconditioner solve. The storage
requirement is ( + 2)n. We use the initial guess u0 0 and the following stopping criterion:

[IM-l(g- nu)ll2
IIM-lgll2

5. Model problems. As representative model problems, we use a scalar hyperbolic PDE
subject to Dirichlet boundary conditions in a time-dependent and a time-independent setting.
The time-dependent problem is given by

(11)
8u 8u 8u

+ cr2(x2) g,
Ot

i- O’I(XI)
OXI X2
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on the unit square for > 0. We assume that crd(Xd) > 0. The PDE (11) is well posed
if u(0, x2, t), U(Xl, 0, t), and u(x, x2, 0) are supplied. Note that the solution must not be
prescribed at the outflow boundaries.

The time discretization is performed using the second-order accurate trapezoidal rule
with time-step At. The spatial discretization is performed on a uniform grid with (m + 1) x
(m2 + 1) gridpoints. Hence, the space-step in the xd-direction is given by hd =-- 1/md. The
spatial derivatives in (11) are approximated using second-order accurate centered differences
in the interior of the domain. For the numerical boundary conditions required at the outflow
boundaries, we use one-sided differences. Let lfj,d crd(jhd)At/ hal, j 1 md. If
rd(Xd) rd, then xj,d Xd =-- CrdAt/ hd. Introducing the discretizations in (11)yields the
following system of equations for the solution at time level N + 1:

(12) Buu+l (Ira2 (R) B1 + B2 @ Im)Uu+ g.

Here g contains known quantities and

4 K1,1
-2,1 4 tc2,1

B1 ".. ".. "..
-/(ml-1,1 4 Km-1,1

--2/m,1 4 - 2/m,1

0 K1,2
--K2,2 0 K2,2

B2 Oo o o
m/fmz_ 1, 2 0 Km2_l,2

--2Km2,2 2K’m2,2
A more detailed description is given in [HoOtt090]. We also consider the time-independent
version of (11)"

0u 0u
(13) O’l(Xl)-Xl + 0"2(x2)x2 g.

The boundary conditions are of the same form as for the time-dependent problem. Also the
discretization in space is performed on the same type of grid, and the derivatives in the PDE
are approximated using centered differences in the interior of the domain. However, we add a
weak artificial viscosity in the xl-direction. The difference operator in the interior is given by

O’1 (Xl) (D0,xl /h2-aD x- +, D_,x/ + cr2(x2) Do,x2

(O+,x

__
where D+,xUj,k ---hl(uj+l,k--Uj,k),O_,xUj,k =--- D+,xlUj_l,k, andfinally Do,x =-
D_,x). Here uj,k is the approximation ofu at the gridpoint (jh 1, kh2). The constants ct and ?,
are chosen so that ot 6 (0, 1) and y 6 (0, 1). The order of accuracy is 2 c in the xl-direction
and 2 in the xE-direction. For the numerical boundary conditions we again use one-sided
differences. A more detailed description of a model problem of this type and a discussion
on the choice of artificial viscosity is given in [HoOtto94]. Define j crl(jhl),h-{ and
’j,d crd(jhd)h- 1. Also define j,-1 -/j,1 j and lj,x /’j,1 j. If tYd(Xd) O’d, then

.j,d d Crdh 1,
"Cj,-1 "" z’-I =----1- 3,

z’j,1 =’t’l
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By introducing the discretization in (13), the following system of equations is derived:

(14) nu - (Im2 ( /1 -[- 2 () Iml)g g.

Again g contains known quantities and

0 /!,2
--/2,2 0 /’2,2

--K’m2_l,2 0 /’m2-1,2
--2m,2 2m

Note that the coefficient matrices are denoted by B for both model problems.

6. Analysis of the BCSC framework. In this section we derive formulas for the eigen-
values and eigenvectors of the matrix P defined in (10). The eigendecomposition of P is
given in terms of the eigenvalues and eigenvectors of M&)E, where E is defined in (8). For
first-order model problems, the eigendecomposition of -1M(sc)E has been studied in [Otto97]
and [HoOtto94]. In Theorem 2 we use this information to prove that P-1 exists.

THEOREM 1. Let the eigendecomposition ofM(sc)E be given by

(M(sc)-I E) W(sc) W(sc)A(sc),

where

A(sc) diagk,m2 (ASC)), Asc) diagj,m, (@,c)).
Then the eigenvectors ofP are given by We Vr W(sc)S. Also, the 2m2 eigenvalues a(P)

"(1,2),k

are 1 + )(sc) and I + sc) k 1 mE.1,k "ml,k’

Proof Recall that P I + Vr -1M(sc)S. We have

T -1p(VrW(sc)S) vrW(sc)S + g M(sc)SVrW(sc)S
grW(sc)S + gr(Msc)E)W(sc)S grW(sc)(I + A(sc))S.

Also, exploiting the structure of S we obtain

(I + A(sc))S S + diagk,m2(ASC))(lm2 (R) s) S + diagk,m2(ASC)s)
diag,,m(sA(P)) (Im2 (R) s)diagt,m(AP)) SAt,,

where

Ap diag.,mE (aP)),

AP) ""l,k 1,k
:(p)
""2,k

a(sc) )"1 + "’ml,k"
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Thus,

p(vT W(sc)S) (VT W(sc)S)Ap.

Hence, We VTW(scSistheeigenvectormatrixto P, and,l,k(P) 1--[-)l,k(SC),^2,k(P) 1-t-J(SC--ml,k
are eigenvalues of P. [3

If al (xl) al, the model problems in 5 satisfy B M(Bcsc. According to (8) this
implies

-1-1 -1 (M(sc + E) I + M(sc)EM(sc)B M(sc)

and the eigenvalues of P are trivially extracted. For the time-dependent model problem, vk is
given by

T(0 0’’-0 0
Vk --K1 0 0 --K1 2tCl

whereas for the time-independent problem

T (0 0’’’0 0v,
--rl 0 0 --rl 2rl.

Now assume that era (xa) ad 1. In [HoOtto94] formulas relating the eigendecomposition
of MscE to the eigendecomposition of -1/2 are given. In [Otto97] the corresponding
formulas for the time-dependent model problem are given. The two problem settings are
closely related. In the discussion below, we use the time-independent problem and the notation
in [HoOtto94]. By performing the relevant substitutions, the corresponding results for the
time-dependent problem follow.

-1In [HoOtto94] it is proved that M(scE has at most 2m2 nonzero eigenvalues, denoted
-1by ’l,k

(SC) and "ml,k’
a(sc) k 1,..., m2. Furthermore, it is proved that M(sc)E is diagonalizable,

and asymptotic formulas for the eigenvalues of -1M(sc)E are derived. Under certain conditions
a(sc) and a(sc) approach two finiteit is established that, for large values of m and m2, "l,k "m,k

curve segments (sc)
-1,o (0), where 10[ < q9 < 1. The curve segments are identical for the time-

dependent and time-independent model problems. For the time-independent problem we have
Theorem 2.

THEOREM 2. Ifaa(Xd) ad 1, m and mz are sufficiently large, and

mz(1 + 2m-3/2)
ml(1 ym-1)

< for some constant 99 < 1,

then P- exists.

Proof Under the given assumptions, Corollary 1 in [HoOtto94] yields

15 a sc) + q/ff
u28 < 11 + "1,o (0)l < 1 +

4/"v/1 (t92

,.(P) (SC)Hence, for sufficiently large values of m and m2, we have I,k l1 + ’l,k > 0 and

’2, I- l1 + "m,,k[ > 0, k 1 m2.
When m 1, m2 --+ o, the condition on the grid in Theorem 2 can be reduced to rn2/rn

q9 < 1. Normally, this is also the conditionused for practical computations. Note that Theorem
2 only gives sufficient conditions for the existence of p-1.
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TABLE 4
The condition number ofthe eigenvector matrices.

m=8 m=12 m=16 m=24 .m=32

cond2(Wp) 12.8 21.5 32.4 58.3 90.3

condz(W(sc)) 1.29.103 1.05.104 8.78.104 3.64.108 not computable

Assume that a system of n equations

Ax=b

is solved using a minimal residual iteration [FrGoNa92], e.g., the GMRES method. Then we
have

Ilri 112 min IlPi(A)roll2,
Pi E7:: Pi (0)

where ri Axi b and xi is the approximation of x computed in iteration i. If A is
diagonalizable, we obtain [FrGoNa92]

Ilril12(15) < cond2(Wa) min max Ipi(,e)l =- cond2(WA), ei(A).
IIr0112 p,E,,, pi(0)=l l<<n

Here WA is the eigenvector matrix and .e the eigenvalues of A. 79i is the set of all polynomials
of maximal degree i. The asymptotic convergencefactor OA is defined by

QA lim Ei(A) 1/i.

If we can prove that QA 01 < 1 and cond2(WA) 02, where 01, 02 > 0 are independent of
m and m2, then asymptotically the number of iterations required does not depend on problem
size. Note that (15) may yield ave pessimistic estimate ofthe convergence rate. It is trivial to
construct a problem of arbitra size where cond2 (WA) , and for which a CG-like method
converges in two iterations. For non-nodal matrices the spectral decomposition framework
is not satisfacto, but unfoaunately there is no practical theo available that yiel a sha
bound on the convergence rate for polynomial iterations.

If the assumptions in Theorem 2 are fulfilled, it is proved [HoOtto94] that, in the limit
ml, m2 ,

(1+ 1--2)1/2

OM(3’)B < 6161 @2
< 1.

1+
-1Since the eigenvalues of P constitute a subset of the eigenvalues of M(sc)B, Oe is asymptot-

ically bounded by the same quantity. The eigenvector matrix We is more difficult to analyze
theoretically. Using the foulas given in [HoOtto94] and a theorem in [HoOtto93] relating
We to these foulas, such an analysis might be possible. However, we have so Nr not
completed this approach. For the time-independent model problem, We turns out to be much
better conditioned than W(sc). In Table 4 we show cond(W(sc)) and cond2(We), computed
by MATLAB. The parameters for the aificial viscosity are chosen as a 0.1, g 0.5, and
m =ml =2m2.

We see that cond2 (Wfsc)) is large and grows rapidly when the problem size is increased.
The results in Table 4 also show that cond2 (Wp) grows with increasing problem size, but it
is not clear whether this quantity is bounded or not. In Table 5 we show the number of SC
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TABLE 5
-1The number ofSC solves required when iterating on P or M(sc) B.

P

M(sc) B

=8 m=16 m=32 m=64 m=128 m=256

18 22 18 16 14 14
17 22 16 14 14 12

I04,,;

10

10 2-

101
3 4 5 6 7 8 9

FIG. 1. Work requiredfor one time-step.

; bandGE

= SC
-----a--- BCSC

Logm

solves required when the same type of problems as in Table 4 are solved using the GMRES(6)
-1iteration for P or M(scB.

-1It is clear that there is no significant difference between iterating on P or M(sc B. The
large values of cond(W(sc) do not affect the number of iterations. As previously remarked,
this does not contradict the estimate (15).

7. Results for constant coefficient problems. In this and the next section, we study the
model problems described in 5. Assume that tYd(Xd) --O"d 1. Then Mlcsc)B I whereas

-1Mfsc)B =/= I. Hence, the bandGE and BCSC algorithms are used as direct solvers, and the
SC solver is used as a preconditioner in the GMRES(6) iteration.

For time-dependent problems, the factorization is performed once prior to the time-
marching. If a large number of time-steps are performed, the work required for factorization
could be neglected. When the BCSC solver or the SC-preconditioned GMRES(6) iteration is
used, the work required to perform one time-step is dominated by SC solves. Therefore, if
more than two iterations are required for the GMRES method, the BCSC solver is presumably
more efficient. This is verified in Fig. 1, where the number of a.o. per unknown required for

159P and At 10.2-p are studied.one time-step is shown. Problems where rn 2p, m2 T-
Hence, K 10 and K2 150/16.

From Fig. 1 it is clear that the BCSC solver is the best choice for all problem sizes studied.
However, note that the work required per unknown for the SC-preconditioned GMRES(6)
method actually decreases when the problem size is increased. The number of iterations
required decreases so fast that the increase in the work required for the SC solve is more than
canceled. The number of a.o. required for the bandGE solver becomes unrealistically large
when the problem size increases.
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10 6.

-
10 3’

3 4 5 6 7 8 9

; bandGE
; SC

BCSC

Logm

FIG. 2. Work requiredfor the time-independent problem.

10

10 2:

101
4 5 6 7 8 9

; bandGE

SC
BCSC

Logm

FIG. 3. Storage requirement.

When solving time-independent problems, normally only one system of equations has to
be solved. Hence, the workrequired for the factorization must be accounted for. In [HoOtto94]
it is found that the number of iterations required for the SC-preconditioned GMRES method is
independent ofproblem size. The factorization for the BCSC solver requires 2ncm2 SC solves.
Thus, for large problems the iterative method is presumably better than the BCSC solver. In
Fig. 2 the number of a.o. per unknown required for the solution ofthe time-independent model
problem is shown.

Figure 2 clearly demonstrates that the SC-preconditioned GMRES method is the fastest
solution method for large problems. Again, the work required does not grow with increasing
problem size, and the bandGE solver is not a realistic alternative.

Finally, in Fig. 3 we show the number of memory positions per unknown required for the
model problems. Note that the storage requirement is the same for the time-dependent and
time-independent problem.

From Fig. 3 we see that, for large problems, the storage requirement for the bandGE
solver is not acceptable.

8. Results for variable coefficient problems. In this section we only study the time-
dependent model problem. Hence, the workrequired for factorization is neglected. We assume
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10

3 4 5 6 7 8 9

bandGE

SC
----n--- BCSC

Log m

Fit3. 4. Work requiredfor one time-step, s In(2).

10

10
,

:::::2+/-::::.:::::::::2:::::::::.:::::2::::.:::::::::::::::::::::::::.:2::::.::::::::::::::::::::::::::::::::::E

10 2

101’’
3 4 5 6 7 8 9

bandGE

SC
---tr-- BCSC

Log rn

Fit3. 5. Work requiredfor one time-step, s ln(3).

that

Crd(Xd) cr(Xd) cosh2 (S(2Xd 1)) tanh(s)
s

Here s > 0 determines the variation of or. In the limit s --+ 0, cr(xd) 1. Coefficients
of this form arise from a spatial discretization exploiting a grid adapted to boundary layers;
see [HoOtto90]. The variation of or(x) increases rapidly with increasing s. For PDEs with
variable coefficients, only the bandGE solver can be used as a direct solution method. Both
the SC and BCSC solvers are used as preconditioners in the GMRES(6) iteration.

The BCSC solver takes the boundary conditions in the xl-direction into account, which is
not the case for the SC solver. Hence, Mcsc) is presumably a better approximation of B-1
than -1M(sc). In Figs. 4 and 5, the number ofa.o. per unknown required for the different solution

159-P 150/16 aremethods is compared. Problems where m 2p, m2 g- K1 10, and c2
studied. In Fig. 4 results are shown for s ln(2) 0.69, whereas in Fig. 5 problems with
s ln(3) 1.10 are examined.

From Fig. 4 it is clear that the BCSC-preconditioned GMRES(6) method requires the
smallest number ofa.o. for large problems. As anticipated, the BCSC preconditioner performs
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better than the SC preconditioner. This conclusion is further corroborated by a comparison
-1of numerically computed spectra of Mlcsc)B and M(sc)B [HoOtto93]. Also note that for

this value of s, both the SC and BCSC preconditioners retain the property that the work per
unknown does not grow with increasing problem size. For the larger value of s used in Fig. 5,
this is no longer true. For both the SC and the BCSC preconditioner, the number of iterations
grows when the problem size is increased. The Gaussian elimination algorithm requires the
smallest number of a.o. for all problem sizes studied. However, the storage requirement for
this algorithm is O(m 1) times larger than for the iterative methods.

9. An application. We consider the solution of the isentropic Navier-Stokes equations
using a semi-implicit time-marching scheme of a type described in [GuSt91]. The specific
problem studied here is the calculation of the flow in a driven cavity. The PDE is symmetrized
[GuSt91 yielding

(16)
0u

0t
_]-- (8-10 + 7Pl(U))U 792(U)U.

Here e is the Mach number and u is a vector with three components. The first component
is a transformed pressure, and the second and third components are the velocities U and
u2 in the Xl- and xz-directions. For the driven cavity flow both velocity components vanish
at all walls, except at the driving boundary x2 1, where Ul(Xl, 1, t) 1 for > 0.
The differential operator 792 contains the nonlinear second-order terms in the Navier-Stokes
equations corresponding to viscosity. 791 is a nonlinear first-order operator, and e-179o is a
linear first-order operator with constant coefficients. To avoid a strict stability criterion of the
form At < O(he), an implicit method is preferred for this part of the differential operator.
The time-marching method exploits the implicit Euler scheme for e-mp0 and the explicit
leap-frog scheme for 791 and 792. The discretization of spatial derivatives is performed on a
uniform grid with rn x rn internal gridpoints and space-step h using centered differences. For
smooth solutions and almost incompressible flows, this scheme is second-order time-accurate.
Introducing the discretizations, the analytical boundary conditions, and numerical boundary
conditions for the transformed pressure, we arrive at a system ofequations with 3m2 unknowns:

(17) Bu g.

Here B is given by

Bo 2BIZ
-B1

BI + B1 Z
Bo el

Bo
-B1 B1Z

B1
Bo + 2B1Z

where

I3 2Vl"
-pl

Bo

Pl + Pl
I3 pl

--Pl Pl I3 + 2Vl ’
B1 Im @ v2, Z lm @ ,
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FIG. 6. The velocityfield at 5.

and

pl K 0 0 I)2 0 0 0 ff 0 0 0 g

0 0 0 0 0 0 0 0 eh

In [Stoor90] NAG routines are employed to solve (17). A general sparse matrix factorization
routine (F01BRF), exploiting threshold pivoting, is called once prior to the time-marching. In
each time-step, F04AXF is invoked to perform the substitutions. Because of the large storage
requirement, the largest problem solved in [Stoor90] has only 4800 unknowns.

Below, we show results computed using the BCSC solver, which yields a direct solution
method for (17). In Fig. 6 the velocity field at 5 is shown for a problem with Reynolds
number 500. At 0, the medium was at rest. The Mach number e is 0.01, which means
that the upper boundary of the cavity moves with 1% of the speed of sound. The problem
is solved using rn 256 and At 0.0005, yielding tc 12.85. Note that the problem
studied has 196608 unknowns. The solution is computed using a Sun 670MP. The computer
is configured so that 150 Mbyte of virtual memory may be used. Below, problems where
rn 2p, At 2-(p+2), and e 0.01 are studied. In Fig. 7 the number of memory positions
per unknown required for the BCSC, NAG, and bandGE solvers is shown. The 150 Mbyte
limit is marked as a dashed line.

Figure 7 shows that the BCSC solver allows us to solve a 16 times larger problem than if
the NAG solver is used. Note that the quotient between the storage requirement for the bandGE
andNAG solvers is 3, independent ofproblem size. Also note that it is possible to determine
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I0

"--’*’--" bandGE

NAG
----tr-- BCSC

Memory limit

2 3 4 5 6 7 8 9 10

Logm

FG. 7. Storage requirement.

TABLE 6
CPU-time (ms/n) requiredforfactorization.

NAG
BCSC

m=16 m 32 m=64 m=128m=256
5.8 87 1060 too large too large
2.7 4.3 10 25 61

TABLE 7
CPU-time (ms/n) requiredfor one time-step.

NAG
BCSC

m= 16 m--32 m=64 m=128 m=256

0.018 0.035 0.068 too large too large
0.054 0.058 0.063 0.071 0.081

the storage requirement for the BCSC and bandGE solvers at the time of compilation, which
is not the case for the NAG solver. When we attempted to use the NAG solver for a problem
with m 128, F01BRF spent 38 hours of CPU-time to determine that 396 memory positions
per unknown would be required to store the factorization, which is more than the available
virtual memory allows!

Tables 6 and 7 show the CPU-time required when the NAG and BCSC solvers are used
for the solution of the driven cavity problem. In Table 6 the CPU-time per unknown required
for the factorization is shown, and in Table 7 the CPU-time per unknown required for one
time-step is displayed. Note that in Table 7 the CPU-time for performing the explicit part of
the time-marching is included. The entries "too large" indicate that the corresponding problem
is larger than the memory available.

Table 6 clearly shows that the NAG factorization requires much more CPU-time than the
BCSC factorization. In Table 7 we see that, for small problems, the NAG substitutions are
faster than the BCSC substitutions. However, if it were possible to use the NAG solver for
realistic problem sizes, it is clear that the BCSC method would be much faster.

10. Conclusions. Previously, we have described the SC solver characterized by the ma-
trix M(sc). This is a direct solver for systems of PDEs with constant coefficients and periodic
boundary conditions in one space direction. For simplicity we now consider m x m grids, in
which case the arithmetic complexity is O(m2 log2 m). In this paper we have generalized the
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SC framework to construct the BCSC solver defined by M(BCSC). Here, the system of PDEs
may be subject to boundary conditions from a wide selection, including numerical outflow,
Dirichlet, Neumann, and periodic. For quite a large class of PDEs, the SC or BCSC solver is
applicable as a direct solution method. Outside the class we have shown how to construct a
simplified PDE, for which the solution can be computed using the SC or BCSC solver. The
solution of the original problem is then computed with a CG-like iterative method, where the
simplified problem acts as a preconditioner.

The basis for the BCSC solver is a factorization of MBcsc), derived by exploiting the
Sherman-Morrison-Woodbury formula. To compute the solution, a system of O(m) equa-
tions with coefficient matrix P must be formed and solved. P is a dense matrix containing the
boundary corrections. In the BCSC solver, P is formed and LU factorized. The complexity
for the first right-hand side is O(m3 log2 m), whereas only O(m2 log2 m) a.o. are required for
subsequent right-hand sides. The storage requirement is O(m2). Also, an iterative solver is
considered, where Px y is solved using a CG-like iterative method. Here P is never ex-
plicitly formed. We have proved that the eigenvalues and eigenvectors of P are closely related

-1to the eigendecomposition of M(sc)M(Bcsc). For a time-dependent and a time-independent
model problem, we have established that the spectrum of P is uniformly nonzero.

For constant coefficient PDEs, the SC solver is used as a preconditioner for the restarted
GMRES iteration, whereas the BCSC solver yields a direct solution method. For the time-
dependent problem, the BCSC solver is a better choice than the SC-preconditioned GMRES
method, since the cost for the factorization may be amortized over a large number oftime-steps.
For the time-independent problem, only one system of equations has to be solved. Hence,
the SC-preconditioned GMRES method is the best solution method, since the complexity
per unknown is independent of the size of the problem. Comparisons with band Gaussian
elimination show that, for large problems, the complexity is higher than those for both the
BCSC solver and the SC-preconditioned GMRES method. Also, the storage requirement for
band Gaussian elimination becomes prohibitive for large problems.

For the variable coefficient time-dependent problem, both the SC and BCSC solvers are
used as preconditioners for the restarted GMRES iteration. For weakly variable coefficients,
the solution methods exploiting the SC and BCSC solvers retain a complexity (per unknown)
which is independent of problem size. Hence, both methods are faster than Gaussian elimi-
nation for large problems. The BCSC solver yields a better approximation of B-1 than the
SC solver, and it requires less total work. For problems with strongly variable coefficients,
the favorable convergence properties are no longer preserved, and the Gaussian elimination
solver has the lowest complexity for all problem sizes studied.

Finally, we have used the BCSC solver combined with a semi-implicit time-marching
scheme in the solution of the isentropic, almost incompressible Navier-Stokes equations for
a driven cavity problem. In [Stoor90] the arising system of equations is solved by a general
sparse solver. The two solution methods are compared, and we find that employing the BCSC
solver makes it possible to solve a 16 times larger problem than by using the general sparse
solver. Also, the CPU-time required is less for the BCSC solver, both in the factorization and
the time-marching.
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THE SOLUTION OF MULTIDIMENSIONAL REAL HELMHOLTZ EQUATIONS
ON SPARSE GRIDS*

ROBERT BALDER AND CHRISTOPH ZENGER

Abstract. Sparse grids provide a very efficient method for the multilinear approximation of functions, especially
in higher-dimensional spaces. In the d-dimensional space, the nodal multilinear basis on a grid with mesh size
h 2 consists of 0(2rid) basis functions and leads to an L.2-error of order O(4-n) and an H_l-error of order
O(2-n). With sparse grids we get an L_2-error of order O(4-nnd-l) and an H_l-error of order O(2-n) with only
o(2nnd-l) basis functions, if the function u fulfills the condition aEd

oXlOx22...Ox
u < 0. Therefore, we can achieve

much more accurate approximations with the same amount of storage.
A data structure for the sparse grid representation of functions defined on cubes of arbitrary dimension and a

finite element approach for the Helmholtz equation with sparse grid functions are introduced. Special emphasis is
taken in the development of an efficient algorithm for the multiplication with the stiffness matrix. With an appropriate
preconditioned conjugate gradient method (cg-method), the linear systems can be solved efficiently. Numerical
experiments are presented for Helmholtz equations and eigenvalue problems for the Laplacian in two and three
dimensions, and for a six-dimensional Poisson problem. The results support the assertion that the L_2-error bounds
for the sparse-grid approximation are also valid for sparse grid finite element solutions ofelliptic differential equations.
Problems with nonsmooth solutions are treated with adaptive sparse grids.

Key words, sparse grids, hierarchical finite elements, Helmholtz equation

AMS subject classifications. 65N30, 65N50, 65N55

1. Introduction. The hierarchical basis, first introduced by Faber [5] in 1909, has been
used by Yserentant 12] in 1986 as a preconditioner for the solution of large linear systems
arising from elliptic differential equations. Four years later, Zenger 13] showed that a multi-
linear approximation of a smooth multivariate function u is represented much more efficiently
if we directly use a suitably chosen hierarchical basis instead of a nodal basis. This approach
leads to the idea ofsparse grids. Considering a nodal multilinear basis on a grid with uniform
mesh size h 2-n on a d-dimensional cube, which consists of O (2nd) functions, then the ap-
proximation error in the L_2-norm is of order O(4-n), in the H_l-norm of order O(2-n). By
performing a basis transformation to the hierarchical basis, an L_2-error of order O (4-nnd-l)
can be obtained with a subset consisting of only O(2nnd-l) transformed basis functions if
the function u fulfills the condition oxox...o..,..u < cx. If the error in the H_l-norm remains

O (2-n), we have no decrease in the order here. The application of this concept to the solution
of partial differential equations on sparse grids is outlined in the papers by Zenger 13, 14, 15],
Bungartz [2, 3], and Griebel [7, 8]. Data structures and algorithms for the solution of Poisson’s
equation on a square and a cube are presented in [3].

In this paper, we introduce a modified data structure and a sparse grid algorithm that solves
Dirichlet problems for the real Helmholtz equation -Au + c u f on cubes of arbitrary
dimension. In 2 we explain the basic characteristics of sparse grids. For a brief theoretical
description, we refer to the paper of Bungartz [3]. In 3 a tree structure for the representation
of sparse grid functions is introduced. Section 4 deals with a finite element approach for the
Helmholtz equation with hierarchical basis functions. It turns out that the number of nonzero
entries in the corresponding stiffness matrix is of order o(4nnd-2) for d > 2. Nevertheless,
it is possible to perform a matrix-vector multiplication with o(2nnd-l) operations. The

*Received by the editors April 12, 1993; accepted for publication (in revised form) February 23, 1995.
Institut fiir Informatik, Technische Universit/it Miinchen, Arcisstrasse 21, D-80290 Miinchen, Germany

(balder@informatik.tu-muenchen.de, zenger@informatik.tu-muenchen.de).
1We remind the reader that the description of an n-electron system in quantum mechanics leads to a 3n-

dimensional Schr6dinger equation.
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1

FIG. 1. Standard basis B3.

0 1 0

0 1 0 1

FIG. 2. Hierarchical basis H3.

number of operations is proportional to the size of the vector of unknowns. We prove this
constructively in 5 by developing a corresponding algorithm. With the preconditioned cg-
method described in Griebel and Oswald [9], we can solve the linear systems efficiently. In
6, we present numerical examples for the solution of the Helmholtz equation with Helmholtz
numbers c [- 1000, 1000] in the unit square and the unit cube. For c << 0 the corresponding
stiffness matrices are indefinite. Nevertheless, we obtain good approximations of the solution
ofthe linear systemwith the cg-method. Eigenvalue problems with reentrant comers intwo and
three dimensions are solved with adaptive sparse grids. Finally we look into a six-dimensional
Poisson problem. Concluding remarks are made in 7.

2. Sparse grids. Beginning with the one-dimensional case, let Sn be the (2 d- 1)-
dimensional finite element space of piecewise linear functions on the unit interval on an
equidistant grid with mesh size h 2-n. For an arbitrary but fixed n, we consider two
different basis representations of this space.

1. The standard basis Bn (see Fig. 1) is the set of piecewise linear functions with the value
1 on one grid point and the value zero on all others.

2. Following Yserentant 12], the hierarchical basis H,, may be defined inductively by

Ho := To := Bo,

:-- Hi_1UTi U Tj,n
j=0

where T/, > 1, is the set of basis functions of Bi vanishing on the grid belonging to Si-1.
This is illustrated in Fig. 2.
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The gridpoint, where a basisfunction v has the value 1, will be called basis point bp(v).
The set ofbasis pointsfor a given n will be called grid Gn.

Now let u [0, 1] -- be a function with existing and bounded seminorm

02
u I’= -x2u

and let Un Sn be the linear interpolant of u in the grid Gn. In the standard basis {vi }, we
define the weights gi by

bin Z gi Vi.
vi .Bn

Obviously, gi is just the value of u at the corresponding grid point.
In the hierarchical basis {i }, we define the weights i by

i.
iH,

The weight i for the basis function )i - Zk is the difference between the value of the function
and the value ofthe interpolant of Hk- at bp(3 ). Therefore, we call i a hierarchicalsurplus.
It is easy to show (see [3]) that

(1) Ii < 4-k u I for i Tk,

which means that the weights ofthe basis functions in Tn decrease geometrically with n
when u I is bounded. This is precisely the main advantage of the hierarchical over the
standard basis and leads to essential savings of storage in the multivariate case. In 5.1 we
will show how the hierarchical surpluses can be computed.

The generalization of the standard and the hierarchical bases to higher-dimensional mul-
tilinear functions ud) on the unit cube [0, 1]d is derived from a tensor product decomposition
as follows.

For the d-dimensional space we define

Be := v "= vii i(x, x xe) vi (x) vi B
j=l

n(nd) := 31 := )il id(X1, X2 Xd) 3ij(Xj) )ij nn
j=l

An upper case index I denotes a multiindex id. An analogous relation to (1) holds in
the multivariate case. Generally, we can state this observation as the following: The weight
ofa basisfunction decreases asymptotically with the square ofthe volume ofits support.

To be more specific, let ud) be the multilinear interpolant of a function u defined on
[0, 1]d with the seminorm

(2) u I: U

We define the t implicitly by und) ,id t)t. As defined above, we have i
]-I fi# (x), where fi# T Recall that 2- is the length of the support of fi# T. With
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(2)Fro. 3. Full grid G2) and regular sparse grid (4

k :-- jd__l kj, the bound

-k(3)

holds (see [3]).
The basic idea of a sparse grid is as follows: We approximate a function with those

functions 9i from the set H "= UnEI n(nd) where i satisfies

(4) 1I I> e

for a given e > 0 (see [13]).
02aFor an a priori estimation of t l, we assume that OxOx...oxU is bounded above

uniformly in [0, 1]d. Then (3) leads us to consider all basis functions whose support has a
volume larger than a given minimal volume. This reduced sparse basis is called nd). Note
that (nd) C H(nd) and fi(d)

n+ - H(nd) The set of the basis points of/-(nd) is exactly our regular
sparse grid r(nd) (see Fig. 3), in contrast to an adaptive sparse grid which will be defined later
in this section.

The space spanned by t(nd) is called (na).
Bungartz showed in [3] that the number of basis functions in the d-dimensional case is

reduced dramatically from 0(2ha) to O(2na-1), while the accuracy of the approximation
degrades only from O(4-) to O(4-na-) in the L_2-norm. We see that with a slight loss in
accuracy we can drastically reduce the dimension of the approximation space and therefore
the amount of required storage.

The numerical examples in 6 support our assumption that the previous error bounds are
also valid for the solutions of linear elliptic boundary value problems. Multilevel precondi-
tioners [9] assure fast convergence for iterative solvers.

For functions u where u
OxOx...o u is not bounded, we may not getsatisfying results with

regular sparse grids. We have to replace our a priori estimation for by an a posteriori
estimation, say by computed values of I. This approach leads to adaptive sparse grids.
Our goal is to approximate the function u by all g that fulfill (4). Therefore, it seems natural to
refine the grid in every grid point where (4) holds. Refinement means that the basis functions
corresponding to one half of the support of v should also belong to our grid. Asymptotically,
this fulfills the basic idea of a sparse grid. Some numerical experiments with this strategy are
presented in 6.2.

3. A data structure for sparse grids. In this section, we describe a data structure well
suited for the representation of sparse grid functions in spaces of general dimension and for
the algorithms working on it. The data structure consists of a set of trees called grid trees.
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0

FIG. 4. Assignment ofthe basisfunctions of ffln,0 to the nodes ofa grid tree.

Every basis function is assigned to a node in a grid tree. We define the subset (d) c .s
follows:

/. (d)A basis function l-[jd=l v# IYt(nd) belongs to "*n,0 if and only if i To for
j=l d.

The basis points of the basis functions from fi(d)
n,0 are exactly those located in f2 =]0, 1[d

and not those on the boundary f2 of the domain.
In the one-dimensional case, the grid tree is a binary tree. The basis functions of/n,0 :=

/_(1)
,,0 are assigned to the nodes of the grid tree as shown in Fig. 4. We may now define the

grid tree for the basis functions of fi#) recursively. We get the d-dimensional grid tree byn0
combining every node of a one-dimensional grid tree with the root of a (d 1)-dimensional

tree. The location of the node belonging to T-I # is recursively defined by the locationgrid
of yIgd # in the (d 1)-dimensional grid tree that is connected with the node belonging to

in the one-dimensional grid tree.
The remaining basis functions belong to the boundary ofthe d-dimensional cube that con-

sists of lower-dimensional cubes. Therefore, they are assigned to nodes of lower-dimensional
grid trees. A null-dimensional grid tree is a single node. See Fig. 5 for a two-dimensional
example of our data structure for a regular sparse grid. New basis functions can be included
by adding new nodes in the tree. Hence, the tree structure is also well suited for adaptive grids.

4. The Itelmholtz equation. Let us define the sets

t4(d){I} := {I’vI Hnd)}, {I0} := {I Vl

{i} := {i V E nn}, {i0} :-" {i vi nn,o}.

We consider the Dirichlet boundary value problem

(5) Au + c. u f
in fZ [0, 1]a with u(x) uo(x) on 0Q. With the finite-element method, we want an
approximation fi (nd) of u, which we obtain by solving the weak form of (5) given by

(6) [Vfi.VK+C.fi.Kdx=[f.Kdx, K{Io},
J Jf
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FI6. 5. Data structurefor ]2).

where t -tI} ’" i interpolates the function u0 on 0 fq (nd) and j7 E{, f," ,
inteolates f in d).

We define the stiffness matrix

(alr):=(f,v,.Vr+c.,.rdx), I, K6{Io},

the mass matrix

(Mz):=(f.l.dx), I, K6{Io},

and the coesponding extended rectangular matrices ( K) and (iK) resulting from the
deflations above if I 6 {I}. Withe coefficient vectors (i) and (fi), we may write (6) as

(IK)(I) ()ffllK)(l)"
With fil I-Ia_-i il(Xt), the entries of the mass matrix are

d d d fl(7) MIK ff2 H )il(Xl) H )kl(Xl)dx H Jo/=1 /=1 /=1

For the Laplacian part of the stiffness matrix, we have

(8)

)il (Xl) )kl (Xl) dx.

/=1 /=1

"jl J xJ Hii(xl)’/=l
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Let us consider the first summand (j 1) of this term. Due to the hierarchical structure
of the basis functions, all parts of the sum are zero when il is not equal to ilk1. For il kl
we get

0__0__ 0 2
(9)

0X1 il (X1)" )xll)k (X1) dxl ,hkl
where hk is half of the mesh size of the support of k. Hence, we have

(10) idx ilkl )il(Xl) 3kl(Xl)dXl,
OXl 8X1 /=2

where ikl denotes the well-known Kronecker symbol. Apart from the number of multipli-
cands and the factor ilk hk--"2 this term is analogous to the right-hand side of (7). For the other
summands in (8), we get similar formulas.

We will now estimate the number of entries in the stiffness matrix. From (7) and (10),
we see that

V)lV)K dx 0 = f )I)K O.

Therefore, if the Helmholtz coefficient c is nonzero, then the number of nonzero entries in the
stiffness matrix is equal to the number of nonzero entries in the mass matrix (MIK).

Let tb be the basis function from T1, d > 2 and the sets $1 and ,92 be defined as

M(d) 1)S1 :-- {I "’n,O Vial
M(d) /) }.2 :-- {)K **n,O Vk, Vk2 Vkd_,

We have card(S1) O (2n.nd-2) and card(S2) O (2n), where card(.) denotes the cardinality
of a set. The support of a function v is defined as the open set {x v(x) 5 0}. Then
support(tb) ]0, 1[ and from support(i) f) support(tb) 5 0i {i}, we obtain

UI C -1, I)K C t.2 =: support(l) fq support(K) 5 O.

The corresponding MIK is positive because the basis functions are positive on their support.
This means that we have at least card(S1).card(S2) 0(4n. nd-2) nonzero entries in the mass
matrix and the stiffness matrix, respectively. Nevertheless, as we will see in the next section,
it is possible to perform a matrix-vector multiplication with O (2 nd-l) operations.

5. Algorithm. In this section we develop an algorithm that performs a matrix-vector
multiplication with the stiffness matrix with a constant amount of operations per vector com-
ponent. We first introduce the basis transformations between hierarchical and standard basis,
called the hierarchical transformations. Then, we show how to perform a multiplication with
the mass matrices in the one-dimensional case. Finally, we reduce the d-dimensional matrix
multiplication recursively to the one-dimensional case.

5.1. The hierarchical transformations. To describe these transformations, we make
the following definition.

The hierarchical neighbors of an index {i0} are the two indices l(i) and r(i),
l, r {i0} {i}, where the basis points bp(f)l(i)) and bp(f)rq)) are located at the two ends
ofthe support ofi (see Fig. 6).

Let us study the basis transformations in Sn between the hierarchical basis Hn and the
standard basis Bn. If and only if their basis points are identical shall 3 nn and vi Bn
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bp(3l(i)) bp(3i) bp()r(i))

FIG. 6. Hierarchical neighbors.

have the same index i. Furthermore, the set 1, 2 card(Hn) of indices should fulfill the
conditions > l(i) and > r(i) for 6 {i0}. Obviously the basis functions from To have the
indices 1 and 2, and the basis function t from T1 has the index 3. From the-definition of the
hierarchical basis, we have the relations

(11)
gi gi (gl(i) "+ gr(i)), {io},

ffi gi, {i vi TO}.

Consequently, the matrix I? (rij) that performs the transformation from the standard to the
hierarchical basis is given by

.j e {/(i), r(i)}ij --7
ij" otherwise.

We define the matrix Y to be the submatrix of I?, whose first two rows and columns corre-
sponding to the basis functions from To are missing. Because of the conditions above and
(11), Y and Y are lower triangular matrices with at most three entries per line. We call these
transformations hierarchical transformations. The inverse hierarchical transformations/?-1
and y-l, called inverse transformations, are obviously computable by backward substitution.
The corresponding relations for I?-1 are

(12)
gi i "- (gl(i) -+- gr(i)), {i0},

gi i, {i Ui TO}.

Note that all these transformations can be performed with a constant amount of work per
vector component.

5.2. The one-dimensional case. Here we derive a special decomposition of the mass
matrices (Mi,k) and (llTli,k). Define the matrix D by

D := (Di,k)"’- (hi" ik), i, k {io}

and the corresponding rectangular matrix/) with 6 {i }. The identity matrix is denoted by
E. We distinguish the following three cases:

21. k, fd )i(X) )i(X) dx g hi.
2 2/), respectively.The "diagonal part" of the mass matrices may be written as 5D and 5

2. support(/) D support(fi) denoted by {i D k}.
This corresponds to the "lower triangular part" of the mass matrices because it follows from
this condition that < k. We consider (Mi.k) first. Obviously, Y.{iDk} i )i(X) is linear on the
support of fi,, and therefore is determined there by the absolute values glg) and gr(k). With
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that, we obtain

fo hkgl(k) + gr(k) (gl(k) gr(k)
(13) E gi vi l)k dx hk k +

{i3k}
2 2 ’

With (12), we easily verify that this corresponds exactly to the matrix D(])-1 E). For the
lower triangular part of (Mi,k), we just have to leave out the first and second columns and get
D(Y-1- E).

3. support(i) C support(ilk) denoted by {i C k}.
For (Mi,k) our approach is symmetric in i and fi. Here, we get the transpose of the matrix
from case 2, namely (y-r E)D. Because > k, this is the upper triangular part of (Mi,k)
and the entries are identical to the upper triangular part of (Mi,g). For the latter, we may write
(y-r E)/.

With that, the mass matrices in the one-dimensional case are

2
(Mik) D(Y-1 E) + (y-r E)D + -D,

2-
(/i) D(I2-1 E) + (y-r E)/ + D.

Note that YV is an upper triangular matrix and that the costs for backward substitution for com-
puting a matrix multiplication with Y-r are equal to the costs for the inverse transformation.
Therefore, the costs are proportional to the number of coefficients.

5.3. Reduction to the one-dimensional case. Our goal is an algorithm for the compu-
tation of a mass matrix multiplication

(14) (MiK)(,i)=(fa{lo}IiKdx)
The problem in general dimensions is reduced to a sequence of multiplications with one-
dimensional mass matrices. We explain the method only for the mass matrix (MIK), because
the construction of the method for the extended mass matrix is identical. We will see that we
have to take special care of the storage of interim results.

Define the four sets

{J} "= {J := (jl jd-1) jd (jl jd-1, ja) {I0}},
{Ij} {I {I0} il jl id-1 jd-1},
{jd} {jd J (j jd-1, jd) {I0}},
{Ij,} "= {I 6 {I0} i, jd}.

With that, we can write

{j} ({/]}If01
(15) ]EI I I dx

{Io1

) fo3id kd dXd )jt 3kl dxl,
/=1

{lid /--1

We will now examine the computation of the two-dimensional integral

(16) [o EI )I )K dx
’112 {I0}
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(3,5)

(4,3) (3,3) (5,3)

(3,4) (5,4)

FIG. 7. The basis points of t2,)0 in the unit square are marked with a., there isfor example no basisfunction
in iO(2) that corresponds to the basis point marked with a o."’2,0

with the upper formula of the right-hand side of (15). We can compute the terms

Z{Ij} I f 3i2 3k2 dx2 from (15) with the techniques from 5.2. The interim results would
be stored in the nodes with multiindex (il, k2). With these coefficients, we could compute

Z{j}(.. ") f 3il )kl dxl. But, if support(i2 D support(2), a node with multiindex (il, k2)
might not exist in our sparse grid (see Fig. 7).

We get an analogous effect if we compute (16) by the alternate formula of (15). On
the other hand, if support(i2 _c support(2), a node with multiindex (il, k2) exists by
construction of the sparse grid. This leads us to redefine the sets {Ij and {Ijd} by

{Ij} := {I E {I0} :il jl id-1 jd-1, support(id) __C support(d)},
{Ij,} := {I c {I0} :id jd, support(flea) support(fi/a)}.

Now, we may write

(17)
{I0} {J} ] f01)id 3kd dXd 3il )kl dxl

/=1

{ja lj 1=1

In the first summand, the term in brackets is a one-dimensional integral; the nodes, where
the interim results are stored, exist because of our new definition of {Ij }. The computed
coefficients are the coefficients for (d 1)-dimensional problems. In the second summand,
the term in brackets is a (d 1)-dimensional problem. Solving these problems leads to the
coefficients of one-dimensional integrals. We now may apply these splittings recursively to
the (d 1)-dimensional problems, and thus get directly solvable one-dimensional problems.
Due to the splittings, all interim results are stored in existing nodes.

Wenow have described how to compute a term f. Z{10 I ) )K dx for a fixed K. For the
computation of the vector (f Y-Ilol I )I )K dx), note that the splitting in (17) corresponds

andto a splitting of the one-dimensional mass matrices into the two parts (Y-r E)D + 5D
D(Y-1 E). Therefore, the one-dimensional integrals can be computed by multiplication
with one of the partial matrices. Considering the operations that have to be made for a matrix
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multiplication (e.g., relation (12) or (13)) we find that they can be computed separately for
each node, similar to the computation of finite difference stars. Therefore we do not compute
these matrices explicitly but replace them by procedures that traverse our data structure and
perform the operations in every node. In particular, the treatment of adaptive grids is then
transferred to the problem of traversing an adaptive data structure which is very simple in our
case (tree structure). We find descriptions of such procedures in Balder 1].

The amount ofwork for the computation ofthe set of one-dimensional integrals is propor-
tional to the overall number of coefficients. Ifwe denote the number ofthose computations for
a d-dimensional problem by C(d), we get from (17) that C (1) 2 and C(l + 1) 2+ 2 C(1).
It is easy to prove by induction that C(d) 2d+l 2. From (10), we see that we can use
a similar algorithm for the computation of the components of the Laplacian, and, therefore,
can also compute a multiplication with the stiffness matrix. Note that the amount of work
for this multiplication is proportional to the number of coefficients O (n log(n)d-1) and has a
better complexity than the number of nonzero entries in the stiffness matrix O (n2 log(n)d-2).
With an implementation that is optimized, with respect to storage we need for the matrix
multiplication

OP(d) 17 ((2d 1) + (d 1)(2d-l- 1))
operations (add or mult) for every coefficient; for example, OP(2) 68 and OP(3) 221.

6. Numerical results. The following numerical experiments have been computed on
workstations with up to 128 megabytes ofmain storage. The programs are written in the C++
programming language. The linear equations are solved with a BPX-like multilevel precon-
ditioned cg-method which is described in Griebel and Oswald [9]. It uses additional residuals
corresponding to functions vs nd) that can easily be computed by linear combination of
residuals corresponding to VK Id). The amount of work is about PCOP(d) 8 (2d 1)
operations for every coefficient (PCOP(2) 24, PCOP(3) 56) for the computation of
the additional residuals. The extended vector of residuals is about 2d times larger than the
original vector. This causes a corresponding additional amount of work for the computation
of the scalar products needed for the cg-method. The preconditioner is designed for the two-
dimensional Poisson equation and proved to be optimal in this case. The generalization for
higher dimensions is straightforward. It also works well for the Helmholtz equation. In this
paper we will not discuss this preconditioner but present convergence factors that demonstrate
that the equations can be solved efficiently.

6.1. l-lelmholtz equation. Our first test problem is given by the equation

(18) Au + c. u c. w, u 0 on 092, [0, 1]d,

where w H/d=l ffO(Xl) and t is the basis function from T1.
Let ul be the value of the function u at the node with multiindex I and {ld)} := {I

v Hnd) }. Note that {Ind) corresponds to a full grid Gd). Define a discrete L_2-norm of a
continuous function u by

(19) E(u) "= (Ul)2.

We will examine here the error of the numerical solution defined by

(20) := E(u )/E(u),

where is the numerical approximation and u the exact solution of (18). is the discrete
L_2-norm of the error scaled by the discrete L_2-norm of the solution. For this problem,
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TABLE
Helmholtz equation.

n unknowns

5 257
6 577
7 1281
8 2817
9 6145
10 13313
11 28673

c= 1000 c= 100
Dimension 2

c= 10 c=-10 c -100 c 1000

1.3E 03 8.7E 04 8.7E 04 1.8E 03 1.2E + 00 ,7.3E 02
3.7E 04 2.4E 04 2.3E 04 4.4E 04 1.6E 01 3.3E 02
1.2E 04 7.5E 05 6.2E 05 1.0E 04 3.6E 02 2.6E 02
3.6E 05 2.5E 05 1.8E 05 8.0E 06 8.8E 03 1.6E 02
9.2E 06 6.4E 06 4.8E 06 2.2E 06 2.2E 03 2.6E 03
2.4E 06 1.7E 06 1.3E 06 6.5E 07 5.5E 04 6.3E 04
6.6E 07 4.4E 07 3.3E 07 1.9E 07 1.4E 04 1.5E 04

0.50 0.48 0.50 0.49

Dimension 3
n unknowns c 1000 c 100 c 10 c 10 c 100 c 1000

5 3713 7.8E 04 6.2E 04 5.3E 04 4.0E 04 1.6E 02 7.9E 02
6 8961 2.1E 04 1.7E 04 1.5E 04 1.2E 04 4.0E 03 4.9E 02
7 21249 6.3E 05 5.1E 05 4.2E 05 3.6E 05 1.0E 03 1.6E 01
8 49665 2.1E 05 1.4E 05 1.2E 05 1.0E 05 2.4E 04 1.1E 02

cfl 0.70 0.65 0.63 0.63

we approximate the exact solution by a solution we obtain from a finer grid. In Table 1, we
examine a two- and a three-dimensional example. We have chosen {I72 ({I43}) in (20) and
approximate the exact solution by the numerical solution in the space 2 --3

14 (S10 for the two-
and three-dimensional case. We have listed the errors depending on the approximation space
d and the corresponding number of unknowns for different Helmholtz numbers. In the last
row, we have given the convergence factors cf of the preconditioned cg-method defined by

(21) cf’= (llrS+m 112 / r5 112) .
Here r is the preconditioned residual after the th cg-iteration. We choose rn so that
r5+m 112< 10-10" r5 112, The value cf is an average decrease factor of the 2-norm of

=2) and =3 respectively. We usethe preconditioned residual, and corresponds to the grids 14 (-/10
an averaged factor because the norm ofthe residual is not in every case monotonely decreasing
during the cg-iteration. Note that the stiffness matrix is indefinite if c < ev -d rr 2. We
give no convergence factors for these problems because the cg-method is not convergent. On
the other hand we observe a significant reduction of the 2-norm of the residual at the begin-
ning of the cg-iteration. This leads to an error in the solution of the linear system which is
small compared with the approximation error. The solution is therefore good enough for our
investigations. One may use, for example, the method of conjugate residuals (e.g., Hackbusch
10]) to obtain the exact solution for these indefinite problems.

The errors behave as we could expect from the theoretical results. Asymptotically, the
factor of error reduction with respect to n reaches the value 4. This confirms the O(4-nn-d)
accuracy in the L_2-norm mentioned in 2. In Fig. 8, we compare how the error depends on
the number ofunknowns for sparse and for full grids. We see that the solutions corresponding
to sparse grids with about 10000 unknowns are about two orders of magnitude better than the
solutions we obtained on full grids.

6.2. Eigenvalues of the Laplacian on adaptive sparse grids. By combining cubes, we
may construct more complex domains. We have computed some eigenvalues and eigenfunc-
tions ofthe Laplacian in the two-dimensional L-domain and its three-dimensional counterpart,
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10-4
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10-6

Dimension 2,.. ,.
full grid (:=-1000

sporse grid

_
1000 ’-.

sporse gno ".. full grld 10

101

100

10--1

10--2

mj 10_

10-4!

.".. 10-5

10 10 104 0 101
Unknowns

Dimension 3

full grid 100

sporse grid
C=-100

"’.. 10

sporse grid 10

10 10 104 0
Unknowns

FIG. 8. Comparison offull and sparse grids.

FIG. 9. Adaptive sparse grids.

a cube where one octant is removed. The reentrant comers in these domains lead to singular-
ities in the solutions. It is typical for such singularities that the hierarchical surpluses at the
singularity decrease asymptotically with a factor less than 4. Therefore, adaptive grids are
necessary to obtain cost effective approximations. For our numerical experiments, we use the
following strategy. If the hierarchical surplus satisfies I I> e for a given e > 0, then the
2 d basis functions corresponding to one half of the support of Vl should also belong to our
grid. Examples for adaptive sparse grids are given in Fig. 9. Note that the solution is singular
along the reentrant edges in the three-dimensional domain. On the other hand, the solution is
almost linear along those edges. Therefore, due to the basis functions that have a large support
in the direction parallel to the edge and a small support in the other directions, we do not need
to have a fine grid along the whole singularity.

To solve the eigenvalue problem we have to find Helrnholtz numbers ., where the
Helmholtz equation

(22) Au ,k. u

with homogeneous boundary conditions has nontrivial solutions. Exact solutions for this
problem are not known for the L-shaped domain, but approximate eigenvalues are given in
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0.100
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102 102

EV 20.50
EV

EV 16.58
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FIG. 10. Eigenvalue errors.

Fox, Henrici, and Moler [6]. Discretization of (22) leads to a generalized eigenvalue problem

(23) A(I) )M(,I),

where A is the stiffness matrix for the Laplacian and M the mass matrix. We compute the
eigenvalues and eigenvectors with a Wielandt iteration for the generalized problem. With an
approximate eigenvector (gi)j one gets an improved approximation (gl)j+l by solving

(A 2M)(gl)j+l otjM(gi)j,

where . is an approximation of the eigenvalue and cj a damping factor. We obtain approxi-
mations for the eigenvalue . from the Raleigh-quotient

(gl)jTA(gl)j

(gl)jTM(gl)j

This method is described in Peters and Wilkinson 11 ]. In Fig. 10, we see the absolute errors
err of the eigenvalues dependent on the number of unknowns N. The exact solutions for the
two-dimensional case are taken from [6]. In the three-dimensional case we estimate the exact
eigenvalue by the solution on a finer grid. The value log(err) seems to be a linear function of
log(N) where the gradient of this function does not depend on the eigenvalue. This leads to
the following relation between the error err and the number of unknowns N:

err , c. N-k,

where k 1.6 4- 0.1 for d 2 and k 1.35 4- 0.1 for d 3 for the results presented here.

6.3. A six-dimensional Poisson problem. We solve the problem

(24) Au 1, u 0 on 0Q, Q =]0, 1[6,

with homogeneous boundary conditions. We assume the right-hand side f to be f 1 on f2
and f 0 on 0f2 and expand it into a Fourier series. We may solve the differential equation
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TABLE 2
A six-dimensional Poisson problem.

Dimension 6
unknownsn,

545 1.03E 01
2561 5.55E 02
10625 3.07E 02
40193 1.98E 02

4
5
6
7
8 141569 1.39E 02

117649 7.31E 02
117649 7.58E -02

exactly for each summand of the series. By superposition we obtain the solution u of (24)

(25) u
6

Otl H sin ((2i, + 1) zr x,)
il i6--0 k=l

with the coefficients

(26) Of :"- O/il i6
46

6 6
:rr8 I-I (2i + 1) (2i: + 1)2

k=l k=l

With that formula we can compute the exact solution u of (24) with potentially arbitrary
accuracy. In Table 2, we have listed the index n corresponding to the approximation space

(6)n6), the number of unknowns, and the error corresponding to 13 in (20). In the last two
rows we see the number of unknowns and the error we obtain by solving (24) on the full grid
{G6) with mesh size h . In the first case we have used a finite difference (fd) scheme
(13-point star) and in the second case the usual finite element (fe) approach with multilinear
basis functions. There are two reasons why the results for the sparse grid solutions are not as
good as in the previous examples. First, the error is of order 0(4-n n5) for six-dimensional
problems; the term n5 is not small compared with 4 for n 8. On the other hand we cannot
even expect an error of this order because the solution does not fulfill the condition (2) as one
can easily derive from (25) and (26). Nevertheless, the sparse-grid solutions are clearly better
than the solution we obtained on a full grid. The error of the sparse-grid solution using 2561
unknowns is smaller than the error of the full-grid solutions using 117649 unknowns. Note
that on full grids, if we assume an error of order O (h2), we need b3 times more unknowns if
we want to reduce the error by a factor b.

The time-independent Schr6dinger equation for two electron atoms or molecules leads to
an eigenvalue problem of the form -Aq + V(x) q E q, x 6 ]6 (see Conroy [4]). The
treatment of such equations with sparse grids is a topic of current research.

7. Concluding remarks. Sparse grids are a technique for the efficient representation of
multivariate functions. Compared with full grids, the saving in storage is dramatic, especially
for higher dimensions [3]. On the other hand we are able to get much better accuracies if
the amount of storage is limited. In our opinion, this is the main advantage of sparse grids.
This paper has described the discretization and the solution of the Helmholtz equation on
domains of general dimension with regular and adaptive sparse grids. It has been proved
that one can perform a matrix-vector multiplication with the corresponding stiffness matrix
with a constant amount of work per vector coefficient, although the complexity of the number
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of nonzero entries in the stiffness matrix is worse than the complexity of the number of
unknowns. Together with the preconditioner described in [9], this allows us to solve the
Helmholtz problem in optimal time. This means in the first case that we can obtain solutions
with a reasonable effort. We have not made comparisons with other programs in respect to
computing time. One reason for this is that we have designed our code to be as simple and as
flexible as possible because we think it is more important to extend the area of applicability of
sparse-grid techniques than to gain speed. Another advantage of the sparse-grid approach is
adaptivity. Refinement, understood as enlargement of the approximation space, is, due to the
hierarchical basis, done by inclusion of additional basis functions and not by replacement.

What remains is to investigate to what extent the sparse-grid approach can be generalized.
Topics of current research directly based on this work are the treatment of more general
equations, i.e., the Schr6dinger equation and time-dependent problems. Other sparse-grid
research in Munich is done on higher-order basis functions, general second-order equations
on general domains, and higher-order equations like the biharmonic.
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AN EFFICIENT ITERATIVE SOLUTION METHOD FOR THE CHEBYSHEV
COLLOCATION OF ADVECTION-DOMINATED

TRANSPORT PROBLEMS*

A. PINELLIt, W. COUZYt, M.O. DEVILLEt, AND C. BENOCCIt

Abstract. A new Chebyshev collocation algorithm is proposed for the iterative solution of advection-diffusion
problems. The main features of the method lie in the original way in which a finite-difference preconditioner is built
and in the fact that the solution is collocated on a set of nodes matching the standard Gauss-Lobatto-Chebyshev set
only in the case of pure diffusion problems. The key point of the algorithm is the capability of the preconditioner to
represent the high-frequency modes when dealing with advection-dominated problems. The basic idea is developed
for a one-dimensional case and is extended to two-dimensional problems. A series ofnumerical experiments is carded
out to demonstrate the efficiency of the algorithm. The proposed algorithm can also be used in the context of the
incompressible Navier-Stokes equations.

Key words, advection-diffusion, collocation, Chebyshev, preconditioning, finite difference, staggered grid
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1. Introduction. The need to solve implicit equations is a basic requirement for spectral
algorithms. For both steady problems, whose solution is sought through a time marching
computation, and for unsteady calculations, spectral methods are often feasible only if an
implicit or a semi-implicit procedure is introduced. A typical example is the solution of the
unsteady Navier-Stokes equations. Many numerical solution algorithms for this problem
consist of an implicit treatment of the diffusive terms in combination with an explicit scheme
for the convective terms 1]. This approach results in a severe restriction to the admissible
time step when the flow dynamics are dominated by convection. Alternatively, the (linearized)
convective terms can be treated implicitly as well, yielding a large admissible time step. As an
example of the latter family of methods for the Navier-Stokes equations on a domain f2, we
consider the following semidiscretized version ofthe projection method proposed by Shen [2].

1
(1) (/n+l b/n) I) / /n+l + (b/n. V)/n+l bn+l,

^n+l 0,(2) uoa
1

(3) (b/n+l _/n+l) + vtn+l 0,

(4) V" un+l 0,

(5) Un+l t O,

where u is the velocity, p is an approximation of the pressure, tc is the time step, g is the
normal vector to the boundary 0, b is a force vector, and the superscript n represents the
time iteration index. Equation (1) is a series of scalar advection-diffusion equations, each one
having as unknown a velocity component.

Here, we will focus on a particular algorithmical aspect related to equation (1), when the
spatial operators are discretized by the Chebyshev collocation technique 1]. To this end we
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will consider the following one-dimensional equation, meant to model the linearized equation
(1):

d2u du
(6) x2 + p(x), r

b(x) on f2 (-1, 1),

(7) u 0 on 0f2.

The two-dimensional formulation of (6-7) reads

Ou Ou
(8) e/x u + p(x, Y)ff-fx + q(x, Y)-v b(x, y) on f2 (-1, 1)2,

(9) u=0 on 0f2,

where the given functions p(x), p(x, y), and q(x, y) can be considered as representatives of
the velocity field at the previous time step.

The collocation procedure applied to (6)-(7) or (8)-(9) yields the linear system

(10) LU F.

Our goal is the design of an efficient iterative procedure to solve problem (10), such that
the convergence does not depend on the ratio between local advection and the positive dif-
fusion coefficient . An effective solution technique does not only depend on the choice
of the iterative scheme but also on the efficiency of the preconditioner. We propose a par-
ticular preconditioned collocation scheme that relies on the scheme introduced by Funaro
[3] for the Legendre collocation method. This method is based on the collocation of the
equations on a particular set of points (termed as "staggered grid") which is determined as a
deviation from the original Gauss-Lobatto-Chebyshev (GLC) quadrature nodes in function
of the local ratio between advection and diffusion. In this paper, we will extend the Funaro
scheme to the Chebyshev collocation method, by introducing an original definition of the
staggered grid that does not rely on the Sturm-Liouville problem associated with Legendre
polynomials. We will show that such a grid exists and is unique. Moreover, the numerical
procedure to compute the staggered grid is simplified, yielding important savings of CPU
time.

2. One-dimensional model. In this paragraphwe will give some heuristic considerations
to highlight the difficulties that arise whenone tries to precondition discrete advection-diffusion
systems dominated by the advective terms. The same reasoning will introduce the basic ideas
the proposed scheme relies on.

We start considering the one-dimensional case (6)-(7), with the given function p(x)
strictly positive on all the domain f2 (-1, + 1). The Chebyshev polynomial of order N is
denoted by TN(X). The GLC points {xi} are defined as the zeros of (x2 1)T(x) and are
therefore given by

(11) X cos (-), i=0 N.

For future use, we introduce as well the set of corresponding midpoints {i }, defined as the
zeros of TN (x

(2i+1)(12) i cos 7r
2N

0 N 1.

Next we consider a polynomial z(x) T(x) (sketched in Figure 1) vanishing in all
internal GLC points, according to (11). Such a polynomial represents a high-frequency mode,
typical of a spectral approximation, that standard finite-difference operators fail to repre-
sent for advection-dominated problems. To explain this, we remark that the centered finite-
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positive

FIG. 1. The polynomial z(x).

difference approximation of the second-order derivative in X (which is close to zero) is given

by hi-t-lz(xi-l)-(hi+hiyl)z(xi)+hiz(xi-t-l) O, with hi xi --Xi-1. An approximationofthe first-order0.5 hi hi+ (hi @hi+
derivative (which attains its maximum value in xi) will also yield zero, since z<xi_l-z<xi_l

hi’-l-hi+l
0. This observation explains the degrading behavior of classical finite-difference schemes
constructed on the original GLC nodes for advection-dominated problems. In such a case, it
is essential to provide a better approximation for the first-order derivative. To this end, we
notice that the first-order derivative in the midpoint i is much more accurately approximated
(Z’(i) 0) using the values of Z(Xi) and Z(Xi-1). Such a heuristic approach is somehow
confirmed by the theorem of Funaro [4] for first-order operators. For advection-diffusion
problems, we are therefore induced to believe that the finite-difference preconditioner has to
be evaluated on a special "staggered grid," although constructed using data at the GLC nodes.
To set up this staggered grid, first we apply the operator (6) to the polynomial z(x) that mimics
the behavior of a high-frequency eigenfunction, and then we compute the zeros {ri of the
residual polynomial f(x):

(13) f(x) -ez"(x) + p(x)z’(x).

For a purely second-order operator (p(x) 0), the points {ri coincide with the original set
of GLC nodes, while for a first-order operator (e 0) they drop on the GLC midpoints {i }.
For a general advection-diffusion operator the following estimates hold:

(14) "< "t’i "< X if p x > 0,

Xi < 17i < iq-1 if p(x) < O.

To implement the above theory, a polynomial z(x) has to be found that mimics a high-
frequency mode (i.e., z(xi) 0 and z’(xi) close to a local maximum or minimum at the
interior collocation nodes xi [3]). Because our target is the determination of a "staggered
grid," which has the same number ofnodes as the original Gauss-Lobatto grid, we require that
the corresponding function f(x) (see (13)) vanishes once and only once in each interval defined
by [i, xi] when p > 0 and [xi, i+1] when p < 0. For the Legendre case, the procedure of
determining a function z(x) that respects all the aforementioned requirements is simplified by
the possibility of reducing the complexity of the formulation by using the associated Sturm-
Liouville problem [3]. In the Chebyshev case on the contrary, no simplification can be taken on
the same side. Moreover, in analogy with the Legendre case, if we let the first-order derivative
of the Nth Chebyshev mode play the role of the function z(x), it can be hown that function

f(x) does not necessarily present a zero in the required interval [i, X ]. For these reasons we
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prefer to weaken the condition of z(x) vanishing in the set {xi }. Therefore, like Funaro [3] for
the Legendre case, instead of requiring that

(15) z(xi) 0, ztt(xi) 0, and 3!ri E [i, Xi] f (’ci) --O,

we introduce a new strategy to determine the staggered grid by asking that

(16) z(xi) O, z"(xi) O, and 3!ri [i, xi] f(i) "-O.

In this respect, a good candidate for z(x) is

(17) z(x) f Ts(x)dx.

It is clear that Ztt(Xi) O. Although z(x) is not exactly zero in the set of {Xi}, we will prove
that it differs from zero only by terms of order 1/N2 and we will also show the existence and
uniqueness of a zero for the function f(x) in the required interval [i, xi ].

First we prove that z(x) is "almost" zero in the set of {xi }.
THEOREM 2.1. For all xi(i 1 N 1) the polynomial z(x) defined in (17) satisfies

Iz(xi)l <
N2- 1

(X) (X) one hasProof Because Ts(x) Ts+ TN_

Z(Xi) f Ts(x)dxlx,

1 1 1 1
-TN+l(Xi) TN-I(Xi)
2N+l 2N-1

11
cos ((N+ 1)zri)1 1

cos ((N 1)zri)2N+l N 2N-1 N

1 1 __}2N+l{CS(rci)cs( rci--)- sin(zri) sin (-)
{ (rri)1 1
cos(zri) cos sin(zri) sin

2N-1 --(-1)ixi 1 (-1)ixi (-1)i+lx
(18) = N+I 2 N-1 N2-1

[3

Next, we show that the zeros of f(x) can be used to build the finite-difference grid. More
precisely, we have the following theorem.

THEOREM 2.2. For all xi(i 1 N), > O, p(x) piecewise constant on [i, i+1],
thefollowing properties hold.

Ifp(x) > 0 then them exists a unique zi [i, xi] such that f(zi) O.
Ifp(x) < 0 then them exists a unique ri [xi, i+] such that f(ri) 0.

Proof First, we assume that p(x) is a positive constant in [i, i+1]. In this case, f(x) is
a polynomial of degree N. If we prove that there is at least one zero in each interval [i, xi],
the total number of zeros is N and hence every zero is unique since N corresponds to the
degree of the polynomial f(x). This leaves us to show that f(i) f(xi) < 0. We have
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0.4

0.2

FIt3. 2. z(x) and Tv(x)/N2,for N 11. z(0) < 0.

f(i) --T(i) and f(Xi) p(xi) TN (Xi). Because p(xi) > 0, 6 > 0, it is enough to
show that Tv (i)" TN (xi) > 0. This follows easily by noticing that

(19)

Tv(i Nsin(N arccos(i)) { < 0

2
>0

<0 /odd,
TN(Xi) --cos(N arccos(xi)) > 0 even.

odd,
i even,

In the same way, we demonstrate that f(x) has exactly one zero in each interval [xi, i+1]
if p < 0. To prove the theorem for p(x) piecewise constant, we construct the family of
polynomials fi (x) -ez"(x) + p(xi)z’(x). Each polynomial f/has exactly one zero in the
interval [i, xi] (if p(xi) > 0) or in the interval [xi, i+1] (if p(xi) < 0). Because f(x) has
the property that its restriction on [i, i+1] coincides with the one of 3 (x), it has exactly one
zero in each desired interval. [3

If p(x) has a zero in an interval [i, i+1], we map the finite-difference point on the
Chebyshev node xi.

In Figure 2, we display the functionz(x) and T/v(X). The latter ftmctionhas {Xl Xs_l}
as zeros and represents a high-frequency mode. We see that the zeros of the two polynomials
practically coincide.

Based on the arguments presented in this section, we propose to use as a preconditioner
the matrix associated with the centered finite-difference approximation to the problem (6)-(7)
at the gddpoints {r }.

3. Two-dimensionalformulation. Here, weconsiderthe extensionofthe preconditioner
to the two-dimensional problem (8)-(9). The GLC nodes are denoted by (xi, yj) and the
midpoints by (i, Oj); cf. Figure 3. We propose to use the following function z(x, y) that
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FI. 3. The position of the staggered point R (z/y, Uij in the GLC grid (straight lines) and the Gauss-
Chebyshev grid (also called midpoints; dashed lines). P1 (xi-1, Yj-1), P5 (xi, yj), Q1 (i, r/j), Q4.
(i+1, r/j+l), etc.

simulates a high-frequency mode in two dimensions:

(20) z(x,y)=ffTu(x)Tu(y)dxdy.
This function can be regarded as the tensor product of two one-dimensional functions z(x)
and z (y). We find for all x, y 6 fl and for all i, j 0 N that

(21) z(xi, y) O, Zxx(Xi, y) O, z(x, y) , O, and Zyy(X, yj) O.

Substitution of z(x, y) in the two-dimensional analogue of (13) gives

(22) f(x, y) -eAz(x, y) + p(x, y)Zx(X, y) + q(x, y)Zy(X, y).

The zeros {(r/j, vii)} of the function f(x, y) build the finite-difference grid for the precondi-
tioner. In the following, we will assume p and q to be piecewise constant functions. Further-
more, we will focus on a rectangular domain 2ij,

(23) rij [i, iq-1] )< [/’]j, /’]j+l],

on which p(x, y) Pij > 0 and q (x, y) qij > 0. The zeros of f(x, y) are given by the
following relation:

f(x, y) -0

{-T(x) -f- Pij TN(x)} / TN(y)dy -t- {-T](y) -4- qij TN(y)} / TN(x)dx(24) 0.
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&dvect:on p > 0

o. 4. The position of three consecutive GLC nodes Xi-1, Xi, Xi+l on which the second-order Lagrange
polynomial is constructed. This polynomial is evaluated in ri.

From Theorem 2.1, we find

(25) !rij [i,Xi] --tsT(ij) + PijTN(TYij) O,

(26) :=]!13ij - [/’]i, Yi] --- Tl(13ij) "- qij TN(l)ij) O.

Hence, {(rij, vij)} are zeros of f(x, y). Note that f(x, y) is a polynomial of order (N + 1)2,
which implies that not all the zeros are found by solving (25)-(26). However, this is not a
serious problem, since these additional zeros are not used to build up the finite-difference grid.
If p(x, y) assumes the value zero at one point at least in the rectangle f2ij, we will take xi as
the x-coordinate of the finite-difference node (analogously for q (x, y)).

4. Algorithmic aspects. We start focusing upon the one-dimensional model equation
(6)-(7). The first step consists of determining the zeros of polynomial f(x) (13). The
computational cost to solve such a problem should be kept as low as possible. This is-
sue is especially important when the preconditioner is used for nonlinear problems, like
the Burgers or Navier-Stokes equations, in which the finite-difference grid has to be com-
puted at each iteration. Therefore, we propose not to solve (13) by an expensive Newton
method, as has been proposed by Funaro in [3]. Instead, we replace f(x) by a piece-
wise parabolic function di(x) on each [i, xi] (when p > 0) or on each [xi, i+1] (when
p < 0). The zeros of these parabolas can be found by a simple and cheap formula. In the
case of p > 0, we define the parabola di(x) on the interval [/, xi] by the following three
conditions.

(27) di (i f(i ), di (xi f(Xi ), and (di )x (i A (i ).

In this way, the second-order polynomial di has exactly one zero in [i, Xi]. Because our
preconditioner is designed for advection-dominated problems, the first-order derivative is
matched in i and not in xi (27), yielding a better approximation for the zero which is, in this
case, close to i.

Once the zeros {ri (i.e., the "staggered grid") are found, for any we approximate
equation (6) with second-order Lagrange polynomials based on the data from three successive
Chebyshev nodes xi-1, xi, Xi+l and collocated on the corresponding staggered point zi (see
Figure 4). The general algorithm for the one-dimensional equation (6) with homogeneous
Dirichlet boundary conditions (7) reads as follows.

Select a guess solution U.
Compute the zeros {zi of the polynomial f(x) defined in (13).
Construct the finite-difference preconditioner I-I as
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(28) I’I

-b c 0

0 ai bi C 0

with the following entries:

(29)
ai p(i)li_l (i) sli_l (ri),

bi p(’ci )l (’ci 51 (’i ),

Ci p(zi)li+l (i) 61i+1(75i),

as

(30) li(x)
(X --Xi_l) (X X/+l)
(Xi Xi-1) (Xi X/+l)

Instead of LU F solve

(31) H-1LU H-1F

by an iterative algorithm. We remind that the system LU F (see (10)) is the algebraic
formulation of the spectral collocation method at the Chebyshev nodes {xi }. Let us consider
a simple preconditioned Richardson algorithm 1].

(32) I I-IU= RS,
Un+l Un -+-U,I

with

(33) RHS o9 (F LUn) W-1g/S,

W is a mapping operator that interpolates the residual computed on the collocation grid {X
to the staggered grid {i and o9 a relaxation factor. At each step a finite-difference problem is
solved by inverting a tridiagonal matrix with a fight-hand side that is the "spectral" residual
at the previous step interpolated on the staggered grid.

Iterate until convergence.
The previously described procedure has been extended to the two-dimensional advection-

diffusion equation (8)-(9). Here, the staggered grid is given by the set of points {(r.ij, Oij)}
that are always determined as a deviation from the original Gauss-Lobatto grid in terms of the
ratio between local advection (p(x, y), q (x, y)), and the diffusion coefficient e. In particular,
according to relationships (23) and (24), we approximate fl (X) :-" -eT/v(X) + Pij TN(X) and
f2(Y) :’- --Tv(Y) q- qij TN(y) locally by two one-dimensional parabolas. The zeros of these
parabolas can be found following the procedure previously described for the one-dimensional
case.
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TABLE
Eigenvalues ofthe matrix 1t-1Lfor different values ofE.

Testcase max 91 min t(;) max .
10.-2 21 nodes 1.09 0.65 0.56
10-4 21 nodes 2.31 0.65 0.15
0-5 21 nodes 2.31 0.32 0.09
0-5 41 nodes 2,31 0.32 0.10

The mapping operator for the two-dimensional case W is now chosen to be the local
Taylor series expansion of the residual r(x, y) of the current iteration:

Or Or 1 02r
r(rij, I’]ij) , r(xi, yj) + (’ij xi)-x i- (Oij YJ)V + -(’Yij xi)2Ox2

1 )202r ( 02r )(34) + (Oij Yj + (rij xi)(rlij yj) k,ooY
where the derivatives of the residual r(xi, yj) are "spectrally" computed at the GLC nodes.

The finite-difference preconditioner It is now based on a nine-points stencil and is always
constructed using second-order Lagrange polynomials. The nine entries of the stencil corre-
sponding to the point (xi, yj) are denoted by h},1) h},9) and are determined by imposing

(1)Ui (2) u (3),(35) hi, -1,j-1 + hi,j i,j-1 + hi,j-i+l,j-1
(4) (5) (6)-[- tli,jbli-l,j -I- tli,jUi,j -I- hi,jUi+l,j

,(7) (8) (9).q- t’ti,jUi- 1,j+l -]" hi,jui,j+lhi,jui+1,j+l
Ou Ou

-e A u + p(x, Y)-x + q(x, y)-y at (r/j, 0ij),

meaning that equation (8) should be exactly satisfied for each Lagrange polynomial u(x, y)
of degree two in each variable. Such a procedure leads to a preconditioner with a bandwidth
of2N + 5.

The iterative algorithm that we used for the two-dimensional case is an orthomin{5}
(meaning that the maximum dimension of the Krylov space kept in memory is 5; in other
words the algorithm is restarted every 5 iterations) [5] preconditioned with the above-described
matrix I-I.

5. Numerical experiments. To test the effectiveness of the developed preconditioner,
we computed the eigenvalues of matrix I-1-1L for the one-dimensional case. The results
are reported in Table 1 and refer to different values of the diffusion coefficient e with the
advection function p(x) frozen at unity (p(x) 1). The features of the preconditioned
eigenvalues spectrum are summarized by giving the maximum and the minimum real parts
together with the imaginary part. For the most severe test case at e 10-5 we also give the
spectrum with two different sets of nodes (i.e., respectively, N 21 and N 41). This
last result is intended to show the independence of the eigenvalues spectrum of the number
of nodes. We recall here that in the nonpreconditioned case the conditioning number scales
like N2 for the advective part and like N4 for the diffusive one [6]. In Figure 5, the
eigenvalues spectrum is also shown for the cases e 10-2 and e 10-5.

To check the robustness of the method for the two-dimensional case, several tests were
performed using different advective functions p(x, y) and q (x, y). In Table 2, the efficiency of
the preconditioner in terms ofnumber of iterations required to achieve machine precision (i.e.,



656 A. PINELLI, W. COUZY, M. O. DEVILLE, AND C. BENOCCI

-1
0 2 3 0 2 3

real real

FIG. 5. Preconditioned eigenvalues spectrum, 10-2 and e 10-5, respectively.

TABLE 2
Number ofiterations to reduce the norm ofthe residual to 10-15.

Testcase Test Test 2 Test 3 Test 4
Number of its. 165. a 1561 82 ..I

L norm of the residuals at 10-15 for a double precision computation) is given at 10-3

for, respectively,

(36)

Test 1. p(x, y) 1, q(x, y) 1,
Test 2. p(x, y) sin(rrx), q(x, y) 3x y 1,

Test 3. p(x, y) 3x y 1, q(x, y) 3x2 y,
Test 4. p(x, y) sin(rrx)sin(zry), q(x, y) sin(rrx)sin(ry).

As shown, the behavior is always satisfactory and the required number of iterations never
exceeds by more than 30% the ones required for the constant advection case.

To test the developed preconditioner in a definite way, we considered equation (1) to be
solved for the x-component of the velocity. The role of the advective functions p(x, y) and
q(x, y) was played this time by an intermediate solution u(x, y), v(x, y) of a two-dimensional
regularized driven cavity at a Reynolds number of 10000 (see Figure 6). The whole procedure
converged to machine accuracy (10-14) in less than 100 iterations, against the 27 iterations
that are required when only the diffusive terms are treated implicitly (i.e., with a classical
treatment of the diffusive terms with Crank-Nicolson and of the advective ones with Adams-
Bashforth). Of course, a huge increase of the maximum allowed time step is expected from
the fully implicit treatment and represents the payoff of the present method.

6. Conclusions. The basic target of the present work was the design of an efficient
algorithm for the iterative solution of the advection-diffusion equations. To this end, a finite-
difference preconditioner has been introduced on a "staggered" grid. The staggered points
are given as the zeros of a polynomial that depends on the ratio between the local advection
and the diffusion. Existence and uniqueness of these zeros is assured and the capacity of the
preconditioner to represent high-frequency modes is shown. A cheap procedure to compute
the staggered points has also been introduced. This is especially important when dealing with
linearized problems, where the grid has to be constructed for every time step.
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Fo. 6. The chosenflowfield.

The efficiency of the implicit method is confirmed by numerical results for advection-
dominated problems. Moreover, the distribution of the eigenvalues of the preconditioned
operator seems almost independent of the value of the diffusion coefficient. The algorithm
has also been applied to the projection method for the two-dimensional unsteady Navier-.
Stokes equations. Even for large Reynolds numbers, a very moderate number of iterations is
needed to converge to machine accuracy.

Finally, we remark that we have been concerned with the development of an efficient pre-
conditioning scheme and that no attempt has been made to cure problems related to numerical
instabilities due to large Peclet numbers. Hence, we do not pretend that the presented method
produces accurate results for the well-known boundary-layer problems for the values of e and
N that have been used to solve the analytical problem (36). Nevertheless, the present tech-
nique produces a condition number for the preconditioned operator that is almost independent
of the number of nodes N. One way to take advantage of this feature is to increase N to be
able to accurately capture boundary layers, without achieving prohibitive operation counts.
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Abstract. An analysis is given of preconditioned nonlinear conjugate gradient methods in which the precon-
ditioning matrix is the exact Hessian matrix at each iteration (or a nearby matrix). It is shown that the order of
convergence of certain preconditioned methods is less than that of Newton’s method when exact line searches are
used, and an example is given.
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1. Introduction. Consider line search descent methods for solving the unconstrained
optimization problem

(1) min f(x),
xER

where f is twice continuously differentiable. Each method generates a sequence of points
{x (k) for k 1, 2 until termination. The initial point x (1) is given. If g(k)[= vf(x())]
0, for some k, then the method terminates with x() x* (a stationary point). Otherwise, a
search direction s () is defined for which

(2) g()rs (k) < 0

(the descent property). Then a new iterate is defined by the line search

(3) X (k+l) --X (k) + ol(k)s (k),

where ot () is a steplength chosen to minimize f along s) for which

(4) g+l)s) 0.

In this case the line search is exact (e.g., Fletcher [2]).
The search direction in Newton’s method is defined by

(5) s (k) =-G(/0-1g(/0,

where G()[= V2f(x())] is the Hessian matrix which, for x (k) sufficiently close to x*, is
usually positive definite.

We consider the case when a preconditioned version of a nonlinear conjugate gradient
method is used to minimize f; the matrix W will denote the preconditioning matrix. At the
first iteration, the search direction is defined by

(6) S (1) -W(1)-lg(1).

Fork> 1,

(7) s () --w(k)-lg (k) -b i(k-1)S (k-l),
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where

(8) /(k-1) ?,(k-1)r w(k)-lg(k)
/(k-1)T s(k-1)

and where

(9) y(k-) g() g(-).

(This method is referred to as preconditioned conjugate gradient (PCG).) Resetting corre-
sponds to defining s (k) as

(10) s () ----w(k)-lg(k),

which in effect starts a new sequence of iterations. We note from (6) and (7), using (4), that the
descent property (2) is satisfied for all k, since W(g) is chosen positive definite. (For further
details, see Fletcher [2], for instance.)

The preconditioned Polak-Ribi6re (PPR) method is similar to the PCG method, except
that fl-l is defined by

(11) /3k-l
)’(k-1)Tw(k)-lg(k)

g(k- 1)r w(k-D- g(k- 1)

rather than (8). But using (4), we observe from (6), (7), and (9) that

g(k-1)T w(k-1)-lg(k-1) _g(k-1)T s(k-1) y(k-1)Ts(k-1)

for k > 1, which shows that the PCG and PPR methods are equivalem (i.e., (8) and (11) are
identical) if exact line searches are performed. Thus the results in this paper are valid not only
for the PCG method but also for the PPR method.

The preconditioned Fletcher-Reeves (PFR) method is also similar to the PCG method,
except that formula (8) is replaced by

(12) /(k- 1) g()rW()-g()

g(k-DT W(k-D-g(k-D

For convenience, we also consider Newton-type methods which define s () by

(13) s () =-B()-lg(),

where B(k) is a symmetric positive definite matrix. This type of method is like Newton’s
method with line search, except that G(t) is approximated by B().

The focus of this paper is on the situation when a preconditioner is a close approximation
of the exact Hessian. We show that in this case the above preconditioned methods are inferior
in convergence rate to Newton’s method (5). Since under certain conditions on f this method

/’) and sometimes with(with steps of unity) converges to x* with R-order at least p (1 +
Q-order at least 2 (e.g., Ortega and Rheinboldt [3], and Fletcher [2]), we approach our result
as follows. In 2, we show, under those conditions on f and a strong one on W>, that a PCG
method with exact line searches converges to x* with R-order at least p, and that bounds on the
errors converge to zero with Q-order p. In 3, we illustrate the possibility that a PCG method
and a PFRmethod converge with Q-order p and 1, respectively, by applying these methods to a
simple quartic function. Because this result assumes that exact line searches are performed and
that the exact Hessian matrix is used as the preconditioner, 3 also discusses certain numerical
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results which were obtained by using inexact line searches and W(k) is a close approximation
of G(k). It is concluded, as for exact line searches, that the above preconditioned methods are
less efficient than a Newton-type method defined by (13) and B) W).

This result has some theoretical significance, because evenwhen a highly accurate Hessian
approximation is used as the preconditioner and exact line searches are performed, the precon-
ditioned methods converge slower than Newton’s method or, for that matter, a Newton-type
method having B) W).

2. Order of convergence. In order to obtain the results below, we begin by introducing
some notation and by stating the assumptions we make about the objective function f and the
preconditioning matrices.

Let denote the usual Euclidean norm. We will use the notation F(z) O(zr) as

z -- 0, where r and z are scalars and F may be either a scalar, a vector, or a matrix. It means
that there exists a positive constant c such that F(z)II _< cz for z sufficiently close to zero
(we do not bother to add the phrase "as z -+ 0"). The error vector is defined by

(14) h(k) x () x*

and the difference between the current and new points is given by

(15) ((k) ot(k)s(k) x(k+l) x(k).

Assumptions 2.1. 1. The sequence of points {x() remains in a closed, bounded, and
convex level set N {x f(x) < f(1)}, where f() denotes f(x()), in which f is twice
continuously differentiable.

2. The Hessian matrix G satisfies the Lipschitz condition

(16) IIG(x) G(x*)II clllx x*ll,

where Cl is a positive constant for all x in a neighborhood of x*.
3. There exist positive constants c2 and c3 such that

(17) c21lzll 2 zTG(x)z < c311zll 2

for all z Rn and all x N.
4. The preconditioning matrices W(k) satisfy the equation

(18) W() G* + O(llh(ll)

for all x (t) sufficiently close to x*.
Note that Assumption 2.1.3 and the convexity ofN imply that f has a unique minimizerx*

in N. Note also that assumption (18) means that W() is a strongly consistent approximation of
G* (see Ortega and Rheinboldt [3] for instance). (For choice (18), the PCG and PFR methods
are referred to as PCG1 and PFR1, respectively.)

Under the above assumptions, the Newton-type method (13) with steps of unity and B(t)

defined by the right-hand side of (18) converges to x* with Q-order at least 2 (e.g., Ortega
and Rheinboldt [3]). However, this is not the case when the PCG1 and PFR1 methods are
considered, even though both methods can be defined by (13) for some B(k)-I To illustrate
this point, we state the following. It follows from (4), (7), (8), (9), (12), and (15) that the PCG
and PFR methods define the search direction s (k) by (13) with B(k)-I replaced by

(k)_(19) Hct= I--
(k-1),(k-1)T ) W(k)-I
(k-1)T /(k-1)
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where I is the identity matrix, and

u(k) I + W)-1(20) "’PFt k-)rgk-)
g) is singular, for all k, and, by (4), "’PFRrespectNely. Since the matrix Hpc uk)- W)(I

.<._.)<_.) is not continuous at x*, the inverse of both (19) and (20) cabot be defined by the
right-hand side of (I 8). Thus we are not able to use a cein result of Oega and einboldt
[3] and ofVoigt [6] to obtain the rate ofconvergence for the PCGI and PFRI method. Because
the numerical resuI in 3 show that a PI method converges linearly, we do not provide
fer details concerning this method. However, the following theorems are concerned with
the PCGI method. To obtain these results, we fit present the following lea.

LEMMA 2. I. Let f satisAssumptions 2. I. I and 2.1.3. enforany minimization method
that ensures that the value off is reduced at eve iteration, we have

(21) f) O(llh<)ll) O(llg<)ll).

Proof Using the mean value theorem and the fact that g(x*) 0, we obtain

(22) ff) f* + hf)G()hf),
where lies on the line segment between x* and xf). Since N is a convex set and x f) N
(see Assumption 2.1.I), we have N. Thus (22) and e unifo convexity assumption
(I7) imply

2
(23)

2

C3 C2

Since xf+) N, (23) is also satisfied with k replaced by k + I, which implies, using
ff+) f<), that llh<+l) II= 2(ff) f*)/c. This inequality and the first one in (23) give

(24)

where c4 (c3/c)/. From (14), (15), and (24) it follows that

(25) II<)II llh<+) h<)ll (c4 1)llh<)ll,
which shows that the fit equality in (2 I) is coect. To prove the second equality in (2 I), use
(25) and obsee that the Taylor expaion theorem gives

(26)

which implies, using assumption (17), that

(27)

and

THEOREM 2.2. Let f satis assumptio 2. I. I-2.2.4 and assume that exact line searches
are performed. Then the PCGI methodh thefollowing properties:

(29) s

(30) cf) 1 + O(llhf-l)ll).
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Proof. In the following, we suppress the superscript ,,(k),, on W, g, s, and o and replace
the superscript ,,(k-l),, by For convenience, we rearrange (7) with (8), using (19), as

W-g.(31) s=- I
3_y_

The Taylor expansion theorem shows that g g- + G#3-, where G# f G(x- + 3-t)dt.
Using the Lipschitz condition (16) and Lemma 2.1, it can be shown that G# G* + O(llh-II).
Thus

(32) g g- + G*- + O([[h-[[[[-[[).

Substituting (18) and (32) in (31), we obtain, using assumption (17),

s I-
_rG. + O(llh-II) G*-I+ O(llhll) g.

Using (4), (24) (with k replaced by k 1 in both expressions), and (27), it follows that

(33) s -G*-g / O(llhllllh-II),

which, by (27), implies (29).
We now proceed to prove (30). From (4) and (32) with k replaced by k + 1, we have

(34) grs +sTa*s + O(llhllllllllsll)--O.

But from (33) it follows that s r G*s _grs + 0 (llh IIh-II IIs II), Substituting this expression
in (34) and using the first equality in (21), (24), (28), and (29) it follows that

(1 -ot)grs + O(llgllUllh-II) -O.

This result with (17), (28), and (33) imply that

O(llgll2llh-II)
cg 1 + 1 + O(llh-II).

ga*-g / O(llgll211h-II)

THEOREM 2.3. Under the same assumptions ofTheorem 2.2, the PCG1 method converges
/). Moreover, the bounds on the errors exist andto x* and has R-order at least p (1 +

converge with exact Q and R order p.
Proof From (24), (26), and (33) we obtain

s (k) _h(k) + O(llh(kllllh(k-lll).

Thus using (14), (15), (29), and (30) it follows that

h(k+X) O(llh(llllh(-lll

or, equivalently,

(35) IIh(k+l)ll csIIh(k)llllh(k-l)ll

for some positive constant c5. If we let dk c5 [Ih(k II, it follows from (35) that

(36) dk+l < dkdk-1.
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If X (k-l) and x (k) are in a smaller neighborhood of x* for which

(37) d max(dk, dk-1) < 1,

then clearly dk+l dE < 1. Thus X(k+l) is in the neighborhood and, by induction, the iterations
are well defined for all k and dk --+ 0 (i.e., h() -- 0). Thus the PCG1 method converges to
x*. Therefore, (36) implies that {d converges with R-order at least p, the positive root of the
quadratic equation

(38) 2 1 0

(e.g., Potra [4] and Voigt [6]).
To complete the proof, we proceed in the following way. We assume, without loss of

generality, that x(1 is sufficiently close to x* so that (36) holds, for all k > 2, and that (37) is
true for k 2. We let {b }, for k > 1, be a sequence of positive numbers defined by

1
(39) bk --da*

5

where

1 q(40) ak -(pk ),

and where q (1 ) is the negative root of (38). (Note that bk --+ 0, since 0 < d < 1
and p > 1.) Since from (40) we obtain after a little manipulation that al 1, a2 1, and
ag+l a, + ak-1, for k > 2, it follows from (36) and (37) (by induction) that csbk is an upper
bound on d. Thus the sequence {b,} defines upper bounds on the errors IIh(ll. To find its
rate of convergence, we use (39) and (40) to obtain

(41) bk+l P-lda,+l_pa p-1

b; c5 c5 dq*"

qkBecause 0 < d < 1 and - < < 1, it follows from (41) that

(42) c6bt < bk+l < c7bl,

where c6 c-ld and c7 c-ld 1/2, which imply that {bg} converges with exact Q-order
p, hence, with R-order p (e.g., Potra [4]). [3

Although this result does notimply, in general, that the sequence IIh(k)II converges with
Q-order greater than one (e.g., Potra [4]), this sequence may have Q-order p in the following
sense. If we assume that there exist constants for which the above bounds are attained, then
we can expect that the sequence itself has this order. To illustrate this possibility, we present
numerical results in the next section.

3. Numerical discussion. To illustrate the result in 2 that the PCG1 method (i.e., the
PCG method with W(g) satisfying (18)) may converge with Q-order p . 1.618 and to show
that the PFR1 method (i.e., PFR with (18) holds) may converge linearly, we consider the
following experiments.

For the choice W() G(), assuming an exact line search is performed at each iteration,
we applied the PCG and PFR methods (referred to as PCG2 and PFR2, respectively) to the
quartic function

(43) f(x) x + XlX2 + (1 + x2)2.



664 M. AL-BAALI AND R. FLETCHER

k
0.1119

2 0.5362D-2 0.0479
3 0.1452D-3 0.0271
4 0.5924D-5 0.0408
5 0.1715D-6 0.0290
6 0.6496D-8 0.0379
7 0.1983D-9 0.0305

TABLE
Applications to problem (43).

The Newton methodThe PFR2 method The PCG2 method

IIhkll R1 (k) IIhk R1.618(k) IIhll R2(k)

0.1119
0.5362D-2 0.4282
0.8699D-5 0.3026
0.3151D-10 0.4164

0.1119
0.5362D-2 0.1855
0.1592D-3 0.7513
0.4517D-6 0.6314
0.1958D-10 0.3615

The starting point is given by X (1) (0.75, 1.25)r which is sufficiently close to the solution

x* (0.6958843861177639, 1.347942193058882)r,
so that GCk), for all k, is positive definite (Fletcher [2]). (Note that the largest and smallest
eigenvalues of G* are approximately 6.06 and 1.75, respectively, and that Assumptions 2.1
hold.) The numerical results are given in columns 2, 3, 4 and 5 of Table 1. They were ob-
tained in double precision with accuracy 2-56 0.14 x 10-16. The run was stopped when
IIg)ll 2 _< 10-16. An examination of the ratios R1.618k Ilh)ll/llh-l)lll618, given
in colunm 5, shows that these ratios are approximately equal to a constant that illustrates
that the PCG2 method has Q-order 1.618. Similarly an examination of the ratios R 1k
h( II/llh-lll, given in column 3, illustrates that the PFR2 method converges linearly. For

convenience, we also applied Newton’s method with exact line searches (defined by (3)-(5))
to the above problem. The results, given in columns 6 and 7 of Table 1, show, as expected,
that the ratios R2 IIhll/llhk-lll2 are nearly equal to a constant. It is clear that the
PCG2 and PFR2 methods are inferior (the latter far worse) to the Newton method. (For the
application of Newton’s method with steps of unity, see Fletcher [2], who reported that the
corresponding ratios R2k are close to 1.4.)

The above results show that even under the very strong condition (18) on the precondi-
tioning matrix, the preconditioned methods, with exact line searches, converge slower than
Newton’s method. To see if these results generalize to inexact line searches and precondition-
ers that are only an approximation of the exact Hessian, these are conditions that are likely
to hold in practice; it is worth mentioning an experiment of A1-Baali 1]. The author applied
a PCG, PFR, and Newton-type method with inexact line searches to a set of standard non-
linear least squares problems. For this type of problem, the objective function is of the form
f(x) --r(x)rr(x), where r Rm and m > n. The choice

(44) B W 2AAr,
where A r(x*))r, the Gauss-Newton-Hessian of f, is a useful approximation of G*)

if IIr(x*)ll is sufficiently small (e.g., Fletcher [2]). Using (44), the three methods are referred
to as PCG3, PFR3, and GN, respectively. (Note that the GN method is the so-called Gauss-
Newton method and that the PFR3 method is essentially proposed by Ruhe [5].) The inexact
line search algorithm used by A1-Baali 1] calculates a steplength ot <k) for which

(45) Ig(k+l)TS (k) -trg(k)TS (k)

and

(46) f(k+l) < f(k q_ pot(kg(krs(k
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where/9 (0, 0.5) and cr (p, 1), the two-sided Wolfe-Powell conditions (e.g., Fletcher
[2]). Note that in the limit r 0, condition (45) reduces to (4). Using/9 0.05 and cr 0.1
(which produces a fairly accurate line search), the latter three methods were implemented in
single precision and terminated when

(47) fk) f(k+l) _< 5 max(l, If*)l),

where e 10-8. The reported numerical results (see 1 for details) show that for zero residual
problems (in which r(x*) 0 and G* 2A*A*r), the performance of the GN method is
better than that of both the PCG3 and PFR3 methods. Thus, in practice, the preconditioned
methods converge slower than a Newton-type method having Wk) as a close approximation
of Gk).

Therefore, ifthe preconditioning matrix W*) is taken as a sufficiently close approximation
of Gk), the Newton-type method with B) W) is preferable to the PCG and PFR methods.
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PARALLEL SPARSE ORTHOGONAL FACTORIZATION ON
DISTRIBUTED-MEMORY MULTIPROCESSORS*

CHUNGUANG SUNt

Abstract. In this paper, we propose a new parallel multifrontal algorithm for the orthogonal factorization of large
sparse matrices on distributed-memory multiprocessors. We explore the use of block partitioning schemes in parallel
sparse orthogonal factorization. Our block-oriented parallel algorithm for sparse orthogonal factorization achieves
high performance by incurring strictly less communication overhead than the conventional nonblock algorithm,
maintaining relatively balanced load distribution among processors, and accelerating the parallel numerical kernel
via increased cache utilization. We analyze the performance of our parallel algorithm and present its arithmetic and
communication complexities for regular grid problems. We report the experimental results of an implementation of
our parallel algorithm on an Intel iPSC/860 machine. Through our theoretical analysis and experimental results, we
demonstrate that our new block-oriented algorithm outperforms the conventional nonblock algorithm impressively.

Key words, parallel algorithms, sparse matrix, orthogonal factorization, multifrontal method, block partitioning
scheme, distributed-memory multiprocessors

AMS subject classifications. 65F05, 65F50

1. Introduction. Let A be a sparse rn x n matrix with full column rank. The QR factor-
ization of A is expressed as

where Q is an rn x rn orthogonal matrix and R is an n n upper triangular matrix. Usually
Q is not formed explicitly.

A row merging scheme and a general row merging scheme for sparse QR factorization
are proposed in [8] and [19], respectively. Sequential algorithms for sparse QR factoriza-
tion are also considered in 11, 17, 22, 23]. Parallel algorithms are described in [5, 24, 27]
for implementing the numeric phase of the general row merging scheme [19] on (multiple
instruction multiple data) MIMD distributed-memory multiprocessors. A parallel algorithm
is discussed in [16] for implementing the numeric phase of the row merging scheme [8] on
(single instruction multiple data) SIMD architecture. Previously proposed parallel sparse QR
factorization algorithms [5, 16, 24, 27] are based on the nonblock or single-row partition of
the dense matrices involved in the numerical computation. The block-oriented approach to
parallel sparse QR factorization has not been explored before.

In this paper we consider a block-oriented approach to parallel sparse QR factorization
and describe a new parallel multifrontal algorithm for sparse QR factorization on distributed-
memory multiprocessors. We propose block schemes for partitioning the upper trapezoidal
matrices involved in the numerical computation. We explore a spectrum of block partitioning
schemes ranging fromthe conventional single-row partition to the blockpartition withmaximal
block size. Our block-oriented approach results in an efficient parallel multifrontal algorithm
for sparse QRfactorization with low communication costs, relatively balanced load distribution
among processors, and a high performance parallel numerical kernel due to the increased cache
utilization.
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1. Find a column ordering P1 for A such that (A P1)T (AP1) has a sparse Cholesky
factor.

2. Compute the elimination tree of (A P1)T (A P1) from G(ArA) and P1. Number
the nodes of the elimination tree in postorder. Let the postorder be P2
and set P P1/2.

3. Determine the symbolic structure of R from G(Ar A) and P, where (AP)r (AP)
=RrR.

4. Compute the supernodal elimination tree of R from the elimination tree and
the symbolic structure of R.

5. Perform numerical factorization by processing the supernodes in a topological
ordering.

FIG. 1. Sparse QRfactorization.

Both A and R are distributed to processors by rows. The supemodal structure of R is fully
exploited. The performance of our parallel algorithm with a special block partition applied to
regular grid problems is analyzed, and the arithmetic and communication complexity results
of our analysis are presented. Experimental results of an implementation of our parallel
algorithm on a 32-node Intel iPSC/860 machine are obtained for a collection of sparse matrix
problems including regular grid problems and a general sparse problem with irregular sparsity
structure. Our block-oriented approach to parallel sparse QR factorization achieves significant
improvement in performance over the conventional nonblock approach described in [5].

In 2, a multifrontal sparse QR factorization scheme is reviewed. A new parallel multi-
frontal algorithm for sparse QR factorization is proposed in 3. The complexity analysis of
our algorithm for regular grid problems is presented in 4. Experimental results are discussed
in 5. Finally, concluding remarks are contained in 6.

2. A multifrontal sparse QR factorization algorithm. We briefly review a multifrontal
approach to sparse QR factorization in this section. We refer the reader to [11, 17, 19] for
further details. Let ArA LLr, where L is the Cholesky factor ofArA. It is well known that
Rr is equal to L, apart from possible sign differences in the rows. Therefore, the elimination
tree of ArA can be defined in terms of the sparsity structure of R. Specifically, j is the parent
of if rij(i < j) is the leading off-diagonal nonzero in the ith row of R. For simplicity, it is
assumed that ArA is irreducible and the corresponding elimination tree is indeed a tree. A
node in the elimination tree corresponds to a row in R. Let G(ArA) denote the adjacency
graph of ArA. The steps involved in sparse QR factorization are described in Fig. 1.

Step 1 is done by applying a symmetric ordering such as the nested dissection ordering [7]
or the minimum degree ordering [12] to G(Ar A). Step 2 can be accomplished by using an
algorithm described in [18]. The symbolic factorization step is discussed in [9]. There are
several slightly different definitions of supemode 1, 2, 3, 10, 20]. Any ofthose definitions can
be used in our approach. In an implementation ofour algorithm, the fundamental supernode [2]
is used. Let Tj denote the structure of row j of R, i.e., the set of nonzero column indices in
row j of R. A fundamental supernode is a maximal set of contiguous rows {i, + 1 k} in
R such that Tj {j t_J Tj+ for < j < k and j is the only child of j + 1 in the elimination
tree which has been postordered. The first four steps are referred to as the symbolic phase of
the sparse QR factorization and step 5 is referred to as the numeric phase of the sparse QR
factorization.

A supernode K is associated with an upper trapezoidal matrix Fr called thefrontal matrix
of K. The sparsity structure of Fr is given by 7i, where is the least-numbered row in K.
The number of columns in Fr is 1i1 and the number of rows in Fr is at most 17i 1. Liu 19]
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1
2
3
4
5
6
7
8
9
10

for each supernode K in a topological ordering do
allocate space for U/ and initialize F/ to zero;
assemble Uc into F/ and discard Uc, where C E children(K);
for each D children(K) \ {C} do

merge Uo into F/ and discard Uo;
for each j K do

transform Aj to an upper trapezoidal matrix Tj;
merge Tj into FK;

end for
end for

FIG. 2. The numeric phase ofa sequential multifrontal sparse QRfactorization algorithm.

has shown that F/ can be considered as a dense matrix for all practical purposes. Our parallel
algorithm described in 3 works correctly regardless of whether F/ is upper trapezoidal or
upper triangular. For simplicity, we assume that FK is a dense upper triangular matrix. The
first [K[ rows of F/ are rows i, + 1 + KI 1 in R and they are called thefactor rows
of Ft. The upper triangular matrix obtained by removing the factor rows of F/ is called the
update matrix of K and is denoted by Ur.

Let Aj denote the submatrix consisting of all rows of A whose first nonzeros are in
column j of A. The number of nonzero columns in Aj is at most ]Rj I. Let children(K) be
the set of children of K in the supernodal elimination tree. The numeric phase of a sequential
multifrontal sparse QR factorization algorithm is described in Fig. 2. The storage for R is
allocated before the numeric phase starts. The assembly of an update matrix Uc into FK in
line 3 can be done by a matrix extend-add operation introduced in [20], where C is any child of
K. Merging UD into FK in line 5, reducing Aj to an upper trapezoidal matrix Tj in line 7, and
merging T into FK in line 8 can be accomplished by either Householder transformations or
Givens rotations. In our implementation, UD or T is merged into FK by Givens rotations and
Aj is reduced to Tj by Householder transformations. It is clear that this multifrontal approach
mainly involves dense matrix computations. Furthermore, the update matrices can be handled
by a stack data structure, so data locality is achieved. These desirable features are also present
in our parallel algorithm.

3. A parallel multifrontal sparse QR factorization algorithm. Several parallel algo-
rithms have been described in [5, 24, 27] for implementing the numeric phase of sparse QR
factorization on distributed-memory multiprocessors.

In the algorithm discussed in [5], a frontal matrix F is mapped to a ring of processors by
assigning the rows of F to the processors in a wrap-around manner. An update matrix U which
needs to be merged into F is shifted among the ring of processors in a circular fashion. Before
each shift the diagonal elements of U are annihilated against the frontal matrix F by Givens
rotations and U becomes a smaller upper triangular matrix. This shift is continued until U is
completely merged into F. This approach is referred to as the row-oriented approach.

In the approach described in [24], a global row reduction algorithm is introduced to
compute a frontal matrix. Parallel computationofthe tree structure required for the multifrontal
method is also discussed. In this approach, the amount of arithmetic work may increase as
the number of processors increases.

A parallel algorithm is discussed in [27] for implementing the sparse QR factorization
scheme proposed in 11] in parallel. In this scheme, a frontal matrix is computed by row-
oriented Householder transformations. Before the parallel computation of a frontal matrix
is started, the relevant update matrices are redistributed among processors to ensure rela-
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tively balanced load distribution. As expected, this redistribution improves load balancing by
incurring additional communication overhead.

A drawback common to all of these algorithms is that frontal matrices are computed by
communicating single rows; i.e., a message contains only one row or one transformed row of
some frontal matrix. This can result in an excessive number of small messages communicated
among processors. Because of the message start-up time, the overhead associated with a short
message is proportionally higher than that associated with a long message.

To reduce communication costs, a block approach is suggested as a future research topic
in [5]. A frontal matrix is partitioned into blocks with the same number of rows. If F is an
h h upper triangular matrix and is mapped to p processors, block size equal to h/p2 is
recommended in [5]. As shown in 5, the communication volume of this block approach is
still relatively high. To the best of our knowledge, experimental results of the row-oriented
approach and the block-oriented approach described in [5] have not been reported in the
literature. In 5, performance results of these two approaches will be discussed.

3.1. An overall framework for parallel sparse QR factorization. We propose a new
parallel algorithm for the numeric phase of the multifrontal sparse QR factorization described
in 2. The symbolic phase of the sparse QR factorization is done sequentially. After the
symbolic structure of R and the corresponding supernodal elimination tree are determined,
the arithmetic work associated with each subtree is estimated. The supernodal elimination tree
is mapped onto processors by a proportional mapping scheme described in [26]. The root of
the supernodal elimination tree is partitioned among all processors. For a supernode that has
already been mapped to a set of processors, each subtree rooted at a child of that supernode
is allocated a subset of processors whose size is proportional to the workload associated with
that subtree.

We consider the formation of a frontal matrix as a computational task. The supernodal
elimination tree is the precedence graph among the computational tasks. Computation pro-
ceeds from leaves to root. Initially each processor is working on its own subtrees. Later
on, processors cooperate to compute the frontal matrix of a partitioned supernode. When
independent subtrees are being processed, no communication among processors is needed.

The overall parallel algorithm for the multifrontal sparse QR factorization is described in
Fig. 3. The key operation in this algorithm is to merge an upper triangular matrix into another
one in parallel as will be discussed in detail in the next subsection.

3.2. A parallel numerical kernel. Let V and W be two h h upper triangular matrices.
Consider merging V into W by Givens rotations on a set of p processors {/z0,/z1 /Zp_ 1},
i.e., transforming the matrix w

v into an upper triangular form by Givens rotations. Let V and
W be identically partitioned into k(k < h) blocks by rows as

V and W

Vk-1

Blocks V/and Wi are assigned to processor/zj, where j mod p. The block V/is merged
into blocks Wi, Wi+l Wk- 1, successively.

For a given number of processors, how the upper triangular matrices are partitioned
determines the performance of merging V into W. Since there are p processors, the number
of blocks should be at least p. Clearly, a block must contain at least one row. Therefore,
p _< k < h. The total number of possible block partitions for an h h upper triangular matrix



670 CHUNGUANG SUN

1
2
3
4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22

for each supernode K in a topological ordering do
if Fr is entirely mapped to/z then

allocate space for Ur and initialize FK to zero;
assemble Uc into Fr and discard Uc, where C children(K);
for each D children(K) \ {C} do

merge Uo into Fr and discard Uo;
for each j K do

merge rows in Aj into F;
else

if Fr is partially mapped to/z then
allocate space for/z’s portion of Ur;
initialize/x’s portion of FK to zero;
assemble Uc into F/ in parallel and discard/z’s portion of Uc,

where C children(K);
for each D children(K) \ {C} do

merge UD into Fr in parallel;
discard/z’s portion of Up;

end for
merge relevant rows from A into F/c in parallel;

end if
end if

end for

FIG. 3. A parallel multifrontal sparse orthogonalfactorization algorithm on a processor

on p processors is

hth--1 )E k- 1 (k- 1)(h- k)k=p

For reasonable h and p, it is impractical to determine an optimal block partition by examining
all possible block partitions. We consider two strategies for partitioning upper triangular
matrices into blocks.

Equal-row partitioning scheme. First, we consider partitioning upper triangular ma-
trices V and W into blocks with an equal number of rows. This scheme partitions an h x h
matrix into k his blocks, where s(1 < s < h/p) is the block size or the number of rows in
a block. This scheme is referred to as the equal-row partitioning scheme. The special cases
s 1 and s h/p2 are considered in [5].

The number of blocks k determines the arithmetic work distribution of merging V into
W. The larger the number of blocks, the more balanced the arithmetic work distribution. The
worst and the best arithmetic work distributions are achieved for k and k h, respectively.
To maintain load balance, the number of blocks should be large; i.e., the block size should be
small.

Let ct be the start-up time for a message and fl the transfer time per floating-point number.
The total communication cost on all processors is

k-1

Ctk2 /h2 /h2

E i(t q- (s(h is) (s 1)s/E)) - q- ---k
i=1

4

Clearly, the communication cost is proportional to the number of blocks k. To keep the
communication cost low, the number of blocks should be small; i.e., the block size should be
large.
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FIG. 4. Equal-row partitioning scheme with p 32 and h 600, 700, 800 on an iPSC/860.

An optimal block size minimizes the combined effect of the arithmetic work distribution
and the communication cost; i.e., the overall execution time. To obtain an optimal block
size or a block size that is close to optimal, it is necessary to examine how the algorithmic
performance of merging V into W is dependent upon the block size.

Experiments are performed on an Intel iPSC/860 machine to investigate the relationship
between the algorithmic performance and the block size used. Our results show that the special
case s 1 gives the worst performance. For fixed p and h, the running time initially decreases
rapidly as the block size increases. Once the best performance is achieved, the running time
increases slowly as the block size increases. The running times are virtually indistinguishable
at the neighborhood of the optimal block size for given h and p. Therefore, it is not necessary
to determine the optimal block size exactly. As an illustration, experimental results for p 32
and h 600, 700, 800 are shown in Fig. 4. Block sizes equal to 1, 2 40 are used. The
same kind of relationship is observed for other values of p and h.

The optimal block sizes for p 8, 16, and 32 are shown in Table 1 under column "s." The
columns under "time" and "mflops" show the corresponding running times and floating-point
execution rates in megaflops per second, respectively. Floating-point operations are performed
in double-precision arithmetic. Since the dense submatrices involved in the numerical kernel
of our parallel sparse QR factorization algorithm are of order 100 to 900, the range of h shown
in Table 1 is between 100 and 900. Let s(h, p) denote an optimal block size for merging two
h x h upper triangular matrices on p processors. Table 1 shows that optimal block sizes for
p 8, 16, 32 can be expressed as

(1) s(h, p) [2h/(5p)].

Experimental results for p 2, 4 have also been obtained. Optimal block sizes for p 2, 4
can be expressed as

(2) s(h, p) [h/(3p)].
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TABLE
Optimal block sizes and corresponding performance results on an Intel iPSC/860 machine.

h
100
200
300
400
500
600
700
800
900

p=8 p= 16 p=32
s time mflops time mflops time mflops
5 0.057 18.875
10 0.220 37.735
16 0.546 50.691
20 1.106 58.954
25 1.929 65.775
30 3.074 71.147
35 4.545 76.277
40 6.505 79.448
44 8.996 81.712

4 0048 22.414
6 0.177 46.902
8 0.423 65.432
10 0.839 77.716
13 1.292 98.204
15 2.079 105.197
18 3.061 113.257
20 4.329 119.382
22 5.835 125.978

2 0.053 20.299
4 0.155 53.559
5 0.353 78.407
6 0.668 97.610
7 1.123 112.982
8 1.615 135.421
9 2.300 150.731

11 3.090 167.251
12 4.189 175.479

Revised equal-volume partitioning scheme. Because of the triangular shape of the
matrices, the equal-row partitioning scheme may result in load imbalance since the blocks
become smaller and smaller toward the end. To correct this, we propose schemes that partition
the upper triangular matrices V and W into blocks with nondecreasing number of rows. The
equal-volume partitioning scheme introduced in [30] is one of such schemes. This scheme
partitions V and W identically into k blocks by rows. Each block consists ofa set ofcontiguous
rows and contains about h(h + 1)/(2k) elements. Assume that the number of rows and the
number of colunms in the ith block are denoted by ri and ci, respectively. Then

(3)
i(i-]-1) h(h+l)(k-i.)2 2 k

’k -i /k -i /k -i 1
(4) Ci h and ri ho

k-1Notice that Yi--0 ri h. It is easy to show ri <_ ri+l for 0 < < k 1.
Now we propose a revised equal-volume partitioning scheme. Let k be the expected

number of blocks to be partitioned. The revised equal-volume partitioning scheme actually
partitions V and W into l(l < k) blocks such that the ith block has ri + d (d > 0) rows,
where ri is defined as in (4) and d > 0. This revised scheme is precisely the equal-volume
partitioning scheme when d 0. Clearly, ri + d < ri+l d- d for 0 < < 1. The number

l-1of blocks can be determined from .i=o(ri -+- d) h. Our empirical results indicate that the
optimal value for d is 3. Experimental results on 32 processors for h 800 and d 0, 3, 6 are
shown in Fig. 5. In the remainder of this paper, d 3 is assumed for the revised equal-volume
partitioning scheme.

Depending on the number of processors used, the equal-row partitioning scheme with
block size specified by expression (1) or (2) is referred to as the equal-row partitioning scheme
with optimal block partition. Similarly, the revised equal-volume partitioning scheme with
the expected number of blocks to be partitioned given by his(h, p) is referred to as the
revised equal-volume partitioning scheme with optimal block partition. The performance
results of these two schemes with optimal block partition are compared in Fig. 6. The revised
equal-volume partitioning scheme is, in general, more efficient than the equal-row partitioning
scheme.
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FIG. 5. Revised equal-volume partitioning scheme with p 32, h 800, and d O, 3, 6 on an iPSC/860.
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Revised Equal-Volume Partitioning Scheme:

40

FIG. 6. Comparison ofthe two partitioning schemes with p 32 and h 800 on an iPSC/860.

Row-oriented kernel versus column-oriented kernel. Assume that Vi and Wj are 4 x 5
upper trapezoidal blocks. Two ways of merging V/into Wj are shown below:

X X X X X
x X X X

X X X
X X

1 2 3 4 x
5 6 7 8

9 10 11
12 13

or

X X X X X
X X X X

X X X
X X

2 4 7 x
3 5 8 11

6 9 12
10 13
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FIG. 7. Comparison of the row-oriented and the column-oriented kernels with p 32 and h 800 on an
iPSC/860.

The numbers show the order in which the elements of Vi are annihilated. These two ap-
proaches correspond to merging V/ into Wj by rows and by columns, respectively. If the
block size--i.e., the number of rows in V/wis reasonably large, the column-oriented kernel
is more efficient than the row-oriented kernel. The reason is that in the column-oriented
kernel a rectangular submatrix of V/ is rotated into a row in Wj so this row in Wj is repet-
itively accessed. Therefore, the cache is better utilized and, consequently, the performance
of the numerical kernel is improved. This is confirmed by the empirical results shown in
Fig. 7. As the block size increases, a row in Wj is repetitively accessed more frequently in the
column-oriented kernel. Therefore, the cache utilization of the column-oriented kernel gets
better and it becomes increasingly more efficient than the row-oriented kernel as the block
size increases.

3.3. Parallel computation ofa frontal matrix. In order to compute a frontal matrix F/
in parallel, we have designed parallel algorithms for assembling the update matrix of a child
of K into F/c, merging the update matrix of a child of K into F/c, and merging relevant rows
from A into F. These algorithms correspond to lines 13, 16, and 19 in Fig. 3, respectively.

To simplify our discussion, we take the 7 7 nine-point grid with nested dissection
ordering as an example. A portion of its supernodal elimination tree consists of supernodes
K 19, 20, 21 }, C {7, 8, 9}, and D 16, 17, 18}. Supernodes C and D are the only
children of supernode K. The frontal matrices FI, Fc, and F are illustrated in Fig. 8, where
the row numbers displayed with a frontal matrix show its sparsity structure.

We assume that F/ is partitioned among four processors {/x0,/z,/z, br3}, Fc is parti-
tioned among/z0 and/z l, and Fo is partitioned among/x and/x3, respectively. The solid
lines inside the triangles in Fig. 8 show one way of partitioning FI, Fc, and Fo into blocks.

Suppose that the frontal matrices Fc and Fo have already been computed. The update
matrix Uc is the second block of Fc and is assigned to/z. Similarly, the update matrix Uo
is the second block of Fo and is assigned to/3. Based on the sparsity structure of Uc, Uz,
and F, the update matrices Uc and Uo are further partitioned into subblocks shown by the
dash lines in Fig. 8.
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FIG. 8. Parallel computation ofafrontal matrix.

Suppose Uc has already been assembled into Ft. Now we consider merging Uo into Ft.
A subblock B of Uo is sent to a processor involved for computing Fr if the processor owns a
block B/ of Fr such that the row numbers of B are contained in the row numbers of Br. For
instance, the second subblock of Uo owned by/z3 is sent to/z1 which owns the second block
of Ft.

Once a subblock B is received by a processor, it is conceptually extended to a temporary
block by the matrix extend-add operation introduced in [20] and this temporary block is then
rotated into a block Br ownedby the processor. The result of rotating B into B/ is another
upper trapezoidal block B. If B is not empty, it is sent to the processor which owns the block
just below the block Br in Ft. Notice that the number of rows in B is less than or equal to the
number of rows in B since block Br may contain zero rows. Eventually, the newly created
block/ is merged into the remaining blocks of Fr, successively.

In order to complete the computation of Fr, a row from A whose first nonzero is in
column j of A such that _< j < + gl must be rotated into Fr, where is the first row in
K. The rows in the submatrix Aj, defined in 2, form a rectangular block with at most IRjl
nonzero colunms. This block is rotated into F/ starting with a block B/ of Fr such that row
j of Fr is in block BI. The resulting block is rotated into the remaining blocks of Fr,
successively.

4. Analysis of regular grid problems. In this section, we present the complexity anal-
ysis of our parallel sparse QR factorization algorithm based on a special equal-volume parti-
tioning scheme for regular grid problems. We compare our results with those provided in [5].
To be consistent with the results in [5], we count only the number of multiplications in our
analysis.

We focus on the equal-volume partitioning scheme in which an h x h frontal matrix
distributed among p processors is partitioned into p blocks. It seems to be very difficult
or impossible to obtain the complexity results of an arbitrary equal-row or equal-volume
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partitioning scheme. The analytical results obtained for a special case of the equal-vol-
ume partitioning scheme would shed light on the performance of an arbitrary equal-row or
equal-volume partitioning scheme from a theoretical angle.

Our goal is to obtain an upper bound on the overall execution time of our parallel sparse
QR factorization algorithm. There are two levels of analysis. In the outer level, the super-
nodal elimination tree is mapped onto node processors by the subtree-to-subcube mapping
scheme [13]. We identify a heaviest path of the supernodal elimination tree. The heaviest
path consists ofa sequence ofcomputational tasks each ofwhich is the computation ofa frontal
matrix. Careful exploration of the heaviest path leads to an upper bound on the execution time
of our algorithm. In the inner level, we investigate the cost of computing a frontal matrix in
parallel. The processors assigned for the task start execution at the same time. We identify a
processor/z that has the most work to do and finishes its share of the task last. We characterize
the sequence of subtasks executed by the processor/z. We show that there is no or very
little gap between the subtasks executed by/z. Therefore, the time complexity of computing
a frontal matrix in parallel is simply the sum of the time complexities of subtasks executed
by

The communication model assumed in our analysis is briefly described here. Consider
the transmission of a message from one processor/z to another processor/2. The completion
of the send operation on/z does not imply that the message has been received by/2, only that
the message has been sent and the buffer space for the message on/z can be reused. Once
the corresponding receive is issued by/2, processor/2 waits until the message arrives in the
specified buffer. Anexample ofthis model is the communicationmodelusedon an Intel iPSC/2
or Intel iPSC/860 machine 15]. In this model, the cost of transmitting a message is charged
to the receiver. Let r denote the ratio of the time for transmitting one floating-point number
from one processor to another processor to the time for one floating-point multiplication.

4.1. Analysis of the parallel numerical kernel. Consider two h h upper triangular
matrices V and W which are identically partitioned by our equal-volume partitioning scheme
into p blocks as

V and W

Vp-1

Blocks V/ and Wi are assigned to processor/Zi, 0 < < p. The number of rows and the
number of columns in the ith block are defined as in (4) in 3.2 except that k is replaced by p.

The total number ofmultiplications for merging V into W is 2h (h + 1) (h +2)/3. The tasks
involved in merging V into W are illustrated in Fig. 9, where M(Vi, Wi)(O < < p) is the
task for merging Vi into Wi, M(Vi, Vj.)(i < j) is the task for merging the transformed block
Vi into the transformed block W, and C(V/,/zj,/zk) is the task for receiving the transformed
block V/from processor/zj by processor/zk, where k j + 1 mod p. For simplicity, p is
assumed to be 4 in Fig. 9. Clearly, the last processor has the most work to do and finishes its
execution last.

Now we examine the tasks assigned to/Zp_ in detail. Since Vi[ , IV,’- 11, the arithmetic
work for M(Vi, Wi) is about the same as the arithmetic work for M(Vi_ 1, Wi- 1). Processors
/z2 and/z3 start execution at the same time and they finish M(V2, W2) and M(V3, W3) at about
the same time. Then/z3 waits for the transmission of the transformed block V2 from/z2 to
Therefore, there is no gap or little gap between M(V3, W3) and C(V2,/z2,/z3). Obviously,
there is no gap between C(V2,/z2,/z3) and M(V2, W3).
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Fro. 9. Tasksfor merging V into W onfourprocessors.

It can be easily shown that the arithmetic work in M(Vi, Wj) is slightly greater than
the arithmetic work in M(V/_ 1, Wj_ 1). Once M(V2, W3) is finished, the desired message is
ready to be received. Hence, there is no gap between M(V2, W3) and C(V1,/z2,/z3). Similar
arguments can be extended to the rest of the tasks executed by/z3. Therefore, there is no gap
or little gap among the tasks executed by/z3. The discussion for this example is equally valid
for a general p.

Since the total number ofmessages communicated by/Zp_ is only p- 1, the start-up costs
for the p 1 messages are ignored and the cost for the task C(V, lap-2, //,p-l) is estimated
by the communication volume, i.e., the number of floating-point numbers communicated by
the task C(V/,/zp_2,/zp_ 1).

The above analysis shows that the arithmetic and communication complexities for merging
V into W on p processors can be obtained by considering the communication volume and the
arithmetic work on the last processor ]2p_ Let be the number of rows in Vt,_l or W,-1.
Then , h/x/.

Since the total number of rows received by the last processor is h and each row is of
length at most, the total number ofnumerical values received by the last processor is bounded
above by (h g)g. Therefore, an upper bound on the communication cost for merging two
h h upper triangular matrices on p processors is

comm(h, p)
.v/-fi p

The work performed by the last processor is bounded above by the arithmetic work
required for merging an (h e) e matrix into an e e upper triangular matrix plus the
arithmetic work for merging two e e upper triangular matrices. Therefore, an upper bound
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on the arithmetic work for merging two h h upper triangular matrices on p processors is

h3 4 h3 h2 4 h
work(h, p) 2 - 2 +

p 3 p/ 3/-fi
4.2. Analysis of the parallel sparse QR factorization algorithm. Now we analyze

the performance of our parallel sparse QR factorization algorithm applied to regular grid
problems with nested dissection ordering [7]. Consider a k k grid with (k 1)2 small
squares. Associated with each square is a set of four equations involving the four variables at
the comers of the square. The assembly of these equations results in a sparse overdetermined
system of equations Ax b, where A is a 4(k 1)2 k2 sparse matrix.

The supernodal elimination tree of a grid problem is a complete binary tree and is mapped
onto node processors by the subtree-to-subcube mapping scheme 13]. The frontal matrices
are partitioned by our special equal-volume partitioning scheme. A frontal matrix F: is
computed by merging the two update matrices U and U2 of the children of K. The size of
the update matrix of a supernode is at most the size of the frontal matrix of its parent. Assume
that the frontal matrix Fr is of order h and it is mapped to p processors. One update matrix
U1 is assembled into Fr and the other update matrix U2 is merged into F/(. Before U2 can
be merged into F, it needs to be appropriately distributed among the p processors. This is
equivalent to a parallel assembly of U2 into F. After U2 is properly distributed among the p
processors, U2 is merged into F/ as in the dense case.

The arithmetic work for merging U2 into Fr is bounded above by the arithmetic work for
merging two h x h upper triangular matrices in parallel since the size of U2 is at most the size
of F/(. Therefore, an upper bound on the arithmetic work for computing a frontal matrix F/
of order h on p processors is given by work(h, p).

The worst scenario in an assembly operation is that a processor receives h(h + 1)/2p
numerical values. The communication cost for computing a frontal matrix Ft( of order h on p
processors is bounded above by the communication cost for assembling U1 and U2 into Fr on
p processors and the communication cost for merging two h x h upper triangular matrices on
p processors. Therefore, an upper bound on the communication cost for computing a frontal
matrix Fr of order h on p processors is

2h(h + 1)r h2z hr

2p
+ comm(h, p) +

P

Consider the supernodal elimination tree corresponding to a k k grid with nested dis-
section ordering, where k 2 and is a positive integer. Let mj 2t-j 1. The
characterization of a heaviest path in the supernodal elimination tree is given in Table 2, where
ni is the size of the frontal matrix on the heaviest path at level i. The root is considered to be
at level 1. The reader is referred to [28] for details on the characterization of the supernodal
elimination tree associated with a regular grid.

Assume that p is a power of 4. The upper bounds for the arithmetic and communication
costs of our algorithm with the special block partition and the conventional row-oriented
algorithm are presented in Table 3, where 1 (343 + 250/)/3q/, 2 (8801,’-
6202)/21/, c3 (103 + 72V)/4,/, and c4 (49 + 50,/)/f. The results of the
row-oriented algorithm are taken from [5]. Under a reasonable assumption that p is less than
the number of columns k2, the communication complexity of our algorithm with the special
block partition is much better. The overall time complexity of our algorithm with the special
block partition is 1229k3/4p + O(k3 log p/p3 and that of the row-oriented algorithm is
146k3/3p + 146k3r/12p + O(k3r/p3/2). If r > 22, the overall complexity of our algorithm
with the special block partition is better. Dunigan [6] has shown that the values of r for
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TABLE 2
Characterization ofa heaviestpath.

Level ni

m0

2 ml +m0
3 ml +m0
4 6m2 +4

2j + l(j > 2) 5mj + 4
2j(j > 3) 7mj + 6

TABLE 3
Arithmetic and communication complexities.

Algorithm Arithmetic Communication

special block partition

row-oriented partition

1229 k3 log p
p C1 C2 -’1- O(

+-+31 p

k2z k2r kz logp)C3 C4---- qt_ O( .v/
146 k3z 371 k3z
12 p 12 p3/2 + O(k2rlogp)

iPSC/2 and iPSC/860 are roughly 59 and 1000, respectively. Note that the communication
cost dominates the arithmetic cost in the row-oriented approach.

The results shown in Table 3 are the complexity results of the algorithms which are based
on two extreme partitioning schemes in which an h h frontal matrix distributed among p
processors is partitioned into h and p blocks, respectively. Therefore, it can be expected that
the arithmetic complexity of our algorithm based on an arbitrary equal-row or equal-volume
partitioning scheme is between the complexity bounds of the row-oriented algorithm and our
algorithm with the special block partition. Similarly, the communication complexity of our
algorithm based on an arbitrary equal-row or equal-volume partitioning scheme is between
the complexity bounds of our algorithm with the special block partition and the row-oriented
algorithm.

5. Experimental results. Our parallel multifrontal sparse QR factorization algorithm
has been tested on a 32-node iPSC/860 machine for a set of problems including regular grid
problems and practical problems with irregular sparsity structure. The practical problems
include large and sparse linear least squares problems arising from particle methods for mod-
elling turbulent combustion [25] and a large-problem NIMBUS from the Bramley test set
used in [21]. The sparse linear least squares problems for modelling turbulent combustion
correspond to three-dimensional k k k 27-point grids. There are a number of particles
associated with each cubic element. A particle corresponds to an equation involving the eight
variables at the comers of the cubic element. Assume that a cubic element contains eight
particles. The assembly of the equations corresponding to all particles results in a sparse
overdetermined system of equations Ax b, where A is an 8(k 1)3 by k3 sparse matrix.
The regular grid problems and the problems for modelling turbulent combustion are ordered
by the nested dissection ordering [7]. The general sparse problem is ordered by the minimum
degree ordering 12].

The characteristics of the test problems are shown in Table 4, where rn is the number of
rows, n the number ofcolumns, AI the number ofnonzeros in matrix A, and RI the number of
nonzeros in factor R. "GRIDk" represents a k k nine-point grid. "TCk" represents a problem
for modelling turbulent combustion and corresponds to a three-dimensional k k k 27-point
grid. The QR factorization method described in 14] is used to solve these sparse linear least
squares problems on an Intel iPSC/860 machine. The sparse QR factorization is computed by
our parallel multifrontal approach described in 3. Both the equal-row partitioning scheme
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TABLE 4
Characteristics ofthe test problems.

Problem m n
GRID100 39204 10000
GRID200 158404 40000
GRID255 258064 65025
TC20 54872 8000
TC24 97336 13824
TC27 140608 19683

NIMBUS 23871 1325

156816
633616
1032256
438976
778688
1124864
181972

297953
1481803
2569386
1298284
2806944
4665657
136356

and the revised equal-volume partitioning scheme are used. The orthogonal transformations
are applied to the right-hand-side vector b and then discarded. The required parallel-sparse
back-substitution algorithm is described in [29, 31]. The column-oriented kernel is used in
our implementation.

Let h be the order of a frontal matrix that is assigned to p processors. We explore four
instances of the equal-row partitioning scheme with block sizes equal to 1, hip2, s(h, p) as
defined in 3.2, and h/p, respectively. For convenience, the versions ofour parallel sparse QR
factorization algorithm, which use these four instances of the equal-row partitioning scheme
in their kernels, are referred to as algorithms ERP1, ERP2, ERP, and ERPP, respectively.
We explore two instances of the revised equal-volume partitioning scheme with block sizes
corresponding to s(h, p) as defined in 3.2 and h/p, respectively. The versions of our parallel
sparse QR factorization algorithm, which use these two instances of the revised equal-volume
partitioning scheme in their kernels, are referred to as algorithm EVP and EVPP, respectively.
Note that ERP1 is the row-oriented approach proposed in [5] and ERP2 is only suggested as
a future research topic in [5]. ERP and EVP are algorithms with optimal block partition.

We evaluate the practical performance of these six parallel sparse QR factorization al-
gorithms on a 32-node Intel iPSC/860 machine. All algorithms are implemented in C and
double-precision floating-point arithmetic is used. A dense Givens rotation is implemented as
a call to the subroutine dr c z in the highly optimized Basic Math Library provided by Intel.
No assembler code other than calls to dr c t: is used. The compilation optimization level used
is -04.

We have obtained the running times, communication statistics, and load balance results
of the six algorithms for all of our test problems. To save space, the communication statistics
and load balance results are presented only for regular grid problems GRID200 and GRID255
on 32 processors. The relative performance of the six algorithms for regular grid problems on
a smaller number ofprocessors is the same as that on 32 processors. The relative performance
of the six algorithms for other problems is similar to that for these two regular grid problems.

In Table 5, messages communicated per processor are tabulated. The column under "Fact
Alg" shows the algorithm used in the numerical factorization. The "max," "min," and "avg"
under the "Total # Msgs" are the maximum number, minimum number, and average number of
messages communicated by a processor including both messages sent and messages received,
respectively. The "max" and "min" under the "# Msgs Sent" are the maximum number
and minimum number of messages sent by a processor, respectively. The "max" and "min"
under the "# Msgs Recv" are the number of messages received by a processor. The average
number of messages sent by a processor is the same as the average number of messages
received by a processor and is equal to half of the average number of messages communicated
by a processor. For both the equal-row partitioning scheme and the revised equal-volume
partitioning scheme, the number of messages required decreases as the block size increases.
The number of messages required by EVP is less than that required by ERP since EVP
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TABLE 5
Message countperprocessor (p 32).

Test Fact Total # Msgs
problem alg max min avg

ERP1 50838 27344 37824.2
ERP2 5972 5309 5657.6

GRID200 ERP 464 327 390.94
ERPP 113 17 67.56
EVP 284 175 226.25
EVPP 94 17 59.62
ERP1 83440 43165 61365.2
ERP2 9188 8351 8817.9

GRID255 ERP 465 324 387.4
ERPP 111 17 67.3
EVP 331 178 254.4
EVPP 97 17 64.0

# Msgs Sent
max min

13685
2648
161
5
86
6

21568

25513
3002
239
60
146
48

41841

#Msgs Recv
max min

25466 13659
3005
238
54
144
46

41599
4610
236
55
170
49

4606 4159
238 161
59 5
169 91
54 6

2650
159
12
85
11

21596
4173
156
12
87
11

TABLE 6
Communication volume perprocessor (scaled by 10-3, p 32).

Test Fact
problem alg

ERP1
ERP2

GRID200 ERP
ERPP
EVP
EVPP
ERP1
ERP2

GRID255 ERP
ERPP
EVP
EVPP

Total Volume
max min avg

3562.0 2054.0 2781.6
795.6 734.5 762.9
261.7 197.6 228.7
139.9 23.1 94.3
250.0 180.2 208.6
137.3 38.7 100.7

7349.4 4294.3 5751.2
1504.6 1419.4 1460.6
416.0 311.0 364.3
228.6 40.3 154.1
411.9 302.1 350.9
221.0 69.2 166.3

Volume Sent
max min

1783.4 1023.5
401.0 362.9
132.8 96.7
71.7 7.9
126.4 86.0
70.2 14.9

3678.5 2142.0
756.0 704.7
211.4 152.3
117.2 11.7
208.4 147.1
115.5 24.4

Volume Recv
max min

1778.7
394.7
128.8
68.2
123.7
67.7

1028.3
367.9
99.9
15.2
90.0
23.8

3670.9 2148.7
750.9 711.5
204.6 158.8
111.4 28.6
203.5 149.8
108.5 42.8

Avg Msg
length
0.074
0.135
0.585
1.396
0.922
1.690
0.094
0.166
0.940
2.291
1.380
2.599

partitions a frontal matrix into fewer blocks than ERP does. Similarly, EVPP communicates
fewer messages than ERPP.

In Table 6, the volume of messages communicated per processor is shown. The total
volume communicated by a processor is defined as the total number of floating-point double-
precision numbers communicated by that processor. The volume sent by a processor is defined
as the total number of floating-point double-precision numbers sent by the processor. The
volume received is similarly defined. The last column in Table 6 is the average length of all
messages obtained by dividing the total communication volume by total number of messages.
For both the equal-row partitioning scheme and the revised equal-volume partitioning scheme,
the required communication volume decreases as the block size increases.

Consider Tables 5 and 6 together. Clearly, ERP1 and ERP2 require excessive messages
and excessive communication volume. For an h h frontal matrix partitioned among p
processors, the block size for ERP2 is s hip2. For reasonable large problem, s is too
small. For instance, the root frontal matrix of TC27 is 729 x 729 and is partitioned among
32 processors. Therefore, s is less than one and is set to one in our experiment. The order
of the six algorithms in decreasing communication requirements is ERP1, ERP2, ERP, EVP,
ERPP, and EVPP. EVPP and EVP are better than ERPP and ERP in terms of communica-
tion costs, respectively. The four algorithms ERP, ERPP, EVP, and EVPP communicate
relatively long messages. This feature is desirable for distributed-memory multiprocessors
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TABLE 7
Load distribution among processors (p 32).

Problem

GRID200

GRID255

Fact alg Max/Avg Min/Avg
ERP1 1.219 0.717
ERP2 1.290 0.726
ERP 1.260 0.707
ERPP 1.514 0.428
EVP 1.245 0.731
EVPP 1.313 0.540
ERP1 1.230 0.720
ERP2 1.310 0.705
ERP 1.273 0.690
ERPP 1.538 0.412
EVP 1.254 0.700
EVPP 1.323 0.531

since the overhead associated with short messages is relatively higher than that associated with
long messages.

Loadbalance results are shown in Table 7. "Max/Avg" is the ratio ofthe maximumnumber
of floating-point operations performed by a processor to the average number of floating-point
operations performed by a processor during the numerical factorization. "Min/Avg" is the
ratio of the minimum number of floating-point operations performed by a processor to the
average number of floating-point operations performed by a processor during the numerical
factorization. A floating-point operation or flop is either a multiplicative or an additive op-
eration. The number of flops performed by a processor is obtained by counting the actual
number of flops performed by that processor during the numerical factorization. Roughly,
the order of the six algorithms from the least balanced workload distribution to the most bal-
anced workload distribution is ERPP, EVPP, ERP2, ERP, EVP, and ERP1. The difference in
workload distribution among ERP2, ERP, EVP, and ERP1 is relatively small. However, the
difference between these four algorithms and ERPP or EVPP is fairly pronounced. EVPP and
EVP produce better load distribution than ERPP and ERP, respectively.

The running times of the three algorithms ERP2, ERP, and EVP for all test problems
on a 32-node Intel iPSC/860 are shown in Table 8. To save space, the running times of the
three algorithms ERP1, ERPP, and EVPP are shown in Table 9 for the regular grid problems
only. The column under "time" is the running time for the numerical factorization in seconds,
which is obtained by measuring the time spent on each processor and taking the maximum time
spent on a processor. All processors start at the same time. The "mflops" is the execution rate
defined as the number of megaflops performed per second during the numerical factorization.
The "time" in Tables 8 and 9 includes the time for applying the Givens rotations to the right-
hand-side vector b for all six algorithms; i.e., the time for Qrb is included in the numerical
factorization time.

Due to insufficient storage space on node processors, some test problems cannot be run
on a small number of processors. If a test problem can be run on p 2 (0 _< < 5)
processors, its timing results on p processors are reported. The running time for a problem on
one processor is the time spent by the best serial sparse QR factorization algorithm we have
for that problem on one processor.

From Tables 8 and 9 we observe that the order ofthe six algorithms in increasing efficiency
is ERP1, ERP2, ERPP, EVPP, ERP, and EVP. These timing results are in agreement with the
communication and workload distribution statistics shown in Tables 5, 6, and 7. Because of
the excessive communication requirements, ERP1 and ERP2 are significantly worse than the
other four algorithms in performance. ERPP and EVPP are inferior to ERP and EVP. Since
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TABLE 8
Performance ofthe numeric phase ofthe parallel sparse QRfactorization algorithms on an iPSC/860.

Test No.
problem procs

17.165 3.971
2 8.651 7.878

GRID100 4 4.450 15.316
8 2.790 24.428
16 1.760 38.724
32 1.384 49.245
8 13.567 37.780

GRID200 16 8.754 58.552
32 6.689 76.628

GRID255 32 12.042 85.448
8 26.646 53.094

TC20 16 21.686 65.238
32 16.663 84.904

TC24 16 47.042 86.840
32 38.662 105.662

TC27 32 63.256 127.571
72.336 8.210

2 40.319 14.824
NIMBUS 4 42.263 15.137

8 32.383 20.145
16 32.430 20.317
32 39.677 16.883

ERP2 ERP EVP
time mflops time mflops time mflops

17.165 3.971
8.750 7.789
4.460 15.281
2.479 27.493
1.589 42.892
1.115 61.125

13.048 39.283
7.807 65.655
4.992 102.678

17.165 3.971
8.780 7.763
4.487 15.189
2.487 27.404
1.446 47.133
0.932 73.128
13.074 39.205
7.389 69.369
4.270 120.039

8.124 126.657 7.134 144.234
25.941 54.537
15.454 91.546
10.123 139.756

24.261 58.314
13.747 102.913
8.665 163.272

40.040 102.026 34.431 118.646
25.608 159.525 21.316 191.645
43.766 184.38 35.946 224.494
72.336 8.210
40.277 14.840
42.624 15.008
32.660 19.974
25.247 26.098
23.874 28.058

72.336 8.210
40.160 14.883
39.960 16.009
29.697 21.967
23.632 27.881
22.362 29.955

TABLE 9
Performance ofthe numeric phase ofthe parallel sparse QRfactorization algorithms on an iPSC/860.

Test No.
problem procs

17.165 3.971
2 9.620 7.085

GRID100 4 ,6.699 10.174
8 5.500 12.392
16 4.069 16.750
32 3.072 22.186
8 31.591 16.225

GRID200 16 24.191 21.188
32 17.712 28.939

GRID255 32

ERP1 ERPP EVPP
time mflops time mflopstime mflops

17.165 3.971
8.810 7.736
4.599 14.819
2.692 25.318
1.642 41.507
1.056 64.541

17.165 3.971
8.802 7.743
4.583 14.871
2.661 25.612
1.540 44.256
1.019 66.884

14.760 34.727
8.845 57.950
5.436 94.291

105.643

14.036 36.518
8.149 62.899
5.072 101.058

34.295 30.003 9.740 8.831 116.517

EVP requires fewer messages and less communication volume than ERP, and EVP produces
a more balanced workload distribution than ERP, EVP is more efficient than ERP. Similarly,
EVPP is more efficient than ERPP. It is worth noting that EVPP looks promising. One of
the advantages of EVPP or ERPP is that it is not necessary to determine the optimal block
partitions for a new machine. The performance of all six algorithms for the general sparse
problem NIMBUS is worse than that for regular grid problems because of the unbalanced
supernodal elimination tree associated with NIMBUS. Speedups for problem GRID100 are
shown in Table 10.

6. Concluding remarks. We have described an efficient block-oriented approach to par-
allel multifrontal sparse QR factorization on distributed-memory multiprocessors. We have
proposed novel block schemes for partitioning frontal matrices and explored a spectrum of
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TABLE 10
Speedups on problem GRID100.

No. procs ERP1 ERP2 ERP ERPP EVP EVPP
2 1.78 1.98 1.96 1.95 1.96 1.95
4 2.56 3.86 3.85 3.73 3.82 3.75
8 3.12 6.15 6.92 6.38 6.90 6.45
16 4.22 9.75 10.80 10.45 11.87 11.15
32 5.59 12.40 15.39 16.25 18.42 16.84

block partitioning schemes ranging from the conventional single-row partition to the block
partition with maximal block size. Our block-oriented approach results in an efficient par-
allel sparse QR factorization algorithm with low communication costs, relatively balanced
arithmetic work distribution among processors, and a fast parallel-numerical kernel due to the
enhanced cache utilization. We have presented both complexity results of our parallel algo-
rithm for regular grid problems and experimental results of an implementation of our parallel
algorithm on an Intel iPSC/860 machine. We have demonstrated that our new block-oriented
algorithm achieves significant improvement in performance over the conventional nonblock
algorithm [5].

Our approach is especially suitable for machines that communicate long messages much
more efficiently than they communicate short messages, such as the IBM SP1 system, since
relatively long messages are used in our algorithm. An implementation of our parallel sparse
QR factorization algorithm on an IBM SP1 system is currently being pursued. We are also
extending our algorithm to compute the QRfactorization ofa sparse matrix withrankdeficiency
in parallel.

In the implementation of our parallel sparse QR factorization algorithm, the orthogonal
matrix Q is not computed since it is often too expensive to store Q in the main memory when
A is large. A sparse linear least squares problem minx IIAx b is solved by applying the
orthogonal transformations to the right-hand-side vector b during the sparse QR factorization.
This approach is numerically backward stable. However, the right-hand-side vector must be
available before A is factorized. The method of corrected seminormal equations (CSNE)
proposed by Bj6rck [4] can be used to handle new right sides without storing Q. Bj6rck [4]
has shown that the CSNE method is, in general, as accurate as the QR factorization method.
However, it is not always backward stable and may not be accurate for "stiff" problems. A
parallel multifrontal algorithm for solving sparse linear least squares problems on distributed-
memory multiprocessors based on the CSNE method is described in [31].
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A PARALLEL ALGORITHM FOR THE SYLVESTER OBSERVER EQUATION*
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Abstract. We present a new algorithm for solving the Sylvester observer equation arising in the context of the
Luenberger observer. The algorithm embodies two main computational phases: the solution of several independent
equation systems and a series of matrix-matrix multiplications. The algorithm is, thus, well suited for parallel and
high-performance computing. By reducing the coefficient matrix A to lower-Hessenberg form, one can implement
the algorithm efficiently, with few floating-point operations and little workspace. The algorithm has been successfully
implemented on a CRAY C90. A comparison, both theoretical and experimental, has been made with the well-known
Hessenberg-Schur algorithm which solves an arbitrary Sylvester equation. Our theoretical analysis and experimental
results confirm the superiority of the proposed algorithm, both in efficiency and speed, over the Hessenberg-Schur
algorithm.

Key words. Sylvester observer equation, parallel algorithm, orthogonal factorization, shared-memory paral-
lelism, Hessenberg-Schur algorithm
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1. Introduction. The Luenberger observer problem (see 12]) for the control system

(1) Ax + Bu,
y=Cx

arises frequently in control theory. Its solution leads to a Sylvester-type matrix equation:

(2) AX- XH CV.

In contrast with the usual Sylvester equation, here only A and C are given, while X, H, and V
are to be chosen to satisfy certain requirements. We call (2) the Sylvester observer equation.
The requirements for choosing H and V are as follows:

(3)

H must be stable; that is, all the eigenvalues ofH should
have negative real parts.
The spectrum of H must be disjoint from. that of A (to
ensure that X is the unique solution of (2)).
V must be such that (nt, Vt) be controllable; that is,
the matrix

Vt, HtV (Ht)n-lv

has rank n.

Since we are free to choose H as long as it satisfies the above criteria, we can choose it as
a block upper-Hessenberg matrix with a suitable preassigned spectrum. It can then be shown
quite easily that, for this particular structure of H, and

v=(0, 0 0,
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partitioned conformally, (Ht, Vt) is controllable. This choice of V then reduces (2) to the
form

(4) AX-XH--( O, 0 O, C ),
where A is a given an n n matrix, C is an n x r matrix, H is a chosen n x n block upper-
Hessenberg matrix with a preassigned spectrum, and X is an n n matrix to be constructed.
Because we can always choose V in this fashion, we simplified the notation in (2) by using
C as shorthand for C (:, n r -t- 1 n). It should be clear from the context whether the whole
matrix or only its last r columns are meant.

If W is an invertible matrix, (2) is equivalent to

(5) (WAW-1)(WX) (WX)H (WC)V,

and so one can reduce the complexity of the problem by applying a suitably chosen similarity
transformation to A. For example, if we were to apply the well-known Hessenberg-Schur
method developed by Golub, Nash, and Van Loan 10] for the usual Sylvester equation, to the
Sylvester observer equation (4), A would be reduced to Hessenberg form and H to real Schur
form (RSF). The RSF of a matrix is a quasi-triangular matrix in which the diagonal entries
are either 1 1 or 2 x 2 matrices (see 11]). Because the matrix H can be chosen for the
Sylvester observer equation, one can choose it in RSF with a desired set of eigenvalues on
the diagonal and then easily solve for the columns of X. This approach, though numerically
effective, does not offer as good a potential for parallelism as the proposed method. A more
detailed discussion of this method, from the point of view of solving the Sylvester observer
equation, is given in 5.

Another possible approach is the methodsuggestedby VanDooren [9]. It uses an observer-
Hessenberg form for the pair (A, C) in which both A and C are put in certain condensed forms.
This approach also requires knowledge of the eigenvalues of the matrix A and is recursive.
Like the Hessenberg-Schur method, it computes the columns of X sequentially and does not
offer much scope for the exploitation of parallelism.

Yet another approach, based on Arnoldi’s method, has recently been proposed by Datta
and Saad [3] for the case where C is a vector. It constructs an orthonormal solution to equation
(4). The method is suitable for large and sparse problems but does not offer much scope for
parallelism.

In this paper, we present a simple yet efficient method for solving (4) which is well
suited for parallel and high-performance computers. The method is a block generalization
of Datta’s method [2] for the case when r 1. In the case where C is n x r, r > 1, our
method entails solving a total of n independent systems of equations to compute the first r
columns of X, and then obtaining the other columns of X, r at a time, essentially through
matrix-matrix multiplications. Like the Hessenberg-Schur method, our approach assumes
that A is a Hessenberg matrix, and we will not concern ourselves with the reduction of A to
Hessenberg form, or the backtransformation of the solution. That is, unless otherwise noted,
we assume in the sequel that A in (4) is a lower-Hessenberg matrix. We also note that in
our approach, H will be chosen to be a block lower-bidiagonal matrix, with the blocks being
diagonal themselves.

We also point out that parallel algorithms for control problems are virtually nonexistent,
with only a few algorithms being proposed in recent years (for references to these algorithms,
see the recent survey papers of Datta [4] and [5]). The need for expanded research in this area
has been clearly outlined in a recent panel report 13].

The outline of the paper is as follows. In the next section we present the algorithm and
prove its correctness. In 3 we describe how this algorithm can be implemented efficiently. We
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show that by initially reducing A to 10wer-Hessenberg form, and by employing an orthogonal
reduction to solve the equation systems, we can fully exploit parallelism in the solution of the
independent equation systems, while requiring little additional workspace. In 4 we report
on results obtained on a CRAY C90 shared-memory multiprocessor. In 5 we show how to
modify the Hessenberg-Schur method for solving the Sylvester observer equation. Results
of its parallel implementation are also presented as a means of comparison with the proposed
method. Last, we summarize our results and outline directions of further research.

2. The algorithm. In this section we present our algorithm for solving the Sylvester
observer equation and prove its correctness. To repeat, we are trying to solve

(6) AX XH (0, C),

where A and C are given n x n and n x r matrices, respectively; X is the sought-after n n
solution matrix; and H is an n n matrix that we can choose as long as it satisfies the
requirements of (3). In our algorithm we choose

(7) H

All

A21 "’.

o

Ak,k-1 Akk

Let

() 11, . 12 lr) ()k1, k2 )kr

be the eigenvalues assigned to the diagonal blocks A 11 Akk ofthe blockbidiagonal matrix
H with off-diagonal blocks Ai,i-1. All of the blocks are of size r x r, where r is the number
of outputs or the number of columns of C, and k is the number of blocks such that rk n.
The subdiagonals Ai,i-1 containing the scaling factors of the ith block Xi will be computed
as a byproduct of our solution algorithm such that (6) holds. We partition X conformally such
that X (Xl Xk) where X (xli),..., xi)), and let C (1, Cr). In Figure 1
we give our algorithm to solve (6). We now prove the correctness of the algorithm.

THEOREM 2.1. The algorithm in Figure 1 computes the solution ofthe Sylvester observer
equation (6).

Proof. First, we notice from the block-Hessenberg structure of H in (6) that the blocks
Xi of the actual solution X are obtained from the blocks t of the computed solution by
the relation

Xi+lAi+l,i i’i+l AXi- XiAii, 1 k- 1,

where Ai+I,i of H contain the 2-norm of the columns of the computed solution ’i+1; that is,
(i+1) i1i+1)Ai+l,i diag(lll 112,. 112). Then the first two-block columns of (6) are related

by the relation

(8) ’2 X2A2,1 AX1- X1AI,1.

So if x)2) denotes the jth column of X2, then

^2) I1.)2) 112x)2) (A XI,j I)x)1,(9) Xj



PARALLEL ALGORITHM FOR SYLVESTER OBSERVER EQUATION 689

Compute X1, the first block of X:
For/= 1 r do

For j 1 k do
Solve (A .j,i 1)yj ci for yj

Oj (vIk/=I (’ji li))-1
l#j

Enddo
X}I) =I Olj yj

Enddo

Compute X9. X, the remaining blocks of X:
For/= 1,2 k- 1 do

i+1 AXi XiAii
(i+1) 1)Ai+I,/ diag(lll 112 I1i/ 112)

Xi+l i+1A-1i+l,i
End Do

FIG. 1. Algorithmfor the solution ofthe Sylvester observer equation.

or

(10) <2) I (A Xl,jI)xJl)z(2)J
IIj 112

The remaining blocks 3 k then satisfy

(11) i+1 Xi+lAi+l,i AXi XiAi,i, 2 k- 1.

If we denote Aj(i) to be the jth column of the ith block i (11) together with the diagonality
of Ai, implies

2(i)
J Jii)(i) 112.(i (A i-l,jI) (A .i-2,jI) (A .2,jI)

(A )1 jl,(1),j(i-2) (2)(12) Aj 11i-1)112 IIj liE IIj 112

Thus, X2 Xk are completely determined by X1.
Then, comparing the last block column in (6), we obtain

(13) AXk XA, C

or

(14) (A k,j I)xJg) cj, j 1 r.

Substituting (12) into (14), we obtain

(15)
(A .k.jI) (A .k-l,jl) (A )2,j I)

(A I,jI)xJ1)
Cj, j 1 r,

or

(16) (A .k,jl)(A )k-l,jI) (A )l,jl)XJ1)
jCj, j 1 r,
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where
k

l 1(11)i112)"(17)
i=2

Thus, if we solve the polynomial system
(1)

(18) .,,j pj(A)-l’jcj, where pj(x) (x ,k,j)(x ,k-l,g)... (x l,j),

forj 1 r,

we solve (6). U
As (18) indicates, the obvious bottleneck in a practical implementation of the algorithm

is the solution of the polynomial system pj(A)xJ1) j, where j /jcj"

(19) (A ).k,jI)(A )k-l,jI)... (A .l,jI)x) 1) j, j 1 r.

The obvious way of solving this system is to successively solve the linear systems

(20) (A ,i,jI)yi-1 Yi, k, k- 1 1

with Yk cj and yl x)1) the final solution. For a very small k, this might not pose
any problem. In general, however, it is not satisfactory as it is clearly too expensive. Direct
methods for factorization are excluded because A is assumed to be very large. A more effective
way, proposed in Datta and Saad [3], is as follows. If we define

k

(21) q(t) H(t Zji),
j=l

the desired solution xl) can be written as

k (A ,i,jI)-lj
(22) 3)1) il.= q’(,i,j)

In other words, all we need is to solve k independent linear systems

(23) (A ,kj,i l)yj i, j 1 k,

and then we obtain x1) as the linear combination

k

(24) .xl) otiYi,
where

i=1

-1

In our experience, this approach for solving the matrix polynomial does not result in any
stability problems for the solution of the Sylvester observer equation for different values of
the output parameter. This experience is in line with the results in [3].

We note here that the algorithm in Figure 1 will break down if any of the eigenvalues of A
and H are close: step 1 or (23) will be singular. By using an appropriate test matrix generator,
however, we can guarantee that their spectra do not intersect. In general, we have observed
experimentally that the spectra of H and A do not intersect for random matrices, although
there is a small probability that they might.
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3. Efficient implementation on a shared-memory multiprocessor. In this section we
develop an efficient parallel algorithm for the Sylvester observer equation on a shared-memory
multiprocessor.

The overall performance of the algorithm hinges critically on efficiently exploiting the
apparent parallelism in the computation of X1, where we have to solve n equation systems
(A ji l)yj ci. Omitting indices for simplicity, we can either use Gaussian elimination
or an orthogonal decomposition.

Gaussian Elimination: We decompose (A .I)P LR, where L is lower triangular,
R upper triangular, and P a permutation, then solve the triangular systems Lw c
and Rz w, and, last, undo the permutation by computing y Pz.

Orthogonal Decomposition: Here we have two choices:
QR Factorization: Decompose (A -.I) QR, and solve Ry Qrc.
LQ Factorization: Decompose (A )I) L Q, solve Lz c, and compute
y= Qrz.

Again, L and R are lower and upper triangular, respectively, and Q is orthogo-
nal. Note that, in contrast to the Gaussian elimination approach, no pivoting is
required.

Because we are not interested in the factorization of (A )ji I) per se, but only in the
solution of the equation systems (A .i I)y ci, we can perform a forward solve involving
a lower triangular matrix L at the same time that we compute L during the factorization.
By the same token, we can apply the orthogonal matrix Q to c on the fly if we use the QR
factorization.

The drawback is that in both Gaussian elimination and the QR factorization we have to
store the upper triangular matrix R, because we cannot start a backsolve involving R before its
last element has been computed. Because A is assumed to be dense, both Gaussian elimination
and the QR factorization produce a dense upper triangular factor R, which requires a storage
of O (n/2) words per equation system.

On the other hand, if Q does require little storage, an LQ factorization is well suited. This
is the case when A is lower Hessenberg, because then Q can be computedby a sequence ofn 1
Givens rotations, requiting O(n) storage and only O(4n) flops overall. Assuming, as we have
done so far, that A is of lower-Hessenberg form, the Sylvester observer equation algorithm in
Figure 1 then requires the following:

1. the computation of X by solving a series of systems of equations with lower-
Hessenberg coefficient matrices, through an LQ factorization; and

2. the computation ofX X through a recurrence relation involving matrix-matrix
products of a lower-Hessenberg and a dense matrix.

As will be seen, the choice oflower-Hessenberg form for A allows us to fully exploit parallelism
while keeping extra working storage to a minimum.

3.1. Computing the first block of the solution. To compute the first block X1 of X, we
have to solve n independent systems of linear equations with a lower-Hessenberg coefficient
matrix. Each of the r columns ci of C is the right-hand side for k equation systems.

We have observed experimentally that the conditioning of the problem or the accuracy of
our results is not altered appreciably by varying the value of k relative to n, and we assume the
ratio k n/r to be a small constant. This is motivated by the need for obtaining an efficient
loop parallelism strategy, as discussed below.

The LQ solver for solving (A .I)y c is shown in Figure 2. Here we assume that
the vector y holds c on entry and that it contains the solution on exit. The vector ei is the th
canonical unit vector. Let P 1 -- n, 2 1 n -- n- 1] be a left cyclical shift. Then
(A )I)P [L, t], where L is lower triangular and is a colunm vector.
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Workspace: wl, 1/32, S and c, all n-vectors.
Wl and W2 hold the current columns of L
s and c store the (sin(qi), cos(4i)) pairs.
We also assume that A AP, P being the left cyclic shift.

(1) Initialization: wl A(:, n) .el, w2 A(:, 1) .e2
(2) Compute L and forward solve Ly c on the fly:

for/= 1 ton- 1

Generate(c(i) s(i))suchthat( -s(i) c(i)s(i))(wl(i))w2(i) (0).
(Wl(i n), w2(i n)) +- (wl(i n), w2(i n)) s(i) c(i)
y(i) +-- y(i)/w2(i)
y(i + l:n) +-- y(i + l:n)- y(i)w2(i + l:n)
ifi <n-lthen

w2(i + 1 :n) +-- A(i + l:n, + 1)-,ke2
endif

endfor
y(n) +-- y(n)/wl(n)

(3) Apply Qr to y:
for n- 1 downto

(y(i)) (c(i) s(i) )r(y(i) )y(n) +-- -s(i) c(i) y(n)

endfor
(4) Undo Permutation P:

y+--Py

FI6. 2. LQ solverfor (A .I)y c. On entry, the vector y contains the right-hand side c; on exit, it contains
the solution ofthe equation.

The use of an LQ factorization for a lower-Hessenberg coefficient matrix allows us to
compute the orthogonal factor Q, reducing [L, t] to a lower triangular form as a sequence of
n- 1 Givens rotations:

Q G1... Gn-,

where Gi involves columns and n. By solving the triangular system Lz c on the fly, we
need to store only two columns of L at any given time. Thus, if we solve p such systems in
parallel, we require storage for

n(n + 1)/2
(for the lower Elessenberg A)

4pn
(workspace for equation solvers

words. The other alternatives considered before (Gaussian elimination, QR factorization)
require O(pn2) storage instead. Our LQ solver requires roughly 4n2 flops to solve an n n
equation system: 3n2 flops for the computation of L and Q, and nz flops for the forward solve
Lz c. The original solution y is then obtained from y +-- P Qrz. The algorithm is shown
in Figure 2.

The partial drawback of this algorithm is that it employs vector-vector operations, which
in general do not perform well on high-performance processors because they require many
memory accesses per floating-point operation. (For a discussion of this issue, see, for ex-
ample, 1,7, 8].) If we allow more workspace per processor, we can partially overcome this
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b

FIC. 3. Partially completed LQfactorization.

A1

A2
A3

FIo. 4. Lower-Hessenberg matrix partitioned intofour block rows.

drawback and arrive at a variant that computes the forward solve Lz c with matrix-vector
operations. In particular, if we allow for b colunms of workspace for L, we do not have
to update the right-hand side y until b columns of L have been updated, while eliminating
the first b entries of the last colunm of A, as shown in Figure 3. After obtaining a strictly
lower triangular block, as discussed above, we can now compute the first b entries of y with
a triangular solve (BLAS2 routine STRSV),

y(1 b) T1-1 y(1 b),

and update the remaining entries of y with a matrix-vector multiplication (BLAS2 routine
SGEMV),

y(b + l n) +-- y(b + l n) T2 y(l b).

Therefore, instead of computing y one column at a time, the computation is carded out b
columns at a time. Thus, in the overall algorithm, roughly 25% of the work is now done by
using matrix-vector instead of vector-vector kernels.

3.2. Computing the remaining blocks of X. The computational performance of the
third step depends on the performance of the matrix-matrix product AXi. To achieve optimal
performance, we should compute this matrix-matrix product in parallel, employing matrix-
matrix multiplication as much as possible, While exploiting the lower-Hessenberg structure
of A. To this end, we partition A in block rows Aj of width b (not necessarily the same b
that is used for the equation solve) and compute AXi in a block rowwise fashion. That is,
we independently compute the first b rows of AXi by forming AIXi, the second b rows by
forming AEXi, and so on. in general, Aj will be a b x (j b + 1) matrix, with a trailing
zero upper triangle. A sample partition of A into four block rows is shown in Figure 4. Since
in general b << n, the computations involving zeros will account for only a small portion
of the overall computations performed. In particular, for b 1 we employ a matrix-vector
multiplication kernel, and no operations with zeros are performed.
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FIG. 5. Performance ofthe main kernels ofthe parallel Sylvester observer equation algorithm on a CRAY C90
(- proc., 4 procs 8 procs., 16 procs.).

4. Numerical results. We tested our parallel Sylvester observer equation algorithm on a
C.RAY C90/16256, a sixteen-processor vector machine with 256 Mwords of shared memory.
The CRAY C90 has two sets of vector units per processor, each producing two results per
clock-cycle, resulting in a peak performance of 16 Gflops.

As our test problem we generated matrices of dimensions

n 512, 1024, 1536, 1920.

To generate lower-Hessenberg matrices with the desired spectrum, we used the LAPACK
test matrix generator SLATME [6] to generate a dense nonsymmetric matrix with the desired
spectrum, used the LAPACK routine SGEHRD to reduce this matrix to upper Hessenberg form,
and then transposed the resulting matrix. In all cases k the number of blocks is 4, so r n/4.
We checked the accuracy of our results by computing fl(C) =- A.fl(Xk) fl(Xk).A,,
which, according to (13), should equal C. In all cases, fl(C) and C agreed to 12 digits.
This test is not only cheaper than the usual residual check, but the last block contains the
accumulation ofall the recurrences and thus is a good indicator ofthe accuracy ofthe algorithm.

The BLAS on the CRAY C90 were assembler implementations provided by Cray Re-
search, which exploit multiple CPUs in a fashion that is transparent to the user (unless they
are called within a parallel loop, as is the case when we compute the first block of X). Our
code obtained the performance and parallel efficiency shown in Figures 5 and 6, respectively.

The plots labeled "First Block of X" and "Remaining Blocks of X" correspond to the
two main steps of the Sylvester observer equation algorithm. Figure 7 shows execution rate
and efficiency of the two steps combined. In these figures, the solid, dashed, dotted, and
dash-dotted lines correspond to runs with 1, 4, 8, and 16 processors, respectively. Efficiency

rl 100, where Tp is the wall-clock time for executing any algorithm on pis defined as pp
processors. For all of the segments (i.e., system solutions and matrix products) we get the best
results, in general, for blocksize b 1.

Figure 5 shows that the AXi recursion ofthe parallel Sylvester observer equation algorithm
performs very well. This result is not surprising, because it relies on the highly optimized
assembler implementations of the BLAS.
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FIG. 7. Performance (left) and efficiency (right) oftheparallel Sylvester observer equation algorithm on a CRAY
C90 (- proc., 4 procs 8 procs., 16 procs.).

On the other hand, the computation of the first block of X runs much more slowly,
at slightly more than half the speed of the other transformations. This is because our on-
the-fly LQ solver relies only on BLAS 1 operations for all of its work and the number of
systems being solved. The fact that we blocked the computation of y did not result in any
improvement on this machine at most, 8% principally on smaller problems. As a matter
of fact, the performance advantage of the blocked version diminished for larger problems
because of an increased number of copies in and out of buffers. We also noted that, due to the
high internal bandwidth of the C90, the unblocked matrix-matrix multiply does much better
than the blocked version, usually performing around 25% faster. However, as the computation
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Compute Xk, the last block of X:
For/- 1 r do

()Solve (A k,i I)-i i
Enddo
A,_I diag(ll (g)l 112,. II) 112)

Xk )kA-1k.k-1
Solve for Xk-1 X1, the remaining blocks of X:

For j k- 1 1 do
For/= 1 r do

Solve (A )j.i "\’(j)l)x X:j+l).
Enddo

Aj,j-1 diag(ll:2j) 112 II:2j) 112)
Xj xj -1Aj,j_

Enddo

FIG. 8. The Hessenberg-Schur methodfor solution ofthe Sylvester observer equation.

of X1 and the computations of X2 Xk account for roughly 80% and 20%, respectively,
of the floating-point operations to be performed, the performance of the overall program ve
much reflects the performance of the LQ solver. There is little we can do about this situation,
since any other solver would require O (pn2) workspace, which is clearly undesirable.

On the other hand, by exploiting the parallelism inherent in the computation of X, our
algorithm scales very well with the number of processors, as the plots in Figures 6 ana 7
demonstrate. Not surprisingly, the parallel solution of the equation systems scales the best:
because there are many paralleljobs, all with the same computational requirements, the parallel
loop is almost perfectly load-balanced. This step is responsible for about half of all floating-
point operations, resulting in the high overall parallel efficiency of our code.

5. Comparison of the proposed algorithm with the Hessenberg-Sehur method. In
this section we make a performance comparison of our proposed parallel algorithm with
that of the Hessenberg-Schur method 10] adapted for the solution of the Sylvester observer
equation AX XH (0, C). The Hessenberg-Schur method solves the usual Sylvester
equation AX XH C, where the matrices A, H, and C are given and X needs to be
found. We first show how the Hessenberg-Schur method can be adapted for the solution of
the Sylvester observer equation (2).

In the Sylvester observer equation, the matrix H can be chosen arbitrarily as long as it
has a preassigned spectrum and its spectrum is different from that of A. Again, we choose H
block bidiagonal with r x r blocks as in (7). Then the Hessenberg-Schur method adapted to
the Sylvester observer equation can be described as given by the algorithm in Figure 8.

As assumed in our algorithm, A is also first reduced to Hessenberg form. However, there
are key differences in the two approaches. In the proposed new algorithm the first block X1 is
computed first, by solving n systems of linear equations in parallel, and the remaining blocks
are then computed recursively using higher-level BLAS operations. In the Hessenberg-Schur
algorithm, the last block Xk is computed first, by solving a system of r equations, while the
remaining blocks, obtained from the rear, are also obtained by solving systems of r equations
at a time. Hence step 2 of Figures 1 and 8 bear little resemblence. In the Hessenberg-Schur
approach, it makes sense therefore to parallelize the inner loop, because, as before, r is much
larger than k. So we spawn r parallel jobs k times, incurring a greater overhead than in
the proposed algorithm, where we spawn n parallel jobs once. Also, there are almost no
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opportunities for using higher-level BLAS operations in the Hessenberg-Schur algorithm,
except in the first step, common to both algorithms, for reducing the matrix to Hessenberg
form.

The experimental results on the C90 for the Hessenberg-Schur algorithm is shown in
Figure 9. A comparison of the performance graph of Figure 7 with Figure 9 shows that the
Hessenberg-Schur algorithm does not perform as well as the new proposed algorithm. For
example, for n 1536 and p 16, we obtain around six GFlops with the new algorithm and
around five Gflops with the Hessenberg-Schur approach--an improvement of around 20%.
Due to memory limitations (the Hessenberg-Schur method seems to require more space to
execute), we could not run the case n 1920.

6. Conclusions. In this paper we presented a new parallel algorithm for solving the
Sylvester observer equation. The algorithm is simple and relies on standard linear algebra
building blocks. The main computational steps are a reduction to Hessenberg form, the
solution of a series of independent equation systems, and a recurrence relation based on
matrix-matrix multiplies. These attributes, together with the parallelism in the algorithm, are
key requirements for an efficient implementation on a shared-memory multiprocessor. By
reducing the coefficient matrix to lower-Hessenberg form, we can implement our algorithm
with little additional workspace, thereby ensuring that we can solve big problems and that our
algorithm scales well with the number of processors. Experimental results on a CRAY C90
show that the algorithm is indeed well suited for a shared-memory multiprocessor. Also, a
comparison is made with the well-known Hessenberg-Schur algorithm.

At the moment we are working on a version of this algorithm that is suitable for a
distributed-memory multiprocessor. As in our current implementation, the key issue will
be an efficient implementation of the parallel equation solves and the limitation of workspace.
Research into sparse implementations is also in progress.
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PERFORMANCE OF PANEL AND BLOCK APPROACHES TO SPARSE
CHOLESKY FACTORIZATION ON THE iPSC/860 AND PARAGON

MULTICOMPUTERS*

EDWARD ROTHBERG

Abstract. Sparse Cholesky factorization has historically achieved extremely low performance on distributed-
memory multiprocessors. We believe that three issues must be addressed to improve this situation: (1) parallel
factorization methods must be based on more efficient sequential methods; (2) parallel machines must provide higher
interprocessor communication bandwidth; and (3) the sparse matrices used to evaluate parallel sparse factorization
performance should be more representative of the sizes of matrices people would factor on large parallel machines.
This paper demonstrates that all three of these issues have in fact already been addressed. Specifically, (1) single
node performance can be improved by moving from a column-oriented approach, where the computational kernel
is level BLAS, to either a panel- or block-oriented approach where the computational kernel is level 3 BLAS;
(2) communication hardware has improved dramatically, with new parallel computers (the Intel Paragon system)
providing one to two orders of magnitude higher communication bandwidth than previous parallel computers (the
Intel iPSC]860 system); and (3) several larger benchmark matrices are now available, and newer parallel machines
offer sufficient memory per node to factor these larger matrices. The result of addressing these three issues is
extremely high performance on moderately parallel machines. This paper demonstrates performance levels of 650
double-precision Mfiops on 32 nodes of the Intel Paragon system, Gflop on 64 nodes, and 1.7 Gflops on 128 nodes.
This paper also does a direct performance comparison between the iPSC/860 and Paragon systems, as well as a
comparison between panel- and block-oriented approaches to parallel factorization.

Key words, sparse Cholesky factorization, parallel machines, sparse matrices, scalability

AMS subject classifications. 65F05, 65F50

1. Introduction. Sparse Cholesky factorization is an extremely important computation.
It arises in a wide variety of application domains, including finite-element analysis, linear
programming, and semiconductor simulation. Sparse Cholesky factorization is extremely
time consuming and, consequently, there is substantial interest in obtaining higher factor-
ization performance. One seemingly promising approach is the use of distributed-memory
multiprocessors.

Unfortunately, parallel sparse Cholesky factorization results on distributed-memory mul-
tiprocessors have been disappointing so far [2, 8, 11, 15, 21]. Such machines have not yet
been shown to offer substantial advantages over alternative platforms for the computation.
Specifically, their performance has not been significantly higher than that of high-end unipro-
cessors available at the same time, and their performance has not been at all competitive with
the performance of vector supercomputers [4, 14, 20].

Webelieve there are three primary reasons for the disappointing performance ofdistributed-
memory multiprocessors for this computation. The first is that parallel factorization methods
have traditionally been based on inefficient sequential methods. Virtually all of these par-
allel methods distribute colunms of the matrix among the processors, leading to a level 1
BLAS computational kernel. Many researchers [1, 4, 14, 17, 18] have demonstrated that
sequential sparse factorization methods that are based on level 3 BLAS kernels [5] pro-
vide many times the performance of sequential methods that are based on level 1 kernels.
This paper considers two approaches to integrating level 3 BLAS operations into the paral-
lel computation. The first, a panel multifrontal method, distributes sets of adjacent columns
among the processors. The second, a block fan-out method, distributes rectangular patches.

*Received by the editors May 4, 1994; accepted for publication (in revised form) December 21, 1994. A
preliminary version ofthis paper appeared in Proceedings ofthe Scalable High-Performance Computing Conference,
IEEE Comput. Soc. Press, Piscataway, NJ, 1994, pp. 324-333.
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We demonstrate the advantages of the higher-level kernels by directly comparing perfor-
mance against previously reported performance numbers for a parallel column method [21]
on an iPSC/860 system. The improvements are significant on small machines but fall off for
larger machines.

The second reason for the low performance observed in earlier investigations is the fact
that earlier distributed-memory multiprocessors did not have sufficient communication band-
width to support the enormous interprocessor communication demands of parallel sparse
Cholesky factorization. Fortunately, multiprocessor communication hardware has improved
dramatically. For example, the Intel Paragon system provides one to two orders of magnitude
higher communication bandwidth than the earlier Intel iPSC/860 system. We will show that
communication bandwidth is now sufficient to support extremely high parallel performance
for this computation.

The third factor that limits parallel performance is the size ofproblems that have tradition-
ally been used as parallel sparse factorization benchmarks. While these problems often require
several hundred million floating-point operations to factor, they are still too small to make good
use ofeven a moderate number ofprocessors. This can best be observed by examining the task
dependency graphs that result from these sparse problems 18]. The critical paths in the task
graphs for these problems are too long to allow more than a small number of processors to be
productively employed in the factorization. The limited size of these benchmark matrices has
probably been motivated by the small amount of memory available on each node of a parallel
machine. Fortunately, parallel machines are now available with substantially more memory
per node. It is our beliefthat the matrices that have been used as benchmarks are unrealistically
small, and that the larger matrices we will consider in the latter part of this paper are more
representative of the sparse matrices people will want to factor on large parallel machines.

Overall, this paper demonstrates the following results. First, it demonstrates that both
panel- andblock-orientedmethods produce higherperformance than colunm-oriented methods
on the iPSC/860 system. However, the improvement falls off with an increasing number of
processors, primarily because communication costs begin to dominate. These alternative
methods do not significantly reduce these costs. Second, the paper demonstrates that the
Paragon system provides substantial performance advantages over the iPSC/860 system. We
observe factors of three or more performance improvement on 32 or 64 processors for the
traditional benchmark matrices. Third, the paper demonstrates that the block fan-out method
produces significantly higher performance than the panel multifrontal method on larger parallel
machines. Finally, this paper demonstrates that for large sparse problems, a distributed-
memory multiprocessor is capable of producing extremely high factorization performance.
We demonstrate factorization performance on the Paragon system in the range of 650 double-
precision Mflops on 32 processors, 1 Gflop on 64 processors, and 1.7 Gtlops on 128 processors.

We should note that the factorization methods we consider in this paper, the panel multi-
frontal method and the block fan-out method, have been described and investigated previously
16, 18]. The main contributions of this paper are its direct comparison of these two methods
on widely available parallel machines and its direct comparison of the performance of two
generations of parallel machines for this important computation.

The organization of this paper is as follows. Section 2 provides a short background on
sparse Cholesky factorization and the parallel methods we use to perform the computation.
Section 3 describes our experimental environment, including the sparse matrices we use as
benchmarks and the machines on which we factor these matrices. Section 4 looks at parallel
factorization performance, comparing the performance ofthe panel multifrontal and block fan-
out methods on the iPSC/860 and Paragon systems. Section 5 then considers the performance
improvement that comes from factoring larger problems on the Paragon system. Finally, 6
presents a brief discussion, and 7 presents conclusions.
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FIG. 1. Supernodai structure ofa sparse matrix.

2. Sparse Cholesky factorization.

2.1. Computation structure. The goal of sparse Cholesky factorization is to factor a
sparse-symmetric positive-definite matrixA into the formA LLT, whereL is lower triangular
with positive diagonal elements. This is typically accomplished in three steps. The first step,
heuristic reordering, reorders the rows and columns of A using a heuristic such as multiple
minimum degree 12] or nested dissection [9] to reducefill in the factor matrix. The second
step, symbolicfactorization, performs the factorization symbolically to determine the nonzero
structure ofthe factor matrix after all fill has occurred. This step allocates storage for the factor
matrix. The third step, numericalfactorization, computes the actual numerical values in L.
We refer the reader to [9] for more information. We concentrate on the numerical factorization
step in this paper, since it is by far the most time consuming.

The following pseudocode performs Cholesky factorization:
I. Set L-- A
2. for k 1 to n do
3. for i k to n do
4 Lik :-- Lik / sqr t (Lkk)
5. for j k + 1 to n do
6. for i j to n do
7. Lij :: Lij-- Lik Ljk
For a sparse matrix, the factorization would only perform operations on nonzeros in the

matrix, and it would only store these nonzeros. Thus, the loops in steps 3, 5, and 6 would
iterate over a subset of all possible values (the subset is easily determined from the structure
of the sparse matrix).

Sparse factorization is typically expressed in terms ofcolumns ofthe sparse matrix. Within
a colunm-oriented framework, steps 3 and4 above canbe thought ofas a single colunm division
or cdiv(k) operation. This operation divides all nonzeros in a column by the square root of its
diagonal. Steps 6 and 7 form a column modification or cmod(j, k) operation. This operation
adds a multiple of column k into column j.

2.2. Supernodal structure. A crucial notion for improving the performance of sparse
factorization is that of the supernode [4]. A supernode is a set of adjacent columns in the
sparse factor matrix whose structure consists of a dense triangular block on the diagonal and
identical nonzero structures in each column below the diagonal. Supernodes arise in any sparse
factorization, and they are typically quite large. Figure 1 gives an example of the structure
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of a typical factor matrix. The shaded areas represent nonzero values, and the vertical lines
delineate the supernodes.

The factorization computation can easily be expressed in terms of supernodes; there are
simple supernode analogues for the column-oriented operations described earlier. An sdiv(K)
would multiply supernode K by the inverse of its diagonal block. Similarly, an smod(J, K)
operation would modify the values in supernode J by those in supernode K. These supernode
analogues are rich in level 3 BLAS operations and, as a result, they lead to substantially higher
performance than the corresponding column versions.

Performance of the factorization can be further improved by performing supernode amal-
gamation [3] on the factor matrix before the factorization. Supernode amalgamation is a
process of identifying zero-valued locations in the matrix that would produce larger super-
nodes if they were treated as nonzeros and explicitly stored in the sparse representation. All
factorization methods we investigate in this paper perform supernode amalgamation before
the factorization.

In the context of parallel factorization, supernodes unfortunately represent too coarse of
a distribution grain. Some supernodes are so large that mapping them to a single processor
would cause load balance problems. The methods investigated in this paper divide supernodes
into finer-grain objects. Our panel multifrontal method divides supernodes into panels, which
are contiguous sets of columns from within the same supernode. Our block fan-out method
divides supernodes into rectangular blocks. We will describe the block decomposition in more
detail shortly.

2.3. Parallel sparse Cholesky factorization. We now briefly describe the two parallel
factorization methods we consider in this paper, the panel multifrontal method and the block
fan-out method. These methods have been described in detail elsewhere [16, 18], so this
discussion will omit the details and concentrate only on the aspects of these methods that are
relevant for this paper.

2.3.1. Panel multifrontal method. The panel multifrontal method is a simple variant
of the parallel column multifrontal method [2, 13]. The multifrontal method is quite compli-
cated, and its details are beyond the scope of this paper. We only discuss its most important
components here.

Perhaps the most important computational operation in the parallel column multifrontal
method is the column modification, or cmod(j, k). Recall that this operation adds a multiple
of column k of the matrix into colunm j. The multifrontal method structures the computation
in such a way that, even though columns j and k may have different nonzero structures, the
cmod(j, k) operation can be performed using dense matrix operations. For a column method,
the appropriate dense matrix operation is a DAXPY.

Another important operation in the parallel column multifrontal method is the column
multicast. In a parallel multifrontal method, modificationsfrom a particular colunm k are typ-
ically performed by several processors. Thus, once a colunm k has received all modifications
from other columns, it is multicast from its owner (each column has an owner processor) to all
processors that perform modifications with k as their source. We use a proportional mapping
scheme [15] to map columns and column modifications to processors. This scheme does a
good job of balancing the computational load among the processors while simultaneously
limiting communication volumes.

The panel version of the multifrontal method is quite similar to the column version.
The main difference is that the former distributes panels among the processors while the
latter distributes columns. The main computational operation becomes a panel modification,
pmod(J, K). It is performed as a dense matrix-matrix multiplication (a DGEMMusing BLAS
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FIG. 2. Block decomposition ofa sparse matrix.

terminology). The main communication operation is a panel multicast, which multicasts
coarser-grain panels instead of columns.

One detail about the panel multifrontal method that we must mention is how supernodes
are divided into panels. We do so by choosing a global panel width and dividing all super-
nodes in the matrix into panels of this width. Since supemode widths are not necessarily
multiples of the chosen panel width, there will sometimes be leftover panels. For example, if
the global panel width is 16, a supernode containing 60 columns would be divided into three
panels of width 16 and one panel of width 12.

2.3.2. Block fan-out method. The details of the block fan-out approach 16] are again
beyond the scope of this paper. We just describe the most important issues for this method,
which are (1) the decomposition of the sparse matrix into blocks, (2) the operations processors
perform on these blocks, and (3) the communication performed by the processors.

The block fan-out method partitions the colunms of the matrix (1 n) into contigu-
ous subsets ({1 P2 1}, {P2 P3 1} {PN n}), where N is the number
of subsets. All columns in a subset must be members of the same supernode. An identical
partitioning is performed on the rows. A block L J (we refer to subsets using capital let-
ters) consists of the set of nonzeros that fall simultaneously in rows {pi pl+l 1 and
columns {pj ps+l 1}. To form these subsets, we again choose a single global block
size and partition all supernodes into subsets of this size. Figure 2 gives an example of such
a decomposition.

Perhaps the most important operation in the block fan-out method is the block mod-
ification. A block modification, or bmod(L J, L K, Lj/), modifies one destination block
(LIj) using two source blocks (LII and Lj/). This modification is performed as a dense
matrix-matrix multiplication (or DGEMM). Blocks sometimes have sparse structure, which
may necessitate sparse operations in the bmod0 operation. Such operations are infrequent,
however.

To restrict communication volumes, blocks are mapped to processors using a scatter
decomposition [7]. In this mapping strategy, the processors are thought ofas a two-dimensional
(2-D) r-by-s-grid. A block LIK is mapped to processor (I mod r, K mod s) in this grid. All
block modifications are performed by the processor that owns the destination block. This
mapping, combined with the property that a block LIK can only modify blocks in block row I
or block colunm I, leads to the property that L K need only be sent to the row and column of
processors in the processor grid that own row I and column I of blocks. This property limits
communication volumes.
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We should memion that we do not perform a scatter decomposition on the entire sparse
matrix. It is possible to assign a large, comiguous set of columns of the matrix (typically
referred to as a domain [2]) to each processor. The remainder of the matrix (whose size is still
substamial) is then distributed among the processors using a scatter decomposition. The use
of domains reduces communication, since the matrix blocks in these domains do not have to
be communicated to other processors.

2.3.3. Important issues for parallel methods. We now briefly comment on some of the
more important properties of these parallel methods. In particular, we comment on four issues
that may affect parallel speedups and relative performance. We will refer back to these
issues throughout this paper when we investigate performance of the methods.

The first issue that may affect parallel performance is load imbalance. Recall that the
proportional mapping used for the panel multifrontal method does a good job of balancing
the computational load. In contrast, the block fan-out method uses a relatively rigid scatter
decomposition, which makes load balancing more difficult. The panel multifrontal method
will have better overall load balance.

A second issue that may affect performance is communication costs. For a k-by-k 2-D
grid problem, which requires O (k3) floating-point operations to factor, the panel multifrontal
method asymptotically generates O (k2 P) communication volume 10, 16]. The block fan-
out method generates O(sqrt(P)k2 log P) communication. Expressed as computation to
communication ratios, these methods perform O(k/P)and O(k/(sqrt(P)log P)) floating-
point operations per communicated word, respectively. Similar growth rates apply for other
sparse problems. While these growth rates favor the block approach, the measured differences
turn out to be small for 64 or fewer processors. For the problems we consider, the difference
in communication volumes between the column multifrontal method, the panel multifrontal
method, and the block fan-out method is always less than 30%. Furthermore, none of the
three methods always produces either the most or the least communication. Communication
volume issues therefore do not favor one method over the other in this study. Communic-
ation volumes are extremely high, however, and they will affect performance for both methods.

The other important cost associated with communication, the fixed cost of sending a
message between processors, is not very important for either the panel multifrontal or the
block fan-out method. Both methods group nonzeros into sufficiently large-grain messages
that the cost of sending a message is dominated by the bandwidth component of the message
send cost, not the fixed component.

A third issue that affects performance is the length of the critical path in the factorization
computation task graph. This critical path places a lower bound on parallel runtime, or,
equivalently, it places an upper bound on parallel performance. For a k-by-k 2-D grid problem
using a partition width of B, the critical path for a panel multifrontal method comains O(k2B)
floating-point operations and O(k2) words of communication. In contrast, the critical path
for a block fan-out method contains O(kB2) operations and O(kB) words of communication.
Expressed as maximum parallel speedups, these bounds give O (k/B) best-case speedup forthe
panel multifrontal method and O(k2/BE) speedup for the block fan-out method. In practice,
the critical path is much more constraining for the panel multifrontal method.

A fourth issue that affects parallel performance is single node performance. The panel
multifrontal and block fan-out methods are both based on level 3 BLAS kernels and they
both provide similar single-node performance. For larger numbers of processors, however,
the panel and block widths must be decreased to reduce the computational grain and increase
available concurrency. This will lead to lower per-node performance than would be obtained
for a sequential code, where there is no need to limit the panel or block sizes.
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TABLE
Benchmark matrices.

Problem name

GRID150
CUBE20
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK29

Eatio NZinA NZinL

22,500 111,900
8,000 53,600
3,948 117,816 684,655
4,884 290,378
10,974 428,650
11,948 149,090
13,992 619,488

Ops for
factorization

774,652 56,428,437
1,235,018 302,639,877

165,039,042
149,105,832773,384

1,054,402 144,280,005
738,935 140,919,771

1,757,352 393,059,150

One thing to note about these four issues is that each becomes less problematic with larger
problems. Load balancing becomes easier when there are more panels or blocks to distribute.
Computation-to-communication ratios increase with increasing k, reducing relative commu-
nication costs. Similarly, maximum parallel speedups due to critical path limits improve with
increasing k. Larger problems also allow larger panel or block sizes, which increase per-node
performance. We therefore expect higher parallel performance from larger problems.

When we investigate obtained performance in this paper, we will try to explain it in terms
of these four factors. Unfortunately, parallel performance cannot be perfectly explained in
this way. The intricacies of the parallel machine and of the sparse Cholesky factorization
computation make it impossible to account for every millisecond of parallel runtime. We
therefore use these factors to provide insight into the observed parallel behavior.

3. Experimental environment.

3.1. Benchmark matrices. Table 1 describes the matrices we use as initial benchmarks.
These include some of the larger matrices from the Harwell-Boeing sparse-matrix test set [6].
We also include simple 2-D and 3-D grid problems, which we refer to as GRID and CUBE
problems, respectively.

We use double-precision arithmetic for all factorizations in this paper. All matrices are
ordered using the multiple minimum degree ordering heuristic 12], with the exception of the
GRID and CUBE problems, which are ordered using nested dissection [9]. All Mflop numbers
in this paper are computed by dividing the total number of floating-point operations required
to factor the problem using a sequential method by the appropriate runtime. Floating-point
operation counts do not include operations introduced by the supernode amalgamation.

3.2. Parallel machines. As mentioned earlier, we perform our performance evaluation
using the iPSC/860 and Paragon distributed-memory multiprocessors. Both use a message-
passing programming model, wherein processors exchange data through explicit send and
receive commands.

The iPSC/860 system uses a 40 MHz Intel i860 XR processor at each node. The machine
we use has 64 nodes; 8 of these have 64 MBytes of memory and the other 56 have 8 MBytes
of memory. The interconnection network has a hypercube topology. The peak bandwidth
between two nodes is 2.8 MBytes per second.

The Paragon system uses a 50 MHz i860 XP processor at each node. The machine we use
has 140 nodes, all with 32 MBytes of memory. The Paragon system interconnection network
is organized as a 2-D mesh. Peak hardware communication bandwidth between two nodes is
200 MBytes per second. The machine we use is running release 1.2 of the operating system,
which delivers a peak application message passing bandwidth of 80 MBytes per second. We
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FIG. 3. Factorization performance on the iPSC/860 system.

measured roughly 40 MBytes per second of delivered bandwidth for the message sizes that
are typical for the factorization. This represents more than a factor of 10 increase in delivered
bandwidth over the iPSC/860 system.

It is often convenient to view the costs of communicating data between nodes in terms of
the costs of performing floating-point operations on the nodes. If we use computation rates
of 20 Mtlops for the iPSC/860 system and 25 Mflops for the Paragon system (reasonable ap-
proximations, as we will show), then the incremental cost of sending one floating-point datum
on the iPSC/860 system is roughly equal to the cost ofperforming 55 floating- point operations.
The corresponding number is 5 floating-point operations on the Paragon system.

3.3. Implementation details. Our implementations of both the panel multifrontal and
block fan-out methods are written in the C programming language, although we call the
vendor-provided, hand-coded BLAS library routines whenever possible. Note that the BLAS
routines on the machines we use cannot work with packed storage formats for triangular or
trapezoidal matrices. Consequently, we store an upper-triangular block of zeros at the top of
each panel in the panel multifrontal method and at the top of each diagonal block in the block
fan-out method. The storage costs associated with these zeros are small.

We use dynamic memory for all important matrix data structures. Panels and blocks
are stored as individually allocated objects. Similarly, temporary results (panel modifications
in the panel multifrontal method and blocks received from other nodes in the block fan-out
method) are stored in dynamically allocated blocks. We measured the costs of managing this
dynamic memory and found them to be negligible.

We note that the iPSC/860 and Paragon systems are source-code compatible. We use the
identical factorization codes on both. We also note that the Paragon system is a virtual-memory
machine. To eliminate paging effects, our codes perform four factorizations in succession and
report the best of the four runtimes.

4. Parallel performance.

4.1. iPSC/860. We now look at parallel performance of the panel multifrontal and block
fan-out methods on the iPSC/860 system. Figure 3 shows factorization performance on 1 to
64 nodes. For the panel multifrontal method, the numbers in the figure give the best perfor-
mance obtained using a panel width of 16, 24, or 32. For the block fan-out method, the numbers
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FIG. 4. Relative performance (blockfan-out versus panel multifrontal) on the iPSC/860 system.

give the best performance obtained using a block size of 32, 48, or 64. We limit the number
of cases we look at to limit the time required to gather performance data. For both methods,
however, these partition size choices were observed to produce performance numbers that are
within a few percent of the best that we obtained with any partition size. One exception is
for large problems on a small number of nodes, where larger partition sizes that the ones we
considered may give better performance.

The data in the figure indicates that performance of these methods is quite low, even on a
large number of processors. Further investigation ofthe panel multifrontal method reveals that
the main factor that limits performance is the critical path. As an example, consider problem
BCSSTK!5. If we assume a per-word communication cost of 55 floating-point operations
(our estimate for the iPSC/860 system) and a panel width of 16 columns, then we find that the
critical path for this problem limits parallel speedups to roughly 6-fold, no matter how many
nodes are used. The corresponding bound for the larger BCSSTK29 is 7-fold speedup. Given
these performance bounds, it is not surprising that achieved performance levels are low. If
we look at the factors that contribute to this critical path, we find that communication costs
account for more than half, and computation costs account for the rest. Recall that the amount
of computation on the critical path can be reduced by reducing the panel width (at the cost
of reduced single-node performance). Communication costs on the critical path, on the other
hand, are unaffected by the panel width.

Now let us consider the performance ofthe block fan-out method on the iPSC/860 system.
To allow a more direct comparison between panel multifrontal and block fan-out performance,
Figure 4 shows the ratio of block fan-out performance to panel multifrontal performance for
our benchmark problems. Note that performance is quite similar for a small number of nodes
(with a few exceptions), and that performance diverges as the number of nodes increases. The
block fan-out method produces significantly higher performance for 64 nodes.

Further investigation reveals that there are two primary performance bottlenecks for the
block fan-out method on a large number of nodes. The first is load imbalance. As an example,
for problem BCSSTK15 on 64 nodes using a block size of 48 (the block size that gives the
best performance), the node with the most work assigned to it has 2.5 times more work than
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it would with a perfect load balance. The second bottleneck is communication costs. The
computation-to-communication ratio for our example is roughly 35 floating-point operations
per communicated word. Recall that one word of communication costs roughly the same as
55 floating-point operations on the iPSC/860 system. This means that, on average, a node
spends 1.6 times as much time communicating data as it spends performing computation. We
find that the node that must perform 2.5 times as much work as it ideally would also must
perform roughly 2.5 times as much communication as it ideally would. These two bottlenecks
lead to a best-case parallel speedup for this problem of around 11-fold. The corresponding
bound for BCSSTK29 is 12-fold. The critical path, which was quite constraining for the
panel multifrontal method, is not very constraining for the block fan-out method. It limits
parallel speedups to around 18-fold and 22-fold for BCSSTK15, and BCSSTK29, respectively.
Overall, the performance upper bounds are much less constraining for the block fan-out method
than they are for the panel multifrontal method. The result is higher performance on larger
numbers of processors.

To evaluate the advantages of a panel or block approach to the computation over a more
traditional colunm method, we now compare the performance numbers for our panel multi-
frontal method against the best performance numbers we are aware offor a column multifrontal
method on the iPSC/860 system [21]. Figure 5 shows relative performance for two matrices
where our studies overlap. Notice that the panel method gives roughly 80% higher perfor-
mance for small numbers of nodes, but the performance difference decreases with increasing
numbers of nodes. The reason is simply that the panel method improves per-node perfor-
mance but increases the length of the critical path. Critical path costs are the more important
determinant of performance when using more than a few nodes.

We therefore find that the block fan-out method provides higher performance than the
panel multifrontal method on the iPSC/860 system, and both provide higher performance than
a column approach. However, none of these methods can truly overcome the performance
limitations that we observed on this machine.

4.2. Paragon. We now investigate factorization performance on the Paragon system.
Figure 6 shows absolute parallel factorization performance on 1 to 64 nodes, and Figure 7
compares the performance of the Paragon system against that of the iPSC/860 system for both
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FI6. 7. Performance improvement on the Paragon system (relative to the iPSC/860 system).

the panel multifrontal and block fan-out methods. The figures show that the Paragon system
provides substantially higher performance, and that the performance improvement grows as
the number of nodes is increased. Improvements on 32 or 64 nodes are between 2.5-fold and
3.5-fold, depending on the matrix and the method.

These observed performance improvements can be better understood as follows. First,
we note from the figures that the Paragon system provides higher single-node performance
than the iPSC/860 system (roughly 40% higher for the panel multifrontal method and roughly
50% higher for the block fan-out method). Reasons include (1) a 25% increase in processor
clock speed, (2) a factor of two increase in cache size (from 8 KBytes to 16 KBytes), and (3)
the addition of a quad-word load instruction, which reduces the cost of fetching data from
memory.

To better understand the performance increase for the panel multifrontal method, recall
that on the iPSC/860 system the primary performance bottleneck for this method on a large
number of processors was the critical path length. More than half of this critical path was
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due to interprocessor communication costs. On the Paragon system, communication costs are
reduced by a factor of more than 10. As a result, the overall critical path is roughly halved in
length. Equivalently best-case parallel speedups are roughly doubled. When one combines
this doubling in best-case speedup with a 40% improvement in single node performance, one
finds that the improvement in observed performance is quite similar to the improvement in the
performance bound.

For the block fan-out method, recall that the main performance bottleneckon the iPSC/860
system was the uneven distribution of work and communication among the nodes. The work
distribution naturally has not changed. However, the communication costs, which magnified
the performance impact of this imbalance by more than a factor of two, have been reduced
by a factor of more than 10. The performance bound is therefore improved by roughly a
factor of two. This factor of two improvement, combined with the 50% improvement in node
performance, is consistent with the observed overall performance improvement.

Let us now compare the performance of the panel multifrontal and block fan-out methods
on the Paragon system. Figure 8 shows relative performance numbers. This figure shows that
the block fan-out method again produces significantly higher performance for larger numbers
of nodes.

While parallel factorization performance is substantially higher on the Paragon system
than it was on the iPSC/860 system, it is still not outstanding. As an example, we obtain
roughly 300 Mflops for BCSSTK15 on 64 nodes, or roughly 5 Mflops per node. Considering
that the sequential code produces nearly 25 Mflops on a single node, the nodes in the parallel
method are clearly not being very well utilized. Our performance analysis indicates that the
main performance bottleneck for the panel multifrontal method on the Paragon system is
the cost of the floating-point operations on the critical path. The critical path length can be
reduced by decreasing the panel width, but this leads to a drop in per-node performance. The
decrease was observed to cancel the advantage of the shorter critical path. For the block fan-
out method the main bottleneck is load imbalance. Again, this bottleneck can be improved
by moving to a smaller block size, but the advantage was again observed to be cancelled by
the resulting drop in per-node performance. The real solution in both cases is to consider
larger problems.



PANEL AND BLOCK SPARSE CHOLESKY FACTORIZATION 711

TABLE 2
Larger benchmark matrices.

Problem name Equations NZ in A NZ in L Ops for
factodzation

BCSSTK31 35,588 1,181,416 5,485,320 2,550,990,053
COPTER2 55,476 759,952 13,556,728 11,377,269,959
CUBE30 27,000 183,600 6,980,825 3,904,329,794
CUBE35 42,875 292,775 13,347,541 10,114,682,189
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FIG. 9. Paragon system performancefor larger problems.

5. Larger problems. It is our belief that the matrices we have considered so far, which
are some oflargest matrices in the Harwell-Boeing sparse-matrix test set, are not representative
ofthe size ofproblems that people would want to solve on a large parallel machine. We believe
that the primary reason these matrices have been used as benchmarks in the past is simply
that larger matrices would not fit in the memories that were available on earlier machines.
Fortunately, the larger amounts of memory available on newer parallel systems allow us to
consider much larger problems. We now look at performance for matrices that are perhaps
more appropriate factorization benchmark matrices for large parallel machines. Table 2 gives
descriptions of these matrices. Problem BCSSTK31 is the largest problem in the Harwell-
Boeing collection. Problem COPTER2 comes from a model of a helicopter rotor. It was
given to us by Horst Simon at NASA Ames. The other two problems are simple 3-D grid
problems. Note that these matrices are by no means unrealistically large. Even the largest
one, COPTER2, requires only a few minutes to factor on a high-performance workstation (and
a few seconds on a parallel machine).

Figure 9 shows factorization performance for these matrices on 32, 64, and 128 nodes
of the Paragon system. Note that performance for these larger problems is extremely high.
We obtain as much as 1.7 Gflops on 128 nodes. Also note that the performance of the
block fan-out method diverges from the performance of the panel multifrontal method with
increasing numbers of nodes. On 128 nodes, the block fan-out method provides roughly
70% higher performance than the panel multifrontal method. Further analysis reveals that the
performance ofthe panel multifrontal method is again constrained by the critical path for these
larger problems on 128 nodes. The improved scalability of the block fan-out method appears
to become extremely important for these problems when more than 64 nodes are used.
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6. Discussion and future work. The results of this paper demonstrate that it is possible
to obtain very high performance for sparse Cholesky factorization on a distributed-memory
multiprocessor. Indeed, the Paragon system is quite competitive with vector supercomputers
for this computation. The 650 Mflops performance of a 32-node Paragon system is more
than twice the performance of one CRAY Y-MP processor 14, 20]. Similarly, the 1.7 Gflops
performance ofa 128-node Paragon system is more than five times the performance ofa CRAY
Y-MP processor.

An obvious next step is to try to obtain even higher performance by using a larger number
of nodes. We believe that the block fan-out method is the more promising of the two methods
we have considered for doing this. One reason is that the block fan-out method produces
asymptotically shorter critical paths than the panel multifrontal method. The critical path
limited panel multifrontal performance on 128 nodes, so we would expect it to severely limit
performance when using more nodes. A second reason is that the block fan-out method
requires asymptotically less communication than the panel multifrontal method. The growth
rate difference did not lead to a significant difference in communication volume on 128 or
fewer nodes, but the communication volume difference would increase with increasing P.

We should note that one important piece missing from the scalable sparse factorization
puzzle is scalable preprocessing. For this study, we performed most of the preprocessing
sequentially, often on a separate workstation. The performance of the numerical factorization
code is now sufficiently high that the preprocessing phases can require as much time as the
parallel factorization. We are currently investigating parallel approaches to heuristic reordering
and symbolic factorization.

7. Conclusions. This paper has investigated the impact of new technologies on parallel
sparse Cholesky factorization performance. Specifically, we considered the impact of new
algorithms (the panel multifrontal and block fan-out methods) and new hardware (the Intel
Paragon system).

On the algorithm front, we found that these new algorithms improve parallel performance
substantially on small iPSC/860 systems, providing nearly a factor of two improvement over
a colunm method on eight nodes or fewer. With more nodes, however, the improvements are
much smaller. The main performance bottleneck for multifrontal methods on the iPSC/860
system, the cost of communicating data on the critical path, is not addressed by the panel
multifrontal method. The block fan-out method relieves this bottleneck, and it produces
significantly higher performance for large numbers of nodes. However, it still suffers from
several important bottlenecks. Parallel performance on the iPSC/860 system is still relatively
low.

On the hardware front, we find that the Intel Paragon system, which delivers an order of
magnitude higher communication bandwidth than the earlier Intel iPSC/860 system, provides
2.5 to 3.5 times the performance of the iPSC/860 system for large numbers of nodes (32
or more) using traditional benchmark matrices. Furthermore, we find that by considering
larger benchmark matrices, we obtain extremely high performance. The Paragon system
performs the factorization at 650 Mtlops on 32 nodes, 1 Gfiop on 64 nodes, and 1.7 Gflops on
128 nodes.

We conclude from this investigation that the factors that have historically limited parallel
sparse factorization performance have been overcome, and that distributed-memory machines
can now deliver extremely high factorization performance. We believe that these machines
are now quite appealing platforms for performing this important computation, and that they
will become increasingly so in the future.
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A STABLE HIGH-ORDER INTERPOLATION SCHEME FOR
SUPERCONVERGENT DATA*

STEVEN PRUESS AND HONGSUNG JINt

Abstract. A local collocation scheme is developed that yields stable high-order accurate interpolants of discrete
data arising from the numerical solution of a differential equation. It should prove to be especially attractive for
applications where data are superconvergent, e.g., spline collocation at Gauss points. For simplicity, the formulas
are initially developed for a scalar equation, but generalizations are later given for systems. Numerical examples are
shown that illustrate the stability, even for the case of highly nonuniform meshes which have proven difficult in prior
studies.
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AMS subject classifications. 65D05, 65L10, 65L60, 65L20

1. Introduction and mathematical background. Some difficulties encountered in at-
tempting to uniformly preserve the superconvergent accuracy of meshpoint approximations
to collocation solutions of two-point boundary value problems were discussed in Pruess [9].
While several of the piecewise polynomial interpolation schemes introduced there were ade-
quate on many examples, all suffered in some particular cases, especially when highly nonuni-
form meshes were used. The essential difficulty is the lack of sufficient superconvergent data
to produce high-order accurate uniform interpolants. To preserve the same order of accuracy,
if data from neighboring intervals are used, this leads to inaccuracies when local mesh ratios
are high (see [9] and [10]). In this paper we discuss and illustrate a means of overcoming
this difficulty; because it appears essential to use only local data, the missing information is
supplied by a local collocation of the underlying differential equation. The resulting algo-
rithms are straightforward for linear differential equations; extensions to nonlinear problems
by iteration on approximating linear problems should be self-evident.

Another alternative is to use an implicit Runge-Kutta approach. Cash [4] has developed
such formulas for first-order systems; their derivation is tedious, especially for higher-order
equations and for a variety of orders of accuracy. The collocation approach given here appears
to be much more direct and general; the determination of which approach is more efficient
will require comparison of specific implementations.

The remainder of this section presents the notation used and some mathematical back-
ground needed below. The next section contains material about Hermite-Birkhoff interpo-
lation which is needed to understand the behavior of the algorithms to follow. Section 3 is
concerned with developing the formulas for local collocation for a scalar equation; the stabil-
ity of the algorithm also is established. These ideas are generalized to systems of differential
equations in 4; the final section contains numerical examples.

While it is more practical to consider systems of differential equations, for simplicity we
begin with a scalar linear differential equation:

(1.1)
m

Dmu cj(x)DJ-lu + f(x)
j=l

*Received by the editors October 22, 1993; accepted for publication (in revised form) December 20, 1994. This
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Mines.

Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO 80401-1887
(spruess@slate.mines.edu, hjin@mines.edu).
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for a < x < b. Of course, m boundary conditions also are needed, but because they will
not play a major role in this paper, their details are ignored. Here D denotes differentiation
with respect to x. We assume that the coefficient functions in equation (1.1) are "sufficiently
smooth" and that (1.1) and the boundary conditions are such that there is a unique solution
u(x) for each choice of f(x).

All approximate solutions considered will be piecewise polynomials. The set of break-
points (also called nodes or meshpoints) for the pieces is denoted by A. With A {a X <

x2 < < XN+I b}, set hn Xn+l xn and h maxhn. The symbol Pg, A denotes the
space of piecewise polynomials of order k (degree < k) with breakpoints in A.

If collocation at Gaussian points (e.g., see de Boor and Swartz [2]) is used to produce an
approximation t (x) in Pm+,A f’)cm-l[a, b] to the exact solution u(x), then for j 1, 2 rn
the errors satisfy (when k > rn)

(1.2) [DJ-lu(xn) DJ-ll(Xn)[ <_ Ch2k

at the breakpoints. At general points x not in A,

(1.3) [DJ-lu(x) DJ-I(x)[ <_ Chm+k-j

for some generic constant C. Hence, superconvergence occurs as long as k > m. Supercon-
vergent accuracy on a discrete set of points also occurs when Galerkin approximations are
used; e.g., see Bramble and Schatz [3] or Zlamal [11].

In Pmess [9] several high-order interpolation schemes were derived in an attempt to
preserve the superconvergent accuracy. While all were proven to have uniform O (h2) errors
as h --+ 0, as previously mentioned, the actual errors for typical meshes were not satisfactorily
small. Mathematically, nearly all the methods presented had large constants (involving local
mesh ratios) in the h2 term in the error expansion. We view this as a case of "instability":
the small errors in t at meshpoints were magnified by the interpolation schemes used. In 3
we present a family of methods which does not suffer from this difficulty; i.e., the uniform
error in the interpolation scheme has the same O(h2) accuracy but the error constant does
not contain mesh-dependent quantities.

2. A I-Iermite-Birkhoff interpolation problem. In this section we digress with a dis-
cussion of a particular Hermite-Birkhoff interpolation problem which will be used to explain
the behavior of the algorithms developed in later sections. The problem is the following.

Given integers m and k with k > m, sone sufficiently smooth function f(x), and a set
of points ’i in [- 1, 1], find a polynomial p(x) of order 2k satisfying

1. (DJ-lp)(-1) (vJ-Xf)(-1) for j 1,2 m;
2. (vJ-lp)(1) (vJ-lf)(1) for j 1, 2 m;
3. (Dmp)(i) (Dmf)(i) for 1, 2 2k 2m.

Of course, it is well known that, in general, there may be no solution or many solutions to
Hermite-Birkhoff problems. Some references for theory on Hermite-Birkhoff interpolation
are [5], [7], and [81. A Hermite-Birkhoff problem is said to be poised if for zero data (f 0)
the only solution is p(x) =- O. In the thesis of Jin [6] it was shown that the stated problem
(for typical k and m) is poised for most choices of points including the important ones (for the
algorithms in 3 and 4) of uniform, either open (not including 4-1) or closed (including 4-1).
This was done by explicitly calculating the determinant of the coefficient matrix associated
with the interpolation conditions using a monomial representation of p(x). In contrast, it was
noticed that the choice of Gauss points (zeros of Legendre polynomials) was not poised for
most k and m. The latter can be easily shown without computing any determinants.

LEMMA 2.1. Assume

(2.1) p E P2t;
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(2.2) DJ-lp(+l) Ofor j 1, 2 m;

(2.3)

Then q Drop satisfies
(2.4)

Dmp(i) ---Ofor some {i} G [-1, 1].

q E e2k-m,

(2.5) q ((i) 0,

fl(2.6) tJ-q(t) dt Ofor j 1, 2 m.

Moreover, ifq satisfies (2.4)-(2.6)then p, the ruth antiderivative ofq with p(-l(-1) 0

for j 1, 2 m, satisfies (2.1)-(2.3).
Proof. The consequences (2.4) and (2.5) are trivial; (2.6) follows inductively using re-

peated integrations by parts. Conversely, if (2.4)-(2.6) hold, then (2.1), (2.3), and half of (2.2)
follow trivially. To show that p(-l(1) 0 for j 1, 2 m, it is also straightforward
using integration by parts inductively.

Consequently, to show the stated Hermite-Birkhoff problem is not poised we can either
find a nonzero p satisfying (2.1)-(2.3) or a nonzero q satisfying (2.4)-(2.6).

THEOREM 2.2. The stated IIermite-Birkhoffproblem is notpoised when the set is the
set ofzeros ofthe (2k 2m)th degree Legendre polynomial L-m and 3m < 2k.

Proof. Let q L2-m; then for m < 2k 2m the conditions (2.4)-(2.6) trivially hold.
The condition that 3m < 2k is usually satisfied for typical choices of m and k arising

from two-point boundary value problems. In fact, because we are requiring k > m for
superconvergence, the condition always holds for first- and second-order differential equations.

3. Formulas and theory for a single equation. As in 1 we denote the superconvergent
approximation to the solution of the differential equation by fi (x). The final uniformly high-
order accurate approximation will be written t7 (x). We assume that has errors satisfying
(1.2)-(1.3) with k > m.

The approximation t7 (x) is characterized by the following.
1. t7 (x) is a piecewise polynomial of order 2k with breakpoints in A.
2. (DJ-lt)(Xn) (DJ-ll)(Xn) for 1 <_ j < m; Xn E A.
3. On each [Xn, Xn+l],

rn

(3.1) Dmft Z cjDJ-I + f
j=l

is evaluated at some in.
Since fi is a piecewise polynomial of order 2k, there are a total of 2kN coefficients in a

local representation. The interpolation conditions determine 2mN of these, leaving 2(k m)
to be determined by the collocation conditions (3.1). This says that there should be 2k 2m of
the ’s for each subinterval. These points will be referred to as the set ofsecondary collocation
points.

A local Hermite representation is used for fi; i.e., on [xn, Xn+l],

I(X) -(DJ-ll)(X+n)j --1 --+- 2 xn+l
X

k

( 2
x Xn(3.2) + Z(oJ-lfl)(X+l)di)j --1 -+-

j=l hn
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where j(t) satisfies

(3.3) (DV-Ij)(-1) O, 1 < v < k,

(3.4) (DV-Ij)(I) 8uj, 1 < v < k,

with D here denoting differentiation with respect to t.
Because there are the same number of secondary collocation points on each interval, it is

convenient to adopt the same relative spacing on each interval; i.e., write

(3.5)
hn

in Xn + (1 + (i)-’-

for some choice of (i in [- 1, 1 to be specified later. For simplicity, we additionally assume
that the {(i are chosen symmetrically; i.e., for some

O1 > 12 > > }Tk-m > 0,

we have (i -Oi for 1 k rn and (i l"]2k-2m-i+1 for k rn + 1 2k 2m.
Then the secondary collocation equations (3.1) become

k
(m) (_)j-m-1Z(oJ-l)(X+n )*j (-i)

j=l

(m)-- (nJ-lt)(X+l)fYPj ((i)
j=l

tn {kCv(in) (oJ-l)(XTn )lff)u-1)(--i
v=l j=l

"+" j=l(nJ-ll)(X+l)v-l) (i) "+" f(in)

for I _< _< 2k 2m. Rearranging this and using the fact that fi interpolates/ at the endpoints
of each piece, we have

(m) (in)dj)v-1)Z (nJ-il)(X+n) dpj (--(i) Cv (--(i)
j=m+l v=l

(3.6)

(m) (i@v- 11-Jr Z (DJ-lt)(x+1) di)j ((i) Cv(in) ((i)
j=m+l v=l

m+l-v

1-1)

rn {f(in) (DJ-l)(Xn) ()j (-i)
j--1

--Cv(in)()v-1)(--i) T
rn { ()j-m-1__(DJ-lfi)(Xn+l) (m)((i)
j=l

Cv(in)fJu-l) (i)
u--1

For each subinterval this is a linear system of2k 2m equations in the unknowns (Dj- t) (X+n)
and (DJ-II)(X+I) for rn + 1 < j < k.
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Note that the coefficient matrix on each subinterval is an O(h) perturbation of the one for
the corresponding (same k and rn) Hermite-Birkhoff problem in the previous section. Hence,
we would expect, for sufficiently fine grids, that the matrix is invertible for most choices of
the i and typical k and m. On the other hand, we would anticipate near singularity (ill con-
ditioning) if Gauss points are chosen for the secondary collocation points on problems where
3m < 2k. It should also be pointed out that for singularly perturbed differential equations the
O(h) change may in fact be an O(h/e) change for some small e, and, consequently, the value
of e has a major effect on the conditioning of the linear system.

In Jin [6] it is proven that when the associated Hermite-Birkhoff problem is poised,
then the projector associated with the local interpolation scheme is well defined (the above
coefficient matrix is invertible) and is bounded independently of the mesh. From this it is
straightforward to establish error bounds; the arguments follow those of [9] without the local
change of variable (see [6] for details). Assuming the associated Hermite-Birkhoff problem
is poised, the error has the expected form

(3.7) IDJ-lu(x) DJ-lFt(x)l < Ch2k-j+l

for j 1, 2 2k and any x in [a, b]. The constant C can depend on u (x) and its derivatives,
k, m, and the choice of {r/i }, but not the mesh. Numerical experiments (some displayed in 5)
confirm these rates of convergence.

4. Generalizations to mixed-order systems. As in [9] we consider the mixed-order
system of linear equations

p mj

(4.1) Dmt bll Clij oi-lttj -- fl, 1 < < p,
j--1 i=1

for x in [a, b]. Let

(4.2)
P

m* mj;
j=l

then m* boundary conditions also are needed.
Analogous to the scalar case, we denote the/th component of the collocation approx-

imation by fit(x) and its interpolant by fit(x). Then ?l(X) satisfies (for 1 < < p) the
following:

1. fit(x) is a piecewise polynomial of order 2k with breakpoints in A.
2. (DJ-lll)(Xn) (DJ-lll)(Xn) for 1 < j < ml’, Xn Em.
3. On each [Xn, Xn+l],

(4.3)
p m#

Dr-1Dmlll -Clvlz llz-3t-fl
/x=l v=l

is evaluated over some finite set of secondary collocation points.
Because each component is a piecewise polynomial of order 2k, there are a total of 2kpN

coefficients in a local representation. The interpolation conditions determine 2m*N of these
leaving

2[(k ml) + (k m2) +... + (k mp)]N

to be determined by the collocation conditions (4.3). This says that there should be 2k 2ml
secondary collocation points for each and n. These points are denoted by inl and, analogous
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to (3.5), for convenience we require that there be {(il} in (-1, 1) such that

hn
inl Xn + (1 + il)"-

Z

for 1 2k 2ml, 1 p, and n N.
As in 2 a local Hermite representation is used for each tTl, i.e., on [x,,, Xn+l]

tl(X j__l(DJ-ltl)(X:)dPj --1 +2Xn+l--X)(-)
(4.4) + -(DJ-II)(X+I)dPj --1 + 2X Xn

where *j(t) satisfies (3.3)-(3.4).
Then, after some rearrangement, (4.3) becomes

k (_hn)J-l-m,(DJ-ll)(X+n) (DmldJ)(-il)
j=ml+l

/z=l j=m/,+l v=l

(DV-lj)(--il)

k

-1- (DJ-ltl)(X+l)
j=ml+l

(Dm’j)(il)

/z=l j=m/z+l v=l

(DV-lj)(il)

(4.5)
ml I t__tj-l-ml

fl(inl) (DJ-ltl)(Xn) Dm’ dpj (--il

+(DJ-ltl)(Xn+l) ()
j-l-m’

"- 1 Cl:tx(inl) (oJ-lllz)(Xn) T
v=l j=l

(DV-lj)(-il)

+(DJ-lt/z)(Xn+l) ()
j-v (Dv-lj)(il)l

in analogy with the scalar case (3.6). Hence, in an implementation this 2(kp m*)-by-
2(kp m*) linear system must be solved for each subinterval.
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5. Examples and conclusions. In this section the local collocation algorithm is tested
to verify the expected behavior. Many examples were tried, but for brevity only four are
presented here; the first three are those from [9]. The local interpolant fi is compared with
the collocation solution (x). We do not repeat data for the other interpolants in [9] because
overall, none of them was as effective as the t7 (x) introduced here.

Many different choices for the secondary collocation points also were explored. The ones
considered follow:

1. open uniform: /i (k m + 1 i)/(2k 2m + 1),
2. closed uniform: Oi (2k 2m i)/(2k 2m 1),
3. Gauss points: r/i is the set of roots of the Legendre polynomial of degree 2k 2m,
4. pseudo-Chebyshev points: 0i 1 sin [irr/(2k 2m + 2)]

forl <i <k-m.
Ifwe were ignorant of the material in 2, the choice of Gauss points would seem a natural

one for collocation because ofits importance in generating the fi (x) which has superconvergent
values at the breakpoints. Neither the open or closed uniform nor the pseudo-Chebyshev set
should have nonpoised underlying Hermite-Birkhoff problems so their coefficient matrices
should be better behaved. However, it was observed in [9] that interpolants using the differen-
tial equation at breakpoints (corresponding to 1 or 1) frequently were poor on singularly
perturbed problems because the errors ii (j- 1) _/(j-1) for < j < m were magnified by the
reciprocal of the perturbation parameter. Hence, we anticipate that, at least on singularly
perturbed problems, the closed choice will be inferior to the open one. The motivation for the
pseudo-Chebyshev set is to try a standard distribution which clusters points near the midpoint
of the subintervals.

All numerical calculations in this section were done on an 80386-based PC using double
precision arithmetic (approximately 16 decimal digits). In contrast to [9], we have not chosen
to make operation counts in this work. Partly this is due to the difficulty ofcomparisons since k,
m, p, and N are all parameters. There is no doubt that the interpolants using local collocation
are more expensive to produce because they require additional (small) linear systems to be
solved; however, their total effort is still minor compared with the time required to produce
(x).

In some of the tables below, condition numbers are displayed; in fact, these are estimates
using the standardLINPACK algorithms. Because these estimates are felt to be reliable as to the
order of magnitude, we have not bothered to compute exact condition numbers themselves.
However, they must be interpreted with some caution; row and column scaling can have a
considerable affect on the condition number estimate even though the answer to the associated
linear system was usually unaffected. Also, rather than implement (4.5) as given, we have
actually used an equivalent system of equations where each (Xn, x,+l) was mapped into [0, 1]
rather than [- 1, 1].

The first example is the first from [9] which is a system of two ordinary differential
equations.

" 4e2u2 + 4(x2 + 1)exb/1 /,tl

u2 --XUl + xu; u2 --4x2ex + (2x 1)e-x

Ul(0) u2(0) Ul(1) u2(1) 0.

The exact answers are ul(x) x(x 1)exp(x) and u2(x) x(x 1)exp(-x). The errors
(nodal and uniform) for the standard collocation approximation fi (x), and for t7 (x) based on
several choices ofsecondary collocation points are shown in Table 1. All cases used k 4 and
N 12 equally spaced breakpoints (nodes). We have also tabulated the maximum over the
mesh of a condition number estimate for the coefficient matrix of the secondary collocation
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At nodes
Uniform

(x)
(x)

TABLE
Absolute errorsfor thefirst example.

open
closed 0.633E-12 0.329E-11 0.167E-09 0.285E-11
Gauss 0.643E-12 0.431E-11 0.240E-09 0.137E-08

Chebyshev 0.614E- 12 0.307E- 11 0.174E-09 0.244E- 11

Ul U U U2

0.614E-12 0.301E-11 0.748E-11 0.936E-12

0.138E- 11 0.119E-09 0.125E-07 0.232E-08
Ma Cond

0.614E-12 0.568E-11 0.578E-09 0.483E-11 1.4E+06
6.1E+05
8.5E+12
9.6E+06

equations. Note that the choice of Gauss points does produce the most ill conditioned of the
coefficient matrices, although onthis examplethe accuracy oft71 is relatively unaffectedby this.
The other three choices of secondary collocation points produce interpolants of comparable
accuracy, all superior to the full collocation solutions ill(X) and fi2(x). The decline in the
derivative accuracy for/1 reflects the expected error bounds (3.7).

The next example also is from 1] and was studied in [9].

u" -xu’l (rex sin2 rcx)le 2 cos 7gx,

u(-1) 2, u(1) O,

for which

u(x) cosrrx + erf(x/-)/erf(1/4-).

This problem has an interior layer near the origin. For a given mesh the maximum local mesh
ratio is defined by

the global mesh ratio is

max{max[hi/hi-l, hi-l/hi]};

max hi / min hi.

For the initial choice of e 10-4 we used 36 breakpoints chosen so that an approximation
to lU(6)II 1/6 was roughly equidistributed. The maximum local mesh ratio was 3.0 while the
global mesh ratio was 32.8; again k 4 was used. A second case e 10-6 was used with 64
breakpoints based on the same equidistribution principle; here the maximum local mesh ratio
was 9.8 while the global mesh ratio was 295.

The uniform errors in tT(x) and iTS(x) were better than those for standard collocation; in
fact, the superconvergent accuracy in the derivative approximation did not degrade at all. Table
2 contains the data comparing t7 (x) with fi (x). Again, the choice of Gauss points led to ill-
conditioned matrices and inferior accuracies, especially in tT’(x). The choice of closed points
(including the nodes) for the secondary collocation points was poor as we had anticipated for
singularly perturbed differential equations in the initial discussion of this section.

The third example is a generalization of the final example cited in [9], motivated by an
example in 1]. This is a set of two second-order ODEs with boundary layers.

,t (/g /g2)/6bt U

II. (u Ult/ u,
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TABLE 2
Absolute errorsfor the second example.

e 10-4 e 10-6
U U U U

At nodes 0.140E-7 0.786E-5 0.741E-9 0.475E-5
Uniform

t(x) 0.110E-6 0.213E-3 0.147E-7 0.219E-3
t (x) Max Cond Max Cond
open
closed
Gauss

Chebyshev

0.327E-7 0.786E-5 1.6E+4
0.872E-5 0.276E-3 2.8E+4
0.110E-6 0.213E-3 4.8E+9
0.331E-7 0.786E-5 5.6E+4

0.521E-8 0.475E-5 2.2E+06
0.183E-3 0.110E-1 2.8E+06
0.880E-7 0.220E-3 1.8E+ 12
0.587E-8 0.475E-5 8.7E+05

(0) 3 + 2(1 + e)exp(-5/e),Ul(0) + U

U2(0) 1- 2exp[-5(1 + l/e)],

Ul(5)- u2(5)= 2(1 + e)(1- exp[-5(1 + l/e)]),

U’l(5) + U2(5) 1 + 2(2 + e) exp[-5(1 + l/e)].

The exact answers are

Ul(X) 1 2 exp(-x) + 2e{exp[(x 5)/e] -exp[-(1 + 1/e)x]},

u:z(x) 1 2 exp(-x) 2{exp[(x 5)/e] exp[-(1 + 1/e)x]}.

This was tried for k 4 andtwo values ofe; in each case, meshes were chosen to equidistribute
an approximation of lu6 11/6. For e 10-2 the mesh consisted of20 breakpoints with a local
mesh ratio of 13.5 and a global mesh ratio of 178.3; when e 10-4 and N 28 the mesh
ratios were 466 and 18771, respectively. Table 3 displays the errors for the interpolant based
on local collocation with several choices of secondary collocation points. The superiority
of/I(X) and t72(x) from local collocation is quite evident. The best choice for. secondary
collocation points was the open uniform one though the pseudo-Chebyshev choice is only
slightly inferior.

The final example is a scalar third-order one whose solution is mildly oscillatory.

u’" --[282zr2/(1 + 7x)4]u d- [2837r2/(1 + 7x)5]u’,
u(0) 1, u(1) 0, u"(1) 0.

The exact answer is u (x) 1 +71) cos[4zr/ 1 +71)]. The output for different k andN values
is found in Table 4. In both cases the mesh was chosen to equidistribute an approximation of
Iluk/3)lll/k/3). When k 4 for this example, we have 3m > 2k so the theory in 2 says
nothing about the poisedness of the Hermite-Birkhoff problem associated with the choice
of Gauss points. The arguments in Jin [6] show that it is in fact poised. In contrast, when
k 5 the Gauss points definitely do not have a poised Hermite-Birkhoff problem since now
3m < 2k. The data in Table 4 are consistent with this.

In conclusion, it is clear that an interpolant based on local collocation using an open
uniform set of secondary collocation points can do a very good job of preserving the super-
convergent accuracy at breakpoints of fi(x) and its first rn 1 derivatives. Even on very
irregular meshes the stability of t7 is quite evident: for singularly perturbed differential equa-
tions, t7 (x) preserves the superconvergent accuracy of fi (x) at the grid points as long as a good
initial mesh has been found.

The choice of the "best" or at least a "better" choice of local collocation points merits
further theoretical study; this is the subject of continuing research on the part of the authors.
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TABLE 3
Absolute errorsfor the third example.

e 0.01

Ul U U2 U

At nodes 0.113E-7 0.168E-6 0.213E-6 0.193E-4
Uniform

/(x) 0.123E-5 0.135E-4 0.122E-5 0.135E-2
(x) Max Cond

0.131E-7 0.168E-6 0.213E-6 0.193E-4 1.0E+05open
closed
Gauss

Chebyshev

0.296E-7 0.443E-6 0.222E-5 0.417E-4
0.582E+0 0.881E+2 0.582E+0 0.881E+2
0.153E-7 0.168E-6 0.213E-6 0.193E-4

4.6E+04
2.9E+20
4.6E+05

e 0.0001

Ul Ull u2 U

At nodes 0.752E-9 0.541E-7 0.606E-7 0.566E-3
Uniform

/(X) 0.208E-6 0.309E-5 0.209E-6 0.309E-
t7 (x) Max Cond
open 0.936E-9 0.541E-7 0.606E-7 0.566E-3
closed 0.300E-6 0.252E-5 0.301E-2 0.253E-
Gauss 0.203E+4 0.231E+5 0.203E+4 0.231E+5

Chebyshev 0.114E-8 0.541E-7 0.606E-7 0.566E-3

9.3E+08
3.5E+08
3.9E+23
3.5E+09

TABLE 4
Absolute errorsfor thefourth example.

At nodes
Uniform

(x)
(x)
open
closed
Gauss

Chebyshev

k--4 N=24
U U

0.158E-7 0.863E-6 0.512E-4

k=5 N =20
U U U

0.323E-9 0.104E-7 0.376E-6

0.826E-7 0.443E-4 0.328E- 0.488E-8 0.401E-5 0.462EL-2

0.158E-7 0.538E-5 0.316E-2
0.478E-7 0.918E-5 0.555E-2
0.245E-7 0.434E-5 0.263E-2
0.173E-7 0.634E-5 0.325E-2

0.323E-9 0.324E-7 0.225E-4
0.792E-7 0.458E-7 0.343E-4
0.657E+ 0.655E+3 0.548E+6
0.348E-9 0.503E-7 0.241E-4
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AN ASSESSMENT OF NONMONOTONE LINESEARCH TECHNIQUES FOR
UNCONSTRAINED OPTIMIZATION*

PHILIPPE L. TOINT

Abstract. The purpose of this paper is to discuss the potential of nonmonotone techniques for enforcing con-
vergence of unconstrained minimization algorithms from starting points distant from the solution. Linesearch-based
algorithms are considered for both small and large problems, and extensive numerical experiments show that this
potential is sometimes considerable. A new variant is introduced in order to limit some of the identified drawbacks
of the existing techniques. This variant is again numerically tested and appears to be competitive. Finally, the impact
of preconditioning on the considered methods is examined.

Key words, nonmonotone algorithms, linesearch, unconstrained optimization
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1. Introduction. In this paper, we consider algorithms for the numerical solution to the
problem

(1) minimize f(x),
R

where f(x) is a real-valued smooth function, which we assume is bounded below. Most
widely available algorithms for solving the nonlinear unconstrained minimization problem
(1) are, today, descent methods, in that they generate a sequence of iterates {xk such that the
associated sequence of objective function values f(xk) is monotonically decreasing. This is
the case of all methods described in [9], a now classical reference on this subject, such as that
of many packages for solving unconstrained problems, as well as UNCMIN 17], TENMIN
[22], IANC;I:I_O’I" [7], and those from the Harwell Subroutines VA15 [18], VE08 [23], and
VE10 [24], to cite just a few. This monotonicity property may be considered as natural,
since one wishes to find a point with the lowest possible objective function value, and has
been extensively used, both in theory and practice, to ensure that convergence to a minimizer
occurs, even when the minimization is started far away from such a point (see [3], [4], [6], or
[25] for examples of convergence theory heavily relying on this important property).

It has been noted, however, that imposing monotonicity of the sequence of objective func-
tion values is not without drawbacks. A typical case where monotonicity can cause severe
loss of efficiency is when the objective function features deep narrow curved valleys: once
trapped near the bottom of such a valley, the sequence of iterates must follow the valley’s
floor rather closely, which can result in very short steps or even undesired zigzagging. This
observation has led researchers to propose algorithms that do not always guarantee the mono-
tonicity properties. In particular, Grippo, Lampariello, and Lucidi published a few papers (see
13], 14], and 15]) where they demonstrated on some examples that substantial efficiency

gains could be achieved in the solution of (1) if one is ready to abandon, at least to some
extent, the constraint of generating monotonically decreasing sequences of objective function
values. They also provided the convergence analysis to support their algorithmic proposals.
In all fairness, Grippo, Lampariello, and Lucidi were not the only researchers interested in
nonmonotone techniques for nonlinear optimization: the watchdog technique of Chamberlain
et al. [5] is also a strategy of this type, although intended for the solution of constrained
problems.

*Received by the editors May 31, 1994; accepted for publication (in revised form) January 3, 1995.
Department of Applied Mathematics, Facultes Universitaires Notre Dame de la Paix, Rue de Bruxelles, 61,

B-5000 Namur, Belgium (pht@math.fundp.ac.be).
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Surprisingly, and despite their obvious potential practical implications, the findings of
Grippo, Lampariello, and Lucidi didn’t lead to any substantial validation by other researchers,
at least as far as the author is aware. These ideas have been sometimes used in the literature
(see 16], for instance), but have not yet been incorporated in the mainstream research on
nonlinear unconstrained minimization. It is the first purpose of this paper to re-examine their
proposals and contribute to their evaluation. The second purpose is to present a variant of their
original methods, also based on a succession of unidimensional (approximate) minimizations,
usually known as "linesearches." The third and final aim of the paper is to examine the impact
of preconditioning on the considered nonmonotone algorithms.

The paper is organized as follows. The original proposals of Grippo, Lampariello, and
Lucidi are considered in 2, where a specific implementation of these proposals is compared
with a more classical monotone linesearch algorithm on a large collection of both small and
larger test problems from the (LITE collection [2]. A variant of these methods is intro-
duced and tested in 3. Section 4 is devoted to the numerical investigation of the effect of
preconditioning. Finally, we present some conclusions and perspectives in 5.

2. The algorithms of Grippo, Lampariello, and Lucidi.

2.1. The original proposals. The classical framework in which Grippo, Lampariello,
and Lucidi discuss their proposals is that of a "gradient related" method using an Armijo
linesearch. If we denote the usual Euclidean inner product and norm by (., .) and I[,
respectively, and define gk Vf(xk), we may describe this basic method as follows.

BASIC LINESEARCH ALGORITHM (BLS)
0. Initialization. A starting point x0 is given, as well as constants fl (0, 1) and, (0, 1). Set k 0.
1. Test for convergence. Stop if the chosen convergence criteria are met.
2. Determination of a search direction. Find a direction d such that

(2) (d, g) -/(lllgll 2

and

(3) Ildk 2 Ilgk

for some positive constants/(1 and/(2.
3. Linesearch. Determine the smallest integer jk such that, if one defines

(4) cg flJ,

then

(5) f(Xk + ot:dk) < f(xk) 4 ?’ot (g, d).

Then, set

(6) Xk-t-1 Xk "[" Ogkdk.

4. Prepare for the next iteration. Increment k by one and go to step 1.

There are several possible ways to determine the step dk in step 2 of this prototype
algorithm, in order to ensure that conditions (2) and (3) are satisfied. Grippo, Lampariello,
and Lucidi propose to use the "modified Cholesky" factorization technique of Gill and Murray
10]. Other techniques will be discussed in 2.3, in relation to our numerical experiments.
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For future reference, we will refer to the linesearch calculation of step 3 as a procedure
for obtaining Xk+l from the base point xk (which determines the gradient g Vf(x)), the
search direction &, and the reference value f(x) (the first term of the right-hand side of (5)).
More concisely, we will express this relationship by the statement

(7) Xk+l LS,r(xk, dk, f(xk)),

which is therefore an alternative equivalent specification of step 3.
It is now easy to describe the original idea ofGrippo, Lampariello, and Lucidi 13]: instead

of using f(x) as the reference value in step 3, they propose to use an objective function value
corresponding to a previous iterate. More precisely, they propose to define

(8) r max f(x_j)
j=0 p

for some fixed nonnegative integer p and then to replace step 3 in the basic algorithm by

(9) Xk+l LS,(x, &, rk)

instead of (7). We will call the resulting algorithm the GLL1 Algorithm. As a consequence of
(8), the strict monotonicity ofthe sequence {f(x) is no longer enforced, giving the algorithm
more flexibility in the way in which successive iterates are obtained. Grippo, Lampariello,
and Lucidi in fact describe and analyze several possible rules for the definition ofthe reference
value r, but only provide numerical examples for the choice (8).

In a subsequent paper, Grippo, Lampariello, and Lucidi 15] introduce a further relaxation
of the monotonicity property. Briefly speaking, they argue that some steps could be automat-
ically accepted, without even checking any condition like (5), provided that these steps are
sufficiently short (they require the subsequence of the norms of these steps to be geometrically
converging to zero). To avoid convergence to undesirable maxima or saddle points, the value
of the objective function is occasionally checked: if a suitable decrease has not been obtained
since the last such verification, the algorithm is then restarted from the iterate corresponding to
this last acceptable value. The precise manner in which the reference value r is redefined and
this idea realized is a little more complex than the modification leading to Algorithm GLL1.
It can be cast in the framework of Algorithm BLS as follows.

ALGORITHM GLL2
0. Initialization. A starting point x0 is given, as well as constants/3 6 (0, 1), ?, 6 (0, 1),

r/ 6 (0,1),/z > 0, (0,1),A0 > 0, p > 1, andN > 1. Setk =e =0and
fo ro f(xo).

1. Test for convergence. Compute g and stop if Ilgk is sufficiently small.
2. Determination of a search direction. Find d such that (2) and (3) hold and such

that

(10) II&ll 311gll

for some positive constant x3 < K2. If x, has been obtained by step 5 or if k 0,
define de d. Then, if k + N go to step 3. Otherwise, go to step 4.

3. Tests alter N automatic step acceptances. Compute f(x) ifnecessary. Iff (xk) >
rk, set

(11) xg xg, dk d, Ak+ Ak
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and go to step 5. Otherwise, increment e by one and define

(12) xe xg, de dk, fe f(Xk), and r max fe.-j.
j=0 p

Then, if IId /x,, set

(13) Xk+l Xk -]- dk, Ak+l OAk, Fk+l

and go to step 6. Otherwise go to step 5.
4. Tests before N automatic step acceptances. If Ildk /Xg, perform step 4.a. Oth-

erwise, perform step 4.b.
Step 4.a. If IIdll > IId-ll, compute f(xk + dk) and f(xk) if necessary. Then

test if f(xk + dk) f(xo) > tz(f(xo) f(x)). If this latter inequality holds,
set

(14) Xk X, dk de, Ak+l Ak

and go to step 5. In all other cases, set X+l, Ak+l, and rg+l according to (13)
and go to step 6.

Step 4.b. Compute f(xk) if necessary. Then, if f(x) >_ r, set Xk, dg and Ak+l
using (11) and go to step 5. Otherwise, increment by one, recompute xe, de,
fe, and r using (12) and go to step 5.

5. Linesearch. Define

(15) Xk+l LSfl,y(Xk, dk, r),

increment by one and define

(16) xe Xk+l, fe f(Xk+l) and rk+l max fe-j.
j=0 p

6. Prepare for the next iteration. Increment k by one and go to step 1.

We now briefly comment on this algorithm.
1. Condition (10) is introduced by Grippo, Lampariello, and Lucidi [15] and makes

the length of the step an adequate measure of criticality. Section 2.3 shows that it does not
constitute a strong additional requirement in a practical algorithm.

2. The step d is automatically accepted (see step 4) if its norm is at most equal to A
and has not increased compared with that of dk-1. In this case, the function value is not even
computed. Observe also that the index denotes the last iterate at which the value of the
objective function has been evaluated and has decreased enough. As indicated above, the
algorithm "restarts" from this point if the objective function has not sufficiently diminished
after N automatic acceptances.

3. The idea behind step 4.a is that it might be advisable to enforce closer control of
the monotonicity of the objective function values if these become significantly larger than
the initial value f(x0): this behavior combined with large steps may indeed indicate that the
iterates are leaving the region of interest.

4. The mechanism for updating the reference value rg is essentially identical to that used
in GLL1, except that it only uses the last p function values that have been computed and which
do not exceed their corresponding reference values. This distinction is necessary because, as
indicated in the previous paragraph, some function values may not have been calculated when
short steps are automatically accepted.

Grippo, Lampariello, and Lucidi 15] indicate that Algorithm GLL2 may be more efficient
than GLL1 and often compare favorably with the modified Newton routine E04LBF from the
NAG library.
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2.2. Convergence theory. Grippo, Lampariello, and Lucidi proved that every limit point
of the sequence of iterates produced by Algorithms GLL1 and GLL2 is a stationary point for
problem (1). In order to obtain this result, they assume that the objective function is twice
continuously differentiable on the compact level set {x f(x) <_ f(x0)}. Their argument is
no longer based on the (abandoned) decreasing nature of the sequence of objective function
values f (Xk), but rather on the monotonicity of the references values rk. The analysis is
slightly more involved for Algorithm GLL2, since the effect of restarting the algorithm after
an "unsuccessful" series of N automatically accepted steps must be taken into account; see
13] and 15] for details.

Note that the same convergence result is automatically obtained for Algorithm BLS by
viewing this algorithm as a special case of Algorithm GLL1 where p 0, but may also be
obtained by directly exploiting (2)-(6). In particular, (2) and (3) imply that BLS produces
"gradient-related" search directions (see 19, 14.3]).

2.3. An implementation. Our implementation of Algorithms BLS, GLL1, and GLL2 in
Fortran 77 is rather straightforward.

Termination occurs when gk < 10-5.
The determination of the search direction dk at step 2 is achieved by approximately

solving the Newton system

(17) (Hk + Mg)d -gl

where Hk denotes V2f(Xk), and where Mk is a symmetric positive semidefinite perturbation
matrix such that the eigenvalues of Hk + M, are in the interval [x4, xs] (for some positive
constants tea and to5 independent of k). The main motivation for allowing an approximate
solution of (17) is the considerable reduction of computational effort (compared with a full
solution) that is typically obtained for large-scale problems. The step di obtained as an
approximate solution of (17) can thus be regarded as the exact solution of a "perturbed"
Newton system of the form

(18) (H, + M,)& -g, + hk

where we request the "residual" h to satisfy the conditions

(19) (d,,h:) =0

and

(20) Ilhkll Ilggll min(0.1, Ilgglll/2).

Among the many possible ways of selecting the perturbation matrix Mk, we have chosen
the modified conjugate-gradients (CG) method proposed by Arioli et al. [1]. This method
guarantees both (19) and the uniform positive definite and bounded character of the matrices

H + M by construction. Note that the modified Cholesky factorization technique used by
Grippo, Lampariello, and Lucidi in their papers also guarantees the same conditions (with
hk 0), as would other types of modified factorizations (see [7], [11], [21], or [20], for
instance). However, since our approach allows for nonzero hg, we have to enforce (20)
explicitly: this is simply achieved in our code by stopping the modified CG method whenever
this condition is satisfied. Note that condition (19) is automatically ensured by the properties
of the CG algorithm.

It is now easy to verify that (2), (3), and (10) follow from (19), (20), and the requirements
imposed on the matrices H + M. We note first that (20) and (18) imply that

(21) II(n + Mg)dll Ilggll- Ilhgll 0.911ggll,
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which yields that

0.9
(22) II& _> IIg II,

K5

and (10) is satisfied. Using now (19), one can prove (see [12]) that

(23) (g, &) _< -[cond(H + M)]-211gll II&ll

where cond(X) is the 2 condition number of the matrix X. Since the eigenvalues of Hk + Mk
are contained in [c4, cs], its condition number is bounded above by c5/K4, which, together
with (10), gives (2). For the same reason, one immediately obtains that (3) holds. Indeed,
using (18),

1 1.1
(24) [ida[[ <_ --(llgll + IIhll) _< llgll,

K4 K4

where we used (20) to derive the second inequality.
In our code, the constants/z 106 and 10-3 are used in step 4.a, as recommended

in [15].
After some experimenting, a value of p 10 was chosen in (12) and (16), the initial

step threshold A0 was set to unity, and the maximum number of successive automatic step
acceptances N was fixed at 10.

The linesearch procedures follows step 3 of Algorithm BLS nearly exactly (with 9/
0.01 and fl 0.5), except that doubling the stepsize is attempted if the unit step satisfies (5)
andM nonzero, in an attempt to make a step as big as possible along a direction of (possibly)
negative curvature.

A maximum number of 10000 iterations and a maximum CPU time of five hours were
allowed.

2.4. Numerical comparisons. We now present the results of an extensive numerical
investigation of Algorithms BLS, GLL1, and GLL2. We have mn these three methods on a
set of 327 unconstrained problems available from the (3UTE collection [2]. All tests were
performed on a DEC 30001500 under OSF and using version 3.3 of the Fortran compiler with
the default optimizing option. As the total number of test runs discussed in this paper exceeds
2500, it is impossible to include their detailed results in this text and we only present statistical
summaries. The complete results, however, are available as a separate report [26].

in order to clarify the comparison, we divided our set of327 problems into two subsets: the
first contains all problems of dimension at most 500 (226 problems), and the second contains
all larger cases (101 problems). This allows us to distinguish the effects of the nonmonotone
strategies for small and large problems.

We first consider the relative reliability of our three algorithms on both problem sets and
note that BLS failed on eleven small and six large problems, while GLL1 failed on nine small
and five large problems and GLL2 on ten small and five large ones. Failures were caused by
an excessive number of iterations, excessive CPU time, or by the occurrence of an arithmetic
error during the computation of the objective function. The latter occurred often in the early
iterations where a large step was attempted that lead outside the region where the problem
functions are well defined on the computer.

Among the remaining 212 small and 93 large problems that could be solved by all three
algorithms, six small ones and one large problem exhibited more than one local minimizer and,
therefore, were rejected from our test sets, leaving 206 small and 92 large problems for further

In March 1994.
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TABLE
Cumulative statisticsfor BLS, GLL1, and GLL2.

Method

BLS
GLL1
GLL2

206 small problems
iters evals CG-its time
8173 17926 134099 1752
8249 22793 153943 1288
8089 21637 151501 1300

92 large problems
iters evals CG-its time
5041 9231 541429 35233
7564 17135 966247 22661
7504 16795 968919 23586

TABLE 2
Rankingsfor BLS, GLL1, and GLL2 on 206 small and 92 large problems.

Performance
measure
Iterations

Evaluations

CG iterations

Time

Method Small problems
1st 2nd 3rd

BLS 174 20 12
GLL1 153 51 2
GLL2 162 39 5
BLS 57 110 39
GLL1 41 140 25
GLL2 166 37 3
BLS 160 30 16
GLL1 156 45 5
GLL2 166 36 4
BLS 196 9
GLL1 197 9 0
GLL2 199 7 0

Large problems
1st 2nd 3rd
80 7 5
67 20 5
68 20 4
30
24
69

48
56
19

14
12
4

69 14 9
72 15 5
77 12 3
72 13 7
74 15 3
80 11

analysis. Table shows the cumulative statistics for the three methods on these problems.
In this table, "iters" stands for the total number of iterations needed to solve all problems,
"evals" for the total number of objective function evaluations, "CG-its" for the total number
of iterations within the modified conjugate-gradients procedure defining the search direction
and "time" for the total CPU time (rounded to the second). Note that the objective function’s
gradient and Hessian are evaluated once per iteration.

These cumulative measures tend to suggest that GLL1 and GLL2 provide an average
improvement in CPU time on BLS for small problems. This is obtained at the expense of
more CG iterations and function evaluations. The situation is similar for the larger problems.

In order to refine our conclusions, we now look at more disaggregate performance mea-
sures and report, in Table 2, how many times each of the three considered methods has been
best, second, or last. In these comparisons, two CPU times are considered equal if they cor-
respond to runs yielding identical iterates or if they differ by at most 5% of the best or by at
most half a second. We immediately notice that the performance of GLL1 and GLL2 is much
better than suggested by Table 1. In particular, we observe that GLL2 is most often the best
method in CPU time, in CG iterations, and, even more clearly, in function evaluations.

Finally, these results indicate very few reasons why one should use GLL1 instead of
GLL2. The latter method is admittedly more complex to code, but is very often preferable to
GLL1, as is indicated by the more detailed comparison between these methods presented in
Table 3. In this table, we restrict our attention to 215 small and 94 large problems that were
coherently solved by both methods, that is for which both methods converged to critical points
with identical objective function values. Columns three to five ofthe tables indicate how many
times each method was best and how many ties occurred. Columns six to ten describe the
distribution of differences in values of the relevant criterion (iterations, function evaluations,
CG iterations, or time) for the two methods, when these values are different: we report the
minimum of this distribution (min), its first quartile (q1), its median (med), its third quartile
(q3), and its maximum (max).
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TABLE 3
Detailed comparison ofGLL and GLL2.

215 small
problems

94 large
problems

Performance
measure
Iterations
Evaluations
CG iterations
Time
Iterations
Evaluations
CG iterations
Time

GLL1 tie GLL2
wins wins

10 188 17
21 27 167
11 183 21

211 3

GLL1-GLL2 (when different)
min ql med q3 max

-775 -3 11 97
1561 2 3 4 294

-3859 -3 12 93 1034
-1 3 3 4 4
-16 -5 11 26
-22 2 4 57

-10676 -23 83 338 3262
-1131 -2 2 16 100

7 77 10
12 14 67
6 76 12
4 79 11

TABLE 4
Detailed comparison ofBLS and GLL2.

206 small
problems

92 large
problems

Performance
measure
Iterations
Evaluations
CG iterations
Time
Iterations
Evaluations
CG iterations
Time

BLS tie GLL2

42 132 32
32 146 28
37 46 123
7 189 10

BLS-GLL2 (when different)
min ql med q3 max

-694 -10 -2 9 499
-6747 3 6 1696
-53770 -23 4 51 18779
-151 -1 6 597
-2633 -23 -7 7 192
-9744 -1 2 6 514

-649584 -96 43 3749 101631
-5250 -3 14 109 11066

22 59 11
21 11 60
13 57 22
10 64 18

Table 3 generally favors GLL2: this method indeed wins more often for all criteria
and the medians of all difference distributions are positive. However, we observe that these
distributions are rather dispersed. In particular, we note the striking difference of 10676 CG
iterations in Table 3 for a large problem (MSQRT3LS (n 1024)) in favor of GLL1, which
results in an advantage of 1131 seconds for GLL1 on the same problem.

We conclude this analysis of the ideas of Grippo, Lampariello, and Lucidi presenting
a detailed comparison of the best nonmonotone method, GLL2, with our basic linesearch
algorithm (BLS). This comparison is given in Table 4 for the 206 small and 88 large problems
coherently solved by both methods. The format of this table is identical to that of Table 3.

A few conclusions can be drawn from this comparison.
The conclusions of Grippo, Lampariello, and Lucidi are confirmed in that a nonmono-

tone procedure appears to be often better than the basic linesearch method, and sometimes
by a quite substantial amount. However, GLL1 and GLL2 occasionally perform quite badly
compared with BLS. In particular, this is the case for problem FM-rlqSUIF (n 1024), which
corresponds to the large differences at the minimum of the distributions of BLS-GLL2 in
Table 4.

The dispersed character ofmost reported performance difference distributions indicates
that a large part of the variations between methods, as appearing in Table 1, are explained
by their behavior on a relatively small number of more difficult problems. The sometimes
dramatic differences between BLS, GLL1, and GLL2 are caused by the strongly nonlinear
nature of these problems. However, the trend is rather clear overall, indicating that one might
indeed lose in performance by using a nonmonotone method on a very nonlinear problem, but
with the potential of winning substantially more.

It also results from Tables 3 and 4 that performance differences are relatively small for
at least half the test problems used, but that these small differences also often favor GLL2 over
both GLL1 and BLS.
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At variance with previously reported numerical experience, the results presented here
distinguish the relative merits of nonmonotone techniques for small and large problems sepa-
rately. As expected, the potential benefits and losses in CPU time are more important for the
large problems, at least on our test set where the cost of computing the objective function and
its derivatives is often small or modest compared with that of the involved linear algebra.

Furthermore, a remarkable effect seems to occurwhencombining the nonmonotoneGLL1
andGLL2 methods andthe truncated modifiedCGtechnique onsome large problems. Because
of the nonmonotonicity, the iterates do not appear to follow the bottom of curved valleys so
closely for these two algorithms, but rather "stay higher on the slope." This implies that the
average size of gk is larger for these methods than for BLS, which in turn implies, because of
(20), that the modified CG can be stopped sooner, which finally results in a smaller number
of CG steps on average. As a large proportion of the computational effort for large problems
is concentrated in this part of the algorithms, this effect yields a noticeable reduction in the
overall CPU time for such problems..

3. A new nonmonotone variant.

3.1. Motivation and specification. In orderto alleviate the difficulties ofGLL2 revealed,
for instance, by the Fb4q-lqSURF problem, a more careful analysis of the performance ofGLL2
was carried out for this case and a few others. It then appeared that the quadratic model
implicit in Newton’s method is often not well suited to represent the objective function, and
that the stepsizes determined by the linesearch procedure are very often much smaller than
one. Moreover, this behavior is accentuated for GLL1 and GLL2 compared with BLS. It is
therefore natural to think of controlling the amount of nonmonotonicity allowed by a measure
indicating how well adapted the truncated Newton step is to the true objective function. It
also appeared in the tests that it is often advantageous to enforce monotonicity in the first few
iterations. The purpose of this section is to show that these simple ideas can indeed produce
additional benefits.

We therefore modified Algorithm GLL2 as follows.
The equality rk f(xg) is enforced for the first 10 iterates.
For all subsequent iterations, rg is defined by

(25) ri f (xi) + H ck(e-j) [fe-jk f (xi)]
j=l

where

(26) j arg max fe-j
j=l p

and ai(e-j) is the stepsize corresponding to the ( j)th accepted step.
In this proposal, we have chosen to measure the adequacy ofthe Newton step by examining

how close the past stepsizes oft are to unity. The amount of nonmonotonicity allowed in the
method is then controlled by this measure: it is indeed easy to see that rk as given by (25) is
equal to the value calculated by Algorithm GLL2 whenever the last jt accepted stepsizes are
equal to one (the coefficient of the second term in the right-hand side of (25) is their geometric
mean). Because most stepsizes do not exceed one, it is typically smaller in other cases. In our
implementation, p is chosen to be 10, as for GLL1 and GLL2. Of course, the convergence
theory developed for GLL2 still holds for this variant, which we call the NMLS (nonmonotone
linesearch) Algorithm.
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TABLE 5
Cumulative statisticsfor BLS, GLL1, GLL2, and NMLS.

Method

BLS
GLL1
GLL2
NMLS

206 small problems
iters evals CG-its time

8173 17926 134099 1752
8249 22793 153943 1288
8089 21637 151501 1300
6620 13115 96571 1130

92 large problems
iters evals CG-its time

5041 9231 541429 35233
7564 17135 966247 22661
7504 16795 968919 23586
5057 11771 370379 20577

TABLE 6
Rankingsfor BLS, GLL1, GLL2, and NMLS on 206 small and 92 large problems.

Performance
measure
Iterations

Evaluations

CG iterations

Time

Method Small problems
1st 2nd 3rd

BLS
GLL1
GLL2
NMLS
BLS
GLL1
GLL2
NMLS
BLS
GLL1
GLL2
NMLS
BLS
GLL1
GLL2
NMLS

4th
169 17 17 7
148 34 24 0
154 35 13 4
168 31 7 0
44 118 24 20
39 124 25 18
155 29 19 3
166 28 8 4
154 25 15 12
150 34 20 2
159 31 13 3
161 31 14 0
195 9
197 5 4 0
199 4 3 0
200 6 0 0

Large problems
1st 2nd 3rd 4th
76 7 6 3
65 9 15 3
65 14 10 3
70 17 4
26 48 9 9
21 53 10 8
63 20 6 3
67 16 8
67 9 10 6
69 9 12 2
71 15 4 2
72 13 6
69 11 9 3
70 13 8
75 14 2
76 11 4

3.2. Numerical comparison. In order to assess this new variant, we also ran it on the
set of test problems described above. This algorithm successfully solved 222 of the 226
small problems and 97 of the 101 large ones, a slightly better result than GLL2. We also
computed values of the cumulative performance statistics for the 206 small and 92 large
problems coherently solved by BLS, GLL1, GLL2, and NMLS. The comparison shown in
Table 5 indicates a clear improvement on average for all criteria, compared with GLL and
GLL2. In particular, the reduction in CG iterations is noticeable.

Examining the rankings presented in Table 6 confirms that NMLS is better than BLS,
GLL1, or GLL2 not only on average, but also in a number of instances. This conclusion
applies for both small and large problems. One interesting observation is that NMLS seems
to require fewer iterations and fewer function evaluations than GLL2 on a significant number
of problems.

If we now consider the detailed comparisons between NMLS, BLS, and GLL2 presented
in Tables 7 and 8, the following additional comments can be made.

Observations about the relative importance of more difficult problems in the average
performance apply to NMLS as well as to the previously analyzed methods. However, one
notices that the cases that are most unfavorable to NMLS compared with BLS (see Table 8)
are much less so than those reported for GLL2 (see Table 4). We note, in particular, the very
remarkable (although extreme) gain of 599569 CG iterations between GLL2 and NMLS on
problem FMINSURF (n 1024). This is not so surprising since NMLS is in fact designed
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TABLE 7
Detailed comparison ofGLL2 and NMLS.

210 small
problems

95 large
problems

Performance
measure

Iterations
Evaluations
CG iterations
Time

Iterations
Evaluations
CG iterations
Time

GLL2 tie NMLS
wins wins

15 158 37
19 156 35
26 152 32
4 200 6

GLL2-NMLS (when different)
min ql med q3 max

-64 -1 4 13 475
189 -6 2 19 4390

-577 -25 6 86 43688
-3 -3 2 104
-29 -4 8 22 2208
-73 -14 37 4738

-8880 -285 9 281 599569
-941 -39 21 4810

9 67 19
11 68 16
13 67 15
10 73 12

TABLE 8
Detailed comparison ofBLS and NMLS.

213 small
problems

93 large
problems

Performance
measure
Iterations
Evaluations
CG iterations
Time

Iterations
Evaluations
CG iterations
Time

BLS tie NMLS
wins wins

31 143 39
24 27 162
27 137 49
3 199 11

BLS-NMLS (when different)
min ql med q3 max

-243 -4 2 17 499
-2357 2 3 6 1508
10082 -9 12 120 19664
-46 -3 2 8 635
-425 -13 -1 13 190
-5006 2 8 451
-50015 -70 27 2602 92751
-440 -11 55 10124

17 61 15
18 11 64
12 60 21
12 63 18

to overcome the deficiency of GLL2 on that problem and similar ones. This big advantage in
CG iterations results in a corresponding gain in CPU time.

The smaller differences in performance (on the easier problems) also appear to favor
NMLS over GLL2 and, more clearly, over BLS.

As expected, the potential gain in CPU time between NMLS and GLL2 is more consid-
erable for large problems and parallels, in this case, the potential gain in CG iterations. The
same comment applies, although to a lesser extent, to the comparison between NMLS and
BLS.

We note that it is advantageous to use NMLS rather than BLS or even GLL2 when the
objective function is costly to evaluate.

4. Preconditioning. Wenowexamine the impact ofpreconditioning the iterative solution
of the system (18) on the relative performance of BLS, GLL2, and NMLS. The preconditioner
used is constructed by extracting from H its main 11-banded symmetric submatrix, which
is then modified, if necessary, to ensure its positive definiteness. This modification is carried
out according to the proposal of Schnabel and Eskow [21]. We note that this preconditioner
has not been formally analyzed and, thus, that its effect is essentially unknown, although
often beneficial. It is used in the default variant of trust-region-based LANGELOT package,
although it is applied here in a context different from that of trust-region methods. This
difference is quite significant because the typically longer steps determined by the modified
CG procedure make the preconditioner’s adequacy more crucial. The same preconditioner is
also used by Conn et al. [8] in their study of iterated subspace minimization (ISM) methods.
The preconditioned methods corresponding to BLS, GLL2, and NMLS are called PBLS,
PGGL2, and PNMLS, respectively.
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TABLE 9
Cumulative statisticsfor BLS, GLL2, NMLS, PBLS, PGLL2, and PNMLS.

Method

BLS
GLL2
NMLS
PBLS
PGLL2
PNMLS

iters
188 small problems

evals CG-its time
7649 16943 127062 1743
6808 13878 91499 1246
6057 10210 82298 1114
11829 20569 85394 1868
10337 20689 65540 1193
7270 12931 61130 1351

iters
4682
4431
4228

75 large problems
evals CG-its
8377
6139
5902

497420
281399
273230

time
32588
16315
17176

6631 12832 304067 24419
5022 8117 217835 18786
5027 8234 241810 17689

TABLE 10
Detailed comparison ofPBLS and PGLL2.

210 small
problems

83 large
problems

Performance
measure
Iterations
Evaluations
CG iterations
Time
Iterations
Evaluations
CG iterations
Time

PBLS tie PGLL2
wins wins

51 111 48
43 140 27
43 106 61
14 184 12

PBLS-PGLL2 (when different)
min q med q3 max

-1694 -14 -1 13 1419
-3347 3 8 2073
-4627 -18 3 43 26194
-84 3 736
-151 -3 7 56 3121
-295 2 22 6334

-45182 -24 67 533 79726
-5519 -1 6 19 7417

10 51 22
9 60 14

11 50 22
10 51 22

A first observation is that preconditioning slightly deteriorates reliability on our set of test
problems: PBLS succeeds on 215 of the 226 small problems and both PGLL2 and PNMLS
on 214. Of the 101 large problems, PBLS solves 89, PGLL2 solves 87, and PNMLS 86. In
addition to the reasons for failure discussed above for the unpreconditioned case, we note
that the search direction computed with the preconditioner sometimes causes the iterates to
leave the region where the problem’s functions are safely defined, causing arithmetic errors.
Another effect is that the test (20) is not always adapted to the preconditioned system and may
cause very early termination of the modified CG method, yielding a search direction identical
or close to steepest descent. When this happens, convergence is typically very slow.

On the other hand, the preconditioner fulfills its purpose on most problems: it reduces the
number ofCG iterations requested for solution (although it might indeed deteriorate speed due
to their increased computational cost). We illustrate this effect by comparing, in Table 9, the
cumulative performances of the preconditioned algorithms and their unpreconditioned coun-
terparts on the 188 small and 75 large problems that were coherently solved by all six methods.
PNMLS appears to be the best of the two preconditioned methods on average for small prob-
lems, while PGLL2 takes the lead for the large ones, except, marginally, on CPU time.

The detailed comparisons betweenPBLS, PGLL2, andPNMLS are presented in Tables 10,
11, and 12.

These comparisons reinforce our previous conclusions on the relative merits of monotone
versus nonmonotone methods. We note that the gap between preconditioned methods is
smaller than that between unpreconditioned ones. We also see (Table 12) that PGLL2 seems
to outperform PNMLS slightly. This may indicate that the additional caution introduced in
NMLS may be less relevant when the computed search direction is closer to the true Newton
step.

5. Conclusion and perspectives. In this paper, we have revisited Grippo, Lampariello,
and Lucidi’s proposals to use nonmonotone techniques in the framework of linesearch algo-
rithms for unconstrained optimization. At variance with the original experiences reported
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TABLE 11
Detailed comparison ofPBLS and PNMLS.

212 small
problems

84 large
problems

Performance
measure
Iterations
Evaluations
CG iterations
Time
Iterations
Evaluations
CG iterations
Time

PBLS tie PNMLS

35 131 46
32 28 152
32 127 53
9 191 12

PBLS-PNMLS (when different)
min ql med q3 max

-431 -12 2 12 1419
-4513 3 7 2594
-31999 -28 3 62 15700

-34 -2 0 2 505
-285 -33 97 3121
-3402 2 5 6334
-27248 -2 109 439 64647
-3329 -2 5 97 7406

13 57 14
10 59 15
7 56 21
7 59 18

TABLE 12
Detailed comparison ofPGLL2 and PNMLS.

210 small
problems

82 large
problems

Performance
measure
Iterations
Evaluations
CG iterations
Time
Iterations
Evaluations
CG iterations
Time

PGLL2 tie PNMLS
wins wins
37 133 40
45 129 36
45 127 38
10 189 11

PGLL2-PNMLS (when different)
min ql med q3 max

-605 -6 12 2958
-1571 -18 -2 16 5941
-5738 -44 -2 34 10402
-231 -3 0 71
154 34 3 20 193

-337 -69 -3 45 393
-73112 -373 -3 91 32736
-2680 -10 -1 14 2189

14 57 11
16 56 10
14 57 11
13 59 10

by these authors, we used a (preconditioned) truncated CG technique to compute the search
directions and applied the resulting methods to a large collection of both small- and large-
dimensional test problems, totaling more than 2500 test runs.

Using the results of these experiments, we have assessed the potential of NMLS tech-
niques as proposed by Grippo, Lampariello, and Lucidi. The effects of problem size and
preconditioning have also been specifically pointed out. We finally proposed a new variant
that uses similar techniques.

The general conclusions of these tests and proposals can be summarized as follows.
The impact ofNMLS in the context oftruncatedCGmethods is clear, andmostnoticeable

on the more difficult and nonlinear problems.
This impact is often favorable, in that nonmonotone methods show superior efficiency

when compared with standard linesearch algorithms. This is especially true if preconditioning
is not used. However, unfavorable problem-dependent effects also appear, but seem to be
outweighed by the favorable ones.

As expected, the differences in CPUtime between monotone andnonmonotone methods
are most important for the large problems. This distinction, however, is irrelevant when the
number of problem function evaluations is considered: the gains provided by some of the
analyzed nonmonotone methods are consistent, regardless of problem size.

In the absence of preconditioning, the new proposed variant appears to yield the highest
potential for substantial efficiency gains while best limiting the probability of-losses, at least on
the set of test problems used in this comparison. However, this advantage seems to disappear
when preconditioning is applied.

As is the case for all practical comparisons between optimization algorithms, the results
presented here do not pretend to be either complete or decisive. Further confirmation by
continued experience is of course necessary for a true validation ofNMLS techniques, but the
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trends outlined in this study are definitely encouraging. The application of these techniques
in the context of merit function minimization for the solution of constrained problems and in
the framework ofISM [8] are of particular interest. Finally, the extension of the nonmonotone
approach to a trust-region algorithm is the object of ongoing research.
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A REGULARIZATION PARAMETER IN DISCRETE ILL-POSED PROBLEMS*
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Abstract. The Tikhonov regularization method for discrete ill-posed problems is considered. For the practical
choice of the regularization parameter c, some authors use a plot of the norm of the regularized solution versus the
norm of the residual vector for all a considered. This paper contains an analysis of the shape of this plot and gives a
theoreticaljustification for choosing the regularization parameter so it is related to the "L-comer" ofthe plot considered
in the logarithmic scale. Moreover, a new criterion for choosing c is introduced (independent of the shape of the plot)
which gives a new interpretation of the "comer criterion" mentioned above. The existence of"L-comer" is discussed.

Keywords, discrete ill-posed problems, least squares solution, Tikhonov regularization, regularization parameter
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1. Introduction. A linear integral equation ofthe first kind in L2 (i) with a smooth kernel
is a classical example of an ill-posed problem. A solution of this equation, if it exists, does
not continuously depend on the right-hand side and may not be unique. A discretization of
such a problem leads to a matrix equation in Cm,

(1.1) Ku f,

where K is an rn x n matrix with a large condition number, rn > n. A linear least squares
solution of the system (1.1) is a solution to the problem

(1.2) min gu f 2,
uEC

where the Euclidian vector norm in C is used. Using the notation introduced in other papers
(e.g., [3, 8]), we say that the algebraic problems (1.1) and (1.2) are discrete ill-posed problems.

There are many papers concerning numerical methods for solving ill-posed problems in
function spaces (cf. [5, 10, 16, 17, 12, 13]), as well as for solving discrete ill-posed problems
(cf. [2, 3, 6, 8, 11]). These methods are based on so-called regularization methods. The most
well known is the Tikhonov approach, which consists of replacing the least squares problem
(1.2) by the problem of a suitably chosen Tikhonov functional. The simplest version of this
method has the form

(1.3) min{llKu fll 2 + ot211ul12},
UEC

where ot 6 R is called the regularization parameter.
An important and still current problem is a proper choice of the regularization parameter.

There are several possible strategies that depend on additional information concerning the con-
sidered problem and its solution. For instance, in order to apply the well-known discrepancy
principle (cf. [5, 10, 16, 17]), which is an a posteriori strategy for choosing ot as a function of
error level, the input error level must be known.

Another strategy based on a priori knowledge of a structure of input error, namely, when
error in f can be considered to be uncorrelated zero mean random variables with a common.
variance (white noise), is the generalized cross-validation method [4, 18]. Surveys of the
different methods can be found in [2, 7, 8, 18].

In [7] and [8] the authors investigated another practical method for choosing c in the
case when data are noisy. The method is based on a plot of the norm of the regularized

*Received by the editors July 21, 1993; accepted for publication (in revised form) December 19, 1994.
tlnstitute of Mathematics, Polish Academy of Sciences, 00-950 Warsaw, POB 137,
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solution versus the norm of the corresponding residual. The idea of the proposed L-curve
comer criterion is to choose the regularization parameter related to a characteristic L-shaped
"comer" of the graph.

Unfortunately, the location of the "comer" is dependent on the scale in which the L-curve
is considered, and in some scales it may not appear. Moreover, in the aforementioned papers,
some statements concerning a characterization of the L-curve have only intuitive justification
and are not true in general. Nevertheless, the idea of the method is intuitively clear and
numerical results (cf. [7]) confirm the utility of it when the logarithmic scale is used.

The present paper is devoted to more rigorous analysis of the method mentioned above.
Moreover, an interpretation of the L-curve comer criterion in terms of minimization is given.

In 2, we give a short review of properties of the norm of regularized solution (in the
Tikhonov sense (1.3)), the residual norm, and the corresponding plot in different scales. In
3, we formulate another criterion for choosing ot which is independent of the shape of L.
Next, we prove that this criterion is equivalent to the L-curve comer criterion related to the
plot in the logarithmic scale. In 4, the problem of existence of an "L-comer" indicating the
regularization parameter ot is discussed.

2. L-curve. It was observed in [9] and extended in [7, 8] that a simple graphic presenta-
tion of the curve

(2.1) x(ct) --IIKu fll 2,

(2.2) y(oe)- Ilu=ll 2,

where u is the solution of (1.3), can be very useful in studying the least square problem
connected with it. In this section we give a short review of the properties of this curve in
different scales. Some of them were formulated in other papers (cf. [7, 8, 14]). According to
the notation introduced in [7], by L-curve we will mean

(2.3) {x (or), y(o)}o<o,).

The L-curve in 4-scale will be denoted by

(2.4) L {tp(x(ot)), tp(y(ct))}o,).

q = - and q In will be considered.
The following lemma for 4 - describes a standard property of the Tikhonov regular-

ization method (cf. [9, Thm. 25.99]).
LEMMA 1. lfdp R+ R is a positive, increasingfunction then any point (, rl) on the

L is a solution ofthefollowing two inequality-constrained least squaresproblems:

min4(llKu fll 2) subject to (llull2) _<

r/- min(llu 2) subject to (llgu fll 2) _<

For the further investigation ofx (c) and y (c) we shall apply the singular value decompo-
sition for the matrix K. This is a well-known approach for least squares problems (of. 18]).

If K Cm’n is a matrix of rank r, then there exist unitary matrices U Cm’m and
V 6 Cn’n such that
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where E gm’n, r diag(0"x 0"r), and 0"1 > 0"2 > > 0"r > 0. The 0"i are called
the singular values of K and the ith colunm vectors ui, vi of U and V, respectively, are the
left and right singular vectors corresponding to tri, 1 r.

The least squares solution of (1.1) of the minimal norm is the minimal norm solution of
the normal equation K*Ku K*f, and thus if

(2.5)
m

f 3Ui, where J ui f’ 1 m
i=1

then

(2.6) u --V

i=1 0"i

For a discrete ill-posed problem (just the case considered here) the singular values 0"i tend with
very rapidly to zero. Due to the errors in the right-hand side (f f + e), for which it cannot

be assumed that u[e, r, tend to zero faster than tri, the solution u is perturbed
mainly by contributions corresponding to the small singular values.

The regularized solution u of (1.3) satisfies the normal equation K*Ku + 0/2u K*f,
thus

(2.7) u
i=1 0"/2+0/2

Because of 0/ > 0, the problem of computing u becomes less ill-conditioned than that of
computing u, i.e., an influence of errors corresponding to the small singular values becomes
smaller.

.It can easily be found that

(2.8) y(0/) Ilull 2--
0"/21312

i=1 (0"/2 ._ 0/2)2"

Moreover, denoting f+/- Zi=r+l JUi’ we get

Ku f u --1- f+/-
i=1 0"/2+0/2

Thus

0/41j 12(2.9) x()
(0"i2 q_ 0/2)2

-t-Ilf+/-ll 2.
i=1

From this it follows that for f 7 f+/-

(2.10)
dx 40/3 Ij)120"i.2
d---

i=1 (0"/2
__

0/2)3
> 0,

which means that the function x (0/) is strictly increasing. Thus there exists a function 0/(x)
inverse to x, and the curve {x (0/), y(0/)}eR+ has only one branch which can be represented as
the function y(x) y (0/(x)).



REGULARIZATION PARAMETER 743

LEMMA 2. Ifx, y are defined by (2.1), (2.2) then y as afunction ofx is decreasing and
strictly convex.

Proof The function x (0, cxz) (llf+/-ll 2, Ilfll 2) is increasing; thus the inverse function

c(x) (llf+/-ll 2, Ilfll 2) (0, )

is also increasing. From the formula (2.8)

(2.11) d___y -4ot
(tr/2 + ot2)3"dot

i--1

Taking into account (2.10) we get

dy 1
(2.12) d---- ot2"

Thus y(.) is decreasing and ay
__

-cxz when x --+ IIf+/-l12; dy 0 when x --+ Ilfll z We
dx dx

have

d2y d 2 dot(x) .. O
dx2 dx 0[2 ot3 dx

since ot (x) is increasing. This means that y (x) is strictly convex. [3

From formulas (2.8) and (2.6) it follows that y(ot) --+ Ilull = when ot 0. Moreover,
y(ot) 0 when ot --+ cxz.

REMARK 1. The L-curve remains decreasing in any differentiable strictly monotonic scale, among others, for 4) In and dp /-. Using the notation r dp(y(a)), q(x(ot)),

dr/ 1 q’(y (ot))
(2.13) d-- ot2 ’(x(ot))

REMARK 2. A change ofthe scale dp does not preserve the convexity ofthe L-curve. For
instance, the parametric curve L {ot4/(1 -- ot2)2, 1/(1 + otE)2}ote(0, (which is a particular
case ofanL-curvedefinedby(2.8), (2.9)for r 1, or1- 1, fl 1, "-0 fori 1)inthe
scale qb /- is the straight line interval with ends 1, 0} and {0, 1}, while in the logarithmic
scale it becomes a strictly concave curve.

Because of the fact that the shape of the L-curve in the scales b Vr and In
determines the practical choice of a proper ot (cf. [7], [8]), we present the following lemmas
to give some information about that shape.

First, let us consider the L-curve in the logarithmic scale.
LEMMA 3. Iff+/- O, the L-curve in the logarithmicscale is strictly concaveforot (0, O"r)

andfor ot (rl, o). If f+/- 5 0 then this curve is convexfor ot (0, e) where e is sufficiently
small, and remains concavefor ot (or1, cxz).

Proof. According to (2.13)

dr/ 1 x

d ot2 y

Since x e y e0, we easily find that

d2r/ x

d2 a4y2
ot2y + x 2oty

dot
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and by (2.10)

Thus

d

Let us observe that for ot < err

and for a >_ O"

4c3

x
z, where z (or/2 -- a2)3.i=1

d2rl
d2

-q
c6y y 2z

>1 i=1, r,
0,? ..F 02

2 1
> i=1 r.O.?_F. Ct2 02’

x while for a > O" (independently ofIt follows that for ot < err and f+/- 0 we have 2z > 7,
f+/-) 2z > . This implies that in both cases

Ol
4

Ol2 1 d20>0, i.e. <0,
x y 2z

which ends the proof. [3

From Remark 2 it follows that in the case fi 0, ’i 1, the curve Ln is strictly
concave. Due to continuity this curve remains concave for sufficiently small perturbation of
coefficients. The following lemma gives a sufficient condition (in the case of two components
of f) under which the Lln-Curve does not have a "comer property."

LEMMA 4. Let il < i2 be such that fi Ofor {il, i2} and 3 Ofor {il, i2}. If

r.2 < r.2
then the Ln-curve is strictly concave.

Proof. The proof follows from simple calculations concerning the second derivative

daa-0 where lnx(a) and 0 In y(a) The sign of is equal to the sign of a certaindr/2
polynomial of degree 4 with respect to c2. Under the assumption ofLemma 4, all coefficients
of this polynomial are positive.

A relation between the magnitude of quotients I_ and the shape of the corresponding
Llog-CUrve is illustrated in Figs. 1 and 2 for the case oftwo components of f. Figure 1 presents
Llog-CUrves for rl 1, r2 0.01, fl 1, and various values of f2: 0.001, 0.03, 0.1.
Figure 2 shows the changing shape of the Llog-Curve when f+/- grows. For the case tY 1,
r 0.01, f 1, f2 0.05 the values f+/- 2 0, 0.001, 0.01 are taken. The "+" sign
denotes the points of the Llog-curves corresponding to ct r2.

Finally, let us consider a shape of an L-curve in the square-root scale. In the particular
case when the decomposition of the right-hand side in the basis {ui has only two nonzero
components we have the following result.

LEMMA 5. Let i < i2 be such that fi O for {il, i2} and 3 Ofor ’ {i, i2}.
Then the parametric curve

is convex.
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FIG 1. Llog-Curvesfor f+/- --O,
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FIG 2. Llog-Curvesfor different f+/-,

o’1 1,r2 0.01, fl 1, f2 =0.05,

(a) II/+/-112 O;

(b) IIf+/-ll 0.01;

(c) IIf+/-ll 0.001.

Proof Let {, r/} e L,/-, i.e., /x(0/), r/ @(0/). According to (2.13),

,// If o-i2 then
d_q_ const.2 o-il d O’il

Let o-i > o-i2. Using the formulas (2.8) and (2.9) we get

d(2.14)
d

_/ Il 12(0- -I- 0/2)2 _[.. ifi= 12(o-i21 -I- 0/2)2

V IZ12 2 2 0/2)2 12o-2 2 2)2Io-il (o-iz -k- + I:, i2(O-il -and consequently,

(2.15)

Suppose that dd---q’(0/1) d (0/2)" From (2.15)

fi, 2 (O-i2 Jr-0/12) 2 f/,2 (O-i2 Jr-0/)2

Thus

O-20/2 O.20/2 2 2
0
-2 0/12 -’l- -+ o-i20/1it i2 2 il 2

which is true only if 0/1 0/2.

The conclusion is that a is a continuous one-to-one function of 0/, i.e., it is strictly
monotonic. If is monotonically decreasing, the function r/() is strictly convex. On the

other hand, if a is monotonically increasing then r/() is concave.
Let us introduce an auxiliary function f R+ x R+ --+ R+,

f(t,s) :=
t+s
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If we put to If/112 ,., So Ifi212, t 13 12, then from (2.14)

lira do q/f(to So)" lim do x/f(t, So)
-,o d -d

Since for cri > tri2 we have t < 0, the function f is decreasing in t. This and to < t imply
f(to, So) > f(t, So). Thus

drl dolim < lira ,

whichmeans that d is increasing, i.e., 0 is strictly convex.
Moreover, it can be proved (cf. [14, Thm. 1]) that in the case of arbitrary components f/

of f the maximum of curvature of the L-curve in square-root scale is always attained inside
the interval [1, o). The above results suggest that the maximum of curvature of Lv/- may
not indicate a proper regularization parameter

3. A local minimum criterion. Let us consider a discrete ill-posed problem (1.2) and its
solution u (2.6) and a regularized solution u (2.7) by means of Tikhonov regularization (1.3).

The right-hand side f in (1.1) is assumed to be contaminated with measurement errors.
While the unperturbed right-hand side f satisfies the discrete Picard condition (i.e., the Fourier
coefficients u’f tend to zero faster than cr), the perturbation vector f f does not need to
satisfy such a condition. A consequence is a large influence ofthe errors j5 f corresponding
to small singular values on the solution norm (cf. (2.6)). Any c > 0 reduces the norm of u.
The problem is how to choose a proper c.

1. The first postulate is to choose c such that y(ot) (cf. (2.8)) is not too large, say
y(a) < y(Co), i.e., ot > Cto.

2. On the other hand, another natural postulate is to have a small norm of residuum, i.e.,
x (o) _< x (13/1 ), which means that ct < c 1.

Because of the fact that x(o) is increasing while y(c) is a decreasing function of or, it is
reasonable to consider the function q (or) x(a)y(a), or more generally,

(3.1) q(ct) x(a)yZ(a), where ) > 0,

and look for its minima over the interval [Oto, c1]. Since y(ot) --+ 0 as c o, and if f+/- 0
then x (0) 0, the global infimum is always equal to zero. It is attained at o and, if f+/- 0,
at 0. The question is about existence of local minima points inside the open interval (0, o)
and about their characterization.

The following theorem shows that the local minimum of q has a simple geometric
interpretation, very similar to the so-called L-curve comer described and applied in [7] and
[8], where the L-comer means the point of the L-curve with the maximum curvature.

THEOREM 1. Thefunction z has a local minimum at 6t ifand only if
(i) the Lln-curve is tangent at the point {(ff)r/(ff)} to a straight line +) const, and
(ii) the Lha is convex in a neighbourhood of {(ff)r/(ff)}.
Proof Using the notation (ct) In x (or), r/(or) In y (or), we have

(c) exp((c) + .r/(ot)).

Since d_L > O, the necessary condition for a local extreme of isda

(3.2) do 1

d- + 2 0,

which is equivalent to the condition of a tangent of Lha to the straight line + )r/= const.
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If P (0/) attains a local minimum at c? then (0/) + *0(a) also attains a local minimum at. It means that for a certain neighbourhood of o all points { (0/), 0 (0/)} of the Ln-curve lay
above the straight line + 0 (o) + )0(c?). Thus condition (ii) is satisfied. The inverse
implication is evident. D

REMARK 3. When 6t > 0 is determined by the maximum of curvature ofLm then there
exists > 0 such that

o arg loc min Px(0/).
0<<

Inversely, ifqz (0/) attains at6t a localminimum then the maximum curvature criterion indicates
>0.

REMARK 4. Let cp be an arbitrary one from the considered scales (I, /-, In). If de is
determined by conditions (i) with ) 1, and (ii) (Theorem 1) applied to L then

do d-7-=(dt) ---(), where 0(0/) q(Y(0/)), (0/) b(x(0/)).
ag

For cp I, these conditions give exactly one de (om (2.12)).
In the general case the problem of uniqueness of a local minimum of Px inside (0, cxz) is

open. The same question applies to the L-comer.

4. When do the L-curve criteria indicate tx > 0? By L-curve criteria we mean
(i) Hansen’s criterion [7, 8] taking 0/as the point at which the L-curve has the maximum
curvature, and (ii) a choice of 0/according to conditions (i) and (ii) of Theorem 1 (the local
minimum criterion).

The case described in Lemma 4 shows that the Ln-CUrve may have no L-comers, i.e.,
local minima of tpz may not exist, as well as that the maximum of curvature of Lt may be
attained at ot 0. We are going to explain when the local minimum of tp exists (i.e., when
L-comer of Lln appears) and what it means when there are no local minima.

First, let us formulate the following auxiliary lemma.
LEMMA 6. There exists a local minimum of (0/) at (0, cxz) iff in the case f+/- 0

(4.1) 0/1, 0/2 0 __< 0/1 < a2, such that x(0/1) >_ 0/12y(0/1), x(0/2) < 0/22y(0/2),
or in the case f+/- 0

(4.2) 30/2 > 0 such that x(0/2) _< 0/22y(0/2),

Proof Let (x) P (0/(x)). If

(4.3) :q0/1, 0/2 0 < 0/1 < a2, such that -dt dt
dx

(0/1) _< O, ---x (0/2) >_ O,

d (o) 0 and d2’i’then, by continuity of ’x there exists o [0/1, 0/2] such that 77 7x() > 0. This

means also that dq d2q(0) 0 and 7-yra (o) > 0, i.e., q attains a local minimum at c. If f+/- 0
then the above condition becomes simpler, since

d 0/21j 12
dx

y
(cri2 -Jr" 0/2)2 0/2 f+/- 2

i=1

and we can put 0/1 0.
Since d,_dZx=Y+X dxdY and dxdY =----21 (cf. (2.12)), conditions (4.3) may be rewritten in the

form (4.1). D
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Now let us introduce a class/C of discrete ill-posed problems Ku f. Let 0‘i, 0‘1 >

0‘i2 > > 0‘is 0‘r be all different singular values of K greater than 0 with the multiplicities
m#, j 1 s (s > 2), respectively. Let ui, r, denote the corresponding left
singular vectors. The right-hand side then has the representation f =1 Ju + f+/-, where

fi u’f and f_L-LUi for 1 r. Let g/Zj :__ Z-ak=0V"mij-1 Ifij+k.]2
The problem Ku f belongs to a class/C iff f+/- # 0 or f+/- 0 and the following

conditions are satisfied:
for j=2, s, and(i) 0‘ij "0‘ij-1

g2
(ii) > 2.5 for j 2 s.

ij ij_
THEOREM 2. Let the problem Ku f belong to the class 1.
(i) If f+/- 0 and fgis <- gij for j 1 s 1 then them exists a local minimum of

q() inside the open interval (0, cxz).
(ii) If f+/- # 0 then there exists ) such that qx() has a local minimum inside the open

interval (0, o). This local minimum existsfor ,k 1 if f+/- is sufficiently small
The proof is based on Lemma 6. The parameters or l, or2 are chosen a priori. A detailed

proof of the first part is in 15]. The second part follows from the equivalence of the L-curve
comer criterion and a local minimum of qx described in Remark 3 and from Lemma 3 for

f.l. # 0.
CONCLUSION 1. From Theorem 2 andRemark 3 #follows that iftheproblem (1.1) belongs

to the class 1 then there exists an L-corner ofthe curve Lln.
CONCLUSION 2. Let 0‘ > 2i > Ofor 2 r, and let

f 6 {f 6 cm: If/I >_ /lfrl and Ilf_Lll <_ ’}.

Ifthere are no local minima ofq() inside (0, o) then the IJSI 2 tend to zerofaster than the
corresponding 0‘i. In such a case it is reasonable to take 0 assuming that the right-hand
side is unperturbed.

Let us return to the example considered in 2, when the decomposition of the right-hand
side in the basis {b/i}= has two nonzero components only: fl uf and f2 --uf, where
u, u2 correspond to the singular-values 0‘1 and 0‘2, respectively. Figures 3 and 4 present
the plot of the function in a neighbourhood of the smaller singular value 0‘2 and the plot
of the corresponding Llog-Curve for the case 0‘1 1, 0"2 0.01, fl 1, f2 0.1. The
regularization parameters defined by the local minimum criterion and the L-comer criterion
are denoted by a* and a^, respectively. Their difference a*-a is ofthe order 0.10"22 in this case.



REGULARIZATION PARAMETER 749

REFERENCES

1] A. BJORCK, Least squares methods, in Handbook of Numerical Analysis, Vol. I: Finite Difference Methods
Solution of Equations in R P. G. Ciarlet and J. L. Lions, eds., Elsevier, New York, 1990.

[2] A. BJORCK AND L. ELDIN, Methods in numerical algebrafor illposedproblems, ReportLiTH-MAT-R-33-1979,
Dept. of Math., Link/Sping University.

[3] L. ELDtq. Algorithmsfor the computation offunctionals defined on the solution ofa discrete ill-posedproblem,
BIT, 30 (1990), pp. 466-483.

[4] G.H. GOLtB, M. HEATH, AND G. WAHBA, Generalized cross-validation as a methodfor choosing a good ridge
parameter, Technometdcs, 21 (1979), pp. 215-222.

[5] C. W GROETSCH, The Theory of Tikhonov Regularizationfor Fredholm Equations ofthe First Kind, Research
Notes in Mathematics 105, Pitman, Boston, 1984.

[6] P. C. HANSEN, Truncated singular value decomposition solutions to discrete ill posed problems with ill-
determined numerical rank, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 503-518.

[7] P.C. HANSEN AND D. P. O’LEARY, The use ofthe L-curve in the regularization ofdiscrete ill-posedproblems,
Technical Report UNI*C, UMIACS-TR-91-142, 1991.

[8] P.C. HANSEN, Analysis ofdiscrete ill-posedproblems by means ofthe L-curve, SIAM Rev., 34 (1992) pp. 561-
580.

[9] C.L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1995.

[10] V.A. MOROZOV, Methods ofsolving incorrectly posedproblems, Springer-Verlag, New York, 1984.
11] M.Z. NASHED, Approximate regularized solutions to improperlyposed linear integral and operator equations,

Lecture Notes in Math. 430, 1974, pp. 289-333.
12] T. REGIflSKA,A class ofregularization methodsfor ill-posedproblems with nonexact data, Numer. Funct. Anal.

Optim., 13 (1992), pp. 601-614.
[13] , Approximate solving ill-posed problems, Matematyka Stosowana XXXI, 1989, pp. 119-135. (In

Polish.)
14] ,Remarks on choosing a regularizationparameter in Tikhonov method, preprint 499IMPAN, Warszawa,

1992.
15] ,A regularization parameter in discrete ill-posed problems, preprint 514 IMPAN, Warszawa, 1993.
16] A.N. TIIHONOV AND V. Y. ARSENIN, Solutions ofill-posedproblem, Winston-Wiley, New York, 1977.
[17] G.M. VAINIKO AND A. J. VERETENNIKOV, Iteration procedures in ill-posedproblems, Nauka, Moscow, 1986.

(In Russian.)
18] G. WAHBA, Practical approximate solutions to linear operator equations when data are noisy, SIAM J. Numer.

Anal., 14 (1977), pp. 651-667.



SIAM J. ScI. COMPUT.
Vol. 17, No. 3, pp. 750-761, May 1996

() 1996 Society for Industrial and Applied Mathematics
013

COMPUTATION OF SHOT-NOISE PROBABILITY DISTRIBUTIONS
AND DENSITIES*

JOHN A. GUBNERt

Abstract. The computation of the cumulative distribution (cdf), the complementary cdf (ccdf), and the density
of certain shot-noise random variables is discussed. After subtracting off a few terms that can be computed in closed
form, what remains can be approximated by a general method for approximating samples of a cdf or ccdfby summing
a Fourier series whose coefficients are modulated samples oftheir characteristic function. To approximate the density,
a spline is fit to the cdf samples and then differentiated. When the density has comers, it is important that the spline
have coincident knots at these locations. For shot-noise densities, these locations are easily identified.

Key words, filtered point process, Poisson process

AMS subject classification. 62E17

1. Introduction. The computation of the cumulative distribution (cdf) F(y), the com-
plementary cdf (ccdf) F(y) := 1 F(y), and the probability density function f(y) of a
shot-noise random variable

Y :-- E A,,g(Tv)

is considered; here the {Tv are points of a Poisson process in d with intensity function
):]d _.+ [0, cx), and {Av} is an independent, identically distributed, nonnegative "gain"
sequence. We assume {A and T are statistically independent. The function g: d __+

is typically determined by a system impulse response or point-spread function, depending
on the application in which it arises; e.g., optical communications, imaging, etc. In these
situations there has been much interest in computing shot-noise distributions and densities
[6, 7, 9-15, 18]. One of the reasons that this is such a hard problem is that many shot-noise
densities containjumps and comers, in addition to an impulse at the origin. It is precisely these
features that make it difficult to directly apply simple methods such as Fourier inversion of
the characteristic function or summation of Beaulieu’s series [2]. The purpose of this paper is
to expose the structure of shot-noise distributions and densities and to exploit this structure to
obtain easy-to-compute approximations with the proper jumps and comers in order to obtain
better accuracy.

We point out that our results also have an immediate application to the computation of
the distribution of the test statistic corresponding to the likelihood ratio for Poisson process
observations. Suppose we are testing the hypothesis H0: .(r) .0(r) against H1 , (’t’)
)1 (’g) based on observing the points {T themselves. Then the likelihood ratio test for this
problem is equivalent to comparing the shot-noise random variable/: := e(Tv) against a
threshold, where e(T) := ln()l(T,,)/,ko(T)) [16, p. 94, eq. (2.112)].

The paper is organized as follows. In 2 we state our results concerning the structure
of shot-noise characteristic functions, cdfs, ccdfs, and densities. This structure allows us to
decompose shot-noise distributions into various terms that can be separately approximated.
In 3 we discuss a general method for approximating a cdf and ccdf from their characteristic

*Received by the editors June 1, 1994; accepted for publication (in revised form) December 14, 1994. This
research was presented in part at the 1993 IEEE International Symposium on Information Theory, San Antonio,
TX, January 17-22, 1993. This work was supported by the Air Force Office of Scientific Research under grants
AFOSR-90-0181 and F49620-92-J-0305.

Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706
(gubner@engr.wisc.edu).
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function. If the distribution has a density that is piecewise smooth except for comers, and
if their locations can be identified, then excellent density approximation can be obtained by
fitting a spline with coincident knots to the cdf approximation and then differentiating the
spline. In 4 we use this general method to approximate one of the terms in the decomposition
of a shot-noise cdf, ccdf, and density. Numerical examples are given. The conclusion is in 5.

2. Statement of results and their applications. The characteristic function of Y 17,
p. 221] is

99(09) V-:[ ejY e/(),

:= f )(Z’)[qgA(O9g(z))- 1]dr,

where

(1)

and q)A is the common characteristic function of the {Av}. In Theorem 5 in Appendix A we
show that the condition

(2) B0 "= f{ (r) dr <
:g(r)#o}

implies that p(o9) p(o9) B, where B BoP(Av > 0), and p is the characteristic
function of a finite measure F on N. The reason for doing this is that we can then write

(p(og) e0(’) e-Be0()) and see that for C _.
(3) P(Y C) e-B lc(0) +

m--1
m!

where 1 is the indicator function of the specified set, and P*m is the finite measure whose
characteristic function is (o9)m. If F has density 9/, (Theorem 6 and the remark following it
in Appendix A give sufficient conditions for the existence of 9/), then the density of Y, denoted
by f, can be written as

(4) f(y) e-B 6(y) + 9/ (y)

m--1
rn!

where 9/*m denotes the convolution of 9/with itself m times.

2.1. Standard example. In order to illustrate our results, it is useful to keep in mind a
simple example to which we can refer. We take .(r) to be a positive constant, say .0, and let
g(r) (1 r)lto, x](r ). Take A 1. Then B Bo )0, and asimple calculation shows
(o9) .o...[(ej’ 1)/(jo9) 1] for o9 # 0, and ap(0) 0. Hence, ap(og) ,ko(ej’ 1)/(jog).
Note that is the characteristic function of the unnormalized density 9/(0) ,kol[o,1](0).

2.2. Application of (3) and (4) to density approximation. For M 0, 1 let

RM(og) := E m!
m=M+l

Then the characteristic function ofM is

lZM(C)’-- E m!
m=M+l
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Suppose (w) is O(w-) for some or0 > 0. Then RM(O)) is O(o)-(M+l)t). Given any
positive integer p, for large enough M, (M+ 1)or0 > p, and thus/ZM is absolutely continuous;
in fact, GM(y) "= IZM(--CX, y] has p uniformly continuous derivatives [8, 2.7 and 11.6].
If we make the additional assumption that F has density ?’, then (4) becomes

(5) f(y) e- 8(y) -t- ?" (y) d

m:l
m----f-. + -yGM(W)

For example, if or0 1, then G1 has one continuous derivative, and GI(y) f_Y(?’ *
?,)(0)/2 dO + G2(y), where G2 has two continuous derivatives. If we know, for example, that
?’ is piecewise continuous, and we know the locations of its jump discontinuities, say 0 and 1
as in our standard example, then even without explicitly computing ?" ?’, we see that it, and
hence the densy of G1, have comers at 0, 1, and 2. Hence, it is easy to approximate G1 by
a cubic spline G1 with double knots at 0, 1, 2, and simple knots elsewhere [4]. We then have
f(y) e-B[3(y) + ?’(Y) + I(Y)].

To fit a spline to GM, we require samples ofthe function GM. In 3 we discuss a method to
approximate samples of GM by applying a fast Fourier transform (FFT) to modulated samples
of its characteristic function. Computable error bounds are also given.

Remark. The choice of M in (5) is limited by the cost of computing the convolutions
?’,m (y). For M 0 or 1, no convolutions are required.

2.3. Application of (3) to the computation oftail probabilities. For M 1, 2 let

M i-,,m(c)
OM(C) :-" E m!

m=l

Take 00(C) 0. Then (3) becomes P(Y e C) e-B[Ic(O) + rlM(C "J- /ZM(C)]. In
many applications, the measure F has bounded support; i.e., there exist 0min < 0max such that
F (C) 0 if C

___
(-cx, 0mt) U (0max, o). Since F*m is the convolution of F with itself m

times, each [,,m, and hence OM, has bounded support. It follows that for C outside the support
of 0M, and for 0 C, P(Y e C) e-BIZM(C). For example, if 0min < 0 < 0max, then

P(Y < y) e-BGM(y), y < M0min,

and setting GCM(y) "= lzM(y,

P(Y > y)= e-BGM(y), y > M0max.

In 3 we discuss a method of approximating GM(y) and GCM(y) by summing a Fourier
series whose coefficients depend on the characteristic function of GM. Fortunately, the larger
M is, the faster the characteristic function of GM decays, reducing the number of terms to
be summed from that required using the characteristic function of Go. We give a numerical
example in 4.

3. Fourier series/spline approximation for cdfs and densities. We begin with some
notation. We say G is an unnormalized cdf if G is nondecreasing, right continuous, and
satisfies G(-cx) 0 and G(cx) < cx. In this case we set GC(y) := G(cx) G(y). The
characteristic function of G is

(o)) :-- eJXdG(x).
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Set

N N

(nzr) (nzr)(6) GL,N(y) := Z bn e-jnzry/L and GL,N(y) := b-ndP e-jnzry/L,
n=-N n=-N

where

(7)
1/2, n=0,

bn j/nzr, n odd,
0 otherwise.

Under certain conditions, as N c, GL,N(Y) and GCL,N(y) converge to the infinite sums

(8) GL (y) :-- lim GL,N(Y) and G(y) lim GC N(Y)"
N--+o N---o

A sufficient condition for these limits to exist is that (o9) be O(w-) for some ct > 0. In
fact, the weaker condition (9) below suffices.

THEOREM 1. Let G be an unnormalized cdfwith characteristicfunction . If

(9) lim
1 f I( (0))12 dw 0,

L-,o 2L a

then the limits in (8) exist and satisfy

(10) G(-L + y) < GL(y) G(y) < GC(L + y),

and

(11) -Gc(L + y) < GC(y)-Gc(y) < G(-L + y).

A nonrigorous derivation of (11) was first given by Beaulieu [2] under the assumption
that G possessed a density. In Appendix B, our proof of Theorem 1 shows that condition (9)
is sufficient. Condition (9) is important in applications where one knows only and is trying
to find G; i.e., one does not know a priori if G has a density.

Remarks. There are several important observations to make about (10) and (11). (Similar
observations are made in [2].) Since G is an unnormalized cdf, for any fixed y, both G(y L)
and GC(L + y) in (10) and (11) go to zero as L --+ o; i.e.,

lim GL(y) G(y) and lim GC(y) GC(y).
L--+c L---o

Suppose that for some L1 < Lz, G(x) 0 for x < L1, and GC(x) 0 for x > L2. Then
G(y L) and G"(L + y) would both be zero when y [L1, L2] and L > L2 L1; it would
then follow from (10) and (11) that G(y) G(y) and GC(y) GC(y). This would be
the situation, for example, if G were the cdf of a bounded random variable. Similarly, if one
knows only that G(x) 0 for x < 0, corresponding to a nonnegative random variable, then
G(y L) 0 for 0 < y < L; i.e., the lower bound in (10) and the upper bound in (11) are
both zero. A weaker condition than bounded support would be the existence of the moment
generating function of G. In this case, numerical bounds on G(-L + y) and GC(L + y) can
be obtained via the Chernoff bound.

The preceding theorem and remarks address the convergence of GL and G to G and Gc,
respectively. We next address the respective convergence of GZ,N and Gc to GL and GL,N
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THEOREM 2. Suppose that b(w) is O(w-) for some c > 0; i.e., suppose that there
exist nonnegative constants K and wo such that I(o)l _< Klol for Iol > o0, Then for
N > max{ 1, woL/rc}, both

(12) IG(y) GL,N(y)I and IGCL(y) G,(y)

are upper bounded by

otrr (N- 1)rr

Proof Observe that the differences in (12) are just the tails of the series defining GL,V
and GC,N Since the terms of these series have the same magnitude for positive and negative
n, we can upper bound either quantity in (12) by

]*(n:rr/L)[
<2

n=N+l nzr nzrn=N+l
n odd n odd

provided that (N + 1)zr/L > w0. Now apply an integral comparison to the sum over odd
n >N+lofl/na+l. [:]

Theorem 2 says that for fixed L, GL,N and GCL,N converge uniformly in y. Wenow observe
that (10) and (11) imply that for y restricted to a finite closed interval, say ILl, L2], GL and

G also converge uniformly. To see this, note that for y e [L 1, L], G (L + y) < G (L + L)
and G(y L) < G(L L). The following result is now an immediate consequence of the
triangle inequality and Theorems 1 and 2.

COROLLARY 3. If (W) is O(w-) for some a > O, then GL,N and GCL,N converge
uniformly to G and Gc, respectively, on anyfinite closed interval as L and N become large.

3.1. Density approximation by splines. If is integrable, then G is absolutely contin-
uous with a uniformly continuous density [3, p. 301], which we denote by G’. In particular,
if (w) is O(w-) for some ot > 1, then is integrable, and for fixed L > 0,

(13)
d 1 N nrr( )dyGL,N(Y) =- * ---- e-JmrY/L

n=-N
n odd

converges uniformly to -yGL (y) as N o. The problem is that (13) converges more slowly
than (6). Hence, we propose the following approach for approximating G’.

To begin, letc0 "= 0andcn := bn(nzr/L) forn 0. Then C_n is the complex conjugate
ofcn, and CN 0 for N even. We can therefore write, for even N,

N-1

GL,N(Y) b0(0) + 2 Re Cne-jnzry/L.
n=0

If we let y k Ay, where Ay 2L/N, then the samples GL,N(k Ay) for k 0 N 1
can be computed with an N-point FFT. We can then use these samples to construct a spline
approximation of GL,N(y); to approximate G’, we differentiate the spline. The advantage of
approximating G’ by differentiating a spline approximation of G,N rather than differentiating
G,N itself is that the series for G,N converges faster (in N) than the series for its derivative.
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3.1.1. Complexity of the approximation. To estimate the complexity of the approxi-
mation, we proceed as follows. The first step, computing an FFT of N characteristic function
samples to obtain N cdf samples is an order N log N operation. Next, to compute a cubic
spline approximation using the N cdf samples and interior knots is an order 2N + (i + 8)
operation using the NAG Library routine E02BAF 19]. Hence, these two steps combined are
at most an order N log N operation. To evaluate the spline or its derivative at one point is an
order log(/+ 8) operation using the NAG routine E02BCF 19], which is independent of the
number of characteristic function samples N.

3.1.2. Other considerations. Ordinary spline fitting routines, which operate by effi-
ciently solving a highly structured set of linear equations, do not guarantee that a spline fit
to GL,N will be monotone or, equivalently, that the spline derivative will be nonnegative.
Although we have not found this to be a serious problem in our experience, we briefly dis-
cuss three solutions. The simplest solution to the negative density problem is to replace the
spline derivative by zero whenever it is negative. Since the spline derivative typically becomes
negative only in regions where the true density is almost zero; zero itself is a good approx-
imation. However, this method does yield a nonsmooth density approximation, which may
not be acceptable. A second solution, which works in our examples, is simply to increase N.
Finally, we note that there are algorithms for constructing monotone splines; e.g., 1] and the
references therein. However, such algorithms require solving nonlinear equations.

4. Numerical examples. Motivated by (5), we consider spline approximations of the
form

(14) M,L,N(Y) e-B 6(y)
m:l

m! ely
GM’L’N(y)

where GM,L,N is a spline fit to

(15)
N

(nYt’) -jnzcy/LGM,L,N(Y) :-- bneM -- e
n=-N

We also consider the direct Fourier series approximation (cf. (13))

M /,m (y) d
(16) fM,L,N(Y) :-- e-B 8(y) + Z ml- + -yGM,L,N(Y)

For our standard example (2.1), f is known in closed form, and so in Example 1 we set

M and compare both fM,L,N and fM,L,N with f. In Example 2 we apply the ideas from

2.3 to compute a tail probability P(Y > y) for our standard example.
Example 1. For our standard example, the density of Y was obtained in closed form,

modulo a typo, by Gilbert and Pollack [6, p. 344]. The correct formula is, for y > 0,

LyJ ,k-(-1)
] (2/;ko(yf(Y) e-Z

k! (/&o(Y -k) Ik-1 -k))
k=0

where lyJ denotes the greatest integer less than or equal to y, and Ik is the modified Bessel
function of order k. Note that I_ I1. A plot of f(y), y > 0, is shown in Fig. 1 for the case
,k0 1. When .0 1 we approximate f(y) on [0, 7.1] as follows. First we must select the
knots for the spline approximation of G1,L,N in (15). To begin, we placed 35 uniformly spaced
interior knots between 0.2 and 7. The cubic spline program we used (NAG Library routine
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FIG. 1. Plot off(y) from Example 1.
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FIG. 2. Plot off(y)- fl,L,128(Y) (dotted line)and f(y) f1,L,256(Y) (solid line)from Example 1.

E02BAF) automatically put four coincident knots at each of the endpoints, 0 and 7.1. Now,
as noted in 2.2, the density of G1 has comers at 0, 1, and 2. We therefore added a coincident
knot at 1 and at 2, for a total of 37 interior knots. We now take L 10. If N 128, a
plot of fl,L,N(Y) would be graphally indistinguishable from the curve~ in Fig. 1. Hence, in
Fig. 2 we plot the errors f(y) f1,L,128(Y) (dotted line)and f(y) fl,L,E56(Y) (solid line)
for y 6 [0.01, 7]. Letting ’t,L,N(Y) "= e-B[II0,)(Y) + r/t(y) + t,,N(Y)], we note that
F1,L,128(7.03125) 1.00000; i.e., our density approximation integrates to I to the number of
digits shown. The spline fitting routine we used did not require that fi,L,N be nonnegative.
In fact, when N 128 and y is close to 7, I,,N(Y) --10-5. For N 256, this problem
disappears.

Finally, we note that our spline approximation (14) yields a much smaller error than
the direct Fourier series approximation (16). This is demonstrated in Fig. 3 where we plot
f(y) f1,L,E56(Y) (solid line)and f(y) f1,L,E56(Y) (dotted line).
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FIG. 3. Plot off(y) fl,L,256(Y) (solid line) and f(y) fl,L,256(Y) (dotted line)from Example 1.

Example2. As noted in 2.3, in many cases we can write Ft(y) e-G(y) for large
y. Suppose 1(o9)1 _< Kologl- for large o9. Letting ot o(M + 1) and

m=M+l
m!

we have IRM(Og)I _< Klogl-. For our standard example, we have Ko 2)o and cto 1.
Hence, RM(og) is O(o9-(+1)). Since y lives on [0, 1], we see that for y _> M, la(Y >
y) e-G(y). By Theorem 1, the error between P(Y > y) and e-ZG,L (y) is less than

e-ZGC(L + y) and, by Theorem 2, the error between e-ZGC,L (y) and e-ZG,,v(y) is
less than

(17) e-KIL 1"cr (N-1)zr
N> 1

Taking Z0 1, L 10, N 64, and y M 6, we computed e-lGc6,10,64(6)
1.3012036133501x 10-7. We conclude that P(Y > 6) 1.3012 10-7 to the numberofdigits
shown as follows. First, using a Chemoff bound, we find numerically that e-lG(10 q- 6) <
8 10-24. Second, the bound in (17) is less than 5 x 10-13.

5. Conclusion. In 3 we discussed a general method for approximating a cdf and ccdf
from their characteristic function using GI,N and G,,N, respectively. The error due to taking
L finite is given in (10) and (11); when the moment generating function exists, numerical
bounds on this error can be determined with the Chemoff bound. In Theorem 2 we gave
a simple bound on the error due to taking N finite. In 3.1 we proposed fitting a spline to
the cdf approximation and then differentiating the spline to approximate the density. With
appropriately chosen knots, excellent density approximation can be obtained.

These general results do not apply directly to shot-noise random variables because their
densities contain impulses and discontinuities. Hence, Theorems 4-6 in Appendix A are the
key to obtaining the decompositions (3) and (4), from which the analysis of the shot-noise
density in 2.2 and the shot-noise tail probabilities in 2.3 followed. From this analysis, we
see how to apply the general method of3 to the components of the shot-noise decomposition.
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In particular, the shot-noise decomposition permits the easy identification ofthe knot locations
needed for good spline approximation.

AppendixA: Analysis of. Weshowthat(w) $(w)-B, where B B0P(Av > 0),
and p is the characteristic function of a finite measure F on the Borel subsets of N. To begin
the analysis, we make the additional technical assumption that . and g are Borel measurable.
Let

(18)

Then if

o(o9) f )(r)[ej’g(*) 1]dr.

(19) Elf .(r)leJg(r)A"--l[ dr]< cxz,

Fubini’s theorem [3, p. 200] allows (1) to be rewritten as

(w) E[0(wa)].
Note that since lejo 11 < min{101, 2}, (2) is a sufficient condition for (19) to hold. This
condition is not necessary; for example, the power-law shot-noise random variables in [9,
IV-B] satisfy (19) but not (2).

On the Borel subsets of N, define the measure

(20) Fo(C) f ,k(r) dr.
:g(r)eC, g(r)#O}

Note that F0(N) B0 (cf. (2)).
Remark. The measure F0 can be interpreted as an unnormalized conditional probability

as follows. Recall that conditioned on the number of points T occurring in a region D,
the point locations in D are independent and identically distributed with common density
.(r)/fD .(r)dr [17, p. 90]. If D {r ]1d g(r) # 0}, then F0(C)/N0(N) is the
conditional probability that g(T,) e C given that T is one of the points in D.

THEOREM 4. If(2) holds, then

o(w) ej’ d[’o(O) [’o().

Proof Let D be a Borel subset of Ra, and let C be a Borel subset of R. Define two
measures A(D) := fo )(r) dr and H(C) := A(g-I(c)). The change-of-variable formula
for measures [3, p. 185] allows us to rewrite (18) to obtain

/0(09) [ [ejwg(v) 1] dA(v)

[eJ 11 dH(O).

Note that the integrand is zero for 0 0. Also note that F0(C) H(C\{0}). Hence, we can
replace dH(O) by dl-’0(0), and the theorem follows.

THEOREM 5. Assume (2) holds, and define thefinite measure

(21) F(C) F: I{A.>0} lc(AvO) dFo(O)
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Let B := 1-’() F0(It)P(A > 0) BoP(A > 0), and set (o9) := ap(oo) + B. Then

(o) (o).eJOO dF

Proof Using the definition of F in (21) and proceeding in the usual way from simple
fctions to noegative functions to integrable functions, one can see that for the paicular
fction of , ejw we have

e dF(g) lla>ol e(dFo(0

which by Theorem 4 is equal to [ll>o[Oo(A) + Fo(R)I], which, since o(0) 0, is
equal to [Oo(mA)] + >

THEOREM 6. If Fo has densi go, then F has densi

(0 [laoo(0/a/a].
Proo From the definition of F in (21) we can write

F(C) 1>o lc(AO)go(O)dO

Then a change of variable followed by Tonelli’s theorem [3, p. 200] yiel

r(c fc [oo(o/a/a] o. a

Remark. Under ceain symmet conditions, it is often quite easy to use (20) to express
Fo(0, ) or Fo(-, 0] in afoin which go can be obtained via differentiation. A large class
of such examples can be constructed as follows. Let be a no on Re. Let q map [0, r)
onto (0, 1], where q is noegative and strictly decreasing so that q-L (0, 1] [0; r) exists
and is noegative and strictly decreasing. Set g (r) q (1 r II) for 0 r < r and g(r) 0
otheise. Since g(r) R 0, Fo(0, ) Bo for 0 0, and since g(r) N 1, Fo(0, ) 0 for

0 1. For0<0 < 1,

Fo(0, ) [ (r) dr.
:llrll<q-(0)}

Now suppose (r) u(llrllZ), where u is noegative. If U(p) U(0) + f u(x)xa-1 dx,
and if A denotes the area of the unit sphere {r s a [Irll 1}, then F0(0, )
A[U(q-I(o)) U(0)]. If q is piecewise continuously differemiable, then 0(0)
-Aau(q-l(o))q-l(O)(d/dO)q-l(o), where the discontinuities and comers of 0 are eas-
ily deteined from those of u and q.

Appendix B: Proof of Theorem 1. We claim that it suffices to prove the theorem for
y 0. To see this, suppose (10) and (11) hold with y 0; note the resulting simplifications
in the expressions for G,(0) and G,(0), in terms of which G(0) and G(0) are defined.
Then replace G by Gy, where Gy (X) := G(x + y), and note that the characteristic fction
of Gy is f_ eJWXdGy(x) ()e-jwy. This establishes the claim.

We now prove the theorem when y 0. We begin with (11). Observe that Gc(O)
f_ l(0,)(x) dG(x). Now, for any L > 0, define the periodic pulse train fl wi period 2L
by specifying i values on (-L, L] to be

1, O<xL,
(x) O, -L < x O.
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Observe that for all x,

ilL(x) < l(0,)(x)+ l(_,_L](x)

and

fl(x) > l(0;],(x)= l(0,)(x)- l,,(x).

Hence, we have the error bounds

-Gc(L) < L(X) dG(x) Gc(O) < G(-L).

The next step is to approximate fl by its Fourier series. Set

N

IL,N(X) b-hejnx/L
n=-N

where the bn are given by (7). Now, as N cx), fl,N (X) fl (X) for all x except at points
of discontinuity of fl. Since (9) is equivalent to the condition that the measure induced by
G have no point masses [3, p. 306], fl,N converges to/L almost everywhere with respect
to this measure. Since ,N(X) is uniformly bounded in N and x (with L fixed) [5, p. 151,
eq. (10.1.5)], the dominated convergence theorem yields

fl (x) dG(x) b-n ejnzrx/L dG(x)
n=-cx cx

n=-x)

G(O).

This establishes (11). To establish (10), repeat the preceding derivation, but replace fl, (x) by
/3, (-x). Then note that G is real and equal to its complex conjugate. [3
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TOEPLITZ-CIRCULANT PRECONDITIONERS FOR TOEPLITZ
SYSTEMS AND THEIR APPLICATIONS TO QUEUEING

NETWORKS WITH BATCH ARRIVALS*

RAYMOND H. CHANt AND WAI-KI CHING

Abstract. The preconditioned conjugate gradient method is employed to solve Toeplitz systems Tnx b where
the generating functions of the n-by-n Toeplitz matrices Tn are functions with zeros. In this case, circulant precon-
ditioners are known to give poor convergence, whereas band-Toeplitz preconditioners offer only linear convergence
and can handle only real-valued functions with zeros of even orders. We propose here preconditioners which are
products of band-Toeplitz matrices and circulant matrices. The band-Toeplitz matrices are used to cope with the
zeros of the given generating function and the circulant matrices are used to speed up the convergence rate of the
algorithm. Our preconditioner can handle complex-valued functions with zeros of arbitrary orders. We prove that the
preconditioned Toeplitz matrices have singular values clustered around for large n. We apply our preconditioners
to solve the stationary probability distribution vectors of Markovian queueing models with batch arrivals. We show
that if the number of servers is fixed independent of the queue size n, then the preconditioners are invertible and the
preconditioned matrices have singular values clustered around for large n. Numerical results are given to illustrate
the fast convergence of our methods.

Key words, preconditioning, Toeplitz matrix, circulant matrix, queueing network

AMS subject classifications. 65F10, 65F15, 65N20, 60K25

1. Introduction. In this paper, we discuss the solutions of linear systems Tx b where
T is a Toeplitz matrix. Direct methods that are based on the Levinson recursion formula are in
constant use; see for instance, Trench [25]. For an n-by-n Toeplitz matrix Tn, these methods
require O(n2) operations. Faster algorithms that require O(n log2 n) operations have been
developed; see Ammar and Gragg 1] for instance. The stability properties of these direct
methods for symmetric positive definite matrices are discussed in Bunch [5].

Here we will consider solving Toeplitz systems by the preconditioned conjugate gradient
squared (PCGS) method. There are many circulant preconditioning strategies for Toeplitz
systems; see for instance [23, 11, 16, 15, 17, 18, 4, 3]. The convergence results for these
circulant preconditioners are all based on the regularity of the function g (0) whose Fourier
coefficients give the diagonals of Tn. The function g(O) with 0 6 [-zr, zr] is called the
generating function of the sequence of Toeplitz matrices Tn. A general result is that if g (0) is
a positive function in the Wiener class, then for large enough n, the preconditioned matrix has
eigenvalues clustered around 1. In particular, the PCGS method applied to the preconditioned
system converges superlinearly and the n-by-n Toeplitz system can be solved in O (n log n)
operations. However; we remark that if g(O) has a zero, then the result fails to hold and the
circulant preconditioned systems can converge at a very slow rate (see the numerical examples
in 4 or in [9]).

To this end, Chan in [6] used trigonometric functions of the form sin (0 00) to approxi-
mate the function g (0) around the zeros 00 of g. The power is the order of the zero 00 and is
required to be an even number. The resulting preconditioner is a band-Toeplitz matrix which
gives linear convergence. The bandwidth of the preconditioner is ( + 1). To speed up the
convergence rate, Chan and Tang [9] have considered using the Remez algorithm to find the
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best trigonometric polynomial that approximates g in the supremum norm and yet matches
the order of the zeros of g in a neighborhood of the zeros. The resulting band-Toeplitz precon-
ditioner car_ significantly reduce the condition number of the preconditioned systems at the
expense ofenlarging the bandwidth. We note that both methods work only for real-valued gen-
erating functions with zeros ofeven orders and fail for complex-valued functions or real-valued
functions with zeros of odd order. A typical example is the Toeplitz matrix tridiag[-1, 1, 0].
Its generating function is given by g(0) 1 e-iO and it has a zero of order 1 at 0 0. We
note that if we write z eiO, then g as a function of z has a zero of order 1 at z 1.

In this paper, we will design preconditioners that give superlinear convergence and work
for generating functions that are complex valued and have zeros with arbitrary orders. Our idea
is to approximate g, as a function of the complex variable z, around its zeros z0 by functions
of the form (z zo)e, where is the order of the zero z0. Then we approximate the quotient
g(z)/(z zo) by using the usual circulant approach. This results in a preconditioner which
is a product of a band-Toeplitz matrix with bandwidth ( + 1) and a circulant matrix. We will
prove that if the quotient is a nonvanishing Wiener-class function, then the preconditioner is
invertible and the iterative method converges superlinearly for large n.

We then apply our preconditioner to solve the stationary probability distribution vectors
for Markovian queueing networks with batch arrivals. We note that the generator matrices An
for these queueing networks are singular matrices with a Toeplitz-like structure. In fact, when
there is only one server in the system, An differs from a lower Hessenberg Toeplitz matrix by a
rank-one matrix. The preconditioner Pn is constructedby exploiting the near-Toeplitz structure
of An and will also be a product of a band-Toeplitz matrix and a circulant matrix. We prove
that if the number of servers is independent of the queue size n, then for all sufficiently large
n, Pn are invertible and the preconditioned matrices have singular values clustered around 1.

The outline of this paper is as follows. In 2 we define our preconditioners Pn for general
Toeplitz matrices with generating functions that have zeros. We then prove that the precondi-
tioned systems have singular values clustered around 1. In 3 we consider solving Markovian
queueing networks with batch arrivals by using our preconditioners. In 4 numerical results
are given to illustrate the fast convergence of our methods when compared to other methods
and other preconditioners used in solving Toeplitz systems and queueing networks. Finally,
concluding remarks are given in 5.

2. Construction and analysis of preconditioners. In this section, we discuss how to
construct preconditioners for Toeplitz systems Tn whose generating functions are functions
having zeros. Then we analyze the convergence rate of the resulting preconditioned systems.

Let us first recall the definitions of Toeplitz and circulant matrices. An n-by-n matrix
Tn (ti,j) is said to be Toeplitz if ti,j ti-j, i.e., if Tn is constant along its diagonals. It is
said to be circulant if its diagonals tk further satisfy tn-k t_ for 0 < k _< n- 1. The idea of
using circulant matrices as preconditioners for Toeplitz matrices has been studied extensively
in recent years; see for instance [23, 11, 16, 26, 15]. In this paper, we will concentrate on the
T. Chan circulant preconditioners. The results for the other circulant preconditioners can be
obtained similarly; see 5.

n-1For a given Toeplitz matrix Tn with diagonals {tj }j=-(n-1), the T. Chan circulant precon-
ditioner to Tn is defined to be the circulant matrix Cn which minimizes the Frobenius norm

IITn CnlIF among all circulant matrices. The (i, j)th entry of Cn is given by ci-j, where

(n-k)t+kt_n
O<k<n,(1) c n

Cn+k, 0 < -k < n;

n-1see T. Chan [11]. We note that the diagonals {C]}j=-(n-1)__ and hence the matrix Cn can be
obtained in O (n) operations. The eigenvalues of Cn, which are required in the inversion of Cn,
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can be computed in O(n log n) operations by using fast Fourier transforms; see Strang [23]
for instance. Because of the good approximating properties of the T. Chan circulant precon-
ditioners, they have been used when solving numerical elliptic partial differential equations
[7] and signal processing problems [8].

We will analyze the convergence rate of the preconditioned systems C[ITn in the limit
n o, assuming that a fixed sequence of entries {tj oo}j=-o has been prescribed. As usual in
the study of Toeplitz matrices and operators (see for instance Grenander and Szeg5 14]) we
consider the Laurent series

g(z) tz
j’----(X)

whose coefficients {tj are the entries of Tn, with tj,g tj_, for 0 j, k < n. We will call
g(z) the generating function of the sequence of Toeplitz matrices Tn and for clarity, we will
denote such Tn by [g] and the coesponding T. Chan circulant preconditioner by Cn [g].

We note that if

i.e., if g(z) belongs to the Wiener class of functions W defined on the unit circle Izl and
if g(z) has no zeros on Izl 1, then C[g] is a good approximation to [g] as far as PCGS
metho are concerned.

LEMMA 2.1. Let g W and have no zeros on Izl 1. Then for large n, Cn[g] will
be invertible and the sequence ofmatrices Cn[g]-l [g] will have singular values clustered
around 1. More precisely, for anyfixed > O, there exist integers M, N > 0 such thatfor all
n > N, C[g] is invertible and the matrix Cn[g]-l[g] has no more than M singular values
lying outside the inteal (1 , 1 + ).

Proo We note that by the Weierstrass M-test, g(z) is a 2z-periodic complex-valued
function defined on the unit circle Izl 1 with respect to the angle 0; see for instance Conway
[12, p. 29]. The lemma now follows from Lena 3 and Theorem 2 of Chan and Yeung
[0].

In this paper, we relax the requirement that g(z) has no zeros on Izl 1. In paicular,
we consider g(z) that are of the fo

where z are the roots of g(z) on Izl 1 with order and h(z) is a nonvanishing function in. Our Toeplitz-circulant preconditioner P is defined to be

By expanding the product (z z) we see that the Toeplitz matrix[(z z)l is a
lower triangular matrix with bandwidth equal to ( + 1), where

Moreover, its main diagonal ent is 1 and therefore it is inveible for all n.
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In each iteration of the PCGS method, we have to solve a linear system of the form

PnY r. We first claim that Pn is invertible for large n. As mentioned above, the Toeplitz
matrix T [I-Ij (z zj)eJ is invertible for all n. Since h W and has no zeros, the invertibility
of Cn [h] for large n is guaranteed by Lemma 2.1. Hence Pn is invertible for large n. Let us
consider the cost of solving the system

Because the matrix 7"n [I-Ij (z zj)eJ is a lower triangular matrix with bandwidth (e + 1), the
system involving Tn [I-Iy (z zj)e can be solved by forward substitution and the cost is O (en)
operations. Given any vector x, the matrix-vector productC [h]-lx can be done by using fast
Fourier transforms in O(n log n) operations; see Strang [23] and O’Leary and Simmons [20].
Thus the system PnY r can be solved in O(n log n) + O(en) operations. In comparison, the
systems involving the preconditioners proposed by Chan [6] and Chan and Tang [9] require
O (n log n) + 0 (e2n) operations to be solved.

We now investigate the convergence rate of the preconditioned systems.
THEOREM 2.2. The sequence ofmatrices P; n [g] has singular values clustered around

1 for all sufficiently large n.

Proof Since Tn [I-Ij (z zj)e is a lower triangular Toeplitz matrix of bandwidth ( + 1),
we see that the matrix

only has nonzero entries in the first + I rows. Hence it is clear that

where rank L1 < -+- 1. Therefore

(2)

en-l’Tn[g] Cn[h]-l’Tn H(Z zj)e

C[hl- (z z)

C[hl-T[hl + L,

’Tn[g]

where rank L2 < . Since h has no zeros, by Lemma 2.1, Cn[h]-lTn[h] has clustered singular
values. In particular, we can write Cn [h]- Tn [h] I + L3 + U, where U is a small norm
matrix and rank L3 is fixed independent of n; see [10, Cor. 1]. Hence (2) becomes

en-l’Tn[g] I + L4 + U,

where the rank of L4 is again fixed independent of n. By using the Cauchy interlace theorem
[28, p. 103] on

(Pl"Tn[g])*(P-l"Tn[g]) (I + t4 -- U)*(I + L4 -" U),
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it is straightforward to show that en-ln[g] has singular values clustered around 1; see [10,
Thm. 2] for details.

Accordingly, the PCGS methods will converge quickly when applied to solving the pre-
conditioned systems; see Axelsson and Barker [2, p. 26] for instance. Numerical examples
are given in 4 to illustrate this fast convergence.

3. Markovian queueing networks. In this section, we consider using the PCGS method
with our Toeplitz-circulant preconditioners for solving the stationary probability distribution
vectors for Markovian queueing models with batch arrivals. This kind of queueing system
occurs in many applications, such as telecommunication networks [19] and loading dock
models [21]. We will see that the generator matrices of these systems have a near-Toeplitz
structure and our preconditioners are constructed by exploiting this fact.

Let us first introduce the following queueing parameters. Definitions of queueing theory
terminologies used below can be found in Cooper [13]. The input of the queueing system
will be an exogenous Poisson batch arrival process with mean batch interarrival time )-1. For
k > 1, denote .k to be the batch arrival rate for batches with size k. We note that

(3) )k )p,

where Pk is the probability that the arrival batch size is k. Clearly we have

(4)
k=l

The number of servers in the queueing system will be denoted by s. The service time of
each server is independent of the others and is exponentially distributed with mean/z-1. The
waiting room is of size (n s 1) and the queueing discipline is blocked-customers-cleared.
If the arrival batch size is larger than the number of waiting places left, then only part of the
arrival batch will be accepted; the other customers will be treated as overflows and will be
cleared from the system.

By ordering the state-space lexicographically, i.e., the ith variable corresponds to the state
where there are 1 customers in the system, the queueing model can be characterized by
the infinitesimal generator matrix

(5) An

) -/z 0 0 0 0
--1 , +/Z --2/Z 0 0 0

--2 --1 . + 2/z "’. "’.

--,2 ". ". --S ".

". ". ; + s/z ". 0

--n-2 --n-3 /. -I-" S/J,
--rl --r2 --r3 rs+l

where ri are such that each column sum of An is zero; see Seila [21].
Clearly An has zero column sum, positive diagonal entries and nonpositive off-diagonal

entries. Moreover the matrix An is irreducible. In fact, if ),i 0 for all 1 n 2,
then rl ). and the matrix is irreducible. If the .i’s are not all zero, say ;j is the first nonzero
.i, then rn-j ., and hence An is also irreducible. From the theory of Perron and Frobenius
[27, p. 30], An has a 1-dimensional null-space with a positive null vector.

The stationary probability distribution vector p of the queueing system is the normalized
null-vector of the generator matrix An given in (5). Much useful information about the
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queueing system, such as the blocking probability and the expected waiting time of customers,
can be obtained from p. Since An has a 1-dimensional null-space, p can be found by deleting
the last column and the last row of An and solving the (n 1)-by-(n 1) reduced linear system
Qn-ly (0 O, slz)t. After getting y, the distribution vector p can then be obtained by
normalizing the vector (yt, 1)t.

Thus let us concentrate on solving nonhomogeneous systems of the form

(6) anx b,

where

(7) Qn

1. -/z 0 0
-1.1 1. +/z -2/z 0

-1.2 -1.1 1. + 2 ".

--n-2 --n-3 ""--n-I --n-2
Notice that if all of the 1.i, 1 n 1 are zeros, then an will be a bidiagonal matrix
and can easily be inverted. Therefore in the following, we assume that at least one of the 1.i
is nonzero. Then clearly Qtn is an irreducibly diagonally dominant matrix. In particular, if
the system (6) is solved by classical iterative methods such as the Jacobi or the Gauss-Seidel
method, both methods will converge for arbitrary initial guesses; see for instance Varga [27,
Thm. 3.4].

We will see in 3.2 that the costs per iteration of the Jacobi and the Gauss-Seidel methods
are O(n logn) and O(n2), respectively. The memory requirement is O(n) for both methods.
We note that the system (6) can also be solved by Gaussian elimination in O (n2) operations
with O (n2) memory. In the remainder of this section, we are interested in solving (6) by the
PCGS method. We will see that the cost per iteration of the method is O(n log n) and memory
requirement is O(n), the same as those of the Jacobi method. However, we are able to show
that if s is independent of n, then with our Toeplitz-circulant preconditioner, the PCGS method
converges superlinearly for all sufficiently large n. In particular, the method converges in a
finite number of steps independent of the queue size n. Therefore the total cost of finding the
steady-state probability distribution is O (n log n) operations.

3.1. Construction of the preconditioner. We observe that in the single server case, i.e.,
when s 1, the matrix Qn given in (7) differs from a lower Hessenberg Toeplitz matrix by
only its (1, 1) entry. In general, Qn can be written as

(8) Qn Zn "nt- en,
where Tn is the Toeplitz matrix

(9) Tn

-1.n-2 "’-1.n-1 -1.n-2

1. + s/z ". 0

-1.2 -1. I. + sx
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and Rn is a matrix of rank s. From (9), we see that Tn T [g], where the generating function
g(z) of Tn is given by

1
(10) g(z) -slz- + LkZk.

Z k=l

We note that by (4), g 6 )4;.

Unfortunately, it is also clear from (10) and (4) that g(z) has a zero at z I and therefore
Lemma 2.1 is not applicable. However, if we look at the real part of g(z) on the unit circle

Izl 1, we see that

Re{g(z)} -s/z cos0 + . + s/z .k cos(k0) > s/z s/z cos0.
k=l

Hence the zeros of g(z) can only occur at z 1. In particular, we can write

(1) g(z) (z- 1)eb(z),

where is the order of the zero of g(z) at z 1 and b(z) will have no zeros on the unit circle.
According to the discussion in 2, we define our preconditioner for Qn as

(12) Pn Zn[(Z- 1)]Cn[b]

Let us consider cases where the quotient function b(z) will be in 14;. We first note that if
the radius of convergence p of the power series ZX=l kZk in (10) is greater than 1, then g(z)
and hence b(z) are analytic functions in a neighborhood of Izl 1; see Conway [12, p. 31].
In particular, h(z) will be in W. A formula for computing p is given by

1
(13) lim sup I)j 11/j;

see Conway 12, p. 31].
Next we consider the case in more depth. By straightforward division of g(z) in

(10) by (z 1), we have

(14) b(z) slz- )- Z "- J zk"
Z k=l j=l

Therefore, by (3) and (4),

(15) b(1) slz .j slz ) kpk slz )E(B),
k=O j=k+l k=O

where E(B) is the expected value ofthe arrival batch size. Thus if s/z .E(B) then b(1) 0
and hence 1. Moreover, if E(B) < cx, then b 6 W. Clearly from (14), the first n Laurent
coefficients of b(z), i.e., =1 )J ., k 1, 2 n, can be computed recursively in O(n)
operations. Hence by using (1), Cn [h] and also Pn can be constructed in O (n) operations.

3.2. Convergence analysis and computation cost. In this section, we prove the fast
convergence of the PCGS method and discuss its computational cost.

THEOREM 3.1. Let b(z) defined in (11) be in W and the number ofservers s in the queue
be independent ofthe queue size n. Then the sequence ofpreconditioned matrices P Qn has
singular values clustered around 1 for large n.
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Proof By (8) and (12),

p-I Qn C,n[b]-ln[(Z 1)e]-l(’Tn[g] -I- Rn) n[b]-ln[(Z 1)e]-l"Tn[g] + Ls,

where rank L5 _< s. By Theorem 2.2 and the Cauchy interlace theorem (see [28]), we see that

en-1Qn has singular values clustered around i for sufficiently large n. [3

It follows from standard convergence theory of the PCGS method that the method will
converge superlinearly and in particular in a finite number of steps independent of n.

In each iteration of the PCGS method, the main computational cost consists of solving a
linear system Py r and multiplying Q to some vector r. We first recall from 2 that the
cost of solving Pny r is of O(n logn) + O(.en) operations. To compute Qr, we make use
of the partitioning (8). Note that R in (8) is a matrix containing only 2s 1 nonzero entries;
we therefore need O(s) operations for computing Rnr. Since Tn is a Toeplitz matrix, Tnr
can be computed in O (n log n) operations by embedding T into a 2n-by-2n circulant matrix,
see Strang [23]. Hence Qnr can be obtained in O(n logn) operations. Thus the number of
operations required for each iteration of the PCGS method is of order O(n log n).

Finally, we consider the memory requirement. We note that in addition to some n-vectors,
we have to store only the first column (or eigenvalues) of the matrices Tn, Fn[(Z 1)e] and
Cn[b] but not the whole matrices. Thus we need O(n) memory for the PCGS method.

4. Numerical results. In this section, we test the performance of our Toeplitz-circulant
preconditioners Pn for solving Toeplitz systems and the queueing problems discussed in 3.
All computations were done by Matlab on an HP 715 workstation.

For the tests on Toeplitz systems, we tried the following generating functions:

(z4 1) 15- 1 13 7 11 2 65-(z)
k

(i) gl(z)
(z- 23-)(z- ) - k=l

(ii) g2(z)=
(z + l)2 (Z --1)2 =---9 1

(Z- 23-)(Z- 1/2) 8
k=l (2z)k

(iii) g3 (Z)
(Z d-- 1)2 (z 11) _9

(2z)kl +
(z- )(z- ) 4

k=l

5 47 29 2 25 (2;) *"
11 7 25 (2z)1--l-z-i-=2 T

Clearly the functions gi, 1, 2, 3, all have zeros on Izl 1. We note that the preconditioners
proposed in Chan [6] and Chan and Tang [9] are not applicable here because gi are complex-
valued functions on Izl 1.

We note that the Toeplitz matrices formed by gi’s are nonsymmetric, therefore the systems
n [gi ]X b are solved by the PCGS method; see Sonneveld [22]. The stopping criterion we
used is

Ilrgll2
< 10-6(16)

IIr0112

where r, is the residual at the kth iteration. The right-hand side vector is (1, 1 1)
and the initial guess is the zero vector. Table 1 gives the numbers of iterations required for
convergence by using preconditioners I, Pn, and C,, [g]. The symbol ** there denotes that the
method does not converge in 5000 iterations. We see that the circulant preconditioner does not
work well when the generating function has zeros on Izl 1 and that the number of iterations
required for convergence actually grows with n. However, our preconditioner Pn gives very
fast convergence in all cases and the rate is actually improving with increasing n.

Next we test our preconditioner for queueing networks mentioned in 3. Since Qn in
(7) is irreducibly diagonally dominant, both the Jacobi and Gauss-Seidel methods converge
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TABLE
Numbers ofiterationsfor different preconditioners.

8
16
32
64
128
256
512

gl g2 g3

n I en Cn[gl] I Pn Cn[g2] I Pn Cn[g3]
88 7 8

22 6 9
68 5 9
315 4 9
3417 4 10

4 10
4 10

8 7
26 7 9
132 6 11

6 14
5 15

** 5 18
5 25

8 9 7
26 5 12
68 6 12
202 5 13
573 5 17

5 22
5 28

TABLE 2
Numbers ofiterationsfor )j 1/2J.

s 4 n-1
n I Pn C,n[g] J I Pn C,n[g] J I Pn ’n[g] J
8
16
32
64
128
256
512

8 5 6 95
15 4 6 115
28 4 7 213
** 4 7 307

3 7 470
3 8 768
3 8 1331

8 5 7 78
15 5 7 86
27 5 8 209

5 8 306
** 5 8 469

5 8 768
5 8 1331

8 6 6 45
13 7 8 70
21 7 9 114
48 7 10 173

7 10 267
7 10 434

** 6 10 746

when applied to solving the system (6). However, by using the partitioning of Qn as in (8)
and taking advantage of the Toeplitz matrix-vector multiplication (see 3.2), we see that each
iteration of the Jacobi method can be done in O (n log n) operations, the same count as that
of the PCGS method. This special property is not shared by the Gauss-Seidel method, which
will still require O(n2) operations per iteration. Thus in our comparisons, we used only the
Jacobi method.

We tried two sets of queueing parameters:
(i) ,kj-- 7, J 1, 2 and

90(ii))j (1)4, j 1, 2
We note that, in both cases, . ZX=x k 1. The service rate/z is set to/z ,k/s. By (15),
we see that b(1) 0 and hence 1. Clearly, in both cases the mean arrival batch size E(B)
is finite because Y4 J)J < cx. Therefore, b(z) W and is given by (14). We remark that by
using (13), the radius of convergence p for the first set of queueing parameters is 2. Hence
regardless of the values of/z, its b(z) will always be in W.

The initial guess for both methods is (1, 1 1)!n. The stopping criteria for the PCGS
method is again given by (16), whereas for the Jacobi method, it is Ix x-1112 < 10-6,
where xk is the solution obtained at the kth iteration. Tables 2-3 give the numbers of iterations
required for convergence for s 1, 4 and n 1. The symbol J means the Jacobi method
is used. Again ** signifies that the method does not converge in 5000 iterations. In Table 4
the symbol "ktlop" means 1000 floating point operations. Note that the case s n 1
is not covered by our Theorem 3.1. However, we note that in all the cases we tested, our
preconditioner Pn is clearly the best choice.

5. Concluding remarks. We note that although we concentrate on the T. Chan circulant
preconditioners here, the convergence results in Theorems 2.2 and 3.1 can easily be extended
to include other circulant preconditioners. For instance, results for Strang’s circulant precon-
ditioners can be obtained if we replace Lemma 2.1 by theorems in [24]. In particular, using
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TABLE 3
Numbers ofiterationsfor .j 90/(:rrj)4.

s 4 n-1
n I Pn Cn[g] J I Pn Cn[g] J ! Pn (7,n[g] J
8
16
32
64
128
256
512

8 5 6 389
16 4 7 1050
32 4 9 2253
64 4 11 3431
125 4 13 3874
365 4 17

3 21

8 5 7 264
16 6 9 899
32 6 10 2139
64 5 12 3398
124 5 15 3842
388 5 18

5 21

8 6 8 112
16 8 12 212
32 12 15 372
79 15 23 577

18 29 1005
21 34 1841
17 38 3163

TABLE 4
Numbers ofkflopsfor .j 90/(zrj) and s 1.

n I Pn C,n[g] J
8
16
32
64
128
256
512

21 20 23 413
82 37 56 2410
340 80 150 11213
1437 172 388 37042
5997 373 977 90536
37423 807 2696

1421 7060

Theorem 6 from [24], we can show that if the quotient function h(z) is a rational function of
type (/z, v), then our method converges in at most (1 + 2 max{/z, v} + ) steps for large n.
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GREENGARD’S N-BODY ALGORITHM IS NOT ORDER N*

SRINIVAS ALURUt

Abstract. Greengard’s N-body algorithm claims to compute the pairwise interactions in a system ofN particles
in 0(N) time for a fixed precision. In this paper, we show that the choice of precision is not independent of N and
has a lower bound of log N. We use this result to show that Greengard’s algorithm is not O(N).

Key words. Greengard’s algorithm, N-body problem, particle simulation, tree algorithms for particle simulation

AMS subject classifications. 70-08, 70F15

1. Introduction. The N-body problem constitutes simulating the motion of N particles
under the influence of mutual gravitational interactions. Since the problem cannot be solved
in closed form, a discrete approximation has to be used. The force on every particle due to
the rest of the system is computed and this information is used to update the system over a
small interval of time t. This constitutes one iteration in the solution of an N-body problem.
A straightforward computation of the interactions takes O(Na) time per iteration, which is
prohibitive since physicists want to simulate the motion of large collections of particles over
long time scales. Anumber ofalgorithms have been designed to reduce the time complexity per
iteration. The main principle behind these algorithms is approximating the force between two
collections of particles that are far apart, without having to compute every pairwise interaction.
With the notable exception of Greengard [2], most researchers paid little attention to a rigorous
worst-case analysis of the complexity of their algorithms. Greengard’s algorithm remains the
only algorithm so far with a proven worst-case complexity of O(N).

We limit the discussion to the two-dimensional version of Greengard’s algorithm for
convenience and simplicity. The first step in Greengard’s algorithm is creating a hierarchical
subdivision of the space containing the particles constructed as follows: let D be the length of
a square box enclosing all the particles. (Greengard assumes the box has length 1, which can
easily be achieved by a change of units.) The box is subdivided into four boxes with a side
length half of the original box. Boxes that do not contain any particles are discarded. Boxes
containing a single particle (or k particles for some fixed k > 0) are left as they are. The rest
of the boxes are recursively subdivided. This recursive subdivision is naturally represented
by a tree. The tree has N leaves and at most four children per node.

Let s be the smallest interparticle distance. (The terminology used here is different from
Greengard’s.) Each subdivision of a box reduces the box length by half. To separate two

The worst-case number ofparticles that are s apart, we may need a box of length less than
subdivisions requiredto separate two particles s apart in two dimensions is givenby the smallest

Dk for which - < . Consequently, the height ofthe tree is boundedby O (log ) and the total
number of nodes in the tree is bounded by O(N log -). In three dimensions, the worst-case

*Received by the editors December 14, 1993; accepted for publication (in revised form) October 20, 1995.
School of Computer and Information Science, Syracuse University, Syracuse, NY 13244-4100

(aluru@top.cis.syr.edu). This work is supported by the Applied Mathematical Sciences Program of the Ames
Laboratory-U.S. Department of Energy under contract W-7405-ENG-82.
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Dnumber of subdivisions required is the smallest k for which - < Therefore, the bounds3"
on the height of the tree and the number of nodes is the same as in ttie case of two dimensions.

Greengard’s arguments can be summarized as follows: for a fixed machine precision, only
certain classes of particle distributions can be modeled, independent of the algorithm used.
Therefore, by restricting attention to only those particle distributions that can be modeled on
a given machine, D can be bound by the largest floating point number representable on the
machine and s has to be no less than the smallest floating point number representable. Thus,

D is bounded by the log of the ratio of the largest to the smallest floating point numberlog 7
representable, a constant termed p. The size of the tree is bounded by O(pN). Greengard
determines the running time of his algorithm to be N(otp2 + tip + F) in two dimensions and
N(cp4 -+- tip2 + ) in three dimensions, where or, fl, and ?, are constants. Since p is taken to
be a constant, the algorithm is claimed to run in O (N) time in two or three dimensions.

The above arguments imply that the height of the tree is bounded by O(p), a constant.
Yet we know that the height of a tree with N leaves and at most a constant number of children
per node is g2 (log N). How can this disparity be explained?

To further highlight the discrepancy, consider the first step in Greengard’s algorithm--the
construction of the tree representing the hierarchical subdivision. At every level of the tree,
the nodes containing more than one particle (or more than a fixed number of particles) are
subdivided and particles in each parent box are distributed among its child boxes. Since each
particle is assigned to a box at every level and there are at most p levels, the work involved is
proportional to Np. Since p is taken to be a constant, the complexity is computed to be O(N).

Consider running this algorithm on a distribution such that each child box contains exactly
a fourth of the particles of the parent box. The resulting tree is a quadtree with log N levels
and the work involved in constructing the tree is easily seen to be O(N log N), not O(N).

The problem lies in the assumption that the parameters D and s are entirely dependent
on the spatial distribution of the particles and not related to the number of particles N. To
understand why this assumption is invalid, consider the behavior of D for a fixed N. In
particular, we shall investigate the upper and lower bounds for D as a function of N.

For any N > 3 particles, D__ can be made arbitrarily large by reducing the distance
between the closest particles (thus reducing s) or by increasing the spread of the particles
(thus increasing D). This validates the argument that for a fixed machine precision, only
certain classes of particle distributions can be modeled, independent of the algorithm used.

To minimize the ratio D for a fixed N, all the particles should be at a distance of s from
their nearest neighbors. To see why, suppose this is not true. We can reduce D by "moving
in" particles that are farther than s from each other, while keeping s the same. Or else, we
can increase s by increasing the distance between particles that are s apart, while keeping D

D decreases contradicting minimality. Furthermore, the particlesunchanged. In either case, S-
must be packed as closely as possible. Figure shows the configuration minimizing the ratio D

for a fixed N in two dimensions. Each particle has six nearest neighbors in the close packing,
all at a distance of s from it. The particle is at the center of the hexagon formed by its nearest
neighbors. The particles fit exactly in a cell of size D D (i.e., boundaries of the cell are
inhabited by particles). Adding the particles columnwise,

N= --+1 + + --+1 +... +1 terms
S S S

N<-- +1 + +1,

N<_ ,_=s + 1+ --+l,s
D

>_ cN1/2
s
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0

O O

O

O

O O

FZG. 1. The configuration minimizing the ratio ofthe cell length D containing all the particles and the smallest
interparticle distance s in two dimensions. The ratio D__ is minimized when all particles are a distance s apartfrom
their nearest neighbors and the particles are packed as closely as possible.

for some constant C1 Since this is computed using the configuration minimizing 7,D log "TD is
g2 (log N). Since log D is bounded by p, p is also g2 (log N). In three dimensions, it can be
shown that

D
s

D is f2 (log N) and is S2 (log N).In this case also, log "7 p
How does this translate to what classes of particle distributions can be modeled on a

machine with precision parameter p? It is already noted that not all distributions can be
modeled for any given N > 3 because of precision limits. However, unless p _> c log N (c is
a constant), no distribution can be modeled for that N. The very fact that we are able to run
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an N-body problem for a collection of N particles with precision parameter p implies that
p > c log N. Thus, p cannot be taken as a constant in the analysis of the running time of
the algorithm, and Greengard’s algorithm is not O(N). Greengard’s time complexity in two
dimensions is N(otp2 +p + ,), which is f2(N log2 N). In three dimensions, the complexity
is N(otp4 + ,Sp2 + y), which is 2(N log4 N). The running time matches the lower bound
only for a uniform distribution. For arbitrary distributions, the running time is unbounded.

Acknowledgments. I wish to thank John Gustafson and G. M. Prabhu for discussion and
helpful comments.
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ON THE REMOVAL OF BOUNDARY ERRORS CAUSED BY RUNGE-KUTTA
INTEGRATION OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS*

SAUL ABARBANELf, DAVID GOTTLIEBt, AND MARK H. CARPENTER

Abstract. The temporal integration of hyperbolic partial differential equations (PDEs) has been shown to lead
sometimes to the deterioration of accuracy of the solution because of boundary conditions. A procedure for removal
of this error in the linear case has been established previously.

In this paper we consider hyperbolic PDEs (linear and nonlinear) whose boundary treatment is accomplished via
the simultaneous approximation term (SAT) procedure. A methodology is presented for recovery of the full order of
accuracy and has been applied to the case of a fourth-order explicit finite-difference scheme.

Key words. Runge-Kutta scheme, temporal accuracy, time-dependent boundary conditions

AMS subject classifications. 65L06, 65M15, 65M20

1. Introduction. A growing interest is evident in long-time integration for solving prob-
lems in areas such as aeroacoustics, electromagnetics, and material science. The use of
long-time integration 1 necessitates working with higher-order (fourth-order accuracy and
above) schemes. Often the methodology of choice is to semidiscretize the equations by ap-
plying a high-order (fourth-order and above) spatial difference operator and then advancing
temporally with single-level multistage Runge-Kutta (RK) integrators. The question arises
of how to supply boundary values at the intermediate stages of the RK integrations. For
hyperbolic PDEs, time-dependent conditions must be imposed at the inflow boundary.

The conventional (and intuitive) method of imposing inflow boundary conditions (BCs)
at the intermediate stages is to use the "appropriate" value of the boundary data g(t) at each

At Atstage. Thus, for example, at a stage that corresponds to + one would impose g(t + -).
In a previous paper [2], when applied to hyperbolic PDEs with time-dependent BCs, the

procedure described above was shown to reduce the accuracy near the inflow boundary to first
order; thus, the overall accuracy could not exceed O(Ax) 2. This conclusion was independent
of the order of accuracy of the spatial difference operator.

One way to avoid the dilemma of determining which boundary values to supply at the
intermediate stages is to advance the RK integration without imposing any intermediate values
and obtain the intermediate boundary values from the numerical solution operator. However,
this approach reduces substantially the stability limit (e.g., the allowable time step is reduced
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research of the first two authors was supported by the National Aerodynamic and Space Administration under NASA
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by AFOSR 95-1-0074, ARPA grant N00014-91-J-4016, NSF grants DMS-9500814 and DE-FG-02-95ER25239.

Department of Mathematical Sciences, Division of Applied Mathematics, Tel-Aviv University, Tel-Aviv, Israel
(saul@math.tau.ac.il).

Division of Applied Mathematics, Brown University, Providence, RI 02912 (dig@cfm.brown.edu).
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by a factor of 2 in the case of a fourth-order classic RK scheme with a fourth-order spatial
derivative operator); hence, this method is not desirable.

In [2], a general methodology was presented in the case of linear PDEs for the correct
imposition of the intermediate-stage boundary values to enable the scheme to recover its full
formal accuracy. This method was expounded in detail for the case of the classic fourth-order
RK integration with a hyperbolic fourth-order spatial difference operator. In [2] it was shown
that in the nonlinear case (e.g., hyperbolic conservation laws) this methodology was applicable
to RK integration up to third order. For RK methods of fourth order and above, we wereunable
to extend the theoretical approach described in [2].

In this paper, we address anew the issue of dealing with the nonlinear case. We present a
methodology for retaining the full accuracy even in the nonlinear case. The application of
this methodology involves numerical determination of free parameters in contradistinction to
the linear procedure described in [2]. We find, for example, that for the fourth-order classic RK
integrator with fourth-order explicit spatial derivative operator, the full accuracy is retained
without any reduction in the allowable time step.

The new procedure is demonstrated for hyperbolic problems in which the BCs are satisfied
with the SAT approach [4]. We consider the SAT procedure because it is the only one that
prevents temporal growth not present in the true solution of a system of PDEs. Section 2
describes how to correctly apply the intermediate SAT BCs in the case of a linear problem. In
3 we address the nonlinear case.

2. The linear case. In this section we analyze the effect of imposing inflow boundary
conditions by conventional methods for cases in which the discretization algorithm employs
the SAT approach. (See [3].) The SAT is a penalty type of method that was constructed to
ensure that the numerical solution does not include temporal growth that is not of a physical
origin. This construction is achieved by mimicking the energy estimate of the PDE.

We consider the following hyperbolic problem [3]:

--+ =0, 0<x<t, t>0,(2.1)
Ot -x

(2.2) u(0, t) g(t).

The SAT formulation for the semidiscrete version of (2.1) and (2.2), based on a uniform grid,
is

(2.3)
dvi(t) [1 ] 1

dt -DV(t) --rr [v0(t)-g(t)], i=0,1 N, t>0,

where V- Iv0, Vl Vu]r is the semidiscrete approximation that converges to u(xi, t) at the
spatial grid points xi (for stable discretizations) and gD is the differential matrix representation

The vector r depends on the differentiation matrix D, andof the derivative operator -.
on the energy norm used in bounding the error. This vector is determined as described in [3];
see the discussion after (6).

The demonstration of accuracy deterioration will be shown for the four-stage "classic"
RK algorithm, which is one of the most commonly used RK time-advancement schemes. So
that the analysis makes sense, we assume that the spatial discretization is at least fourth-order
accurate.

AtThe above-mentioned four-stage RK integrator is implemented as follows ( xx)"

(2.4) V(1)-- V(n) -[- -DV(n)-
75 t7 [V(on)- g(t)],
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(2.5) V(2)= V(n)-} -DV(1)- ’v cr V(O1) g + --(2.6) g(I V(’O + )DV( . v g +
(2.7)

IV(n) 2V(1) (2)Vn+l=Vn+gD + +2V +V0]

+ [vg- g(t + t)]}.
To check for accuracy we substitute for V( the exact values u(xi, t) and, in paicular,v" g(t). From (2.4), one can see that on the boda (using the differential equatio
(2.1) and (2.2)), we have

o= g(t) + g (t)"

AtThus, in (2.7) we have, for the te

(2.9) v)-g t+ g(t) + g (t) g + O(At).
Thus, Vn+ Vn is at best O(t)2, rather than O(At)5, which was expected from the RK
scheme used.

In this linear case, the remedy proposed in the previous paper [2] wor here as well. In
paiculaq (2.4)- (2.7) ke the following fo:

(2.10) V Vn + DVn r a Ivan’(t)- g(t)],

(2.11)

(2.12)

V(2) v(n) f_ "DV(1) 1)-v cr V(o g(t) --g’(t)

[ Atg, ZXt2 ,, ]V(3) V(n) + )vDV(2) )vz" v0
(2) g(t) - (t) --4-g (t)

Iv(n) 2V(11 (2)vn+ y 2_ gD + + 2V + V(3)

(2.13)

[ (3) At2 ,, At3
+ vo -g(t)- Atg’-- ---g ----g"’

We can readily verify that V(n+l) V(n) 0(At)5, as required.
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3. The nonlinear case. For simplicity, firstwe consider the scalar conservation law PDE:

Ou Of(u)
(3.1) + --0, 0<x < 1, t>0,

Ot Ox

(3.2) u(0, t) g(t).

In general, for any spatial discretization (whether explicit or implicit), the semidiscrete
form of (3.1) and (3.2) is

(3.3)
d 1 --Df(V) r [v0- g(t)].

Using the notation of [3],

(3.4) D _p-1Q,

where gD is the differentiation matrix that represents the differential operator (-); this
matrix is composed of the explicit part Q and the inverse of the implicit part P. For a fully
explicit spatial differentiation, P I + B, where B differs from zero only at the two diagonal
comers. (See examples of P and Q in [4].)

The vector or, again with the notation in [4], is given by

r-- ha(uo)gooP-1H- S,

where a(uo) (u)x=0 and g00 is twice the value of the left upper comer element of H Q. For
the definition of the matrix H, see assumption I in 1]. The parameter r is determined from
the stability consideration to be r > 1. (See [3].)

Next, we demonstrate that writing the classic fourth-order RK integration for (3.3), using
the linear "fix" as in (2.10)- (2.13), does not yield the requiredfourth-order accuracy:

Z (n)) T [1)0(n) g(t)](3.5) V(1) V (n) Af_ -Df(V

/ [ (1) At](3.6) V(2)= V(n) + -Df(V1)) -r r vo -g(t) -g’(t)
At2 tt

]Atg’(t) -4--g (t)j(3.7) V(3) V (n) + ZOf(V(z)) ,v - V(o) g(t) --" Vn V(1)) (2)) V(3)V(n+l V(m+-v[f( )+2f( +2f(V +f( )]

-gv o" [Vo(n) g(t)] + 2 /)0
(1) g(t) -g’(t)

(3.8)
At At2 -I

+2 V(o g(t) -g (t) ---g (t)J
At3 g,,]

Again, in checking the accuracy, we take V() u(xi, t) and, in particular, v(on) g(t);
1Df(Vnfurthermore, g -f(u) -t- O(At)4. With these preliminary calculations, we

immediately obtain the following from (3.5)"

(3.9) y;1) -At 0 At 0 At
v xO-f(lz)

g(t) + zot--g-;(u) g(t) + -g’(t)"
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Note that this result is the same for the linear case. (See (2.8).) Thus, with V(on) g(t) and
(1)(3.9), we can supply, for the purpose of checking accuracy, the correct values of v(n) and v0

When we examine (3.6) using the above results, the governing nonlinear PDE, and a simple
Taylors expansion, we have

V(2) V(n) .-]- -Df V(n) 4[- -DI(Vn)

__v(n) At 0 [ At 0 1-" ’-- f u - 0-f(u) + O(At)5

vn At O [ At ou- O-f u + ---- + O(At)5

v(n) At { AtfOt At2 (i92f) (Ot)
2

2 Ox
f(u)-

20u Ot ’ \3u2 - +O(At)3-- xx+ +O(at)3

(3.10) u --ut utt + O(At)3.

Finally, on the bodaw we have

At At2
(2) (t) + g (t) +g (t) + 0(At)3.(3.11) v0 g

From (3.11) we see that the "penalty" te in (3.8) introduces an eor of (At)3. Because the
coefficiem of (At)3, [fuu(Ut)2]o, cabot generally be expressed as a fction of g(t) aM im
derivatives, this situation is difficult to remedy. Thus, the "linear procede" fails at the third

stage.
We now propose a methodology for dealing withthe integration of nonlinear hyper-

bolic conseation laws. We first present this procede in the case of the classic fouh-order
scheme. Our staging point is the obseation that the "linear procedure" yields the re-

quired accuracy for v") and v). At each stage, the idea is to use a linear combination of
the "linear" SAT or penalty tes used in (3.5) and (3.6). TMs, the foh-order classic
stages will be

(3.12) V(1)= V(n) + Df(Vn) ff [vn)- g(t)],

(3.13) V()=V(n) + DY(V())- fl a v1)-g(t) At

(3.14) V0) V (") + kDI(V()) [vg g(t)l- ke @) g(t) g (t)

V("+) V(") + D[f( + 2f(V()) + 2f(V()) + f(VO))]
(3.5)

[vg g(t)] 5v v g(t) g’(t)

where the free parameters , , y, , e, , and u will be chosen m maximize the allowable
time step. The previous discussion clearly shows that the system ((3.12)- (3.15)) maintai
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the fourth-order accuracy. The question remains of whether the CFL stability condition dete-
riorates in comparison with the conventional application of the RK integration. Also, optimal
choice of the free parameters ot v clearly varies with the spatial discretizations (i.e., the
differentiation matrix D) and boundary closures. The absolute values ofthe eigenvalues of the
amplification matrix that result from (3.12)-(3.15) should not exceed unity. We carried out
this procedure (with Mathematica software) in the case of an explicit fourth-order algorithm
with third-order boundary closure (in V). In this case, H I, and the matrices P and Q can
be found in 9.1 of [4]. The CFL condition becomes ) < 2.1 with the following values of the
free parameters: ct =/ -e 1, 2,/z 0, v 3, and ?, -0.37. This restriction
on the time step At is the same as that for the linear problem with "conventional" (i.e., less
accurate) boundary values with or without the SAT term.

4. Conclusions. In summary, we have a fourth-order RK scheme in (3.12)-(3.15) ap-
plied to a nonlinear PDE that maintains overall fourth-order accuracy without a decrease in the
allowable time step. The extension to a system of hyperbolic PDEs is quite straightforward
with the use of the SAT approach delineated in [3].
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COMPARISONS OF LATTICE BOLTZMANN AND FINITE DIFFERENCE
METHODS FOR A TWO-DIMENSIONAL VISCOUS BURGERS EQUATION*

BRACY H. ELTON

Abstract. Lattice Boltzmann methods have been proposed as a computational means for solving various partial
differential equations. We look at three lattice Boltzmann methods and an analogous finite difference method for
solving a two-dimensional scalar, viscous Burgers equation with periodic boundary conditions. First, using mono-
tonicity arguments we prove that in the el norm the lattice Boltzmann methods converge first-order temporally and
second-order spatially. Then we provide some computational results which substantiate the theoretical results. Fi-
nally, we compare the lattice Boltzmann and finite difference methods. The basis of comparison includes numerical
results with regard to accuracy, order of convergence, performance, and timing measurements; memory requirements;
and conservations laws.

Key words, consistency, convection-diffusion, convergence, explicit, finite difference, Hilbert expansion, lattice
Boltzmann, monotone, nonlinear, parallel, periodic, stability, viscous Burgers equation
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1. Introduction. Lattice gas and lattice Boltzmann methods have been proposed as com-
putational means, efficient on parallel and vector architectures, for solving a variety of partial
differential equations [3]. We will look at three lattice Boltzmann methods for solving the
two-dimensional (2-D) nonlinear convection-diffusion equation

which is a two-dimensional scalar, viscous Burgers equation, for p p(t, x), x (x, y) 6

[0, L]2, diffusion coefficient v, initial condition p(0, x) pi(x), and periodic boundary
conditions. We introduce the methods and establish theoretically their convergence, verify
computationally the theoretical results, and compare the lattice Boltzmann rr/ethods and an
analogous finite difference method.

The underlying purpose of this paper is to present, a fairly thorough analysis of some

simple lattice Boltzmann methods and some computational techniques that can be used to
study more complex methods in the absence of strong theoretical results. It is hoped that those
investigating more complex lattice Boltzmann and lattice gas methods, for example, ones for
the Navier-Stokes equations and those with more complex boundary conditions, can and will
employ some of the techniques described herein to evaluate (at least numerically) their models
and methods.

The paper is outlined as follows. Section 2 introduces the lattice Boltzmann methods and
establishes the theory of their convergence. Under certain conditions we show that in the 1
norm the methods are spatially second-order, temporally first-order, conservative, monotone
difference methods for computing solutions to (1). The theoretical results are obtained by
applying the key results of [7]. Section 3 contains detailed numerical studies and comparisons
of the lattice Boltzmann methods with each other and with an analogous finite difference
method. The numerical studies include such aspects as domains of monotonicity, accuracy,
order of convergence, performance and timing measurements, and memory requirements; also
included are conservation laws and collision rules and their effect on accuracy. The numerical
studies also. substantiate the theoretical results. The performance and timing measurements

*Received by the editors December 9, 1993; accepted for publication (in revised form) February 21, 1995.
Copyright (C) 1995 B. H. Elton.

SuperComputer Group, Fujitsu America, Inc., 3055 Orchard Drive, San Jose, CA 95134-2022 (bracy.elton@
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V1

v2 v0

v3

FIG. 1. A 2-D lattice.

were taken on Fujitsu VPX240 and VPP500 systems. Finally, concluding remarks are made
in 4.

2. Theory. We will be discussing three lattice Boltzmann methods, enumerated LB 1,
LB2, and LB3, for computing solutions to (1) with periodic boundaries. LB and LB2 are
introduced here; LB3 was introduced in earlier work [4, 5].

Although our lattice Boltzmann methods could be motivated by analogous lattice gas
methods, we describe them directly. In our analysis, we will be applying (and borrowing)
much of the notation, properties, and theorems of [7], in which key theorems and properties of
convective-diffusive lattice Boltzmann methods appear. Note that for purposes of increasing
readability, specific details of the sometimes rather involved analyses have been deferred to
the appendices.

2.1. The lattice Boltzlnann methods. The following are the essential elements of our
2-D lattice Boltzmann methods, each of which abides by an exclusion principle that restricts
the number of particles per velocity per node.

1. A 2-D doubly periodic (toroidal) regular lattice, X [0, L]2, where L is the spatial
scale length (Figure 1).

2. The set of unit velocity vectors V={v k E {0, 1, 2, 3}} C R2, where

V0 (nt-1, 0), V1 (0, --l), V2 (-1, 0), v3 (0,-1).

3. IVI 4 links per node, each link having length Ax, where IV[ is the cardinality
of V.

4. Mean occupation numbers: for each time step, lattice node, and velocity, there is
an associated mean occupation number, F E [0, 1]v --= Z.a The mean occupation
number can be viewed as a normalized particle distribution, i.e., the likelihood of the
presence of a particle, as in the Boltzmann equation, e.g., 1 ].

5. An advection operator, 4, that advances particle distributions to neighboring nodes
and discrete time steps of duration At > 0, where At (Ax)Z/(4v) with v the
diffusion coefficient of (1). (The specification of At is an artifact of the construction
of the lattice Boltzmann methods via a discrete Hilbert expansion, as explained in
2.3.)

6. A collision operator, C(F), that determines the nature ofinteractions between particle
distributions at nodes of the lattice.

1We use bold typefaces to indicate a set, e.g., R {reals}.
2[0, 1]v is the set of functions from to the closed interval [0, 1].
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TABLE
Collision rulesfor LB1.

Pre-Collision Post-Collision

’, (n, ’) n’, (, ’) ’, (, ’) ’, (, ’)

+
++++
+++
+++
++++
+

lq-
6

6

The mean occupation number F of a lattice node denotes the expected number of particles
with a particular velocity at that node. Let F(m, i, v) E [0, 1] denote the expected number of
particles with velocity v at time step m and lattice node E X. Thus, F(m, i, v) is in the single
particle phase space X at time step m it evolves according to a kinetic equation of the
form, AF F + C(F), where A models the movement of particle distributions (advection
operator) and C(F), operating only on v, models the interactions of particle distributions
(collision operator).

The collision operator for such lattice Boltzmann methods is written according to the

formula C(F) =- n,n,2v o(n n’)(n’ n)Fn where 2 {0, 1}, and F and /? are

defined by F _= l-]vev(F(v))"(v) and/ _-- I-[veV(1 F(v)) (1-(v)), an overbarred quantity
meaning one minus that quantity. Requirements on o(n, n’) are that o(n, n’) [0, 1] and
that it maintains conservation of probability, i.e., y’,e2v ot (n, n’) 1, for all n 6 2v.

The advection operator j[ is defined by AF(m, i, v) F(m + 1, + v, v). Finally, the
behavior of a lattice Boltzmann method is characterized by the microdynamical evolution
equation

(2) 4F(m, i, v) F(m, i, v) + C(F(m, i, .)(F(m, i, v)),

which states that the new mean occupation numbers (on the left) at the new locations (m 4-1, i4-
v) are the same as the mean occupation numbers at the current location (m, i) plus collisional
corrections. Thisis analogous to a certain type of differencing of the Boltzmann equation,
i.e., forward Euler (first order in time), central conservative finite difference in space (second
order in space), and fixed in velocity (velocities are restricted to the directions available on
the particular lattice and a fixed set of predetermined speeds, which in our case is Ax/At}).
Note that F F + C(F) [0, 1]v.

Collision rules for LB 1, LB2, and LB3 appear in Tables 1, 3, and 4. Therein the rules are
given pictorially. As an example, collision rules for LB are listed formally in Table 2.

Our lattice Boltzmann methods are then defined as the finite difference methods that,
given the collision rules specified in Tables 1-4, evolve according to (2), in which F(0, i, v)

32V is the set of functions from V to 2.
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TABLE 2
Formal listing of collision rules for LB1. For each input state n in each type of collision, the table lists the

1+corresponding possible output states n’ with nonzero probabilities or(n, n’) where a T and {t

Collision

Type

No Particles

Particle

2
Particles

3
Particles

4 Particles

(o) (v) (2) (v) ’(vo) ’(z) ’(v) ’(v)
0 0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0
0 0

0 0
0 0
0 0

0 0
0

0
0

0

0 0 0 0
0 0 0
0 0 0
0 0 0

0 0 0
0 0
0 0

0 0
0 0
0 0

0 0
0

0
0

0

1/4
a/2
1/4
a/2
al
a/3
a/3
a/3
116
1/6
1/4
a/2
1/4
a/2

TABLE 3
Collision rulesfor LB2.

Pre- Collision Post-Collision

’, (, ’) ’, (, ’) ,, (, ’) ,, (, ’)

++++
++++
++

++++

4 4

FI (i, v), for all E X and for all v E V, where F1 is the initial condition. Approximate
solutions to (1) are obtained through a special combination of the mean occupation numbers
F(m, i, v), i.e., the average over the set of velocities, as is determined by the local conserva-
tion law.

2.2. Conservation, equilibria, and the H-theorem. Note that the lattice Boltzmann
methods LB 1, LB2, and LB3, which are governed by (2), each possess the local conservation
law of conservation of mass, the locally conserved quantity being ’vvF(m, i, v). Also,
because of the assumed periodic nature of the lattice, i.e., periodic boundary conditions, the
presence of a local conservation law gives rise to a global conservation law. The globally
conserved quantity is the sum of the mean occupation numbers over the entire lattice, i.e.,

Ei6X Ev6VF(m, i, v).
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TABLE 4
Collision rules for LB3. Each line in the table lists possible input states n and corresponding output states n

and their nonzero probabilities or(n, nt).

Pre-Collision

+/

Post-Collision

’, (, ’1 ’, (, ’) ’, (, n’) n’, (, ’)

++ +
++++
+ +1
+
++
++ +
+

Note that using K6, for constant K, a convection scaling parameter the collision
operators for LB1, LB2, and LB3 can be written in the form, C(F) C()(F) + 6C(1)(F),
where 6 > 0 is a dimensionless parameter and C (F) and C) (F) are generalized Boltzmann
operators in terms of S (n, n’) and Sl) (n, n’), each not depending on 6, where S(n, n’)
$()(n, n’) + 6S()(n, n’) and C()(F) is in semidetailed balance, i.e., En,e2V S()(n’, n)
n’e2v S)(n, n’) 1, for every n E 2v.

The H-theorem for diffusive lattice Boltzmann methods [7, Thm. 2.2] states in part that
at an equilibrium, C()(F) 0. For LB1, LB2, and LB3, we find that at equilibrium
F(vo) F(Vl) F(v2) F(v3) u.

2.3. Hilbert expansion and diffusion. For the purposes of conducting our analyses,
let us review some of the main points regarding the Hilbert expansion and diffusion from
[7]. Let 3 > 0 be a small parameter and assume the lattice spacing Ax 3 L and the time
step At 62T for some L, T > 0. The Taylor expansion of AH(t, x, v) about (t, x, v) is

.AH(t, x, v) H(t + At, x + vAx, v) EjC=o .[32TOt q- ( Lv. V] H(t, x, v). Note that
the terms can be grouped by order of 3.

A solution H of the lattice Boltzmann method (2) can be regarded as a function of the
variables t, x, and v. We postulate that H can be expanded in the form

(3) H(t, x, v) E kh(k)(t’ x, v),
k=0

where h() is an equilibrium solution ofC() (H). The series (3) is called a Hilbert expansion of
H. We examine conditions for the existence of a Hilbert expansion of H under the assumption
that H is infinitely differentiable.
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Define

a(6) 4H- H (.4- I)
k=O

Expanding a a(3) and c c(6) about 6 0 in Taylor series gives

(4)

(5)

a(3) a() + 6 a(1) + 62a (2) -+-33a(3) +...,

c() c(0) -]-6c(1) +82c(2) +63c(3) +....

Matching the terms order by order yields

H(t + At, x+vAx, v)-H(t, x, v) C(H) C()(h())+E(g(j) -..h(J))6j E TJ6J
j=l j--O

(6)

where l)g(>(h>) is the so-called linearized collision operator and the gJ are the
remaining terms.

Since H is purported to be a solution of the lattice Boltzmann equation (2), it follows that

T 0, or, equivalently,

(7) C(h ()) O,

(8) hj gJ) j= 1,2

Thus, the asymptotic series (3) is constructed by solving each of the linear systems in (8).
For each of LB 1, LB2, and LB3, the linearized collision operator is the derivative,

i.e., the Jacobian, of the (9[1] portion of the collision operator, i.e., C( (H), evaluated at
equilibrium and to which the H-theorem is applied. In each method, 12 is singular. (Please
see the appendices for the details.) Hence, the Hilbert series can be constructed if and only if
g(k) Range(), in which case

(9) h (i) --/+. g(J) + s (j)

where s(j Kernel(L;) is arbitrary and + is the pseudoinverse of . Note that each
is symmetric and nonpositive definite in the equilibrium solution u. Further, although the
eigenvectors are the same, i.e., the eigenmatrix for each method is given by

Q [qo, q, q2, q3]

1 1 0 1
1 0 -1

-1 0

1 0 -1 -1

their respective eigenvalues differ. The eigenvalues are denoted ,, (X0, 1, X2, /,3). It turns
out for all three methods that )0 0 is the only zero eigenvalue; hence, is indeed singular for

qkqeach ofthe methods, and the pseudoinverse L;+ ofeach method is given by+ -3=1 zk qqk"
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2.4. Consistency, stability, and convergence.

2.4.1. General definitions and theorems. For completeness, we include the definitions
and statements of the theorems related to consistency, stability, and convergence Interested
readers can find the relevant proofs in [7], which also includes some theory for more general
lattice Boltzmann methods.

Consider the finite sums H(q)(m, i, .) =0 8kh(k), where h (k) h()(m, i, .) are grid
functions

DEFINITION 2.1. Let q > 0 be afixed integer and B/t afinite-dimensional Banach space
with g. norm ]]. zxt.

117"(q)(m, ")llzxt1. Consistency Let Z[H(q) H(q) C[H(q)] "-(q) Iflim/to --i ",

O, then the lattice Boltzmann method is said to be consistent.
2. Convergence: If F(m,., .) Bzxt is the solution to the lattice Boltzmann method

(2) and limzxto IIF(m,., .) Hq(m,., ")l[zxt 0, for all integers m such that
0 < mAt < T, then the lattice Boltzmann method is said to be convergent.

3. Stability: Define the block diagonal matrix L xt Bzxt --> Bzxt where the ith diagonal
block is defined by (F, H(q)) G f [I + 7)C((1 s)F + sH(q))] G ds, for
G 6 2 [0, 1]v. The lattice Boltzmann method is said to be stable iffor some
r > O, the family of matrices 1-Ik=o L At 0 < At < "C and 0 <_ mat <_ T}, is

uniformly bounded.
THEOREM 2.2. Suppose a lattice Boltzmann method is consistent. Then stability is a

sufficient condition for convergence.
Using the ideas of monotone difference methods 12], sufficient conditions for stability

of convective-diffusive lattice Boltzmann methods have been established [7]. The advection
operator4 can be interpreted as a vector-valued function defined on2-having the vth coordinate
function given by 4[F](v) F(v) + C[F](v). The derivative of 4 is the IVI IVI Jacobian
matrix ,,TA (F) whose v, wth element is

0
O)

("w-----OF
,A[F] (v).

DEFINITION 2.3 Let viVl=o [M(_k), M(+k)] c_ 2- be a IVl-dimensional interval upon
which ,,7A is nonnegative. That is, F implies JA(F) > O. Then is called a domain
of monotonicity ofthe lattice Boltzmann method (2), and the vectors M_ [M_(V)]vV and

M+ [M+(v)]vv are called the extreme points ofg.
The following lemma demonstrates the invariance property of the advection operator on

a domain of monotonicity.
LEMMA 2.4 Let be a domain of monotonicity with extreme points M_ and M+ for

a lattice Boltzmann method (2). Suppose C[F](M_) C[F](M+) 0. Then 4 leaves
invariant. That is, F implies ,AF .

The following is a stability condition.
THEOREM 2.5. Let be a domain of monotonicity for a lattice Boltzmann method (2).

Let the extreme points M_ and M+ be such that C[F] (M_) C[F] (M+) 0. Suppose
F(O, i, .) and H(q)(o, i, ") are vectors in . If C(F) conserves mass locally, i.e., F(v)
vV C(F)(v) 0, then the method is stable.

2.4.2. Convergence. From Theorems 2.2 and 2.5, we can obtain second-order (in 8)
convergence ofLB and LB2 in the 1 norm for sufficiently smooth initial conditions F (0, x, .)
that are wholly contained within each method’s respective domain of monotonicity by (i)
proving consistency and (ii) showing that the purported domain of monotonicity is indeed
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a domain of monotonicity. Similar arguments apply for LB3, except that Lemma 2.4 does
not apply directly, making the arguments somewhat more involved. This case will be treated
separately. The following standard notation is used: V _= (Ox, Oy) and V _= (Ox, -Oy).

LTHEOREM 2.6 (Consistency of LB1). Let Ax L3, v , At T2, c KL
2T

cAx and A(u) u(1 u). Suppose

(11)

(12)

(13)

Otu + cOxA(u) vV2u
0to- (2) -F6COx[A’(u)a (2)] 1)V20- (2)

0
-(1)

0
-(3) 0,

where .T .T(T, K, L, t, x, y, u, Ux, Uy, blxx Uxy, Uyy, Uxxx, Uxyy, Uxxxx, Uxxyy, Uyyyy),
which is given in Appendix A, is a smooth function. Then g(J) Range(), j 1, 2, 3, 4,
and LB1 is consistent.

Proof. Part (i)" First we show g(J) Range(), for j 1, 2, 3, 4. The first part of
the proof follows by carrying out the expansions in (4), (5), (7), and (8) to get that g(J)
’=1 cj)

elk. The specific values of cj) are given in Appendix a. Applying (11)-(13)to the

coefficients Ck
(j) yields the desired result.

Part (ii): Now, we show consistency. Let h (j), j 0, 1, 2, 3, 4, be defined by h()

(u, u, u, u) and h (j) + g(J) + 0-(J), j 1, 2, 3, 4, as per (9). Consider the grid func-
tion H(3)(m, i,-) =oh(J)(m, i, .)J. Then AH(3) H(3) C(H(3)) -T(H(3))
higher-order terms, where T(HO)) j4.=o T(J)j.

Since T() . h() and Tj) =/2. h(j) g(J), j 1, 2, 3, it follows that Tj) 0, j
c4)q -c4)q3, where c4) is given in Appendix0, 1, 2, 3. Moreover, T(4) k=0

A. Consequently, if u 6 C4([0, 1]2, (0, 1)) and 0-(2) 6 C2(R2, R), then T(H(3)) 0[34]
and the method will be consistent. Since u and 0-(2) are solutions to the uniformly parabolic
equations (11) and (12), respectively, it follows that they and their corresponding derivatives
are uniformly bounded and, consequently, consistency is in fact true.

L KLTHEOREM 2.7 (Consistency of LB2). Let Ax L, v -f, At T2, c --,
czXx and A(u) u(1 u). Suppose

(14)

(5)

(16)

Otu + cOxA(u)

at0- (2) + 6COx(AZ(u)0- (2)) 1)V20- (2)

0-(x) 0-(3) O,

where .U is a smoothfunction ofu and its spatial derivatives, as defined in Appendix B. Then
g(J) Range(/2), j 1, 2, 3, 4, and LB2 is consistent.

Proof. The proof is similar to that for Theorem 2.6, with the supporting details appearing
in Appendix B.

Showing consistency ofLB3 is slightly different than ofLB 1 and LB2 due to 0-(3) 0 not

being a solution to the method’s O[35] consistency condition (see (20) below and Appendix C).
L KLTHEOREM 2.8 (Consistency of LB3). Let Ax L& v -gf, At T(2, c --,

zXx A(u) u(1 u), and ) -4A(u). Suppose

(17)

(8)

(19)

(20)

Otu + cOxA(u) 1)V2u

a (1) O,

0to- (2) -3c- 6COx(A’(u)0- (2)) 1)V20- (2)

at0- (3) nt- ax[A’(u)0- (3)] 1)V20- (3)
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wherefor u C4((0, 1)2, (0, 1)), .)c" and are smoothfunctions of(a) T, K, L, and u and its
derivatives, and (b) T, K, L, andu and (2) and their derivatives, respectively, as defined in
Appendix C. Then g(J) Range(), j 1, 2, 3, 4, and LB3 is consistent.

Proof Part (i): First we show g(J Range(), for j 1, 2, 3, 4. The first part of
the proof follows by carrying out the expansions in (4), (5), (7), and (8) to get that g(J
3= c(j) cj)qk. The specific values of are given in Appendix C. Applying (17)-(20) to the

coefficients cj) yields the desired result.
Part (ii): Now, we show consistency. Let h (j), j 0, 1, 2, 3, 4, be defined by h(

(u, u, u, u) and h (j) ft.+ g(J) if- O"(j), j 1, 2, 3, 4, as per (9). Consider the grid func-
tion H(3) (m, i, .) j3.=o h (j) (m, i, .) 3J. Then f[H(3) H(3) C(H(3)) -T(H(3))
(higher-order terms), where T(H(3)) j4.=o T(J)j

Since T() . h() and T(j) /2. h (j) g(J), j 1, 2, 3, it follows that T(j)

C4) (4)0, j 0, 1, 2, 3. Moreover, T(4) -k=0 qk, where the c are given in Appendix
C. Consequently, if u 6 C4((0, 1)2, (0, 1)), o"(2 6 C2(R2, R), and o"(3 6 C2(R2, R), then
7-(H(3)) O[;4], and the method will be consistent. Since u, cr (2, and cr (3 are solutions to
the uniformly parabolic equations (17), (19), and (20), they and their corresponding derivatives
are uniformly bounded and consistency is in fact true.

THEOREM 2.9 (Domain of monotonicity for LB1). The set g [M_, M+] Ivl, where
M_ 0 and M+ 1, is a domain ofmonotonicityfor LB1. Let M_ Mv_ and M+ M+v.
Then C[F](M_) C[F](M+) 0.

Proof Part (i): First we show that g is a domain of monotonicity. Let f(x, y, z)
3+3-2(x+y+z)l and g(x, y, z) 3-3+2(x+y+z)l Let F F(v) k 0, 1 2, 3 We find12 12
that the Jacobian Jt(F), which is defined generally by (10), in the case of LB is given by

J(F)

f F1, F2, F3) f Fo, Fz, F) f Fo, FI, F) f Fo, F, F2)
! ! !
4 4 4 4

g(f, F2, F) g(Fo, F2, f3) g(Fo, El, F3) g(Fo, El, f2)
! ! !
4 4 4 4

Consequently, showing that Jt(F) >_ 0 for F 6 g is equivalent to showing that each of the
two functions f(x, y, z) and g(x, y, z) is nonnegative for M_ 0 _< x, y, z _< M+ 1. We
now show that the local and boundary minima of f and g are nonnegative. If we examine the
gradients of these functions, then we see that they are nonzero. Hence, there are no interior
minima.

Standard variational arguments on the boundary easily establish that

min 2{3(1 + e), 3(1 e), 3 + e, 3 e} < f, g < max {3(1 + e), 3(1 e), 3 + e, 3 e}.

Since e 6 [-1, ], it quickly follows that 0 _< f, g < g.
Part (ii)" It follows from (22) (in Appendix A) that C[F](M+) C[F](M_) 0.
THEOREM 2.10 (Domain of monotonicity for LB2). The set g [M_, M+] Ivl, where

M_ 0 and M+ 1, is a domain ofmonotonicityfor LB2. Let M_ Mv_ and M+ M+v.
Then C[F](M_) C[F](M+) 0.

Proof Part (i)" First we show g is a domain of monotonicity. Let f(x) 1+
4 X and

g(x) L + 1x. Let F F(v), k 0, 1, 2, 3. We find that the Jacobian 3"t (F) for LB2
is given by

JA F)

f(F2) f(F) f(Fo) f (F )! ! !
4 4 4 4

g(f2) g(f) g(fo) g(fl)
! ! !
4 4 4 4
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Consequently, showing that Jt(F) > 0 for F 6 g is equivalent to showing that each of the
two functions f (x) and g(x) is nonnegative for M_ 0 < x, y, z _< M+ 1. We now show
that the local and boundary minima of f and g are nonnegative. If we examine the gradients
of these functions, then we see that they are nonzero. Hence, there are no interior minima.

Standard variational arguments on the boundary easily establish that

min{ 1+, 1 max{- 1-q--, } < f, g < }.

Since e 6 [-1, ], it quickly follows that 0 < f, g _< .
Part (ii): It follows from (23) (in Appendix B) that C[F](M+) C[F](M_) 0. [

THEOREM 2.11 (Domain of monotonicity for LB3). The set C [M_, M+] Ivl, where
M_ 0 and M+ , is a domain ofmonotonicityfor LB3.

Proof. Let f (x y, z) 1+---(1 2y) + xy xz + yz, fz(x, y, z) L(1 2y) +
xy xz + yz, g(x, y, z) x xy xz + yz and h(x, y, z) y + xy xz + yz. Let
F F(v), k 0, 1, 2, 3. The Jacobian ffA(F) for LB3 is given by

Jt(F)

f F1, F2 F3 g F3 Fo F2) f FI Fo F3 g F Fo F2)
g(F2, F, F3) h(Fo, F3, F2) g(Fo, F, F.) h(Fo, F, F2)
fz(F, F2, F) g(F3, Fo, F2) fz(F, Fo, F3) g(F, Fo, F2)
g(F2, F, F) h(Fo, F, F2) g(Fo, F, F) h(Fo, F, F2)

Consequently, showing that JA(F) > 0 for F 6 g is equivalent to showing that each of
the functions f (x, y, z), f2 (x, y, z), g(x, y, z), and h (x, y, z) is nonnegative for M_ 0 _<
x, y, z < M+ g. We now show that the local and boundary minima of f, f2, g, and h
are nonnegative. Examining the gradients of these functions, we find (1) f (x, y, z) 0 at
the pointx y z + - and (3)2 (2) f2 (X, y, Z) 0 at the point x y z 2

g(x, y, z) h(x, y, z) 0 at the point x y z g. However, the Hessians DZfl, D2f2,
DZg, and DZh are nowhere positive or negative definite. Hence, there are no interior extrema.

Standard variational arguments on the boundary easily establish that

min{0, 1+ +
2 2

min{0, -2 2

1+ 1+}< fl <max{, 2’ 2 }’
1-e 1-e

4 f2 < max{, 2 2 4’

O<g,h<g.

If 6 [-g, g], it quickly follows that 0 < f, f2 _< g [

In LB3, Lemma 2.4 (invariance of the advection operator on domains of monotonicity)
does not apply because the collision operator is nonzero at one of the extreme points of the
domain of monotonicity g. Indeed, C[F](M+) q, which tends to zero as e tends to zero,
however. Hence, in the limit as e--+0 the invariance property is recovered. This suggests the
possibility of invariance on g of the advection operator under conditions other than those of
Lemma 2.4.

LEMMA 2.12. Let ’ (M_, M+) be given. Let g’ [M_, M+ e’]v. Then there
exists (-’, ’) such that if F(O, x, .) g’ then F(m, x, .) g, for all rn such that
0 < mAt < T, where At and are defined in Theorem 2.8.

Proof. We outline the proof as follows: (i) determine the extrema of H(F) given that
F g", where " [M_, M+ ’] and " (M_, M+); (ii) choose (depending on ’,
M_, M+, T, K, and L, and the extrema determined in (i)) so that H(F) applied recursively
rn times to F(O, i, .) g’ yields a result in g; and (iii) turn the recursion in step (ii) into an
induction on m. ]

The rather severe weaknesses of Lemma 2.12 suggest that LB3 may have difficulties in
practice, as will be evident in the numerical studies in the subsequent section.
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2.4.3. Summary. Given the above theorems, approximate solutions to (1) can be ob-
tained from LB1, LB2, and LB3 according to the following prescription. Define u[
vV F(m, i, v) and p ca’(u), with u being defined as per the local conservation

law. Then in the g norm, pin is a second-order spatial, first-order temporal approximation to
p(mAt, lax).

We have shown that under certain conditions and transformations the lattice Boltzmann
methods LB 1, LB2, and LB3 converge second order in space and first order in time to the
solution of (1). Note that the convergence of LB3 appears to be somewhat weaker than that
of LB and LB2. In part this may be due to the increased number of nonzero coefficients (of
the eigenvectors of the linearized collision operator) of the fourth-order term in the Hilbert
expansion for LB3, as compared to the corresponding terms in the expansions for LB and
LB2. In particular, o"(3) 0 is a solution to the fifth-order consistency condition for both LB 1
and LB2, while it is not a solution to the same for LB3. Hence, c4), k 0, 1, 2, 3, are nonzero
in LB3, which strengthens the influence of the fourth-order term of the Hilbert expansion on
the truncation error.

3. Numerical studies. Several numerical studies, motivated by an earlier work [6], were
conducted for the purposes Of verifying the theory, comparing the lattice Boltzmann methods
with each other, and comparing the lattice Boltzmann and finite difference methods. For
each of the lattice Boltzmann and finite difference methods, the studies included acquiring
(numerical) error and timing measurements in order to investigate their accuracy, order of
convergence, and performance. All the methods were implemented in FORTRAN77 on a
Fujitsu VPX240/10 and on one processing element of a Fujitsu VPPS00, which we denote the
VPPS00/1. Both systems comprise high-performance vector-processing architectures, which
are discussed later in more detail.

The following test problem was used: solve (1) with (x, y) E [0, L] [0, L],
L 1, and E [0, T], T l, for periodic boundary conditions with diffusion coefficients
v {2-k k 2, 3, 4, 5, 6}. Accuracy data in the g and oo norms were collected for the
time steps corresponding to 6 {2-k k 5, 4, 3, 2}. (Due to space limitations we present
only oo norm results for v 6 {2- k 2, 4, 6}.)

3.1. Lattice Boltzmann implementations. The lattice Boltzmann methods LB 1, LB2,
and LB3 compute the occupation numbers Fi,(v0), Fi,(v), Fi,.(v2), and Fi,(v3) over the
prescribed lattice locations (i, j) and time steps m. In addition to this computation, there is also
the calculation of the quantity ui,j Y,vV Fi,mj (v), which is the lattice Boltzmann methods
approximation to the solution of the second-order consistency conditions (11), (14), (17) for
LB 1 LB2, and LB3, respectively. The approximations u.m. must further be transformed via

,j

p.m.,j c(1 2ui,") to obtain the approximation pi,mj to the solution of (1). (These extra
calculations were not included when collecting the performance and timing measurements of
the lattice Boltzmann methods, as they are needed only when sampling a particular time step,
which is generally sparse compared to the number of time steps.)

The difference formulae for the lattice Boltzmann methods are listed in Table 5, and
except for the treatment of the periodic boundary conditions, their kernel implementations are
found in Table 6. The methods’ arithmetic operation counts are given in Table 7.

3.2. The finite difference method. The finite difference method employed for solving
(1) is the following conservative, forward Euler-type, central difference scheme:

(21)
Pi, 4AxAt [(eirl,j --(Pi-l,j)

vat vat+ (--277x)2 [Pi+l,j 2Pi,j + Pi-l,j] -+- [Pi,j+l 2Pim, j + Pi,j-1]"
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TABLE 5
Lattice Boltzmann difference equations. Note thatfor brevity here Fim, (Vk) F(m, (i, j), Vk).

LB1

LB2

Fm+l_l,j(vo)

ym-[-1
i,j__l (V1)

Fm-t-1
int_l,j (V2)

Fm+l
,.+1 (va)

LB3

One can show, e.g., by techniques for monotone methods (see, e.g., [12, Chap. IV]),
that (21)is an (C)[(Ax)2] + O[(Ay)2] + (9[At] convergent, conservative, monotone finite

difference method for (1) The monotonicity criteria that ensure stability are that At < -(zxx)2
4v

2v (the latter is analogous to a Courant condition, e.g., 11 ]).and P Ile
(AX)The finite difference method (21) was implemented at its limit of stability, At 4v

which is inherent in the lattice Boltzmann methods LB 1, LB2, and LB3. Thus, the finite differ-
ence and lattice Boltzmann methods are approximating solutions to (1) for identical discretiza-
tions of the spatial-temporal domain ([0, L] [0, L]) [0, T) and can be straightforwardly
compared. Baing the treatment of the periodic boundary conditions, the implementation of
the finite difference kernel is given in Table 6. Its arithmetic operation count is also given in
Table 7.
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TABLE 6
Kernel implementations ofthe lattice Boltzmann andfinite difference methods.

LB1 LB3

for 2 to N for 2 to N
for j 2 to N for j 2 to N

S02 Fi,i(v0 + Fi,’(v2) S02 Fi,j(vo) + Fi,j(v2)
Po. F,(vo) F,(v2) Po. F,(vo) F,(v.)
S13 Fi,j(Vl) -[- Fi,j(v3) S13 Fi,j(Vl) + Fi,j(v3)
P3 F,(v) F,(v3) P13 Fi,(Vl) Fi,(v3)
S0123 S02 q- S13 T1 P02 ($13 1)
p 1/4 x S0123 72 P13 x (S02 1)
T1 Pog. + P3 T3 T1-T2
72 S02 X S13 74 1/2 X 13 73

1--9.a (1 2a) P02T3 -- (T1 +72) %
+l,(vo) So9. + T3 % So2

F’ T7 %+%,i+l(Vl) p

F’ F’+l,.(vo) T3 + T7
_,s(v) x oea T F’,+l(Vl) T4Ffz,j-- (V) p F’_l,(e) Soe + Ta T7

end for F.
end for ,,-1(v3) T4

end for

end for

LB2 Finite Difference

for 2 to N-
for j 2 to N-

So. F,.(vo) + F,(v.)
P02 Fi,i (v0) Fi,j (v2)
S13 Fi,j(v1) d- Fi,j(v3)
P13 F,’(vl) F,i(v3)
S0123 S02 -]-

p 1/4 X S0123
T
T. (1/4-) T
F+l,(vo) So9.a + Te
F,+1(1)
y_l,(v2) X 0123
F.,,_(v)

end for

end for

for i--2 to N--1
for j 2 to N

Sx P’I + Pz--l,j
Sv p.m. P-,+I +
T A, p.

4Ax X (P+I,j ,--1,j

p:..+l 1/4 + s. (T + 1/4)
end for

end for

TABLE 7
Floating point operation (flop) counts.

Additions/Subtractions (flop) Multiplications (flop) Total (flop)

LB1 7 7 14

LB2 6 6 12

LB3 10 7 17

FD 5 3 8

3.3. Accuracy. The absolute errors in the norm for LB 1, LB2, LB3, and the finite
difference method are given in Table 8. We see that the absolute errors worsen progressively
from LB to LB2 to. LB3, with the errors in LB3 being significantly worse than in LB 1. We
also see that all the methods depict increasing accuracy with increasing diffusion coefficients.
The finite difference method reflects the greatest accuracy of all the methods, however, with
LB being a close second. The ratios of the errors observed in LB 1, LB2, and LB3 to those
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TABLE 8
Accuracy. Absolute errors in the g norm of the lattice-Boltzmann-computed andfinite-difference-computed

solutions are givenfor various diffusion coefficients v.

in the finite difference method appear in Table 9. Overall the errors in LB are quite good
compared to those in the finite difference method, with the maximum error observed being
about twice as great. The results for LB3 are not as good, with the errors being as high as
about 100 times those in the finite difference method. (Similar comments apply to the errors
in the norm.)
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TABLE 9
Error comparisons. Ratios between lattice-Boltzmann-computed andfinite-difference-computed solutions are

givenfor various diffusion coefficients v.
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TABLE 10
Order ofconvergence. This charts the ratios between the errorsfor solutions computed on N x N and (2N) x

(2N) grids.

3.4. Order of convergence. The ratios between the absolute errors at a given problem
size and twice that problem size, i.e., for N x N and (2N) x (2N) grids, respectively, can
be reflective of the order of convergence of a supposed second-order convergent method.
Although not necessary for second-order convergence, a ratio near four is indictive of second-
order convergence. The error ratios in theg norm forLB 1, LB2, LB3, and the finite difference
method are given in Table 10.

In the finite difference method, the error ratio is definitely near four, which supports the
theoretical second-order convergence of the method. The error ratio in LB3 appears slightly
less than four, which mimics its difficulties with accuracy, as pointed out in 2.4. Across the
lattice Boltzmann methods LB3, LB2, and LB 1, the error ratio progressively approaches four.
In addition, the lattice Boltzmann methods appear generally to produce error ratios nearer
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to four for larger diffusion coefficients. This is expected, however, since the convergence
proofs assume that zXx2_._. (Q[Ax]. So, for a particular lattice size, i.e., a fixed Ax, the
smaller the diffusion coefficient v, the less e appears to be (9[Ax]. Indeed, for v (9[Ax the
convection bias e is (9[ 1] and the convergence proofs for LB 1, LB2, and LB3 fail altogether.
As the theory predicts, this behavior is evident in the error ratios shown. Of the three lattice
Boltzmann methods, LB appears to exhibit the most convincing error ratios for the widest
variety of diffusion coefficients. (Again, the above comments apply to the 1 norm also.)

3.5. Performance and timing measurements. Because the errors in LB 1 are close to
those in the finite difference method (they are at most a factor of two apart), LB 1 might
be considered an alternative to the finite difference method in some circumstances, which
among other considerations may depend on the performance of the methods on a particular
architecture. To this end, we obtained performance and timing measurements for the three lat-
tice Boltzmann methods and the finite difference method for two high-performance computer
systems: a Fujitsu VPX240/10, which has a peak performance of 2.5 Gflop/s, and a Fujitsu
VPP500/1, one processing element (PE) of which has a peak performance of 1.6 Gflop/s.
While both systems comprise vector-pipelined architectures, they differ in several ways.

1. The VPX240/10 has two multiply-add pipelines, each of which delivers two results
per clock cycle; a VPP500 PE has one multiply pipeline and one add pipeline, each
of which delivers eight results per clock cycle. In both systems, the vector pipelines
can operate concurrently and can also be chained.

2. The VPX240/10 has two universal load/store pipelines, each of which can operate
concurrently; aVPP500PEhas one load pipeline and one store pipeline, each ofwhich
can operate concurrently. In both systems the load/store and arithmetic pipelines can
operate concurrently.

3. The VPP500 PEs and the VPX240/10 possess 32-way and 256-way interleaved mem-
ory, respectively.

4. AVPP500PEhas a larger vector register size (128 kilobytes) than does the VPX240/10
(64 kilobytes). Both vector register sets are reconfigurable: from 8 x2048-element
to 256x64-element 64-bit vectors on the VPP500/1 and from 8x 1024-element to
256 x 32-element 64-bit vectors on the VPX240/10.

Further characteristics of these systems can be found in [13-15]. The above identifying char-
acteristics affect the way the various algorithms perform on the two systems. For instance,
because the arithmetic vector pipelines on the VPX240/10 are multiply-add pipelines, peak
performance is achieved with two vector "multiply-add" instructions operating simultane-
ously on the separate pipelines; concurrent "add" and "multiply" instructions achieve the peak
performance on the VPP500. Which architecture performs best for a given application de-
pends, among other considerations, on how well vectorizable loops can be mapped to the peak
performance situations, as we will see.

3.5.1. Theory. By analyzing the corresponding dependency graphs of our methods, the
performance of the applications on the two architectures can be predicted. Given a particular
architecture and assuming a certain level of unrolling, a dependency graph can be mapped
to a timing diagram, which then can be used to predict how the calculation will perform. In
our case, the architectures are vector-pipelined machines. Thus, the timing diagrams will
involve scheduling of the pipelines into chimes, as the arithmetic and load/store pipelines can
be chained.

As examples, we will examine closely the LB 1 and finite difference calculations and only
summarize the results for LB2 and LB3. Figures 2 and 3 depict the dependency graphs for LB 1
and the finite difference method, respectively (cf. Table 6). Mapping the dependency graphs
onto the two architectures in an optimal fashion (without loop unrolling) yields the pipeline
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FIG. 2. Dependency graph ofLB1 computation.

FIG. 3. Dependency graph offinite difference computation.
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scheduling timing diagrams given in Figures 4 and 5. Note that a certain amount of unrolling
can offset some ofthe load and store operations and occupy otherwise idle arithmetic pipelines.
Table 11 summarizes the chimes to compute the lattice Boltzmann and finite difference kernels
for the two vector architectures in the study. With regard to timing predictions, Table 11
suggests certain relative timings for the methods. Table 12 gives the asymptotic timings of
each lattice Boltzmann method relative to the finite difference method.4 The predictions and
actual results are compared below.

3.5.2. Measurements. Performance and timing measurements were obtained on the ker-
nels for all four methods. These measurements included both interior and boundary node cal-
culations. Measurements were taken for 512 time steps and a range ofproblem sizes N N up
to 1617 1617. Tables 13 and 14 list figures exhibiting the performance and timing measure-
ments for the VPX240/10 and the VPP500/1, respectively. Timings relative to that of the finite
difference method are depicted in Table 15. Asymptotically, we see that, respectively, LB 1,
LB2, and LB3 consume about 1.5, 1.4, and 2.0 of the time required of the finite difference
computation, which is in agreement with the predictions of Table 12.

In terms of absolute performance, all four of the methods attain their highest performance
levels on the VPX240/10 (Table 16). The highest maximum utilization (91.8%) is with LB 1
on the VPP500/1; the lowest maximum utilization (53.8%) is with the finite difference method
on the VPX240/10. Accuracy aside, a bottom-line comparison considers how much time it
takes to compute a solution for a given problem size. Because of the differences observed
in the utilization of the two systems, we find that the computational time for both systems
is nearly the same for each of the respective methods, except for problem sizes below about
100 100. For each of the lattice Boltzmann and finite difference methods, the ratio between
the VPP500/1 and VPX240/10 computational times is exhibited in the last column ofTable 14.
Indeed, for problems larger than about 100 100, the computational time on the VPP500/1
is less than 120% of that on the VPX240/10. This is interesting to note because the peak
performance of the VPP500/1 is only 64% that of the VPX240/10, and it accents differences
between the two vector-pipelined architectures.

3.6. Memory requirements. The memory requirements (in bytes) using 64-bit data for
the lattice Boltzmann and finite difference methods are given by Mlb(Nx, Ny) 64NxNy and
Mfa(N, Ny) 16NxNy, respectively. However, due to the exclusion principle of the lattice
Boltzmann methods, it may not be necessary to maintain full 64-bit precision arithmetic.
Using single-bit precision arithmetic (with a special rounding function) would be. analogous
to a lattice gas method. But with regard to solving partial differential equations, lattice gas
methods suffer from statistical fluctuations due to the limited precision of the occupation
numbers. Certainly, there is some trade-offhere between the full precision oflattice Boltzmann
methods and the extremely limited precision of lattice gas methods. (See, for example, [2] for
a thorough treatment of correlations in lattice gas methods.)

3.7. A remark on conservation laws and accuracy. The one conservation law in the
lattice Boltzmann methods LB1, LB2, and LB3 is conservation of mass. Although they
each possess (only) this local conservation law, the individual collision rules therein do not

wholly adhere to it. Consider, for example, the single particle collision rules for LB3 (see
Table 4). The mass along each of the two orthogonal directions is conserved separately. (A

4Note that in some cases, increasing the depth of unrolling can yield a slight gain in performance, but this is not
significant with regard to our discussions.
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+

+

FIG. 4. Pipeline scheduling timing diagramsfor the LB1 computation. Note that the calculations entailfive (5)
and nine (9) chimes on the VPX240/10 and VPP500/1, respectively.
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FIG. 5. Pipeline scheduling timing diagrams for the finite difference computation. Note that the calculations
entailfour (4) and six (6) chimes on the VPX240/10 and VPP500/1, respectively.

TABLE 11
Chimes to compute the lattice Boltzmann andfinite difference kernels.

METHOD
Without

Unrolling
Chimes

(count)
LB1 5

LB2 5

LB3 7

FD 4

VPX240/10
As

Implemented
Unroll Chimes

(depth) (average)

5.00

2 5.00

2 7.00

2 3.50

Without

Unrolling
Chimes

(count)
9

8

12

6

VPP500/1
As

Implemented
Unroll Chimes

(depth) (average)

4 7.50

2 7.00

9 10.22

7 5.14
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TABLE 12
Predicted asymptotic timings relative to the finite difference method.

METHOD VPX240/10 VPP500/1

LBI
LB2
LB3

FD

Without As
Unrolling Implemented
Time Unroll Time

(FD time) (depth) (FD time)
1.25 1.43

1.25 2 1.43

1.75 2 2.00

1.00 2 1.00

Without As
Unrolling Implemented
Time Unroll Time

(FD time) (depth) (FD time)

1.50 4 1.46

1.33 2 1.36
2.00 2 1.99

1.00 7 1.00

TABLE 13
Performance measurements for the lattice Boltzmann and finite difference methods. The performance mea-

surements were calculated by dividing computational time (CPU time) by a kernel’s floating point operation count

(boundary conditions included), the number of time steps, and the number ofgrid nodes. The entries chart perfor-
mance versus size Nfor N x N grids.

PERFORMANCE MEASUREMENTS

VPX240/10
(2.5 Gflop/s peak)

VPP500/1
(. ao/s e)

81
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TABLE 14
Timing measurements and system comparisons for the lattice Boltzmann and finite difference methods. The

computational time (CPU time) is given on a per-time-step basis as afunction ofthe problem size N, where the grid
is size N x N. All calculations were performed in 64-bit precision. The ratios between the timingsfor the VPP500/1
and VPX240/10 systems are also given.

(IOHLHIAI

0I,LVt DNIIAI I,L 01LVI:I D_ IAI

o

,- el ,-
OI&VI 0lq IAI L 0I,T,VZ DN IAI L

d d d
d d d d

(spuos)

aauoaoj:t!(I

similar observation can be made about the triple particle collisions in LB3.) However, in LB2
the single- and triple-particle collision rules do not preserve mass along the two orthogonal
directions separately. (This is also the case in LB 1.) The difference between LB 1 and LB2 is
that in LB 1 two-particle collisions involve all possible configurations, i.e., both "orthogonal"
and "head-on" collisions, whereas in LB2 the orthogonal and head-on configurations are
treated separately. Keeping all this in mind, it is interesting to note that the accuracy of the
lattice Boltzmann methods improves progressively from LB3 to LB2 to LB 1. This suggests
the hypothesis that lattice Boltzmann methods achieve greater accuracy when the collision
rules are individually faithful to the overriding local conservation laws.
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TABLE 15
Lattice Boltzmann to finite difference timing comparisons. Ratios of lattice Boltzmann to finite difference

computational time, based on Table 14, are given on a per-time-step basis as afunction ofproblem size N, for N N
grids.

RATIO TO FINITE DIFFERENCE COMPUTATION TIME

VPX240/10
(2.5 Gflop/s peak)

VPP500/1
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250 500 750 1000 1250 1500
N

o
0.5

o 250 500 750 1000 1250 1500
N
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0.5
o
0 250 500 750 1000 1250 1500

N

TABLE 16
Maximum sustained performances.

METHOD
Size

(NN)
LB1 1014

LB2 1464

LB3 1538

FD 801

VPX240/10
Maximum

Performance

(Gflop/s)

Maximum

Utilization

(percent)

1.644 65.8

1.419 56.3

1.427 57.1

1.345 53.8

Size

(NN)
1026

1026

1026

1602

VPP500/1
Maximum

Performance

(Gflop/s)

Maximum

Utilization

(percent)

1.469 91.8

1’.363 85.2

1.321 82.6

1.228 76.8

4. Conclusions. We have introduced and studied three lattice Boltzmann methods for
the 2-D convection-diffusion equation (1). The study included theoretical results such as con-
ditions for convergence, the numerical verification of those results, and a detailed comparison
of the methods with an analogous finite difference method. We conclude with the following
observations:
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1. Domain ofmonotonicity. LB and LB2 possess larger domains of monotonicity than
does LB3. Further, the domain of monotonicity for LB3 is not preserved from one
time step to another; hence, convergence for LB3 was obtained only for those initial
conditions not only bounded by the domain of monotonicity but also bounded (much)
more severely.

2. Accuracy. The accuracy improved progressively from LB3 to LB2 to LB 1 over the
test cases. LB exhibited the greatest accuracy; it was a little less than one (1) to about
three (3) times worse than the accuracy exhibited by the finite difference method.

3. Order ofconvergence. Progressively from LB3 to LB2 to LB 1, the lattice Boltzmann
methods exhibited stronger and stronger evidence for second-order convergence. The
evidence for the finite difference method was the strongest, however, with LB 1 a close
second.

4. Performance measurements. Generally, given a particular problem size the level of
performance attained increased from the finite difference method to LB3 to LB2 to
LB 1, with LB achieving the highest utilization of the two systems tested.

5. Timing measurements. Timing measurements were compared given a particular prob-
lem size, i.e., without regard to accuracy. The computations of LB3 took twice the
time of the finite difference method, and those of LB 1 and LB2 each took about one
and a half the time of the finite difference method.

6. Memory requirements. The lattice Boltzmann implementations required four times as
much memory as the finite difference implementation. (At the expense of increased
memory references, the lattice Boltzmann memory usage can be halved by employing
"in place" calculations and a separate "advection step.") While in diffusive lattice
Boltzmann methods this may be expected, it is not necessarily so in methods for
systems involving multiple dependent variables, e.g., lattice Boltzmann methods for
the Navier-Stokes equations. For example, the FHP model [9] for the 2-D Navier-
Stokes eqUations requires six values per node, whereas a standard finite difference
method would require three or five values per node, depending on whether a Eulerian
or Lagrangian formulation is used. The 24-velocity model for the three-dimensional
(3-D) Navier-Stokes equations can be reduced to 18 values per node [8]. A standard
Navier-Stokes implementation would require four or seven values per node, depend-
ing on the formulation. The 2-D and 3-D Navier-Stokes lattice gas methods use at
worst two and four and a half times as much memory as the finite difference methods,
respectively. Additionally, it is unclear just how much precision is required in the
lattice Boltzmann methods in order to obtain a certain level of accuracy. In lattice
Boltzmann methods with the exclusion principle, it seems that full precision may not
be necessary, depending on the objectives of the calculations. (The computations for
the results presented herein were all performed in 64-bit arithmetic.) Perhaps even
fixed point arithmetic can be used.

7. Conservation laws and accuracy. The computational results suggest that a lattice
Boltzmann method attains greater accuracy the more the collision rules are individ-
ually faithful to the overriding local conservation laws.

8. Entropy. The lattice Boltzmann methods carefully control dissipation. Indeed, their
entropy condition implies that they will dissipate physically [7, 10].

Appendices.

A. Analysis of LB1. Following are the details for the collision operator, linearized col-
lision operator, discrete Hilbert expansion, and the consistency conditions.
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Simplified, the collision operator can be written as follows:

C(F)(vo) 1+ [F(v0)+ F(v1)+ F(v2)+ F(v3)]- F(vo)4

[(F(vo) + F(v2))(F(v) + F(v3)) + F(vo)F(v2) + F(Vl)F(v3)],

C(F)(vl) [F(vo) + F(Vl) + F(v2) -4- F(v3)] F(vl),
(22)

C(F)(v2) 1---- [F(vo) + F(v1) + F(v2) -4- F(v3)] F(v2)4

+ [(F(vo) 4- F(vz))(F(v) 4- F(v3)) 4- F(vo)F(v2) 4- F(Vl)F(v3)],

C(F)(v3) [F(vo) 4- F(v1)4- F(v2)4- F(v3)]- F(v3).

.The linearized collision operator is given by

1-3 1L;- 1-3
1-3

Circ[-3 1], and has the eigenvalues )() (;o,), ;2, ))which is the circulant
(0, -1, -1, -1). (The corresponding eigenvectors are given in the text.)

The first few terms of the Hilbert expansion (2.3) are given as follows"
()’ C(ol) O, cl) KA(u) + Lux, c2 y,1. g(1) Y=o where ()
e, qk, Lu and

(1) 0C

(2)2. g(2) -k=0 Ck q, where

/_,2 (2)C0(2) Tut + -a’(u)Ux -4-VZu’ cl La() Ka’(u)cr()
(2) (2) KLAZ(u)ux

L
C2 LO’(1)Y c3 2 -]’-V" u.

3. g(3) Y-,=o c3) q,, where

L V20. (1)C;3) Tot(l) 4- --Ox[a’(u)cr(1)]- T
x

KI? A,(u)V2u Ii:L (A,(u))eUxcl3) Lcr (2) + K[1 6A’(u)cr(2))] + -T- -L
12 (Uxxx 4- 3Uxyy)

(3) Lo.(2) + KL: [A’(u)Uxy + 2UxUy] I3
C2 y -ff(3Uxxy 4- Hyyy),

C3) L
4 V. Vcr (1) + E-Ox[A’(u)o’()].

4. g(4) Zk=0 c4)qk, where
(4) To.(2) L

CO
-v20"(2) 4- 3KLOx[A’(u)cr(2)]

L+ (u,,,, + 6Ux,yy + Uyyyy) + x2L: a’(u)[A’(u)u,, 4(Ux)2]
KL4- ’--[6(UxUyy 4- UyUxy) A’(u)(Uxxx 4- 3Uxyy)],

(4) (3) 4- K
C = La T[4- A’(u)o’(3)],

C4) Lo(3)y,
C4) L2 L4 73 Vg

4 V. Vo(2) + 3KLOx[A’(u)o(2)]
I’::z? A’(u)[A’(u)Uxx 4(Ux)2]4- -’---KL3 [3UxUxx A’(u)Uxxx 3ttyttxy] 4- --4--

5Note that lower-order consistency conditions have been used to simplify the coefficients of higher-order coef-
ficients (this includes applying the choice that cr () 0 where appropriate).
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L25..g(5) -=0 c5)qk, where C(o5) Tcr(3) -Tvza O) + ---Ox[A’(u)crO)], and the

remaining coefficients el5), c5), and c5) are not given because they are not used in
the proofs.

The following are the consistency conditions for the first few orders of the Hilbert expan-
sion:

KL L1. O[62] Otbl -[-- cOxA(u) u72u, in which c --, v , and A(u) u(1 u).
2. 0[33] Ota (1) + COx[a’(u)a (1)] uvzu (1).
3. 0[34] Ota (2 + 6cO[a’(u)a (2)] vvza (2) U, where U [Ux + 6Uxx +

KL K2LUyyyy] -[A’(u)(Uxxx +3Uxyy)-6(UxUyy+UyUxy)-A’(u)[4(ux)Z-a (u)uxx].
(3)] (3)4. O[5] Ot if(3) +Ox[m’(u)ff vVea which emits the exact solution a (3 0.

B. Analysis of LB2. The collision operator can be written as follows"

C(F)(vo) 1+, [F(vo)+ F(Vl)+ F(v2)+ F(v3)]- F(vo)

[(vo)f(va) + (v)f(v3)],

C(F)(Vl) l[F(vo) + F(Vl) + F(v2) + F(v3)] F(Vl),
(e3)

C(F)(v2) l[F(vo) + F(Vl) + F(v2) + F(v3)] F(v2)

+ }[(vo)(v)+ (v(v3)],

[F(vo)+ F(Vl)+ F(v2)+ F(v3)]- F(v3).C(F)(v3)

The linearized collision operator is as in LB and consequently so are its eigenvalues
and eigenvectors.

The first few terms of the Hilbert expansion5 are given as follows:
(1) Luy.1. g( =o3 cq, where co

( c3( 0, c -KA(u) + Lux, and ce
2. g(e =oceq, where

: (e) ()Co(2) Tut + A’(u)ux Veu c La x KA’(u)a(

A(u)Uxc2 =Lff(1)Y c3 2 V.Vu.
3 c3q, where3. g(3) =o

C3)__ Tff(1) + Ox[A,(u)(1)]_ L2 (1)
vff

x a’ (A’(u))Uxc3 La (e + K[1 6A’(u)a(e)] + 4 (g)V2g
L
12 (Uxxx + 3Uxyy),

L KLC3) Lff(2)y (Uxxx + 3Uxyy) + (A’(u)Uy),
(3)

C3 4 V. ff(1) + Ox[A,(u)(1)].
c4q, where4. g(4)_ =0

(4)_ Tff(2 L t
Co Va(e + 3KLOx[A’(u)a(] + N(Uxx +6Uxxyy+Uyyyy)

KL+ [6(UxUyy + UyUxy) AZ(u)(Uxxx + 3Uxyy)]
KeL+ A’(u)[Uxx 4(Ux)],

K Ac}4)= Lff(3)x + [4- (u) (3)]
(4)ce La(3)y,
(4) L L4 V UC3 4 V. + 3KLOx[A’(u)a] +

KL A+ KL3 [3UxUxx A’(u)Uxxx 3UyUxy] + (u)[A’(u)Uxx 4(Ux)2].
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c5)q, where5. g(5) Y=o C(o5) To" -TV2o" (3) + -X@Ox[A’(u)o"(3)], and the

remaining coefficients cl5), c(25), and c5) are not given because they are not used in
the proofs.

The following are the consistency conditions for the first few orders of the Hilbert expan-
sion:

KL L1. 0[62]: Otu nt- cOxa(u) pVZu, in which c 5Y, v -f, and a(u) u(1 u).
2. (9[63] 0to" (1) + COx[A’(u)o" (1)] 1)V2o" (1).
3. (_9[64] 0to" (2) / 6COx[A’(u)o" (2)] vV2o" (2) -f’, where .T"- [Uxxxx + 6blxxyy --I,:C3 I(2L A, (u)[4(Ux):ZUyyyy] T[A’(u)(Uxxx + 3Uxyy) --6(UxUyy -t-UyUxy)]

A’(u)Uxx].
4. 0[65] 0to" (3) + Ox[A’(u)o" (3)] vvZo" (3), which emits the exact solution 0-(3) 0.

C. Analysis of LB3. The collision operator can be written as follows:

C(F)(vo) l+e-[F(vo) nt- F(v2)] F(vo)2

-t- F(vo)F(v2)[F(v) -t- F(v3) (1 + e)] F(vl)F(v3)[F(vo) + F(v2) 1],

[F(v1) q- F(v3)] F(Vl)C(F)(v1)

F(vo)F(v2)(F(Vl) + F(v3) 1) + F(v)F(v3)(F(vo) + F(v2) 1),
(24)

C(F)(v2) I-[F(vo) nt- F(v2)]- F(v2)

+ F(vo)F(v2)[F(Vl) + F(v3) (1 -e)] F(vl)F(v3)[F(vo) + F(v2) 1],

C(F)(v3) 5[F(v)-+- F(v3)] F(v3)

F(vo)F(v2)[F(v)+ F(v3)- 1]-t- F(v)F(v3)[F(vo)+ F(v2)- 1].

Circ[- 1 2u + 2u2, 2A (u) 1 2u +The linearized collision operator is given by g
2u2, 2A(u)], which has the eigenvalues ,(,) ()0,), )2, 1,3) (0, -1, -1, -4A(u)). (The
corresponding eigenvectors are given in the main text.)

The first few terms of the Hilbert expansion (2.3) for LB3 are similar to the expansions
for LB 1 and LB2; however, the terms are somewhat more complicated. Let ) .3. Then the
first three terms of the Hilbert expansion for LB3 followS:

(1) where (’) (1) O, cl ’) -KA(u) + Lux and c1) Lbly1. g(1)_,=0c q, co =c
(2)2. g(2) k=0 Ck qk, where

Lzv2 (2) LO.() KAt(u)O.(1)c2) Tu+ + --A’(u)Ux -4- u, c, x

C2) Lo.(1)y,
2) L (4u 2 u) + ux[A’(u) 4uA(u)] + K2u[A(u)]2

C --- U

+ u[o"()(o" () 2Luy) 1].

3. g(3) k=O C3)q’ where

L V2o" (1)C3) To"(1)t + EOx[A u)o.(1)] 7-
(3) K(1 -6o" () + 12uo" (e)) + Lo" (2) 3c a--2[Uxxx(3 + 4;) 3Uxyy]

L Lqt_ _ff bl U bl x

__
bl 2x

_
._fIx U x 4bl bl 2x Hyy

2L) (o"(1)//Uxy
__

Ublyo"(1)x
__

UxUyo"(1))
__

__2xUUyo"(1)
+ 2 [2uo.()o. (1)x-ux (1 (o"())2)] + )xU[1 (o"(1))a] KL2ux2
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4. g(4) k=03 C4)q, where all the coefficients are nonzeromeven with r (1) 0. We
do not give them here since they are much too lengthy for the present text. Note,
however, that Co4) can be easily determined from the 0[64] consistency condition,
which is given below.

KL LLet c --, v , and A(u) u(1 u). Then the first few consistency conditions
are as follows"

1. 0[62] OtU "{" cOxA(u) pV2u.

2. (.9[63] Oto"1 + COx[a’(u)cr(l] vV2tr (1.
3. (9[64] Ot 0"(2) --6COx[A’(u)cr (2)] 13V2o"(2) .", where- 2- ((zx)2 (ZY)2)(blxx + 4U(Ux)2 blyy)]

4 [2()l,xV VUx yV" gUy) + (XXv" Vbl yyV" Vu)

16UUx()xUxx "+ 1.yUxy) -4u(ux)2g )v "k 8(blx)2blyy
16UUx(XxUxx + )yUxy) 8(Ux)3Xx] + [(Uxxxx + 2Uxxyy Uyyyy)
8Ublx(Uxxx blyyy) 8b/(b/xx)2 (Ux)2(2OUxx --4Uyy)

-+- 8(2UxUy + blUxy)Uxy q" [7Uxxxx 6Uxxyy ’k 71gyyyy]
KL3 (1 2u 4u2 -+- 4u3)[()vx)Zux (y)2Uy]4TX
KL3 [8(1 2U U2 U3)1,xUxx 6(1 U)XxUyy+ 8-T

+ (1 2U 4U2 q- 4U3)[(Ux V. )v) yblxy
4(1 + 10u- 18u2),x(Ux)2 -Jr-4(1 + 4u- 6U2))VyUxUy]

KL
8rz [(7 14u -4u2 -4u3)V Vux (18 + 72u 132u2)UxUxx
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8(4- 14u)(Ux)3 + 2(7 + 4u -6u2)UxUyy q- 2(2 + 41u 12U2)UyUxy
-+- 8(1 3U)Ux(Uy)2] KL3 [2A’(u)Uxxx 9UxUxx + 3Uyttxy]
2v 2 v+ gu[(;x) 0y)2] [(uV. V)) + 2(ZxUx ;yUy)] + -; v. Vu

K2L/Cu3(1 2u + u)[0x)2 0y)2] + 4--t-[u3(1 2u + uZ)()-;yy)2T;

(7 4u 6u2 + 88u3 58ua))xUx 2u2(3 8u + 5b/2))yb/y]
K2L+ 4-TT[(6- 24u 3u2 + 80u 212u4)Uxx + u2(3 8u + 5U2)Uyy
(24 + 6U + 240U2 212U3)(Ux)2 + 2U(3 4U + U2)(Uy)2]

3K3L.K2L28r [4A’(u)(Ux)2 (A’(u))2Uxx] -Tu (1 4u + 5u2 2u3)

3ILrz (1 4U)Ux + -r-2r3IL-u"’(u))x nt- "--T--3K3Lu2(3- 16U + 25U2 12U3).

4. O[6S]"

(25) 0t O’(3) -- Ox[A’(u)cr (3)1 pV20-(3) ,
where for u E C4((0, 1)2, (0, 1)), is a smooth function of the constants T, K,
and L, and u and cr (2 and their derivatives. In general, is nonzero, and hence,
contrary to the cases for LB and LB2, cr (3 0 is not a solution of the fifth-order
consistency condition (25). The fact the cr (3 0 is not a solution to (25) may attest
to the unfavorable numerical results for LB3.
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DIRECT NUMERICAL CALCULATIONS OF A NEUTRAL STABILITY CURVE
FOR ONE-DIMENSIONAL DETONATIONS*

WEI CAIn, WONHO OH:, AND YOULAN ZHU

Abstract. In this paper we calculate the neutral stability curve for one-dimensional detonation waves based on
direct numerical simulations of the Euler equations. We propose multidimensional spectral methods with accurate
shock tracking to study the stability of steady Chapman-Jouguet detonations. The numerical methods proposed
here can be easily generalized for the simulation of multidimensional detonation waves. The detonations under
consideration are for an ideal gas in an irreversible, unimolecular reaction A --+ B with finite Arrhenius reaction
rate. Critical overdrives f* for various heat releases Q’s are computed. The neutral stability curve is obtained and
compared with the results of the eigenmode analysis by Erpenbeck [Phys. Fluids, 7 (1964), pp. 684-696].

Key words, detonation waves, neutral stability, multidomain spectral methods, shock tracking

AMS subject classifications. 76Q05, 76V05

1. Introduction. The stability of detonation waves is a complex yet fascinating multi-
dimensional phenomenon. There has been renewed interest in understanding the underlying
physics of this phenomenon [1, 2, 4, 10, 14, 16]. Most of the observed detonation waves
travelling in rectangular or circular channels demonstrate transverse wave structures along the
precursor shock front in the form of mach-stems--so-called "triple points." Such structures
are believed to play important roles in the stability of multidimensional detonation waves. The
study of stability of one-dimensional detonation waves provides a stepping stone to the more
complete multidimensional stability problem.

Basically, there have been two approaches in studying the stability of one-dimensional
detonations. The first is to study the hydrodynamic stability of the linearized Euler equations
with respect to a given steady solution by using eigenmode analysis; the second approach is to
use direct numerical simulation ofone-dimensional Euler equations. Erpenbeck started the first
approach for an ideal gas in an irreversible, unimolecular reaction A --+ B with an Arrhenius
reaction rate [8]. Later, Abouseif and Toong derived an approximate wave equation for the
perturbed state variables. They successfully identified the sources of longitudinal instability
under the assumption of small perturbation and high activation energy.

However, as common to any linearized analysis of a strongly nonlinear problem, it could
not explain all the nonlinear phenomena ofreacting flows. On the other hand, direct numerical
study of one-dimensional detonations includes the work of Fickett and Wood [9] and Fickett,
Jacobson, and Schott [10] using a method of characteristics. In [10], they considered two
reaction rates with induction zones. Recently, Bourlioux, Majda, and Roytburd [4] have stud-
ied the same problem posed by Erpenbeck [8] using both asymptotic eigenmode analysis and
improved numerical simulations based on the shock capturing scheme--piecewise parabolic
methods (PPM). They provide a detailed numerical convergence study and an asymptotic
analysis for the case when the heat release Q 50 in the one step reaction A B and the
activation energy E+ 50 for an ideal gas with gas constant 9,, 1.2.

So far there has been no attempt to calculate the neutral stability curve for all heat re-
lease and activation energy parameters based on direct numerical simulations of full Euler
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equations. In Erpenbeck’s early work [8], a crude curve of such kind was given based on
the eigenmode analysis. In this paper, we will propose a numerical method for computing
reacting shock waves and calculate the neutral stability curve for one-dimensional detonations
under one-dimensional longitudinal disturbances. Theoretically, similar neutral curves could
be sought for the case when the disturbance is two or three dimensional. We believe that
such a question of multidimensional stability problem is best answered when simulations are
done for multidimensional flows. In this paper, we will concentrate on the one-dimensional
stability studies only.

The purpose of this work is twofold. The first is to introduce a high-order numerical
method which is designed to fit the simulations of multidimensional detonations; the second
is to provide a parametric study of the neutral stability curve for one-dimensional detonations
which have aided our study of multidimensional detonations [3]. The novel feature of our
algorithm is the high-order scheme used in tracking the detonation front compared with the
first-order scheme used in [4]; also a multidomain approach is used so different numerical
discretizations can be used in various parts of the flow field, a feature which proves to be
important in the calculation of two-dimensional detonation waves where triple shocks occur
along the detonation front [3].

2. Stability of steady detonations. We will consider the ideal Zeldovich, von Neumann,
and Doering model of a steady detonation that is assumed to have a steady solution with con-
stant shock speed D. According to the classical Chapman-Jouguet theory, there is a minimum
shock speed Dj below which no strong detonation .is possible. Within a gas dynamic shock
transition, there are not enough molecular collisions to cause chemical reactions. Therefore,
we will assume no chemical reactions across the shock and will treat the front as a mathe-
matical discontinuity. This will enable us to use a shock tracking algorithm for the shock
front.

We adopt the simple model suggested by Erpenbeck in [8] which assumes a one-step
A --+ B, irreversible exothermic reaction with a finite Arrhenius reaction rate. Here A denotes
the unreacted fuel and B the product. Gas particles upon passing across the shock front will
initiate chemical reactions immediately according to the Arrhenius rate. The reacting gas for
such a system will be governed by the following Euler equations, coupled with an equation
for the production of species (only one such equation is needed here, as the other species is
obtained from the continuity equation):

(1)
0fi 0F(fi)

(fi),
Ot Ox

pu F(fi) pu(2) u pe pu p
pk puk

and

(3) ,(fi)- __0c
E+p ._ - +)Q, andco KpXexp(---) We take the ratio ofspecificwhere p pT, e

-1 p

heats y 1.2 in all our computations, p, u, p, ), e, T, E+, and Q are density, flow velocity,
pressure, mass fraction of reactant, total specific energy, temperature, activation energy, and
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heat release, respectively. Equation (1) also can be rewritten in the nonconservative form

(4)
Ot + A Ox

OFwhere A is the Jacobian matrix of flux function F(fi).
All quantities in (1) and (4) have been nondimensionalized by their reference quantities

in the unreacted region. They are given as follows ("--" indicates nondimensionalization and
the subscript "0" denotes unreacted gas states):

p -- Po

p -- _
PO

TT --- To’
E+E+ +-- RTo’

Q -- Q
RTo

+-- t
t*
XX <"-- Rot*

where t* is the half reaction time.
We consider an overdriven detonation travelling in a one-dimensional tube. The flow is

driven by a piston and the shock front propagating to the right of the tube into unreacted gas.
Given the speed of the piston and the initial states of unreacted gas in front of the shock, the
flow field can be obtained as the solution of (1) or (4). For the case of overdriven detonation
considered here, a steady solution can be easily obtained by solving the Rankine-Hugoniot
condition which connects the states in front of the shock to all the states after the shock 11 ].
The shock speed D parameterizes the family of steady solutions if we assume that the states
behind the final state (where chemical reaction terminates) remain constant. The overdrive f
is defined as

f=

It has been observed since the findings of Campbell and Woodhead [5] that detonation
waves in the real world are almost always unstable. The work of Erpenbeck in 1964 analyzed
the stability of steady detonations based on the linearized Euler equations (1)-(3). If only
one-dimensional perturbation is considered, for given heat release Q the overdrive f will
dictate the stability of the detonations. There is a critical overdrive value f* such that the
steady solution will be unstable if f < f* and stable otherwise. For Q 50, Erpenbeck
predicted f* 1.76 [8]. Later, in the work of Bourlioux, Majda, and Roytburd [4], f* was
corrected to be 1.73. Erpenbeck provided a neutral stability curve (see the dashed curve in
Figure 10 of [8]) based on his eigenmode analysis. It is our objective to calculate the neutral
curve by a direct numerical simulation of equations (1)-(3).

3, Nurnerieal methods.

3.1. Multidomain spectral solutions. In this section, we will present a numerical method
which could be generalized to a multidimensional simulation of detonation waves. The major
difficulties in simulating reacting flow numerically result from disparities between hydrody-
namic scales and chemical reaction scales and in the strong dependence of reaction rate on the
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flow temperature via the Arrhenius rate constant. Traditionally shock capturing schemes were
designed to smooth shock. By introducing a considerable amount of numerical viscosity near
the shock front, they tend to distort the chemical reaction in the form of unphysical detonations
[6] and unintended reactions [7]. With this in mind, we propose to use a multidomain technique
as the main framework of our numerical method and tracking technique to accurately represent
the shock dynamics without unnecessary numerical viscosities. A similar approach has been
used in 13] in the study of the stability of a shock wave interacting with a vortex. In the setting
of multidomain approaches, we could apply different types of spatial derivative discretization
techniques in different subdomains based on the local properties of the solutions and different
time integration techniques. Results in this direction for two-dimensional detonations are
reported in [3].

Let I [Xb, xs] be the physical domain where the solution is sought. Xb is the left
boundary and xs x(t) is the shock front. The solution domain I will be divided into
subdomains Ik,

(5) Ik [ak+l (t), ak(t)], k 1 M,

(6) Xbd aM+ (t) < aM(t) < < a2(t) < al(t) Xs(t).

The speed of the shock front is V(t) s(t) a’(t). Interfaces a(t) aM+l(t) are
generally functions of time and their evolutions will be determined by corresponding ODEs.

The multidomain spectral solution is denoted as

(7) fi(x t)- u2 /gu

/’/3
U4

and on each domain Ik we define

(8) nk [Ik
uk)

where nk is the number of mesh points used in Ik. To compute the spectral solution fin on
subdomain I, we first map I into a reference domain [-1, ],

(9) x E [a+l(t),a(t)] [-1, 1]

with

T t,
x-a+l(t)(10) (x, t) -1 / 2ak(t)_a+(t),

or

(11)
x

T,
x(, T) ak+l(t) + ---!(a(t) a+l(t)).

Let {0(k ( /:k} be the Chebyshev-Lobatto points on [-1 1]" i.e.,
nk

i7
(12) /() cos u, 0 n.

/’/k
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Then x{) x({), T) are the mesh points in I.
Using the method of lines, the semidiscretized Chebyshev collocation solution rink (x, t)

for (4) on subdomain I satisfies the following set of ODEs for the unknowns rink (xk) t)"

(13)

0 < .< n,

where V is the speed of interface a and hk 0 if k - 1. The acceleration of the shock
front hi 1)’1 l)’(t) will be derived in (47). The states of gas in front of xs are assumed
to be given. The states behind Xbd aM+l are assumed to be the steady solution at the
Chapman-Jouguet points 11 ].

The interpolation operator 2-n is defined on the Chebyshev-Lobatto points {/(} on
[-, ],

nk

(14) 2-nfin fi,(k))j(), [--1, 1],
j=O

where

(--1)J+l(l 2)Tnk ()
(0=(he =2, (j =1 ill <j <n-l.

Tn () cos(n cos-1 ()) is the Chebyshev polynomial of first kind. Thus

(15)

And, finally,

(16)

nk

j=O

(nlnk)Xlx=xk) (nklnk)es ({k), T)x(X[k), t).

We convert all and 7 derivatives into and derivatives; i.e.,

{ o_ t(x t)- or
(17)

0t

x(X,t)o--;

It follows from (13) that fin (, T) satisfies

a V,
(18) +l V+,

9 h,

9+1 h+.
The stability of multidomain spectral solutions by (18) for k 1 M depends on

the treatment of values on the interface between neighboring subdomains. We discuss the
procedure for calculating those values in the following subsection.
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3.2. Characteristic correction for interface treatment. Consider subdomains Ik+
[ak+e, ak+l] and I [a+l, a] with a common interface at a+l. For the simplicity of
illustration, we assume that a fully discretized version of (18) has been obtained by using the
Euler forward method for the time derivative; therefore, we have

(19) if’+1 "’ AT[A(fi,, ):x + :t](g-nfi)l=)+ AT(I)(z,i)n,i Un:,i ,i

where lnk,i ln (.(t k) T’) and T is the discretized time with AT Tn+l

Similarly, on subdomain Ik+l we have

(20) fin+l n AT[A(fin,+, ) + ,](7+,fi )1 (,+,)+ ATcI)( ,+, ),nk+l, lglk+l, nk+l --bi

where fin+,,i fiFtk+l (kt-l) TF/)
Therefore, from (19) and (20), two solution vectors will be computed on interface a+;

i.e.,

(21.) fiL Unk+ (xk+l)), 1R lnk (Xkk)).
For fi to be continuous at interface ak+l, rink, fin+l should have the same value. Also,

any choice of this value should be based on the characteristic information of the hyperbolic
systems (4) [12].

Let firoe(ak+l) be the Roe-average state between fiL and fig [15]. Using this firoe(ak+l),
we compute the Jacobian of flux F(fi) in (2) as

(22)

0 1 0 0
0/1 0/2 (9/ 1) 0/3

A
/1 /2 9//1 /3
-)u ) 0 u

where

0/1
g-3 2
2/1,

0/2 (3- 9/)u,
0/3 -(9/--- 1)Q,

fil -gue + (9/ 1)(u2 -at- 1.uQ),

/2 9/e
3(g-l) U2 (9/ 1))Q2

3 -(?,-1)u,

and e is the internal energy

Matrix A has four eigenvalues

e
1 p /12

t- +)Q.

(23) /Jl /1 C, /2 //3 /1, ]d4 /1 "t" C,

where c ./9/(p/p) is the sound speed. The four left and right eigenvectors are () and
r(k), _< k _< 4,

(24) 1(1) (u_-, 1, )2
b2. + -ubl b,-Qbl

c c



820 WEI CAI, WONHO OH, AND YOULAN ZHU

(25)

(26)

(27)

(2) (-,b2, .ubl, -bl, + bl Q),
(3) (1 Ob2, Oubl, -Obl, -1 + ObQ),

1(4) _1 b2 ub + -, b, -Qb
2 c c

and

(28) r(1) (1, u c, h uc, )v,

( t(29) r(2) 1, u,--+Q,

(30) r(3) 1, u, --,0
(31) r(4) (1, u + c, h + uc, ),.)-r-,

y-1 u Uwhere 0 -,k, b --, b2 bl, and h c2 + T -)Q"
It is easy to check that

(32) (p) o r(q) p,q, p, q 4.

Now define the left eigenvector matrix P:

(1)

1(2)
(33) P 1(3)

(4)

then

p-1 (r(1), r(2), r(3), r(4)).

We.define both characteristic decompositions for ilL, fin as

w l,fi(34) tc pL w

And common characteristic values on the interface should be assigned on interface ak+l based
on the signs of/zi hk+l; i.e., for 1 < < 4,

w/ if/J,i dk+l 0,
(35) Wi

wi otherwise.

Finally, we set (Wl,//32, w3,//74)T and

(36) fiL fir fi(ak+l) P-lt.
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3.3. The tracking algorithm for the shock front. To complete system (18), we need to
give an ODE for shock speed V (t) V1 (t). Here a higher-order tracking algorithm will be
used for the front shock; a previous attempt to track detonation waves can be found in [2]. We
start by using the Rankine-Hugoniot condition across the shock front; i.e.,

(37)

po(uo- V) p(u- V),

D0(U0- V)2 --[-- Po Pl (ul V)2 + pl,

P v2Y Po

_
(bt0 V)2 At-y-1 Po P

where "0" denotes the states in front of the shock and "1" the states behind the shock.
Solving the quantities behind the shock in terms of those in front of the shock, we get

y+l-

/91 pO 7._ +Mo,

(38) u uo (u0 v)(1 ),
Pl PO-k- pO(UO V)2(1- ),
ka ko,

where mach number M0 luo- v______!l co /y (P0/Po)
CO

Define the derivative following the motion of the shock front D-sD -7 + V(t)o and
differentiate both sides of (38) to get

Dpl E1 (,z AI.. ElDt
D E2 (/-b F2Dt(39) D_ E31)’ + F3Dt
DL! E4 -i- F4,Dt

where

4p 2(l+Mo2)E -1 (uo-V)(v2_ +M2o) E2 (y+l)Mo,(4o)
E3 -4po (uo-V E4 O,y+l

and
2p0 +

(’-1) 2(uo-V) Duo Mg Dcp Dpo _]_ ._1_M2)2F po Dt (’- C2o Dt c Dt )’

M---I Duo 2 Dc
(41) F2-’- "7" D "[-"

7-M (y+l)(uo-V) Ot’

Dpo 4po(uo-V) Duo 2po Dco DpoF3 (u0- V)2(1 )-ff/- + r Dt ,+1 Dt O"7-’

F4 Dko
Dt

Rewriting (39) for the conserved variables 1, 01U l, /)el, 01)1, we get

DP---L GI + H1Dt
Dplul G2 9 -}- H2Dt(42)
Dpel G3 (/ q- H3Dt
Dplkl G4 (/+ H4Dt
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where

G1 El,

Q)El+plu Ez+E3G3 (Ul2 +)1
G2 uE + piE2,

G4 ,kl El,

and

H3=( 2
gul + )Q)F1 + puF2 + pQF4,

H2 uF + pIF2,

H4 ;F + p F4.

To derive the ODE for the shock speed V(t), we consider the characteristic form of (18)
which is obtained by multiplying (18) with matrix P (subscript nk omitted):

(43) POfi 02"fi
0 T + P[A:x + ’t] Pq (fi).

Now using the fact that PAP-1 diag(u c, u, u, u + c), we have

(44) POfi PP(fi).
OT + u x + pOZfi

u 4-c

For a strong detonation, the flow is subsonic behind the shock front Xs(t). Therefore,
u 4- c > V(t) hi(t) at the shock front. Thus the fourth equation of (44) corresponds to
an incoming characteristic toward the shock front. Meanwhile, it is easy to verify that on the

0 Now denoting the last row of P as (P4,1, P4 2, P4 3, P4 4), theshock front Xs(t), - 0-7"
fourth equation of (44) reads

Dpe Dp)Dpl DpU
4- P4,3 4- P4,4 W,(45) P4,1--D- 4- P4,2 Dt Dt Dt

(46) W P4,1R1 4- P4,zR2 4- P4,3R3 4- P4,4R4,

where R (R, R2, R3, R4) (fi) (Ax 4-t)fi is the residual of solution fi which will
be computed by the Chebyshev spectral collocation method.

Finally (42) and (45) give the ODE for the shock speed

(47) 1)" (t)
W (P4,1H1 + e4,2H2 4- e4,3H3 4- P4,4H4)

P4,G + P4,2G2 4- P4,3G3 4- P4,4G4

4. Calculation of neutral stability curve. From linear analysis [4] and [8], instability of
detonation waves is associated with the eigenmodes ofthe linearized system whose eigenvalues
have positive real parts. Disturbances containing those modes will grow exponentially in time.
However, when we are close to the neutral stability limit, the growth of such disturbances will
be slow. It demands highly accurate numerical techniques to distinguish the unstable and stable
detonations. When we identify the stability limit based on direct numerical calculations, the
accuracy of critical overdrive f* cannot be expected to be more accurate than the truncation
errors of the methods. This is why it is crucial to use highly accurate methods in studying
neutral stability limits.

Convergence studies ofnumerical methods. Pressure history at the von Neumann spikes
will be recorded at equally spaced time stations and used to determine stable or unstable
detonations based on its decay or growth. When the overdrive is close to the neutral stability
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D

ak+l ak -3 -2 -1 shock

FIG. 1. Multidomain set up. All interfaces are moving in time.

limit f*, it is difficult to tell visually the growth or decay of different frequencies from the
pressure history. Therefore, we employ discrete Fourier transformation to analyze the growth
or decay of all the frequencies. As for an unstable detonation, growth in magnitudes of initial
disturbances (truncation error in our methods) will depend on the mesh size of the particular
simulation. Therefore, we will not use the magnitudes of various frequencies in the pressure
history as a checkup for the accuracy of mesh resolutions. Instead, we will be concerned
with the unstable frequencies produced by different meshes and determine the accuracy of the
numerical solution based on the convergence of the unstable frequencies.

Discrete Fourier transformation. Suppose we have N consecutive sampled values h
h(t), t kAt, k 0, 1, 2 N 1. The discrete Fourier transform is defined by

N-1 2rc Kn
H(fn)- At hexp( N I’

k=0

where fn n N N

_
N N

-S,’ n 2, 2 2 -. H(f) gives the phase and magnitude of
the wave whose frequency is fn. When the time series data h are all real-valued, a symmetric
property holds: H(-f) H(f)*, where * denotes the complex conjugate. Thus 2[H(fn)[
is the magnitude of the wave whose frequency is f for n 2, U

2"
We test the accuracy of the numerical method in 3 for the case Q 50, f 1.6, which

has been identified as an unstable detonation [4]. The mesh setup is depicted in Figure 1.
The number of initial subdomains is nine and the interfaces will move with the average

speed of the shock front except for the shock front itself whose speed is given by (47). More
subdomains will be added to the rear part of the computational domain. We monitor the solu-
tions in the last subdomains so that no waves will be interacting with the leftmost subdomain
boundaries. The boundary conditions to the left of the computational domains are the steady
solutions at the Chapman-Jouguet point. The initial conditions will be the Chapman-Jouguet
steady detonation. Therefore, we are simulating a one-dimensional detonation wave travelling
in an infinitely long tube and the driven piston is far away from the region where computations
are done.

In Figure 2, results for two meshes are given; the coarse mesh has five points per half
reaction length interval while the fine mesh has ten points per half reaction length interval. On
the top, pressure histories are given for both runs at a time interval/k 0.1. At the bottom,
the Fourier transformations of the output pressure data from time 140 to 200 are
given. We intentionally ignore the early time history to wait for the full development of the
pressure oscillations. We can see clearly in each case that we have various frequencies. In
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frequency

FIG. 2. Q 50, f 1.6. (Left) coarse mesh--five points per halfreaction length, (Right)fine mesh--lOpoints
per half reaction length. Top plots are the pressure histories and bottom plots are their Fourier transformationsfor
time 140-200.

TABLE
Convergence tests: frequencies and magnitudes of Fourier transformations for the pressure history. Coarse

mesh 5/L1/2, fine mesh lO/L1/2.

N

5/L1/2
lOlL1

Location Magnitude

0.1184493 15.083265
0.1181893 14.832513

Location ]Magnitude
0.2368986 6.6877127
0.2363786 5.5055077

Table 1, we report the locations of the first two frequencies with the largest magnitudes, i.e.,
fl, f2. The accuracy for the locations of both frequencies are up to the third decimal digit.

This shows that using our methods, five points per half reaction length interval will be
enough to achieve satisfactory accuracy. Still, in all our computations of critical overdrives
f*, we have used ten points per half reaction length interval for subdomains near the shock
front. We use the explicit second-order Runge-Kutta method for the time discretizations.
Finally, Figure 3 depicts the solution of pressure and density and mass fraction using the fine
mesh (ten points per half reaction length) at time 145.

Neutral stability curve. In Table 2, we give the approximation of critical overdrive f* for
16 heat releases Q. For each Q, we compute the largest overdrive (denoted as f-) found to
produce unstable detonation and the smallest overdrive (denoted as f+) found to produce stable
detonation. Then we conclude that an approximation for f* can be obtained by averaging f+
and f-" i.e., f* f++f-

2
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7;0 8;0 9;0’’’ ?0;0 71;0’’’ 72;0 1300

o6

FIG. 3. Q 50, f 1.6. Solutions ofpressure and density and massfraction ofreactant (from top to bottom)
onfine mesh (10 points per half reaction) at time 145.

For a given heat release Q, in order to decide which overdrive gives stable or unstable
detonation, we record the pressure p(t) at the von Neumann spikes up to time 150. Then
we compute two consecutive Fourier transformations of p(t) Po (Po as the von Neumann
pressure of the steady detonation), one for the time period [50, 100] and one for the time
period 100,150]. Comparing the magnitudes of corresponding frequencies, if all frequencies
are found to be decreasing, then the detonation will be considered stable. If the magnitude
of any of the frequencies is found to have increased, then the detonation will be considered
unstable.
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TABLE 2
Critical values ofoverdrivefor selected Q ’s.

La/’gest unstable
overdrive

+

Smallest stable
overdrive

f*=(f -f+)/2
Critical
overdrive

0.5 1.120 1.125 1.1225
0.6 1.255 1.260
0.7 1.395 1.400
0.9 1.685 1.690
1.0 1.825 1.830
1.2 2.205 2.210
1.4 2.505 2.510
1.7 2.845 2.850’
2.0 3.080 3,085
2.5 3.335 3.340
5.0 3.615 31620

10.0 3.250 3.250
15.0 2.865 2.870
20.0 2.585 2.590
30.0 2.200 2.205
50.0 1.730 1.731

1.2575
1.3975
1.6875
1.8275
2.2075
2.5075
2.8475
3.0825
3.3375
3.6175
3.2525
2.8675
2.5875
2.2025
1.7305

In Figure 4, Q 1; the left column is for the unstable case f- 1.825. The top left
is the time history of the pressure perturbation p1(t) in reference to the steady state pressure;
i.e., p’(t) p(t) Po. As the overdrive f+ and f- are close to the critical value, the
pressure perturbation p’(t) is very small. For display purposes, the scale for the history
of pressure perturbation p’(t) has been scaled up by a factor of 1000. (This scaling will be
used for all pressure perturbation histories thereafter.) The left middle plot is the Fourier
transformation of p(t) between time 50 and time 100. We can see there are two
basic frequencies, which we denote as f 0.12 and f2 0.44 in an increasing order. The
magnitudes for f, f2 are H(fl) 0.00294285, H(f2) 0.00399988, respectively. The left
bottom plot is the Fourier transformation of p(t) from time 100 to time 150. Again
we see two basic frequencies f 0.12, f2 0.44. However, the magnitudes for fl, f2
are H(f) 0.00319032, H(f2) 0.0024562, respectively. Comparing the magnitude of
H(f), H(f2) in these Fourier transformations for two consecutive time windows, we find
that the magnitude of the first frequency H(f) has increased, while the magnitude for the
second frequency H(f2) has decreased. Therefore, we conclude that f+ 1.825 gives
unstable detonation. Meanwhile, in the right column of Figure 4, there are three plots for
overdrive f+ 1.830. The top right is the time history of pressure perturbation p’(t) and
the middle and bottom fight are the Fourier transformations of pf(t) for the time periods [50,
100] and [100, 150], respectively. Again we found two basic frequencies fl, f2. For the
time period [50, 100], H(fl) 0.00267143, H(f2) 0.00317801, while for the time period
[100, 150], H(fl) 0.00266544, H(f2) 0.00169358. It is found that the magnitudes for
both frequencies have decreased over the two consecutive time windows and, therefore, we
conclude that f+ 1.830 gives a stable detonation. By taking the average of f+ and f-, we
have an approximation for the critical overdrive f* 1.8275 when Q 1.

In Figure 5, we present the case of Q 50. On the Fourier transformation, only one basic
frequency is found in this case. f- 1.730 is the largest overdrive which gives an unstable
detonation, and f+ 1.731 is the smallest overdrive that gives a stable detonation. Therefore,
the critical overdrive f* can be taken approximately as f* 1.7305 when Q 50.
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FIG. 4. Q 1.0. (Left) f- 1.825, unstable, pressure pe;’turbation history (top), Fourier frequencies for
50 < < 100 (middle), and 100 < < 150 (bottom). (Right) f+ 1.830, stable, pressure perturbation history
(top), Fourierfrequenciesfor 50 < < 100 (middle), and 100 < < 150 (bottom).

In Table 3, we have listed Q’s for all sixteen heat releases for the first two frequencies
and the magnitudes of Fourier transformations of p’ (t) over two time periods, i.e., one for the
time [50, 100] and one for the time [100, 150]. (Again, all p’(t) have been scaled up by a
factor of 1000.)

Finally, in Figure 6, we plot the neutral stability curve based on the data in Table 2; the
solid curve is obtained by a cubic Hermite spline interpolation. Note that the heat release
Q-axis is logarithmic. The smaller dots and the dashed curve are the results of Erpenbeck
using eigenmode analysis [8].. Conclusion. We have calculated the neutral stability curve for one-dimensional det-
onation waves using a highly accurate multidomain shock tracking algorithm. The study of
neutral stability will provide insight into more complex studies of multidimensional stability
problems. However, it should be realized that the accuracy of results based on direct numerical
simulation is limited by the inherent truncation errors of the numerical methods.
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FIG. 5. Q 50.0. (Left) f- 1.730, unstable, pressure perturbation history (top), Fourierfrequencies for
50 < < 100 (middle), and 100 < < 150 (bottom). (Right) f+ 1.731, stable, pressure perturbation history
(top), Fourierfrequenciesfor 50 < < 100 (middle), and 100 < < 150 (bottom).

10g (Q)

FIG. 6. Neutral stability curve. Larger dots and solid line are based on data in Table 3 and smaller dots and
dashed line arefrom Erpenbeck [8].
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TABLE 3
Frequencies and magnitudes ofFourier transformations ofpressure history pl (t) for unstable and stable over-

drives f- and f+. An asterisk indicates nonexistence ofthe correspondingfrequency.

Q
fl f2

0.5 0.06
0.6 0.08
0.7 0.10
0.9 0.12 ,
1.0 0.12 0.44
1.2 0.14 0.50
1.4 0.14 0.52
1.7 0.56
2.0 0.58
2.5 0.60
5.0 0.64
10. 0.16 0.66
15. 0.16 0.68
20. 0.14
30. 0.14
50. 0.14

50_<t _< 100
H(fl) H(f2)

0.000338
0.000116
0.000190
0.002533

f- f+
100 5 150

H(f) H(f2)
0.000378
0.000127
0.000202
0.002602

50 100
H(fl) H(/2)

0.000328
0.000095
0.000175
0.002175

100 150
H(f) H(f2)

0.000321
0.000092
0.000165
0.002044

0.002942 0.003999
0.000768 0.004174
0.000474 0.001457

0.006647
0.011201
0.015564
0.021898

0.003955 0.022479
0.015520 0.014264
0.022994
0.008826
0.013932

0.003190 0.002456
0.004463
0.001562
0.006768
0.011666
0.015697
0.022085
0.028927

0.011176 0.016416
0.023831
0.009254
0.014472

0.002671 0.003178
0.007146 0.003079
0.000432 0.001172

0.005404
0.008805
0.012337
0.016842

0.003552 0.015466
0.013404 0.008533
0.019039
0.007482
0.016617

0.002665 0.001693
0.002862
0.001085
0.004731
0.007856
0.010762
0.013993
0.015421

0.008632 0.007315
0.017071
0.006721
0.016423
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ILUM: A MULTI-ELIMINATION ILU PRECONDITIONER
FOR GENERAL SPARSE MATRICES*

Y. SAAD?

Abstract. Standard preconditioning techniques based on incomplete LU (ILU) factorizations offer a limited
degree of parallelism, in general. A few of the alternatives advocated so far consist of either using some form of
polynomial preconditioning or applying the usual ILU factorization to a matrix obtained from a multicolor ordering.
In this paper we present an incomplete factorization technique based on independent set orderings and multicoloring.
We note that in order to improve robustness, it is necessary to allow the preconditioner to have an arbitrarily high
accuracy, as is done with ILUs based on threshold techniques. The ILUM factorization described in this paper is in
this category. It can be viewed as a multifrontal version of a Gaussian elimination procedure with threshold dropping
which has a high degree of potential parallelism. The. emphasis is on methods that deal specifically with general
unstructured sparse matrices such as those arising from finite element methods on unstructured meshes.

Key words, sparse linear systems, preconditioned Krylov subspace methods, incomplete LU factorizations,
independent set orderings, multicoloring, graph coloring, threshold dropping strategies

AMS subject classification. 65F10

1. Introduction. In this paper we address the problem of developing preconditioners for
solving a linear system of the form

(1) Ax b,

where A is a general sparse matrix of dimension N. The incomplete LU (ILU) factorization
with no fill-in, or ILU(0) [36], is one of the most popular preconditioners currently available.
Its implementation on high-performance computers can be optimized by a technique referred to
as "level scheduling" or "wavefront ordering"; see, e.g., [3]. A notable disadvantage ofILU(0)
is that it is a rather crude approximation, and for this reason it is unreliable when used to solve
problems arising from certain applications, such as computational fluid dynamics. To improve
the efficiency and robustness ofILU factorizations, many alternatives which allow higher levels
of fill-in in the ILU factorizations have been developed [24, 38, 13, 12, 53, 52, 45]. Although
these alternatives are more robust than the low-accuracy ILU(0) or symmetric successive
overrelaxation (SSOR), they are often intrinsically sequential.

A number of different approaches have been advocated to remedy the "sequential nature"
of the preconditioners developed in the 1970s and later; see, for example, the survey papers
14, 42]. The first of these approaches was motivated by vectorization and consisted mainly of

replacing occurrences of matrix inverses by polynomials in these matrices. For example, the
solutions of bidiagonal systems that arise in the forward and backward solutions on the ILU(0)
preconditioning for model problems were replaced by low-degree polynomial expansions in the
matrices [47]. The paper [27], and subsequently a few others, advocated using polynomials
in A as preconditioners. A second class of methods that has been developed consists of
introducing parallelism by exploiting "graph coloring," or multicoloring, as we will refer to
it here. The unknowns are colored in such a way that no two unknowns of the same color
are coupled by an equation. In the simplest case of the five-point matrix arising from the
centered difference discretization of the Laplacian in two- or three-dimensional spaces, only
two colors are needed, and they are commonly referred to as "red" and "black." When the
unknowns of the same color are numbered consecutively, and a standard ILU factorization

*Received by the editors June 1, 1993; accepted for publication (in revised form) March 10, 1994. This research
was supported by ARPA under contract number 60NANB2D1272 and by the NSF under grant NSF/CCR-9214116.

?University of Minnesota, Computer Science Department, 4-192 EE/CSci Building, 200 Union Street S.E.,
Minneapolis, MN 55455.
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is applied to the reordered system, then a large degree of parallelism is available in both the
preprocessing phase and the preconditioning operations, during the iteration phase. A well-
known drawback of this approach is that the number of iterations to achieve convergence may
increase substantially, when compared with that required for the original system [19, 18, 20].
More generally, preconditioners that allow a large degree ofparallelism such as, in the simplest
case, diagonal scaling, tend to necessitate a much larger number of iterations to converge when
compared with their sequential counterparts, e.g., the standard ILU.

However, experience suggests that a good remedy for regaining an acceptable level of
convergence rate is to increase the accuracy ofthe underlying preconditioning. For example,
ILU preconditioners with more fill-in, or multistep SSOR or SOR preconditioners, may be
used. Experiments in [44] reveal that an approach based on SOR(k) preconditioning, in
which each preconditioning operation consists of k steps of SOR sweeps, is superior to the
best optimized ILU preconditioning on some problems. Unfortunately, for the standard ILU
factorization, the use of a higher level of fill-in destroys the structure obtained from the
multicolor reordering.

In this paper we consider a technique which is based on exploiting the idea of successive
independent set orderings [33], a simpler form of multicoloring. This technique is very closely
related to multifrontal elimination [15, 40], a classical method that is employed in the parallel
implementations of sparse direct methods. Both multifrontal elimination and ILUM (ILU
with multi-elimination) rely on the fact that at a given stage of Gaussian elimination, there
are many rows that can be eliminated simultanously. The set that consists of such rows is
called an independent set. The idea then is to find this set, and then eliminate the unknowns
associated with it, to obtain a smaller reduced system. This reduction process is applied
recursively a few times to the consecutive reduced systems until the system can be solved by
a direct solver (multifrontal) or by an iterative technique (ILUM). In ILUM, we perform the
reductions approximately, with the help of a standard threshold strategy, in order to control
the sparsity of the L and U factors.

We start by describing the ideas of multicoloring and independent set orderings. Then
we briefly show how these ideas can be exploited to develop direct solution methods and,
finally, we derive incomplete factorization techniques by introducing numerical dropping
strategies.

2. Independent set ordering and multicoloring. Graph theory provides numerous use-
ful tools in sparse matrix computations and can be helpful in unraveling parallelism in stan-
dard algorithms [25, 15]. We recall that the adjacency graph of a sparse matrix is a graph
G (V, E), whose N vertices in V represent the N unknowns and whose edges represent
the binary relations established by the equations in the following manner: there is an edge
from node j to node when aij =A O. This edge will therefore represent the binary relation
equation involves unknown j, or equivalently the unknown xi depends on unknown xj. Note
that the graph is directed, except when the matrix has a symmetric pattern (aij =/= 0 iff aji =A 0
for all _< i, j _< N). Parallelism in the Gaussian elimination process can be obtained by
finding unknowns that are independent at a given stage of the elimination, i.e., unknowns that
do not depend on each other according to the above binary relation. The rows corresponding
to such unknowns can then be used as pivots simultaneously. Thus, in one extreme, when
the matrix is diagonal, all unknowns are independent. On the other extreme, when a matrix
is dense, each unknown will depend on all other unknowns. Sparse matrices lie somewhere
in between these two extremes. Multicoloring techniques attempt to find sets of independent
equations by coloring the vertices of a graph so that neighboring vertices have different colors.
Independent set ordering can be viewed as a less restrictive form of multicoloring, in which a
set of vertices in the adjacency graph is found so that no equation in the set involves unknowns
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FIG. 1. Red-black labeling ofa 6 x 4 rectangular mesh and associated matrix.

from the same set. Multicoloring is best known in the partial differential equation context for
a two-dimensional finite difference grid (five-point operator), which is our starting point in
this discussion.

2.1. Red-black ordering for finite difference grids. For simple two-dimensional cen-
tered finite difference grids, we can easily separate the grid points into two sets, red and black,
so that the nodes in one set are adjacent only to nodes from the other set. This two-color
(red-black) ordering is illustrated in Figure for a 6 4 grid.

If we reorder the unknowns in such a way as to list the red unknowns first together and
then the black ones, as is illustrated in Figure 1, we will obtain a system of the form

where D and C are diagonal matrices. Matrices that can be permuted into the above form are
said to have property A [51]. Several techniques have traditionally been used to exploit the
above convenient structure (see, e.g., [23, 41, 21 ]).

Perhaps the simplest of these approaches is to use a conjugate gradient-type technique
combined with the standard ILU(0) preconditioner on the block system (2). Here, the degree
of parallelism, i.e., the maximum number of arithmetic operations which can be executed in
parallel, is of order N. A drawback is that often the number of iterations is higher than with
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the natural ordering, but the approach may still be competitive for problems for which the
natural ordering requires a relatively small number of steps, e.g., less than 30, to converge.

We have observed [44] that the number of iterations can be reduced back to a competitive
level by using a more accurate ILU factorization on the red-black system, e.g., ILU with
threshold (ILUT) [45]. In fact the situation may be improved in that for the same level of
fill-in p, the red-black ordering will outperform the natural ordering preconditioner for p
large enough, in terms of number of iterations required for convergence. However, the fill-in
introduced in the "black" part of the system with such high-level ILUs ruin the degree of
parallelism achieved from the red-black ordering. A remedy is to resort to similar high-level
SOR or SSOR preconditioners instead of ILUT [44]. These consist of performing several
SOR or SSOR steps in each preconditioning operation, instead ofjust one, as is traditionally
done. A significant advantage of relaxation-type preconditioners is that these higher-level
preconditioners do not lose their degree of parallelism as the accuracy increases.

A second method that has been used in conjunction with the red-black ordering is to
eliminate the red unknowns by forming the reduced system which involves only the black
unknowns, namely,

(C- ED-1F)y g- ED-l f.

This linear system is again sparse and has about half as many unknowns. It has been observed
that for easy problems, i.e., problems for which the natural ordering requires a relatively small
number of steps to converge, this reduced system can often be efficiently solved with only
diagonal preconditioning. The preprocessing to compute the reduced system is highly parallel
and inexpensive. In addition, the reduced system is usually well conditioned and has some
interesting properties when the original system is highly nonsymmetric [2 !].

A general sparse matrix rarely has property A, and as a result the application of the red-
black ordering is quite limited. Fortunately, many of the above techniques can be generalized
by using less restrictive forms of reorderings. For example, to exploit the reduced system
approach, all we need is to reorder the original matrix into a matrix of the form

where D is diagonal but C can be arbitrary. There are three ways of generalizing the standard
red-black ordering.

1. Independent set orderings, which lead to the form (3) above.
2. Multicolor orderings, which lead to block matrices in which the diagonal blocks are

pointwise diagonal.
3. Full-block versions of the above techniques which allow the diagonal matrices to be

block diagonal instead where each block is dense.
In the remainder of this paper we will consider the first and second generalizations. The block
versions arise naturally in the solution of partial differential equations (PDEs) when each mesh
point involves several unknowns. We also note that a further generalization would consist of
allowing these diagonal blocks to be sparse matrices.

2.2. Independent set orderings. We now consider generalizations of the red:black or-
dering which consist of transforming the matrix into the block form (3), where D is diagonal.
Let G (V, E) denote the adjacency graph of the matrix, and let (x, y) denote an edge from
vertex x to vertex y. An independent set S is a subset of the vertex set V such that

ifx 6 S then {(x,y) 6E or (y,x) 6E}y S.
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In words, elements of S are not allowed to be connected to other elements of S either by
incoming or outgoing edges. An independent set is maximal if it cannot be augmented by
elements in its complement to form a larger independent set. Note that a maximal independent
set is by no means the largest possible independent set that can be found. In fact, finding the
independent set of maximum cardinality is NP-hard [32]. Independent set orderings have
been used mainly in the context of parallel direct solution techniques for sparse matrices
[33, 34, 11], and multifrontal techniques [15] can be viewed as a particular case. One of the
goals of this paper is to show how to exploit these ideas in the context of iterative methods.

There are a number of simple and inexpensive heuristics for finding large maximal in-
dependent sets. For our purposes simple greedy algorithms such as the ones to be described
next are inexpensive and yield enough parallelism in general. In the following we will use the
term independent set to always refer to maximal independent set.

A simple greedy procedure for finding an independent set S is to traverse the graph and
accept each visited node as a new member of S, if it is not already marked. We then mark this
new member and all of its nearest neighbors. Note that by nearest neighbors of a node x we
mean the adjacent nodes, linked to x by incoming or outgoing edges.

ALGORITHM 2.1. Greedy algorithm for independent set ordering.
Let S 0.
For j 1, 2 n Do:

If node j is not marked then
S= SU{j}.
Mark j and all its nearest neighbors.

endif
enddo

In the above algorithm, the nodes are visited in the natural order 1, 2 n but we can
also visit them in any permutation {il in of 1, 2 n }. In what follows we denote by
SI the size of S, i.e., its cardinal. Since the size of the reduced system is n [SI it is reasonable
to attempt to maximize the size of S in order to obtain a small reduced system, although the
size is not all that matters.

We would like to give a rough idea of the size of S. Recall that the degree of a vertex v
is the total number of edges that are adjacent to v. Assume that the maximum degree of each
node does not exceed v. Whenever the above algorithm accepts a node as a new member of
S it potentially puts all its nearest neighbors, i.e., at most v nodes, in the complement of S.
Therefore, the size n SI of its complement is such that n SI < v lSI and as a result,

ISI >_
l+v

This lower bound can be improved slightly by observing that we can replace v by the maximum
degree vs of all the vertices that constitute S, resulting in the inequality

ISI _>
l+vs

which suggests that it may be a good idea to visit first the nodes with smaller degrees. In fact
this observation leads to a general heuristic regarding a good order of traversal. We can view
the algorithm as follows. Each time a node is visited, we remove it and its nearest neighbors
from the graph and then visit a node from the remaining graph and continue in the same manner
until exhaustion of all nodes. Every node that is thus visited is a member of S, and its nearest
neighbors are members of the complement of the set S. As a result, if we call vi the degree



A MULTI-ELIMINATION ILU PRECONDITIONER 835

of the node visited at step i, adjusted for all the edge deletions resulting from the previous
visitation steps, then the number ni of nodes that are left at step satisfies the relation

/’/i /’i-1 1)i 1.

The process adds a new element to the set S at each step and stops when n 0. In order to

maximize SI we need to maximize the number of steps in the procedure. The difficulty in the
analysis comes from the tact that the degrees are updated at each step because of the removal
of the edges associated with the removed nodes. All we can say is that if we wish to lengthen
the process, a rule of thumb would be to visit the nodes that have the smallest degrees first.

ALGORITHM 2.2. Independent set ordering with increasing degree traversal.
Let S 0. Find an ordering in of the nodes by increasing degree.
For j 1, 2 n Do:

If node ij is not marked then
s= su{/;}.
Mark ij and all its nearest neighbors.

endif
enddo

A refinement to the above algorithm would be to update the degrees of all nodes involved
in a removal and dynamically select the one with smallest degree as the next node to be visited.
This can be efficiently implemented using a min-heap data structure [9]. A different heuristic
is to attempt to maximize the number of elements in S by a form of local optimization that
determines the order of traversal dynamically. In the following the action ofremoving a vertex
from a graph consists of deleting the vertex and all edges incident to/from this vertex.

ALGORITHM 2.3. Locally optimal algorithm for independent set ordering.
Set S 0 and l’lleft n.
While nleft > 0 do

Select the vertex with minimum degree in current graph.
Add this vertex to S, then
Remove it and all of its nearest neighbors from graph
Update degrees of all vertices

nleft := nleft- number_of_removed_vertices.

endwhile

There is a striking similarity with the minimal-degree ordering algorithm used in sparse
Gaussian elimination. The only difference is that the elimination of a node does not introduce
what is referred to as fill-in in Gaussian elimination, i.e., the edges of the removed nodes are
simply deleted.

There are other similar techniques for generating independent sets. The method described
in [33] for an alternative ordering for Gaussian elimination starts with the observation that
constructing a large independent set is equivalent to building a small complement to S. One
Observes that all the edges of the graph are edges between vertices in S, i.e., the vertices in
form a vertex cover of the graph. To find a small vertex cover, Leuze suggests a locally

optimal technique which can be viewed as the dual of the previous algorithm. At each step
of the procedure, the vertex of maximum degree is found, and this vertex together with all the
incident edges are removed. The process is continued until exhaustion of all edges.

ALGORITHM 2.4. Vertex cover algorithm.
Set 0
While (there are still edges left in G) Do
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TABLE
Performance offour different independent set ordering algorithmsforfirst test problem.

First reduction

Method N1 NZ1
Alg. 2.1 514 10800
Alg. 2.2 523 10414
Alg. 2.3 511 10826
Alg. 2.4 530 10260

Second reduction

N2 NZ2
46O 15920
462 13842
454 14868
469 13386

TABLE 2

Performance offour different independent set ordering algorithmsfor matrix JPWH_991.

Method

Alg. 2.1
Alg. 2.2
Alg. 2.3
Alg. 2.4

Alg. 2.1 514
Alg. 2.2 523
Alg. 2.3 511
Alg. 2.4 530

Second reduction

N2 NZ2
Firstreduction

N1 NZ
With tol= 0.0

630 7902 512 12820
603 5640 439 7084
583 6121 433 8381
594 5995 438 7783

With tol 0.05
8183 455 6481
7820 462 6185
8209 452 6513
7675 465 6734

Select the vertex with maximum degree in current graph.
Add this vertex to , then
remove it and all its adjacent edges from the graph.

EndWhile

One drawback with this type of "local minimization" technique illustrated by the last two
algorithms is its cost. The fact that the improvements over the simpler procedures (Algorithms
2.1 and 2.2) are likely to be small ,suggests that it is probably preferable to use these less
expensive algorithms in practice. This will be confirmed by our experiments in 4.

We now illustrate these algorithms with the help of a little comparison. We consider two
test matrices. The first is a 9-point matrix obtained simply by squaring the 5-point discretization
of the Laplacian on a 25 x 25 grid. This matrix of size N 625 has 7629 nonzero elements
and it pattern is symmetric. The second matrix is taken from the Harwell-Boeing collection
and is called JPWH_991; see 16, 17]. It is of dimension N 991 and has a total of 6,027
nonzero elements, and its pattern is nonsymmetric.

Tables and 2 show the results for two reduction steps (see 3). In addition, Table 2
illustrates a simple dropping strategy by showing the effect of adding a drop tolerance, called
tol in the table. When forming the reduced system, a row ai will be modified by linear
combinations of rows corresponding to adjacent nodes in the graph. If ]]ai is the 2-norm of
ai, then every element obtained in this transformation is dropped if its magnitude is less than
tol x [[ai 11. In the table Ni is the size of the reduced system obtained at the ith level reduction,
and NZi its number of nonzero elements. As can be seen from the tables the difference in the
performances is rather small. An interesting observation is that Algorithm 2.3 seems to be best
at minimizing the size ofthe reduced system, i.e., maximizing the size of S, whereas Algorithm
2.4 seems to be better at reducing the amount of fill-in generated in the reduced system. This
is somewhat expected because of the nature of the heuristics used. Overall, Algorithm 2.2
seems to perform remarkably well given the simplicity of the underlying heuristic.
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2.3. Multicoloring for arbitrary sparse matrices. Multicoloring techniques have often
been used in the context of PDEs as a means of introducing parallelism [39, 37, 1, 30, 31, 28].
The goal here is to color the vertices of an arbitrary adjacency graph in such a way that two
adjacent nodes do not have a common color. In terms of graphs, this means that we must find
a partition S1, $2 Sk of the vertex set V, such that

if(x,y) E with x Siandy Sj then/ 7 j.

Clearly, the red-black ordering is just a particular case with k 2.
As for independent set orderings, finding a multicolor ordering is inexpensive, provided

we do not seek to achieve optimality. Multicoloring ideas have been employed in particular
to understand the theory of relaxation techniques [51, 49] as well as for deriving efficient
alternative formulations of some relaxation algorithms [49, 23]. More recently, they have
emerged as useful tools for introducing parallelism in iterative methods; see, for example,
[2, 1, 39, 20, 37]. Multicoloring is also commonly employed in a slightly different form (col-
oring elements (or edges) as opposed to nodes) in finite elements (or finite volume) techniques
especially when using the element-by-element approach [6, 50, 26, 22, 46]. Note that "mul-
ticoloring" is generally based on a graph coloring of some sort, and that there are numerous
other applications of these techniques which are unrelated to parallel computing. Thus, in a
quite different context, a form of multicoloring has also been used in [7] to extract independent
columns in a sparse matrix for the purpose of numerically evaluating Jacobians with difference
formulas.

There is a rich literature on graph coloring, and we refer to [7, 28] for references and
a few algorithms that attempt to achieve optimality by some heuristics similar to the ones
introduced earlier for independent set orderings. In this paper we will only consider a simple
greedy technique for obtaining a multicoloring of an arbitrary graph. Initially, the algorithm
assigns a color of zero to each node i. Then, it traverses the graph in the natural order and
assigns the smallest positive admissible color to each node visited. Here, an admissible color
is a color not already assigned to any of the neighbors ofnode i. In the following description of
the greedy algorithm, we use the notation Adj (i) to represent the set of nodes that are adjacent
to node i.

ALGORITHM 2.5. Greedy multicoloring algorithm.
Set Color(i) O, N.
For 1, 2 N Do:

Color(i) min{k > 01k Color(j), V j Adj(i)}.
EndDo

At the end of the algorithm, each node will be assigned the color Color(i). This
procedure is illustrated in Figure 2.

In a manner similar to that for independent set orderings we can traverse the nodes in
any order {il, i2 in}, and this initial order of traversal may be important in reducing the
number of colors. However, the difference between a poor ordering and a good one is usually
small. Here are a few additional properties concerning this greedy algorithm.

If a graph is bipartite (i.e., two-colorable), the algorithm will find the optimal two-
color (red-black) ordering for breadth-first search traversals.
Any chain traversal, i.e., a traversal following a path through all the nodes in the
graph, will also find the optimal two-color ordering for any bipartite graph.
The number of colors needed does not exceed v + where v is the maximum degree
of all nodes.
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0

FIG. 2. The greedy multicoloring algorithm. The node being colored is indicated by an arrow. It will be assigned
color number 3, the smallest positive integer differentfrom 1, 2, 4, 5.

Here, we recall that a breadth-first search traversal starts from an arbitrary node and visits
its nearest neighbors which form the first level. Then it visits the nearest neighbors of all
the nodes in level 1, which have not been visited. These will constitute the second level.
The algorithm continues in this fashion until all nodes have been visited. The proofs of
the above properties are straightforward and are omitted. In [7] it is proved that a different
ordering, referred to as the "incidence degree" ordering, also achieves optimality for bipartite
graphs.

For the natural traversal ordering, we can parallelize this graph coloring algorithm in one
of several ways. A simple mechanism implemented in [35] is to impose a local order in which
the coloring is to be done. For example, a given node can wait until all its nearest neighbors
whose processor numbers are less than its own have colored their nodes. Once this is done
the processor assigns colors to each of its nodes and then sends the color information needed
by the nearest neighbors with higher processor number. Several other alternative algorithms
exist; see, for example, [29].

3. ILUM" a multi-elimination ILU factorization. A parallel direct solver based on per-
forming several successive levels of independent set orderings and reduction was suggested
in [33] and in a slightly more general form in [10]. Although the ideas were presented differ-
ently, their essence is that when we eliminate the unknowns associated with an independent
set we obtain another system, which is a smaller sparse linear system. We can then find an
independent set for this reduced system and repeat the process of reduction. We refer to the
resulting second reduced system as the second-level reduced system. The process can be
repeated recursively a few times. As the level of the reduction increases, the reduced sys-
tems gradually lose their sparsity. A direct solution method would consist of continuing the
reduction until the reduced system is small enough or dense enough that we can resort to a
dense Gaussian elimination to solve it. A sparse direct solution method based on a similar
argument was suggested in [33]. In [44] we suggested performing a small number ofreduction
steps and then switching to a traditional iterative solver, preferably one that has a high level
of parallelism such as multicolor successive overrelaxation (SOR), accelerated with GMRES.
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ILUM is a form of block preconditioning [8, 4] in which reordering is used to ensure that the
diagonal blocks to be inverted during the factorization remain diagonal matrices.

After a brief review of the direct solution method based on independent set ordering, we
will show how to exploit this approach to derive ILU factorization strategies based on a drop
tolerance.

3.1. Multi-level reduced systems. We start by a brief discussion of an exact reduction
step. Let Aj be the matrix obtained at the jth step of the reduction, j 0, nlev with

A0 A. Assume that an independent set ordering is applied to Aj and that the matrix is
permuted accordingly as follows:

(4) Pj Aj Pf ( Dj Fj )
where Dj is a diagonal matrix. We can now reduce the system by eliminating the unknowns
of the independent set to get the next reduced matrix via the formula

(5) aj+l Cj EjD- Fj.

Note that we have implicitly performed the block LU factorization

(6) PjAjPf (Dj F) ( I O)(Dj Fj )Ej Cj Ej D-f I 0 Aj+I

with Aj+I defined above. As a result, in order to solve a system with the matrix Aj we need to
perform a forward and backward substitution with the block matrices on the right-hand side
of (6). The backward solution involves solving a system with the matrix Aj+ and the forward
solution can be performed with a diagonal scaling and a matrix-vector product.

We can use this block factorization approach recursively until we obtain a system that is
small enough to be solved with a standard method, e.g., a dense Gaussian elimination. We
must save the transformations used in the elimination process, i.e., the matrices Ej Df and
the matrices Fj. The permutation matrices Pj can also be saved, or we can explicitly permute
the matrices involved in the factorization at each new reordering step.

3.2. ILUM. Clearly, the successive reduced systems obtained in the way described above
will become more and more expensive to form and store as the number oflevels increases. This
is due to the fill-in introduced by the elimination process. A common cure for this in developing
preconditioners is to neglect some of the fill-in introduced by using a simple dropping strategy
as we form the reduced systems. For example, we can drop any fill-in element introduced,
whenever its size is less than a given tolerance v times the 2-norm of the original row. Thus, an
"approximate" version ofthe successive reduction steps can be used to provide an approximate
solution M-iv to A-v for any given v. This can be used to precondition the original linear
system. Conceptually, the modification leading to an "incomplete" factofization consists of
replacing (5) by

(7) aj+ (Cj EjDIFj)- Rj,

in which Rj is the matrix of the elements that are dropped in this reduction step. Globally, the
algorithm can be viewed as a form of block incomplete LU [8, 5], with permutations.

Thus, we have a succession of incomplete block LU factorizations of the form

( ) ( )() (oo P A Pf=
I 0

+ 0Ej Cj Ej D-f I 0 Aj+,
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with Aj+l defined by (7). We can now recursively find an independent set ordering for the new
matrix Aj+I and reduce it again in the same manner. Note that we need not save the successive
Aj matrices, but only the last one that is generated. We must also save the sequence of sparse
matrices

(9) Bj+I= Ej D-f 0

which contain the transformation needed at level j of the reduction. We can discard the
successive permutation matrices Pj if we apply them to the previous Bi matrices as soon as
these permutation matrices are known. We then need only the global permutation which is the
product of all these successive permutations. The successive Bj matrices without the diagonal
Dj are stored as a succession of sparse matrices in a sparse row format. The diagonals Dj are
all stored in an N-dimensional array.

An illustration of the matrices obtained after three reduction steps is shown in Figure 3.
The algorithm used for the independent set ordering in the illustration is Algorithm 2.3. The
original matrix is a five-point matrix associated with a 15 x 15 grid, and is therefore of size
N 225. Here the matrices B1, B2, B (with permutations applied) are shown together with
the matrix A3 occupying the location of the 0 block in (9).

We refer to this incomplete factorization as ILUM (ILU with multi-elimination). The
preprocessing phase consists of a succession ofnlev applications of the three steps: (1) finding
the independent set ordering, (2) permuting the matrix, and (3) reducing it.

ALGORITHM 3.1. ILUM: preprocessing phase.
Set A0 A.
For j 0, nlev- Do:

Find an independent set ordering permutation Pj for Aj’,
Apply Pj to Aj to permute it into the form (4);
Apply Pj to B1 Bj;
Apply Pj to Po Pj-1;
Compute the matrices Aj+I and Bj+I defined by (7) and (9).

Enddo

In the backward and forward solution phases we must solve the last reduced system
but we need not solve it accurately. We can, for example, solve it according to the level
of tolerance that we have allowed in the dropping strategy during the preprocessing phase.
Observe that since we would like to solve the linear system inaccurately, we should only
use an accelerator that allows variations in the preconditioning. Such methods have been
developed in [43] and [48]. Alternatively, we can use a fixed number of multicolor SOR or
SSOR steps. The implementation of the ILUM preconditioner corresponding to this strategy
is rather complicated and involves several parameters.

In order to describe the forward and backward solution we need to introduce some notation.
We start by applying the "global permutation," i.e., the product Pnlev-1Pnlev-2... Po, to the
right-hand side. We overwrite the result on the current solution vector, an N-vector which we
call x0. We now partition this vector into

x0=(y )X1

according to the partitioning (4). The forward step consists of transforming the second com-
ponent of the right-hand side as

x :-- Xl EoDlyo.
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FIG. 3. Illustration ofthe processed tnatrices obtainedfrom three steps of independent set ordering and reductions.

Now X is partitioned in the same manner as x0 and the forward elimination is continued the
same way. Thus, at each step we partition each xj as

xj+l

A forward elimination step defines the new xj+ using the old Xj+l and yj for j 0
nlev 1 while a backward step defines yj using the old yj and Xj+l, for j =nlev 1 O.
Algorithm 3.2 describes the general structure of the forward and backward solution sweeps.
Because we apply the global permutation at the beginning, we need not apply the successive
permutations. However, we need to permute the final result obtained back into the original
ordering.

ALGORITHM 3.2. ILUM: Forward and backward solutions.
1. Apply global permutation to right-hand side b and copy into x0.
2. For j 0, nlev- do: [Forward sweep]

x+ "= x+-ED-y
EndDo

3. Solve with a relative tolerance e:

AnlevXnlev :-- Xnlev
4. For j riley ,1, 0 do: [Backward solution]

yj "= O[ (yj Fjxj+I).
EndDo

5. Permute the resulting solution vector back to the original ordering
to obtain the solution x.

A major source of difficulty with the use of ILUM lies in its implementation. The
implementation issues are similar to those that arise when implementing parallel direct solution
methods for sparse linear systems. Some of the issues have been briefly discussed above. Here
are some of the important questions that arise, along with some comments or solutions.
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1. Should we permute the matrices Aj explicitly or is it preferable to avoid step 3 in
Algorithm 3.1 ? There are two additional burdens if we do not permute the matrices.
First, we must store the successive permutations and second, we must apply the
permutations during the forward and backward solutions when passing from one
level to the other. As was mentioned, in our implementation we explicitly permute
the matrices.

2. How to store the successive matrices Bj ? In our implementation these are stored in
sequence one after the other in a single data structure. As a result the data structure
used for storing the successive matrices has two levels of pointers. It is also possible
to store all the Bj matrices as a single sparse matrix, the upper part in row format and
the lower part in column format. We would then need two sparse data structures and
an additional pointer.

3. What number of levels should we use? How do we relate the number of levels
to the tolerance used in the factorization? These are difficult questions to answer
in a rigorous way. The number of levels is left as a parameter in our implementa-
tion.

4. Numerical tests. In this section we provide a few experimental results to (i) help
give an idea of the performance of the ILUM preconditioner when compared with similar
techniques and (ii) examine how these performances vary with respect to the type of indepen-
dent set ordering used. All experiments have been performed on a Cray-2 in single precision
(64-bi arithmetic) and the times are in seconds. Although parallelism is not exploited our
implementation of the iterative phase, which excludes the preprocessing required to compute
the ILU factorization itself, takes advantage of vectorization.

In all tests, we construct the right-hand sides artificially to be of the form b Ae, where
the solution e is the vector whose components are all ones. The initial guess is taken to be a
random vector. Although some of the test matrices used in these experiments are associated
with regular grids, this was not exploited, i.e., the matrices are considered as general sparse.
The iterations were stopped as soon as the 2-norm of the residual was reduced by a factor of

10-7.

4.1. An elliptic problem. We consider the partial differential equation

Oex’u Oe-xyu )-Au + ?’ Ox + Oy + ou f,

with Dirichlet boundary conditions and ?’ 10, oe -60, discretized with centered differ-
ences on a 27 x 27 x 27 grid. This leads to a linear system with N 253 15,625 unknowns.
We refer to the linear system associated with this matrix as Problem 1.

The results obtained with a drop tolerance of r 0.0001 in ILUM are shown in Table 3.
The last reduced system is solved with GMRES(20) preconditioned by SOR(1) and using a
tolerance of e 0.01 for the stopping criterion. Note that in all the SOR preconditioning
operations we use co as a relaxation parameter. The reordering algorithms tested are
indicated on the left column, in which "Multicolor" refers to taking the first set (color) obtained
from the greedy multicoloring Algorithm 2.5. The column "its_T" shows the time required
to solve the system excluding the preprocessing phase required to compute the incomplete
factorization. The total time, including preprocessing, is shown in the column "tot_T." The
column "memory" shows the total memory requirement in thousands of words to store the
real values (excluding integer indices) of the incomplete factorization. The numbers "its-out"
refer to the number of outer iterations required, i.e., the number of ILUM preconditioned
GMRES steps needed to achieve convergence. The numbers "its-tot" refer to the total number
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TABLE 3
Performance of GMRES(IO)-ILUM preconditioning for Problem 1, using different independent set ordering

algorithms.

Method

Algorithm nlev

Multicolor 2
3

Alg. 2.1 2
3

Alg. 2.2 2
3

Alg. 2.3 2
3

Alg. 2.4 2
3

Performance
tot_T its_T Memory its-out its-tot

3.52 1.54 7.9 4 56
7.30 3.69 142.6 4 52

11.41 5.58 166.5 5 65

3.26 1.49 7.9 4 56
7.41 4.00 142.9 4 55
10.94 5.64 173.5 5 68
3.91 1.78 9.3 4 60
7.56 3.77 127.4 4 55
11.29 5.61 161.1 5 68
4.46 1.52 7.9 4 57
8.95 3.59 143.9 4 51

14.04 5.56 176.4 5 68

4.05 1.59 5.4 4 55
8.28 3.53 138.1 4 51

14.00 6.17 165.1 5 67

of inner iterations required, i.e., the overall total number of matrix-vector products in the calls
to GMRES(20)-SOR(1) needed to solve all the reduced systems occurring throughout the
solution of the linear system under consideration.

4.2. Experiments with Harwell-Boeing matrices. We first consider a linear system
made up from the matrix Sherman-3 of the Harwell-Boeing collection [16, 17]. This matrix
is of dimension N 5,005 and has nz 20, 033 nonzero elements. It arises in an IMPES
(IMplicit Pressure, Explicit Saturation) simulation of a black-oil reservoir on a 35 11 13
grid. We refer to the linear system associated with this matrix as Problem 2. Results similar
to those of the previous example are shown in Table 4.

The number of outer iterations is roughly the same in all cases but the number of inner
iterations varies rather substantially. We should point out that the preprocessing to build the
incomplete factorization has not been optimized. It is possible to improve performance by
exploiting parallelism in the elimination since the main operation in forming the reduced
systems consists of a sparse matrix-matrix product. In addition, even if the preprocessing
costs remain high, this technique may be appealing for solving linear systems with several
right-hand sides on parallel or vector computers. It is worth noting that if we ignore the
preprocessing times then for Problem 2, some of the best performances, in terms of execution
time, are obtained with larger numbers of reductions, a situation which is opposite to that of
Problem 1. This depends largely on the parameters used in the factorization.

For comparison, we show in Table 5 typical execution times using an optimized ILUT
preconditioned GMRES approach. The ILUT(p, r) preconditioner described in [45] is a
dual-threshold-based incomplete LU factorization which performs numerical dropping based
on a relative tolerance r and which retains at most the p largest fill-in elements in L and in
U. The optimization of ILUT on the CRAY consists of using level scheduling [3] as well as
jagged diagonal data structures to optimize matrix-vector products. Note that if we ignore
preprocessing times, the best times achieved with ILUT and ILUM are comparable, but the
degree of parallelism in ILUM is much higher that in ILUT.

Finally, we show the performance of ILUM and an optimized ILUT preconditioned GM-
RES approach, both with various parameters, on eight matrices from the Harwell-Boeing
collection. The two methods are not comparable for similar values of their parameters. How-
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TABLE 4

Performance of GMRES(IO)-ILUM preconditioning for matr& Sherman 3, using different independent set
ordering algorithms.

Method

Algorithm nlev

2
Multicolor 3

10

Alg-2.1

Alg-2.2

A1g-2.3

Alg-2.4

Performance
tot_T its_T Memory its-out its-tot

1.44 1.17 19.4 6 232
2.68 2.21 25.6 7 194
2.94 2.25 30.3 8 171
3.64 1.56 53.3 11 90

20 4.71 1.03 71.8 10 43

1.57 1.33 19.5 6 261
2 2.70 2.27 25.4 7 185
3 2.73 2.13 30.3 8 167
10 3.22 1.31 55.9 10 73
20 4.41 1.03 75.2 11 39

2.54 2.22 15.7 7 394
2 3.70 3.16 22.3 7 318
3 2.90 2.16 27.9 9 190
10 3.14 1.09 51.8 9 68
20 4.43 0.89 70.5 9 35

2.06 1.60 20.5 7 329
2 3.25 2.52 25.7 8 232
3 3.36 2.29 30.5 8 190
10 4.13 1.14 54.2 10 67
20 5.762 0.76 72.4 9 31

2.17 1.84 19.7 7 363
2 3.37 2.74 24.9 7 241
3 3.69 2.73 29.6 8 218
10 4.47 1.24 52.3 9 78
20 6.49 0.80 70.3 8 33

TABLE 5
Performance ofGMRES(10)-ILUT(p, r), with p 10 and r 0.0001 using level schedulingfor the triangular

system solutions.

Problem
Problem 2

ILUT time

12.1
1.69

GMRES time tot. time its

2.70 14.8 25
0.761 2.45 20

ever, the results will give an indication of how the two methods may compare for reasonable
choices of the parameters and for unstructured matrices. The sizes (N) of these matrices and
their number of nonzero elements (Nz) are shown in the first column of Table 6. Of these
matrices, only ORSREG1, SHERMAN1, and SHERMAN5 are regularly structured.

Here, the ILUT(p, r) preconditioner was used with r 10-4, and the level-of-fill pa-
rameter p takes the values 0, 5, 10, 15. For ILUM we took the same value for r and retained
at most 20 elements in each row of the reduced system. Since the size of the reduced matrices
decreases at each level, it is difficult to compare the number ofnonzero elements obtained with
a given value of p for ILUM and ILUT. The reduced systems are solved with GMRES(10)
with diagonal preconditioning. Only one outer GMRES(10) iteration is performed for each
different system. The algorithm used for obtaining the independent sets was Algorithm 2.4.
The results are shown in Table 6. In most cases the best iteration times with ILUM are
achieved for larger values of the level number. In addition, these times are often better than
the level-scheduling implementation of ILUT. The preprocessing times are not optimized for
both algorithms, so it is difficult to give a comparison with the current implementations of
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TABLE 6
Comparison ofILUM and ILUT on afew matricesfrom the Harwell-Boeing collection.

ILUM ILUT
Matrix nlev tot_T its_T its p tot_T its_T its

FS7602 2 1.84 1.73 85 0 0.58 0.47 95
N 760 8 0.43 0.17 12 5 0.27 0.10 17
Nz 5976 14 0.40 0.06 6 10 0.29 0.06 9

20 0.45 0.05 5 15 0.33 0.07 9
ORSIRR1 2 0.66 0.53 26 0 0.19 0.08 15
N= 1030 8 0.41 0.13 9 5 0.18 0.06 8
Nz= 6858 14 0.45 0.09 7 10 0.18 0.05 7

20 0.50 0.09 7 15 0.18 0.06 7
ORSIRR2 2 0.59 0.48 28 0 0.17 0.07 15
N= 886 8 0.38 0.14 11 5 0.17 0.05 8
Nz= 5970 14 0.39 0.08 7 10 0.17 0.05 7

20 0.44 0.08 7 15 0.17 0.05 7
ORSREG1 2 0.91 0.62 16 0 0.42 0.17 16
N= 2205 8 0.78 0.19 7 5 0.36 0.08 6
Nz= 14133 14 0.89 0.18 7 10 0.35 0.08 6

20 1.03 0.18 7 15 0.35 0.08 6
PORES2 2 4.08 3.93 200 0 1.17 1.06 171
N= 1224 8 1.19 0.92 59 5 0.62 0.47 47
Nz= 9613 14 1.11 0.77 52 10 0.55 0.39 33

20 1.14 0.73 51 15 0.52 0.36 27
PORES3 2 0.54 0.48 46 0 0.12 0.07 22
N= 532 8 0.20 0.06 8 5 0.14 0.05 10
Nz=3474 14 0.21 0.04 6 10 0.18 0.05 8

20 0.24 0.04 6 15 0.22 0.06 7
SHERMAN1 2 0.21 0.12 7 0 0.22 0.15 31
N=1000 8 0.34 0.07 4 5 0.24 0.09 8
Nz= 3750 14 0.48 0.06 4 10 0.32 0.11 6

20 0.57 0.05 4 15 0.38 0.15 6

SHERMAN5 2 1.24 0.85 15 0 1.25 0.74 45
N=3312 8 1.62 0.61 11 5 1.40 0.44 19
Nz=20793 14 1.86 0.33 7 10 1.81 0.46 15

20 2.17 0.25 6 15 2.22 0.52 14

the overall process. These experiments do indicate, however, that a good implementation of
ILUM may be a competitive approach to vector supercomputers.

5. Conclusion. The ideas ofgraph coloring and independent set ordering can be exploited
to derive highly parallel incomplete LU factorizations. We have developed such incomplete
factorizations and tested them on a Cray computer, exploiting only vectorization. However, the
implementation of these techniques on massively parallel computers is likely to be complex.
In most cases a good compromise may well be to perform a small number ofILUM reductions,
perhaps one or two, and then solve the last reduced system with a multicolor multistep SOR
preconditioned Krylov subspace iteration [44]. Nevertheless, the general idea of independent
set orderings is powerful and can certainly be exploited in many other ways than those described
in this paper.
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EFFICIENT ALGORITHMS FOR COMPUTING
A STRONG RANK-REVEALING QR FACTORIZATION*

MING GU AND STANLEY C. EISENSTAT

Abstract. Given an m n matrix M with m > n, it is shown that there exists a permutation FI and an integer k
such that the QR factorization

MYI= Q(Ak ckBk)
reveals the numerical rank of M: the k k upper-triangular matrix Ak is well conditioned, IlCkll2 is small, and Bk
is linearly dependent on Ak with coefficients bounded by a low-degree polynomial in n. Existing rank-revealing QR
(RRQR) algorithms are related to such factorizations and two algorithms are presented for computing them. The new
algorithms are nearly as efficient as QR with column pivoting for most problems and take O (ran2) floating-point
operations in the worst case.

Key words, orthogonal factorization, rank-revealing factorization, numerical rank

AMS subject classifications. 65F25, 15A23, 65F35

1. Introduction. Given a matrix M 6 Rmn with m > n, we consider partial QR fac-
torizations of the form

(1) M H QR Q ( Ak Bk )Ck

where Q Rmm is orthogonal, A Rk is upper triangular with nonnegative diagonal
elements, Bk Rk(n-k), Ck R(m-k)(n-k), and YI Rnn is a permutation matrix chosen
to reveal linear dependence among the columns of M. Usually k is chosen to be the smallest
integer _< k _< n for which IICII2 is sufficiently small [24, p. 235].

Golub [20] introduced these factorizations.and, with Businger [8], developed the first
algorithm (QR with column pivoting) for computing them. Applications include least-squares
computations [11, 12, 17, 20, 21, 23, 36], subset selection and linear dependency analy-
sis [12, 18, 22, 34, 44], subspace tracking [7], rank determination [10, 39], and nonsymmet-
tic eigenproblems [2, 15, 26, 35]. Such factorizations are also related to condition estima-
tion [4, 5, 25, 40] and the UR V and UL V decompositions 14, 41, 42].

1.1. RRQR factorizations. By the interlacing property of the singular values [24, Cor.
8.3.3], for any permutation YI we have

(2) oi(Ak) <_ oi(M and o’j(Ck) >_ crk+j(M)

forl_<i_<kandl_<j_<n-k. Thus,

(3) O’min(Ak) <_ ak(M) and O’max(Ck) >_ O’k+l(M).

Assume that crk(M > ak+l (M) O, so that the numerical rank of M is k. Then we
would like to find a Fl for which O’min(Ak) is sufficiently large and O’max(Ck) is sufficiently

*Received by the editors May 13, 1994; accepted for publication (in revised form) March 8, 1995. This research
was supported in part by U. S. Army Research Office contract DAAL03-91=G-0032.

Department of Mathematics and Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
(minggu@math.berkeley,edu).

;Department of Computer Science, Yale University, P. O. Box 208285, New Haven, CT 06520-8285 (eisenstat-
stan@cs.yale.edu).

1Here oi(X), O-max(X), and O’min(X) denote the ith largest, the largest, and the smallest singular values of the
matrix X, respectively.
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small. We call the factorization (1) a rank-revealing QR (RRQR) factorization if it satisfies
(cf. (3))

O- (M)
(4) O’min(Ak) > and O-max(Ck) < O-+l(M) p(k, n),

p(k,n)

where p(k, n) is a function bounded by a low-degree polynomial in k and n [13, 28]. Other,
less restrictive definitions are discussed in [13] and [37]. The term "rank-revealing QR fac-
torization" is due to Chan 10].

The Businger and Golub algorithm [8, 20] works well in practice, but there are examples
where it fails to produce a factorization satisfying (4) (see Example in 2). Other algorithms
fail on similar examples [13]. Recently, Hong and Pan [28] showed that there exist RRQR fac-
torizations with p(k, n) /k(n k) + min(k, n k), and Chandrasekaran and Ipsen [13]
developed an algorithm that computes one efficiently in practice,2 given k.

1.2. Strong RRQR factorizations. In some applications it is necessary to find a basis for
the approximate right null space of M, as in rank-deficient least-squares computations [23, 24]
and subspace tracking [7], or to separate the linearly independent columns of M from the
linearly dependent ones, as in subset selection and linear dependency analysis [12, 18, 22,
34, 44]. The RRQR factorization does not lead to a stable algorithm because the elements of

A-1B can be very large (see Example 2 in 2).
In this paper we show that there exist QR factorizations that meet this need. We call the

factorization (1) a strong RRQR factorization if it satisfies (cf. (2))

O-i M)(5) O-i(Ak) > and O-j(Ck) < O-k+j(M) ql (k, n)
q(k,n)

and
i..

for 1 < < k and < j < n k, where ql (k, n) and q2(k, n) are functions bounded by
low-degree polynomials in k and n. Clearly a strong RRQR factorization is also a RRQR fac-
torization. In addition, condition (6) makes

l-I( -A-IBk)In-k
an approximate right null space of M with a small residual independent of the condition
number of Ak, provided that Ak is not too ill conditioned [38, pp. 192-198]. See [26] for
another application.

We show that there exists a permutation FI for which conditions (5) and (6) hold with

q (k, n) v/l + k(n k) and q2(k, n) 1.

Since this permutation might take exponential time to compute, we present algorithms that,
given f > 1, find a 1-I for which (5) and (6) hold with

q (k, n) V/1 + f 2k(n k) and q2(k, n) f
Here k can be either an input parameter (Algorithm 4) or the smallest integer for which O’max (Ck)
is sufficiently small (Algorithm 5). When f > 1, these algorithms require O ((m + n log/n)n2)
floating-point operations. In particular, when f is a small power of n (e.g., or n), they
take O(mn2) time (see 4.4).

2In the worst case the runtime might be exponential in k or n. The algorithm proposed by Golub, Klema, and
Stewart [22] also computes an RRQR factorization [30], but requires an orthogonal basis for the right null space.
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Recently, Pan and Tang [37] presented an algorithm that, given f > 1, computes an
RRQR factorization with p(k, n) f/k(n k) + max(k, n k). This algorithm can be
shown to be mathematically equivalent to Algorithm 5 and thus computes a strong RRQR fac-
torization with q (k, n) v/1 + f2k(n k) and q:(k, n) f. However, it is much less
efficient. Pan and Tang [37] also present two practical modifications to their algorithm, but
they do not always compute strong RRQR factorizations.

1.3. Overview. In 2we review QR with column pivoting [8, 20] and the Chandrasekaran
and Ipsen algorithm [13] for computing an RRQR factorization. In 3 we give a constructive
existence prooffor the strong RRQR factorization. In 4 we present an algorithm (Algorithm 5)
that computes a strong RRQR factorization and bound the total number of operations required
when f > 1; and in 5 we show that this algorithm is numerically stable. In 6 we report
the results of some numerical experiments. In 7 we show that the concept of a strong
RRQR factorization is not completely new in that the QR factorizati0n given by the Businger
and Golub algorithm [8, 20] satisfies (5) and (6) with q (k, n) and q2(k, n) functions that grow
exponentially with k. Finally, in 8 we present some extensions of this work, including a
version of Algorithm 5 that is nearly as fast as QR with column pivoting for most problems
and takes O (mn2) floating-point operations in the worst case.

1.4. Notation. By convention, Ak, /k 6 R denote upper-triangular matrices with
nonnegative diagonal elements, and B, [ Rkx(n-k) and Ck, R(m-k)(n-k) denote
general matrices.

In the partial QR factorization

X= Q(A c:B)
of a matrix X Rmn (where the diagonal elements of Ak are nonnegative), we write

Jtk(X)=A/,, C(X)=C, and T(X)-( Ak B)C:
For A, a nonsingular x g matrix, 1/o)i(A) denotes the 2-norm of the ith row of A- and

o.(A) (o)1 (A) oe(A)) r. For C, a matrix with g columns, , (C) denotes the 2-norm
of the jth column of C and ,.(C) (gl (C) ?’e(C)).

17i,j denotes the permutation that interchanges the ith and jth columns of a matrix.
Aflop is a floating-point operation oe o , where oe and are floating-point numbers and o

is one of +, -, x, and /. Taking the absolute value or comparing two floating-point numbers
is also counted as a flop.. RRQR algorithms. QR with column pivoting [8, 20] is a modification ofthe ordinary
QR algorithm.

ALGORITHM 1. QR with column pivoting.
k’=0; R:=M; 1-I:=I;
while max <_j <n-k /j (Ck (R)) > do

jmax :-- argmaxx_<j_<n_ Yj (C (R));
k’-k+ 1;
Compute R := 7-’:(R 1-Ik,kq_jmax_l) and I7 := 1-I 1-Ik,k_k_jmax_l;

endfor;

When Algorithm halts, we have

O’max (C:(M FI)) < /n k max yj (C:(M 17)) < a/n k 3,
l<j<n-k
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and if 3 is sufficiently small, then the numerical rank ofM is at most k. If the vector of column
norms V, (Ck (R)) is updated rather than recomputed from scratch each time, then Algorithm 1
takes about 4mnk 2kZ(m + n) + 4k3/3 flops [24, p. 236].

Algorithm 1 uses a greedy strategy for finding well-conditioned columns: having deter-
mined the first k columns, it picks a column from the remaining n k columns that maximizes
det [,4+1 (R)] (see [13]). When there are only a few well-conditioned columns, this strategy
is guaranteed to find a strong RRQR factorization (see 7). It also works well in general, but
it fails to find an RRQR factorization for the following example.

Example 1 (Kahan [33]). Let M S,K,,, where

1 0 0 1 -q

0 ff ’. 0 .
(7) Sn= and Kn=

0 0 9
-1 0 0 1

with (p, ff > 0 and 2
__

g.2 1. Let k n 1. Then Algorithm 1 does not permute the
columns of M, yet it can be shown that

cr,(M) o(1 + o)’-
O’min (Ak) 2

and the right-hand side grows faster than any polynomial in k and n.

When m n and the numerical rank of M is close to n, Stewart [39] suggests applying
Algorithm 1 to M-1. Recently, Chandrasekaran and Ipsen [13] combined these ideas to
construct an algorithm Hybrid-III(k) that is guaranteed to find an RRQR factorization, given
k. We present it in a different form here to motivate our constructive proof of the existence of
a strong RRQR factorization.

ALGORITHM 2. Hybrid-Ill(k).
R :-- M; rI := I;
repeat

imin :--- argmin<i< O) (4k(R));
if there exists a j such that det [,4k(R 1-Iimin,j+)] / det [.A(R)] > 1 then

Find such a j;

Compute R := (R I-Iimi,,j+ and PI :-- 1-I Flimi,,j+;
endif;

jmax := argmax_<j_<_ ,j (C (R));
if there exists an such that det [.A(R rli,jmax+k) / det [.Ak(R)] > 1 then

Find such an i;

Compute R := 7k(R Fli,jmax+k and FI := FI Fli,jmax+k;
endif;

until no interchange occurs;

Since the objective is to find a permutation FI for which O’min (.A(M FI)) is sufficiently
large and O’max (C,(M I-I)) is sufficiently small, Algorithm 2 keeps interchanging the most
"dependent" of the first k columns (column imin) with one of the last n k columns, and
interchanging the most "independent" of the last n k columns (column jmax) with one of the
first k columns, as long as det [4(R)] strictly increases.
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Since det [4(R)] strictly increases with every interchange, no permutation repeats; and
since there are only a finite number of permutations, Algorithm 2 eventually halts. Chan-
drasekaran and Ipsen [13] also show that it computes an RRQR factorization, given k. Due to
efficiency considerations, they suggest that it be run as a postprocessor to Algorithm 1.

But Algorithm 2 may not compute a strong RRQR factorization either.
Example 2. Let k n 2 and let

S_ K_ 0 0 -oS_ c_

(A B)= /z 0 0
M =-- Ck lz 0

where Sk-1 and Kk-1 are defined as in (7), c_l (1 1) 7- E Rk-l, and

1
min o)i(S_l K_I)./

l<i<k-1

Then Algorithm 2 does not permute the columns of M (note that irnin k and jmax k + 1),
yet it can be shown that

o’_ (M) 93 (1 + qg)k-4
> and IIA-1Bll o(1 + qg)k-2,

cry- (Ak) 29
and the right-hand sides grow faster than any polynomial in k and n.

Since Algorithm does not permute the columns of M, this example also shows that Al-
gorithm 2 may not compute a strong RRQR factorization even when it is run as a postprocessor
to Algorithm 1.

3. The existence of a strong RRQR factorization. A strong RRQR factorization satis-
fies three conditions: every singular value of A is sufficiently large, every singular value of
C is sufficiently small, and every element of A-B is bounded. Since

k / n-k

r(Ck)det(Ak) Hffi(Ak)i-1 v/det(MTM)
] j=l

a strong RRQR factorization also results in a large det(A). Given k and f _> 1, Algo-
rithm 3 below constructs a strong RRQR factorization by using column interchanges to try
to maximize det(A).

ALGORITHM 3. Compute a strong RRQR factorization, given k.
R := 7Z(M); 17 := I;
while there exist and j such that det(k))/det(a) > f,

whereR--( Ak ckBk)andTk(RFlij+k)-- ( Ckk)- do

Find such an and j;
Compute R := 7gk(R 17i,j+k) and I7 := FI 17i,j+k;

endwhile;

While Algorithm 2 interchanges either the most "dependent" column of Ak or the most
"independent" column of Ck, Algorithm 3 interchanges any pair of columns that sufficiently
increases det(Ag). As before, there are only a finite number of permutations and none can
repeat, so that it eventually halts.

3The algorithms in this section are only intended to prove the existence of a strong RRQR factorization. Efficient
algorithms will be presented in 4 and 8.
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To prove that Algorithm 3 computes a strong RRQR factorization, we first express
det(k)/det(Ak) in terms of o)i(Ak), yj(Ck), and (A-1Bk)i,j.

LEMMA 3.1. Let

C Ck

where Ak has positive diagonal elements. Then

det(Ak) v/(A;1Bk)i2,j + (yj(Ck)/Coi(Ak))2
det(A)

Proof. First, assume that < k or that j > 1. Let Ak 1-Ii,k QA be the QR factorization
of A Fli,k, let/ OTB I-Ii,j and C 171,j, and let 1] diag(I-l/,k, lql,j). Then

(AkI-Ii’k Bk171’J)( 0 ) (k k)R (-I =_

C I71,j Im- C

is the QR factorization of R 1-]. Since bothA andk have positive diagonal elements, we have
det(A) det(). Since -1/ FIA-1Bk171,j, we have (A-1Bk)i,j (-1 k)k,1.
Since -1 FI,A-IBO_ and postmultiplication by an orthogonal matrix leaves the 2-
norms of the rows unchanged, we have 09i(Ak) 09k(fk). Finally, we have yj(Cg)
Thus it suffices to consider the special case k and j 1.

Partition

T+l (R)

Ak-1 b b2 B

Y2 C;
C+

Then coi(Ak) Y1, ’j(Ck) Y2, and (AlBk)i,j fl/’l. But det(Ak) det(Ak_l) ’1 and

det(k) det(Ak_) f12 + , so that

det(k) (fl/y1)2 + (y2/Y1)2: ((A;1Bk)i2,j + (yj(Ck)/i(Ak))2,
det(Ak)

which is the result required.
Let

maxljn_k (AIBk)2p(R,k)
lSiSk, i,j + / ]]vj’Ck’i’ak 2"

Then by Lemma 3.1, Algorithm 3 can be rewritten as the following.

ALGORITHM 4. Compute a strong RRQR factorization, given k.

Compute R
C

ile (R, k) > f d
Find/and j such that ](A B)i,j + (gj(C)/mi(A)) > f;

(A B):=(Ri,+)and’=i+;Compute R
C
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Since Algorithm 4 is equivalent to Algorithm 3, it eventually halts and finds a permutation
FI for which p(Tgk(M FI), k) < f. This implies (6) with q2(k, n) f. Now we show that
this also implies (5) with q (k, n) v/1 + f2k(n k), i.e., that Algorithms 3 and 4 compute
a strong RRQR factorization, given k.

THEOREM 3.2. Let

Ak Bk ) 7k(M FI)R
Ck

satisfy p R k) < f Then

cri(M)
(8) cri(Ak) > < < k,

V/1 + f2k(n k)

and

(9) aj(Ck) < aj+k(M) V/1 + f2k(n k), 1 < j < n k.

Proof For simplicity we assume that M (and therefore R) has full column rank. Let
Ol O’max(Ck)/Crmin(Ak), and write

R= ( Ak C/ot)( Ik

Then by [29, Thm. 3.3.16],

(10) ai(R) < ai(k) IlW]12,

A-I B’ I\ k Wl.
Otln-k

l<i<n.

Since O’min(Ak) O’max(Ck/Ol), we have o’i(/1) ri(Ak) for 1 < < k. Moreover,

IlWlll2 <_ 1/ IIA-BII22/
/ AIB 22 / Ck A-II

< 4- IIA-IBII2F 4-Ilfkll%llA-all2F
k n-k

ZZ{ta;   ti,j 4- /j(Ck)2/O)i(Ak)2
I
!

i=1 j=l

< 1 + f2k(n-k),
so that IIW 112 _< 4’i / f2k(n k). Plugging these relations into (10), we get (8). Similarly,
let

(OtAk ) (Ak Bk) (Otlk -A-Bk) RW2.k2 Ck Ck In-k
Then

rj(fk) O’j+k(/2) aj+(R)IIW2112 _< aj+(M) V/1 + f2k(n k),

which is (9). [3

4. Computing a strong RRQR factorization. Given f > and a tolerance 6 > 0,
Algorithm 5 below computes both k and a strong RRQR factorization. It is a combination of
the ideas in Algorithms 1 and 4 but uses

fi(R, k) max max {l(A-lBk)i,jl ’j(Ck)/o)i(Ak) ]<i <k, <j <n-k

instead of p(R, k) and computes co.(Ak), ?’.(Ck), and A-B recursively for greater efficiency.
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ALGORITHM 5. Compute k and a strong RRQR factorization.
k:=0; R Ck := M; FI:=I;
Initialize co,(Ak), y,(C), and A-1B;
while max <j<n-k Yj (Ck) >-- do

jmax ": argmax <_j <_n-k Vj Ck
k:=k+ 1;

(ZkBk)’--Jk(Rr-lkk+jmax_l)andI-l:--I-lr-lk,k+jmax_l;Compute R
Ck

Update co,(Ak), y,(Ck), and A1Bk;
while t3 (R, k) > f do

and j such thatl(A-lBk)i,j[ > f or yj(Ck)/Coi(Zk) > f;Find/

(ZkBk).=J’k(RI-Ii,j+k)andI-I.--FIl-Iij+k;Compute R --= C
Modify co,(A), v,(C), and A- B;endwhile;

endwhile;

Since its inner while-loop is essentially equivalent to Algorithm 4, Algorithm 5 must
eventually halt, having found k and a permutation I-I for which 3(R, k) _< f. This implies that
p(Tg(M YI), k) <_ f, so that (5) and (6) are satisfied with4 ql (k, n) v/1 + 2fZk(n k)
and qz k, n) /-f

Remark 1. Note that

O’k+l (m) O’max (Ck) 1 j(Ck)
> > max

cry(M) ql(k,n)2 0"min(Ak) ql(k,n)2 1<_i<_, <_j<_n- coi(Ak)

and

cr+l(M)
<

O’max(Ck)
< v/k(n_k) max

yj(C)
Crk(M) O’min(Ak) l<i<k, l<j<n-k 09i(Ak)

Thus Algorithm 5 can detect a sufficiently large gap in the singular values of M if we change
the condition in the outer while-loop to

max ffj(Ck) > or max yj(Ck)/Coi(Ak) >_ ,
<j<n-k <i <k, <j<n-k

where is some tolerance. This is useful when solving rank-deficient least-squares problems
using RRQR factorizations (see 11, 12] and the references therein):

In 4.1-4.3 we show how to update Ak, B, Ck, co,(Ak), y,(Ck), and A1B after k
increases and to modify them after an interchange. In 4.4 we bound the total number of
interchanges and the total number of operations. We will discuss numerical stability in 5.

4.1. Updating formulas. Let

R=(Ak-1 Bk-1) and J-k(Rl-lkk+jmax_l)=( Ak Bk)C-I Ck

Assume that we have already computed Ak-, Bk-, Ck-, co,(Ak_), F, (Ck-), and A-_ Bk-.
In this subsection we show how to compute A, Bk, Ck, co,(Ak), F,(Ck), and A Bk. For
simplicity we assume that jniax 1, SO that ?’1 (Ck-1) >_ Fj(Ck-1) for < j < n k + 1.

4To get ql (k, n) dl + f2k(n k) and q2(k, n) f, replace 3(R, k) by p(R, k) or replace f by f/x/
(assuming that f > v) in Algorithm 5.
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Let H E R(m-k)(m-k) be an orthogonal matrix that zeroes out the elements below the
diagonal in the first column of Ck-1, and let

Bk-1 b B) and HCk_l
C

where ?, Yl (Ck-1). Then

Ak-1 b B )Ck / cT
C

so that

Ak ( Ak-1

Let A-_l Bk-1 u U ). Then

and

and Ck C.

and

Letu (/zl [dk_l) T andc (vl ,1)n_k) T. Then co,(Ak) and ?,,(C) can be computed
from

2 2co(Ak) and 1/coi(Ak)2 1/o)i(Ak_l)2 -+- [1i/ <_ <_ k-

so that

/j(Ck)2 Yj+I (Ck-1)2 1), 1 < j < n k.

The main cost of the updating procedure is in computing HC_I and U hieT/, which
take about 4(m-k)(n-k) and 2k(n-k) flops, respectively, for a total ofabout 2(2m -k)(n-k)
flops.

Remark 2. Since f > 1, p(R, k 1) < f, and V > Vj+l(Ck-1) > vj, for _< j <
n k, we have

[(A-’Bk)i,jl < 2f and gj(Ck)/Coi(Ak) < ", f,

p(k(R 1-I,jmx), k) <_ f.

This bound will be used in 5.1.
4.2. Reducing a general interchange to a special one. Assume that there is an inter-

change between the ith and (j + k)th columns of R. In this subsection we show how to reduce
this to the special case k and j 1.

Let

If j > 1, then interchange the (k + 1)st and (k + j)th columns of R. This only interchanges
the corresponding columns in Bk, C, y. (C), and A1B. Henceforth we assume that < k
and j 1.

A-l Bk ( U ucT /?’ )cT/?,
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Partition

Ak ot a
A2,2

where A1,1 6 R(i-1)(i-1) and A2,2 6 R(k-i)(k-i) are upper triangular. Let I-Ik be the permu-
tation that cyclically shifts the last k " + columns of Ak to the left, so that

(AI,1 A1,2 al)Ak FIk af o

A2,2

Note that Ak FIk is an upper-Hessenberg matrix with nonzero subdiagonal elements in columns
i,i+l k-1.

To retriangularize Ak 1-Ik, we apply Givens rotations to successively zero out the nonzero
subdiagonal elements in columns i, + 1 k (see [19, 24]). Let Q be the product of
these Givens rotations, so that QAk FIk is upper triangular.

Let I-I diag(lqk, In-k), so that the ith column of R is the kth column of R F!. Then

R(-I= (AkFlk Bk) and k(R(-l)=-- (k k) (QAkl-Ik QffBk)Ck Ck Ck

Since A-I I’IffA- Qk and postmultiplication by an orthogonal matrix leaves the 2-norms
of the rows unchanged, it follows that

og.(k) 1-I o9.(Ak), F.((k) y.(Ck), and -hk lq (A-Bk).
The main cost of this reduction is in computing TQk Ak FIk and QBk, which takes about

3 ((n i)2 (n k)2) < 3k(2n k) flops.

4.3. Modifying formulas. In this subsection we show howto modify Ak, Bk, Ck, co. (Ak),
F.(Ck), and A- Bk when there is an interchange between the kth and (k + 1)st columns of R.
We assume that we have already zeroed out the elements below the diagonal in the (k 4- 1)st
column.

we have

Writing

Ak_ bl b2 B

B , ,z c
Ck } F v c

Ck+l

Ak-! b2 bl B

,]-k+l(RYlkk+l)(k k) ’lz/P T1

Ck+l

where p V/lZ2 4- 1) 2, }7 ,,o, el (#c1 4- 1)c2)/p, and 2 (1)c1 tzc2)/p.
From the expression for R, we also have

1/y
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where u A-ll bl. Since Ak_l is upper triangular, we can compute u using back-substitution.
Moreover,

so that

It follows that

and

(11)

Simplifying,

(ul U)(A-_I1-u/y)(b2 B)A-1Bk

We also have

A-_ll b2 Ul +/zu and A-I_I B U + uc/y.

-All b2/ ) ( A-I_
1/

--(Ul q" /ZU)/)7
1/

1 ylz2/(gp) lz2/to2 v2/102 and y/Z/(7,O) #/p2.

A-11B (Ul -[- u + ,cl ,efl9
U + u (pCl tZ.l)T/
+ ue/ u/.

Plugging these relations into (11), we get

-; ( (’ .) Ip
izlp

U + (WU Ulna’)/ .
ef/

Let

u= Ul+/Xu= c= and Ca=
[k-1 Lk-1 Un-k n-k

Then og,(Ak) and v,(Ck) can be computed from

and

-2 -2 //2 2,and O)i(/k)2 Ooi(Ak)2 + ]Z / // 1 < < k 1,

-2 vf, 2<j<n-k.’l(k) 13//9 and /j(k)2 yj(Ck)2 Af_ 1)j

The cost of zeroing out the elements below the diagonal in the (k + 1)st column is about
4(m k)(n k) flops, the cost of computing u is about k2 flops, and the cost of computing
/-/ is about 4k(n k) flops. Thus the total cost of the modification is about 4m(n k) + k2

flops.
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4.4. Efficiency. In this subsection we derive an upper bound on the total number of
interchanges and bound the total number of flops. We only consider the case f > 1.

Let r be the number of interchanges performed for a particular value of k (i.e., within the
inner while-loop), and let A be the determinant of A after these interchanges are complete
(by convention, A0 1). Since det(A) A_I ?’jmax (C_1) before the interchanges, and
each interchange increases det(A) by at least a factor of f, it follows that

Ak Ak-1 /jmax(Ck-1) fr.
By (3), we have

trl+l(M) < O’max (CI(M)) < IICz(M)IIF /n- /jmax (C(M)),

for _< < n, so that

Ak >_ Ak-1 - cry(M) f > -- cri(M) its,

where t =1 Ti is the total number of interchanges up to this point. On the other hand,
from (2) we also have

k k

Ak H o’i(A) <_ H cri(M).
i=1 i=1

Combining these relations, we have ft < (q/-), so that t < k logf V/ft.
The cost of the updating procedure is about 2(2m k)(n k) flops (see 4.1), the cost

of the reduction procedure is at most about 3k(2n k) flops (see 4.2), and the cost of the
modifying procedure is about 4m(n k) + k2 flops (see 4.3). For each increase in k and each
interchange, the cost of finding 3(R, k) is about 2k(n k) flops (taking k(n k) absolute
values and making k(n k) comparisons).

Let kf be the final value ofk when Algorithm 5 halts. Then the total number ofinterchanges

t is bounded by kf logf v/-ff, which is O (kf) when f is taken to be a small power of n (e.g.,
or n). Thus the total cost is at most about

[2(2m k)(n k) 4- 2k(n k)]
k=l

4- t max [3k(2n k) 4- 4m(n k) 4- k2 4- 2k(n k)]
l<k<kf

< 2mkf(2n kf) 4- 4tzn(m 4- n)

flops. When f is taken to be a small power of n (e.g., or n), the total cost is O (mnkf)
flops. Normally the is quite small (see 6), and thus the cost is about 2mkf(2n kf) flops.
When m >> n, Algorithm 5 is almost as fast as Algorithm 1; when m n, Algorithm 5 is
about 50% more expensive. We will discuss efficiency further in 6 and 8.

5. Numerical stability. Since we update and modify co,(A), y,(C), and A-B rather
than recompute them, we might expect some loss of accuracy. But since we only use these
quantities for deciding which pairs of columns to interchange, Algorithm 5 could only be
unstable if they were extremely inaccurate.

In 5.1 we give an upper bound for p(R, k) during the interchanges. Since this bound
grows slowly with k, Theorem 3.2 asserts that A can never be extremely ill conditioned,
provided that a(M) is not very much smaller than IIMII2. This implies that the elements of

A-1B cannot be too inaccurate. In 5.2 we discuss the numerical stability of updating and
modifying co,(Ak) and 9/,(Ck).
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5.1. An upper bound on p(R, k) during interchanges. We only consider the case

f>l.
LEMMA 5.1. Let A, C, U Rkk, where A is upper triangular with positive diagonal

elements and U (ui,j). If

i, + ((c/o)(a) <- f, <- , J <- ,
then

v/det[(AU)rAU + CTC] < det(A) (V/ f)k.
Proof. First, note that

k

v/det[(AU)rAU + CrC] VIai ((AcU))
i=1

Let ot O’min(A), and write

W=-(AcU)=( A otis)(&)
By [29, Thm. 3.3.4], we have

k k

i=1 i=1

Since ai (/) o’i (A), for < < k, we have
k k

1--I ri()) H cri(A) det(A).
i=1 i=1

Now, since zT"z is symmetric and positive definite,

H O’i () V/det(r) < (rr lT)i, (ei 112,
i=1 i=1 i=1

and, since

we have

_1 _-iiA_al[2 _< / max
or l<i<k o)i(A min o)i(A)’

l<i<k

k

llell] 2" + (c)---2 < z + (c) < z
oe2 min oi(A)2-i=1 l<i<k

The result follows immediately.
To derive an upper bound on p(R, k) during the interchanges, we use techniques similar

to those used by Wilkinson [43] to bound the growth factor for Gaussian elimination with
complete pivoting,5 Let

W(r) r S 1/(s-l)

s=2

5See [13] for a connection between the growth factor for Gaussian elimination with partial pivoting and the
failure of RRQR algorithms.
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which is Wilkinson’s upper bound on the growth factor for Gaussian elimination with complete
pivoting on a r r matrix. Although W(r) is not a polynomial in r, it grows rather slowly [43]"

THEOREM 5.2. IfAlgorithm 5 performs r interchangesfor some k > 1, then

p(k(M H), k) < 2x/ f (r + 1) W(r + 1).

Proof Assume that Algorithm 5 will perform at least one interchange for this value of k;
otherwise the result holds trivially.

Let I-I (t) be the permutation after the first interchanges, where 0 < < r + 1. Partition

M FI (l) ( /t(l) t/t(l))k "’n-k

where a(l) Rm xk /t(l) R (n-k)
"*k and ""-k 6 Assume that r/(/, r) columns of M +1) are from

/tq) Since there are r + 1 more interchanges, we have6Mq) and that the rest are fromn-k’
O(1, r) <r-l+l.

Without loss of generality, we assume that the first k r/(l ) columns of ""k are
/t(the first k 0(l, z) columns of .,,k and that the last r/(l z) columns of /t(+l).... are the first

r/(1 r) columns of a/t0) Then we can write"an-k"

AI,1 A1,2 B1 B1,2
"-’k A2 2 B2,1 B2 2Rq) (M Hq)) =-- (I) C1,1 C1,2C’k

C2,2

where A2,2, CI,1 E Rr/(/’z)xr/(/’z) and the partition is such that

a(r+l)
R(+1) 7"(M 1-I (+))

These relations imply that

(12)

n(r+l)
AI,1 B1,1

B2,1Uk
Tk

Ck

det(A(/)) det(Al,1) det(A2,2)

and

(13) det(Ar+l)) det(Al,1) V//det [Bf, IB2,1 + Cr Cl,1]1,1

Let f(l) p(Rq), k). By the definition of p(R, k), we have

v/(A-1B2,1122,2 + 2 -<

A1,2
A2,2

B1,2
B2,2

C2,2

for 1 < i, j _< 0(1, r). Applying Lemma 5.1 and recalling that r/(l, r) < r + 1, we have

v/det [B2T,1B2,1 + CT C1,1] < det(A2,2)(v/2(r -1+ 1) f(l)) z-l+l1,1

Combining with (12) and (13), we get

det(A (r+l) det(A/)) (V/2(r 1+ l)f(/>) z-l+lk )<

6It is possible that r/(l, r) < r + since a column may be interchanged more than once.
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On the other hand, Algorithm 5 ensures that

Comparing these two relations, we have

(14) fq) f(r) <_ (2r_/+ fq)) r-+l 0<l<r.

Since

s-1 1

l= (r /)(r + 1)
+

taking the product of the (r 1)(r + 1)st root of (14) with 1, 2 and the rth
root of (14) with 0, we have

\/=1

+V’=0Z_,
r-I 1/2

_< 2 (r + 1) (T- l’J- 1) 1/(r-t) (f(5)m/(r-5
=0 \=0

which simplifies to

f(r) < f(o)2 =’ (r + 1) H sl/(-)
s--2

_< 2f() (r + 1)lA2(r + 1).

Remark 2 at the end of 4.1 implies that f(0) _< V/ f. Plugging this into the last relation
proves the result. q

From 4.4 we have rk _< k log/.v/ft. For example, when < f < n, we have rk < k,
so that p(R, k) <_ 0 (n k l/V(k)).

5.2. Computing the row norms ofA- and the eolurnn norms of Ck. In this section
we discuss the numerical stability of updating and modifying o),(A) and y,(C) as a result
of interchanges, assuming that f is a small power of n.

For any o > 0, we let (C)n(c) denote a positive number that is bounded by oe times
a slowly increasing function of n. By Theorems 3.2 and 5.2, IIA-]] On(1
and Ilfkll2 O (a/(M)) after each interchange. As Algorithm 5 progresses, IIA-II2
increases from On (1lain(M)) to On(1 while Ilfkll2 decreases from On (a(M))
to On (ak+(M)). A straightforward error analysis shows that the errors in 1/coi(Ak)2 and
?’j(Ck) are boundedby On (/a’(M)) and On (e a?(M)), respectively, where e isthe machine
precision. Hence the error in 1/coi (A)2 is less serious than the error in yj (Ck)2, which can be
larger than IICk 1122 when IICk 112 _< On (,/’g cr (M)).

Algorithm 5 uses the computed values of co, (Ak) and ?’, (Ck) only to decide which columns
to interchange. But although these values do not need to be very accurate, we do need to avoid
the situation where they have no accuracy at all. Thus we recompute rather than update or

modify y, (Ck) when maxm <_j <_n-k ’j (Ck) On ( rl (M)). This needs to be done at most
twice if one wants to compute a strong RRQR factorization with Ak numerically nonsingular.
A similar approach is taken in xqp, the LAPACK implementation of Algorithm 1.
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6. Numerical experiments. In this section we report some numerical results for a Fortran
implementation (SRRQR) of Algorithm 5 and the all-Fortran implementation (DGEQPF) of
Algorithm 1 in LAPACK [1]. The computations were done on a SPARCstation/10 in double
precision where the machine precision is 1.1 10-16.

We use the following sets of n n test matrices:
1. Random: a random matrix with elements uniformly distributed in [-1, 1];
2. Scaled random: a random matrix whose ith row is scaled by the factor rli/n, where

r/>0;
3. GKS: an upper-triangular matrix whose jth diagonal element is l/v-] and whose

(i, j) element is -1//, for j > (see Golub, Klema, and Stewart [22]);
4. Kahan (see Example 1 in 2);
5. Extended Kahan: the matrix M S3 R3 l, where

$31 --diag(1, g’, 9
2 g.3/-1) and R3 ll qg Hl

is .a power of 2; - > 0, 0 > 1/41 1, and g.2 .3f_ q92 1; 0 < /z << 1; and

Hi Rll is a symmetric Hadamard matrix (i.e., H Ii and every component of

Hl is +1).
In particular, we chose r/= 20e, 99 0.285, and/x 20e/,v/ft.

In exact arithmetic Algorithm does not perform any interchanges for the Kahan and
extended Kahan matrices.. To preserve this behavior in DGEQPF we scaled the jth columns
of these matrices by 1 100j and 1 10j e, respectively, for 1 < j < n. To prevent
DGEQPF from taking advantage of the upper-triangular structure we replaced all of the zero
entries by random numbers of the order e2.

For each test matrix, we took n 96, 192, and 384, and set f 10/-ff and 6
3 10-13 IIMII2 in SRRQR. For the extended Kahan matrix, we also used f 992/1 and

4/2cr21+1 (M); these results are labeled Extended Kahan*.
The results are summarized in Tables 1 and 2. Execution time is in seconds; rank is the

value of k computed by SRRQR; ts is the total number of interchanges in the inner while-loop
of SRRQR; and

ql (k, n) v/1 + 2fZk(n k) and f ifk<n
q2(k,n)= 0 ifk=n

are the theoretical upper bounds on

cri(M) crj(Ck) )max
l<_i<_k, l<_j<_n-k cri(Ak) crk+j(M

and max
<i <k, l_<j <n-k

respectively, for SRRQR.
The execution times confirm that Algorithm 5 is about 50% more expensive than Algo-

rithm 1 on matrices that require only a small number ts of interchanges. And as predicted,
Algorithm failed to reveal the numerical rank ofthe Kahan matrix. Finally, the results suggest
that the theoretical upper bounds ql (k, n) and q2(k, n) are much too large for 0 < k < n.

For the extended Kahan matrices with f p21 there were no interchanges until the 2/th

step, when the ith column was interchanged with the (2/-t- i)th column for 1, 2 1.
These n/3 column interchanges show that Algorithm 5 may have to perform O(n)
interchanges before finding a strong RRQR factorization for a given f (see 4.4) and can be
more than twice as expensive as Algorithm 1. However, the extended Kahan matrix is already
a strong RRQR factorization with f 104eft for the values of n used here, which is why no
interchanges were necessary.
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Matrix
type

Random

Scaled
random

GKS

Kahan

Extended
Kahan

Extended
Kahan*

TABLE
SRRQR versus DGEQPF: Execution time.

Order
U SRRQR

96 0.20
192 1.57
384 16.2
96 0.19
192 1.48
384 14.5
96 0.20
192 1.58
384 15.5
96 0.21
192 1.59
384 15.7
96 0.17
192 1.38
384 13.4
96 0.38
192 3.21
384 31.4

Execution time
Rank

DGEQPF k
0.13 96 0
0.98 192 0
11.0 384 0
0.15 74 0
1.16 147 0
11.4 290 0
0.13 95 0
1.00 191 0
10.7 383 0
0.13 95
0.99 191
10.5 383
0.15 64 0
1.16 128 0
11.4 256 0
0.15 64 32
1.16 128 64
11.7 256 128

TABLE 2
SRRQR versus DGEQPF." Bounds.

max max _AT1Bk_ijMatrix Order i,j i(Ak) k+j(M) i,j

type N
SRRQR ql (k, n) DGEQPF SRRQR q2(k, n) DGEQPF

96 0 0 0
Random 192 0 0 0

384 0 0 0

96 2.93 5.59x 103 2.38 1.71 98.0 1.75
Scaled 192 3.39 1.13x104 3.04 1.58 1.96x102 1.41
random 384 3.75 2.29x 104 3.76 1.37 3.92x 102. 1.16

96 1.12 1.35x103 1.12 0.71 98.0 0.71
GKS 192 1.09 1.91 x 103 1.09 0.71 1.96x 102 0.71

384 1.07 2.71 x 103 1.07 0.71 3.92x 102 0.71

96 1.04 1.35x103 1.04x 101 0.78 98.0 4.92x 109
Kahan 192 1.04 1.91x103 1.86x107 0.78 1.96x102 1.40x102

384 1.04 2.71x103 5.98x106 0.78 3.92x102 1.27x1023
96 3.22 6.27 x 103 3.22 2.60 98.0 2.60

Extended 192 5.76 1.25 x 104 5.76 5.20 1.96 x 102 5.20
Kahan 384 10.9 2.51 x 104 10.9 10.4 3.92x 102 10.4

96 1.17 1.66x 102 3.22 0.38 2.60 2.60
Extended 192 1.09 6.65 x 102 5.76 0.19 5.20 5.20
Kahan* 384 1.05 2.66x 103 10.9 0.10 10.4 10.4

7. Algorithm 1 and the strong RRQR factorization. Using the techniques developed
in 3, we now show that Algorithm 1 satisfies (5) and (6) with ql (k, n) and q2(k, n) functions
that grow exponentially with k. We need the following lemma.

LEMMA 7.1 (Faddeev, Kublanovskaya, and Faddeeva 16]). Let W (wi,j) R be
an upper-triangular matrix with toi, 1 and [wi,jl < for <_ < j < n. Then

I(W-1)i,jl 2n-2, _< i, j _< n, and IIW-1llF _<
/4 + 6n-
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THEOREM 7.2. Let FI be the permutation chosen by Algorithm 1, and let

(Ak Bk) =7"k(Ml-[).R =_
Ck

Then

(15) ai (Ak) " ai(M)
n_i 2i

(16) aj(C) < ak+j(M) /n- k 2k,

and

forl i kandl j n-k.
Pro@ For simplicity we assume that M (and therefore R) has Nll rank.
Let

R (Ak ckBk)_ D (WI,1 W1,2),,2 DW and Wj (WI,I__ ,)1
where D diag(d, d2 dm) is the diagonal of R, W, Rkk is unit upper triangular,
Wl,2 Rkx(n-k), W2,2 G R(m-k)x(n-k), and wj R is the jth column of Wl,2. Since
Algorithm would not cause any column interchanges if it were applied to R, it follows that
d d2 dk and that no component of Wj has absolute value large than 1.

Let ui,j (a[’ Bk)i,j. Then -ui,j is the (i, k + 1) component of W. Applying the

first result in Lemma 7.1 to the lower right (k + 2) x (k + 2) submatrix of, we have
lui,jl 2k-i, which is (17).

As in the proof of Theorem 3.2, let amax(Ck)/amin(Ak) and write

Then

O’j(Ck) O’j+k(/2 < aj+k(R) IIW2112 aj+k(M) IIW2112.
But

IIW2112 -+-IIA[aBII-t-2

k n-k

< I_t_ZZu2 +[[ [[2[[ - [[2Fi,j ..Ck.._..A
i=1 j=l

k n-k

-1- _,{U,j -+- (gj(Ck)/O)i(Ak))2}.
i=1 j=l

Since 1/o)i(A) < 1/(dko)i(Wl,1)) and vj(C) _< d, we have

u2 )2 )2i, + ((C)/i(A)) < (W21i,k+l -I- 1/ogi(Wl,1 1/o)i(j
Using the second result in Lemma 7.1, it follows that

k k

+ < I1 ; 11 
i=1 i=1

so that W211 4k (n k), which gives (16).
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Similarly, writing

we have

A-lotln_kB ) _--/1 Wl,

cry(M) r(R) < cry(k1) IIWIlI2 cr(A) /n k 2.
Taking k and noting that o’i(Ai) < cri(A:) by the interlacing property of the singular
values [24, Cor. 8.3.3], we get (15). [3

If R has very few linearly independent columns, then we can stop Algorithm 1 with a
small value of k and are guaranteed to have a strong RRQR factorization. Results similar to
Theorem 7.2 can be obtained for the RRQR algorithms in 10, 18, 25], and [3.9].

8. Some extensions. We have proved the existence of a strong RRQR factorization for
a matrix M 6 R xn with rn > n and presented an efficient algorithm for computing it. In this
section, we describe some further improvements and extensions of these results.

Since Algorithm 1 seems to work well in practice [5, 10, 11, 13], Algorithm 5 tends to

perform very few (and quite often no) interchanges in its inner while-loop. This suggests
using Algorithm 1 as an initial phase (cf. [13] and [37]), and then using Algorithm 4 to remove
any dependent columns from A, reducing k as needed (cf. 10] and 18]). In many respects
the resulting algorithm is equivalent to applying Algorithm 5 to M-1 (cf. Stewart [39]).

ALGORITHM 6. Compute k and a strong RRQR factorization.

Compute ?’, (C);
while max <_j <_n-k /j Ck >_ do

jmax "= argmax j<n-k )/j Ck
k:=k+l;

--= :-- "fk(R Ilk k+jmax-1) and H rI Il knt_jmax_l

Update 9/, (Ck);
endwhile;
Compute co,(A) and A- B;repeat

while 3 (R, k) > f do

j such that [(a-1 nk)i,j[ > f or yj(Ck)/Ogi(ak) > f;Find/ and

(ak Bk) "--TP,k(Rl-Ii,j+k) and[-I’--l-IIlij+k;Compute R
C

Modify m,(A), v,(C), and A-B;endwhile;
if minl<i< (.oi(A) <_ ( then

imin :-" argmin<i< 09i(Ak);

Compute R
C

Downdate o,(A), ,,(C), and A-1 B;
endif;

until k is unchanged;
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As before, Algorithm 6 eventually halts and finds k and a strong RRQR factorization.
The total number of interchanges t is bounded by (n k) log/4eft, which is O (n k) when
f is taken to be a small power of n (see 4.4). The formulas for downdating co,(A), v,(C),
and A-1B are analogous to those in 4.1.

Algorithm 6 initializes o),(A) and A-1B after the first while-loop, at a cost of O(kZn)
flops. However, since they are only used to decide which (if any) columns to interchange and
whether to decrease k, they do not need to be computed very accurately. To make the algorithm
more efficient, we could instead use the condition estimation techniques in [4, 5, 10, 27], and
[40] to generate unit vectors u and v such that

and IIB[ A-r v 2 IIB[ A-r 2.

Let the imaxth component of A-lu be the largest in absolute value. To find the smallest entry
in o).(A), we note that

1/O)imax(Ak) max 1/o)i(A) ](A-lu)imaxl
l<i<k

Similarly, let the jmaxth component of B[A-rv be the largest in absolute value. To find the
largest entry of A-1B in absolute value, we compute the jmaxth column of A-1B and look
for the largest component in absolute value. Since the condition estimates cost O (n2) flops,
the resulting algorithm will take nearly the same number of flops as QR with column pivoting
when at most a few interchanges are needed. As Algorithm 6 could take O(n) interchanges
and all condition estimation techniques can fail, Algorithm 6 could be very inefficient and can
fail as well, although we believe that this is quite unlikely in practical applications.

Most of the floating-point operations in Algorithms 5 and 6 can be expressed as Level-2
BLAS. Using ideas similar to those in [3] and [6], it should be straightforward to develop
block versions of these algorithms so that most of the floating-point operations are performed
as Level-3 BLAS.

The restriction m > n is not essential and can be removed with minor modifications to

Algorithms 5 and 6. Thus these algorithms can also be used to compute a strong RRQR fac-
torization for Mr, which may be preferable when one wants to compute an orthogonal basis
for the right approximate null space.

Finally, the techniques developed in this paper can easily be adopted to compute rank-
revealing LU factorizations [9, 13, 31, 32]. This result will be reported at a later date.

Acknowledgments. The authors thank Shivkumar Chandrasekaran and Ilse Ipsen for
many helpful discussions and suggestions, and Gene Golub, Per Christian Hansen, W. Kahan,
and Pete Stewart for suggestions that improved the presentation.
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PARALLELIZING THE QR ALGORITHM FOR THE UNSYMMETRIC
ALGEBRAIC EIGENVALUE PROBLEM: MYTHS AND REALITY*

GREG HENRYt AND ROBERT VAN DE GEIJN

Abstract. Over the last few years, it has been suggested that the popular QR algorithm for the unsymmetric Schur
decomposition does not parallelize. In this paper, we present both positive and negative results on this subject. In
theory, asymptotically perfect speedup can be obtained. In practice, reasonable speedup can be obtained on an MIMD
distributed memory computer for a relatively small number of processors. However, we also show theoretically that it
is impossible for the standard QR algorithm to be scalable. Performance of a parallel implementation of the LAPACK
DLAHQR routine on the Intel ParagonTM system is reported.

Key words, parallel computing, eigenvalue, Schur decomposition, QR algorithm
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1. Introduction. Distributed memory parallel algorithms for the unsymmetric eigen-
value problem have been elusive. There are several matrix multiply-based methods currently
being studied. Auslander and Tsao [2] and Lederman, Tsao, and Turnbull [27] have a ma-
trix multiply-based parallel algorithm, which uses a polynomial mapping of the eigenvalues.
Bai and Demmel [4] have another parallel algorithm based on bisection with the matrix sign
function. Matrix tearing methods for finding the eigensystem of an unsymmetric Hessenberg
matrix have been proposed by Dongarra and Sidani [11]. These involve making a rank-one
change to the Hessenberg matrix to create two separate submatrices and then finding the eigen-
pairs of each submatrix, followed by performing Newton’s method on these values to find the
solution to the original problem. None of the above algorithms are particularly competitive in
the serial case. They suffer from requiring more floating point operations (flops) and/or yield
a loss of accuracy when compared with efficient implementations of the QR algorithm.

Efficient sequential (and shared memory parallel) implementations of the QR algorithm
use a blocked version of the Francis double implicit shifted algorithm 15] or a variant thereof
[23]. There have also been attempts at improving data reuse by increasing the number of shifts
either by using a multi-implicit shifted QR algorithm [3] or pipelining several double shifts
simultaneously [34, 35].

A number of attempts at parallelizing the QR algorithm have been made. (See Boley and
Maier [9], Geist et al. [17], Geist and Davis [16], and Stewart [30].) Distributing the work
evenly amongst the processors has proven difficult for conventional storage schemes, especially
when compared with the parallel solution of dense linear systems [25, 26]. Communication
also becomes a more significant bottleneck for the parallel QR algorithm. As noted by van
de Geijn [32] and van de Geijn and Hudson [33], the use of a block Hankel-wrapped storage
scheme can alleviate some of the problems involved in parallelizing the QR algorithm.

In this paper, we present a number of results of theoretical significance on the subject.
We reexamine the results on the Hankel-wrapped storage schemes in the setting of a parallel
implementation of a state-of-the-art sequential implementation. Theoretically we can show
that under certain conditions the described approach is asymptotically 100% efficient: if the
number of processors is fixed and the problem size grows arbitrarily large, perfect speedup
can be approached. However, we also show that our approach is not scalable in the follow-
ing sense: to maintain a given level of efficiency, the dimension of the matrix must grow

*Received by the editors March 1, 1995; accepted for publication September 12, 1995.
tlntel Supercomputer Systems Division, 14924 N.W. Greenbrier Parkway, Beaverton, OR 97006 (henry@ssd.

intel.com).
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linearly with the number of processors. As a result, it will be impossible to maintain per-
formance as processors are added, since memory requirements grow with the square of the
dimension, and physical memory grows only with the number of processors. While this could
be a deficiency attributable to our implementation, we also show that for the standard imple-
mentations of the sequential QR algorithm, it is impossible to find an implementation with
better scalability properties. Finally, we show that these techniques can indeed be incorpo-
rated into a real code by giving details of a prototype distributed memory implementation
of the serial algorithm Dr.AHQR [1 ], the LAPACK version of the double implicit shifted QR
algorithm. Full functionality of the LAPACK code can be supported. That is, the tech-
niques can be extended to allow for the cases of computing the Schur vectors, computing the
Schur decomposition of H, or just computing the eigenvalues alone. We have implemented
a subset of this functionality for which the code is described and performance results are

given.
Thus this paper makes four contributions: it describes a data decomposition that allows,

at least conceptually, straightforward implementation of the QR algorithm; it gives theoretical
limitations for parallelizing the standard QR algorithm; it describes a parallel implementation
based on the proposed techniques; it reports performance results of this proof-of-concept
implementation obtained on the Intel ParagonTM system.

2. Sequential QR algorithm. While we assume the reader of this paper to be fully versed
in the intricate details of the QR algorithm, we briefly review the basics in this section.

The Francis double implicit shifted QR algorithm has been a successful serial method
for computing the Schur decomposition H QTQ. Here T is an upper pseudotriangular
matrix, with 1 or 2 2 blocks along the diagonal, and Q is orthogonal. We assume
for simplicity that our initial matrix H is Hessenberg. The parallelization of the reduction
to Hessenberg form is a well-understood problem, and, unlike the eigenvalue problem, the
Hessenberg reduction has been shown to parallelize well [6, 12].

One step of the Francis double shift Schur decomposition is in Figure 1. Here, the
Householder matrices are symmetric orthogonal transforms of the form

UVT

Pi =I-2vTv

where v E n and

0 ifj <i+lorj >i+3,
vj= 1 ifj =i+1.

We assume the Hessenberg matrix is unreduced and, if not, we find the largest unreduced
submatrix of H. Suppose this submatrix is H(k l, k l). We then apply the Francis
Hessenberg QR (HQR) step to the rows and columns of H corresponding to the submatrix;
that is,

H(k I, :) +-- Pi H(k l, :),
H(:,k :/) -- H(:,k l)Pi.

The double implicit shifts in this case are chosen to be the eigenvalues of

e=eig(H(l-1 :l,l-1 :l)).

In practice, after every couple of iterations, some of the subdiagonals of H will become
numerically zero, and at this point the problem deflates into smaller problems.
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Francis HQR Step
e eig(H(n 1 n,n 1 :n))
Let x (H e(1)In) * (H e(2)In)el
Let P0 )nn be a Householder matrix s.t.

Pox is a multiple of
H +- PoHPo
for/= n 2

Compute Pi so that
Pi H has zero (i + 2, i) and

(i + 3, i) entries.
Update H +-- Pi HPi
Update Q - QPi

endfor

FIG. 1. Sequential Francis HQR step.

3. Parallel QR algorithms.

3.1. Data decomposition. We briefly describe the storage scheme presented in [33].
Suppose A )nn where n mhp for some integers h and m, and p is the number of
processors Suppose A is partitioned as follows

A 1,1 A 1,2 A 1,mp- A 1,mp

A2,1 A2,2 A2,mp-1 A2,mp
A3,1 A3,2 A3,mp-1 A3,mp

Amp, Amp,2 Amp,mp- Amp,rap

where Ai,j hxh. We denote processor k owning block Ai,j with a superscript Ai(). The
one-dimensional block Hankel-wrapped storage for m assigns submatrix Ai,j to processor

(i + j 2) mod p.

That is, the distribution amongst the processors is as follows [33]"

a(0)
*1,1

2,1

(2) A (p-2) A (p-l)(1) AA1,2 1,3 "*l,mp-1 "*l,mp

(2) A(3) a(p-1) a(o)
2,2 *2,3 "*2,mp-1 "*2,mp

3) ,(4) A(0)
3,2 "/-13,3 3,mp-1 3,mp

(p-3) (p-2)Amp,mp_ Amp,rap

where the superscript indicates the processor assignment.

3.2. Basic parallel algorithm. We start describing the basic parallel QR algorithm by
considering the Francis HQR step and finish this subsection with a brief look at the overall
algorithm. The basic loop in Figure 1, indexed by i, is generally referred to as "chasing the
bulge." Figure 2 gives an arbitrary example of 7, in a 20 20 matrix, where the integers
indicate nonzero elements of the upper Hessenberg matrix, and the I3’s indicate the fill-in at
that stage of the loop. In the next step of the Francis HQR step, a Householder transformation

Pi is computed and applied from the left and the right. The affected elements are within the
dashed lines. After this application of the Householder transformation, the bulge moves down
the diagonal one position, and the next iteration starts.
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000001 ll-1-
O00001111
O0001111
0001111
001111
122221
221221
r2T2-2-,
II
B22II
LB+B_2,

12222233333
12222233333
12222233333
12222233333
12222233333
,13333300000

33333000001,13333300001
,3333300000j
0000011111
0000011111
00001Ill1
00011111
0011111
122222
22222
2222
222
22

FIG. 2. Data decomposition and chasing of the bulge.

Figure 2 also demonstrates the possible parallelism in the Francis HQR step: the applica-
tion of Pi to the appropriate elements of H, referred to as a reflection, is perfectly distributed
among the processors, except for the processor that owns the bulge and the fill-in elements.
This processor must do slightly more work (associated with the intersection of the two boxes).
It is the parallelism within the application ofeach Householder transformation that is the key
to the success of the approach.

The entire Francis HQR step now parallelizes as follows:
1. The processor(s) that holds eig(H(n n, n n)) computes the shifts and

sends them to the first processor. Alternatively, all processors could compute the
shifts, since it is a lower-order operation.

2. The processor that owns the data required to compute P0 computes it and then broad-
casts it to all other processors.

3. All processors update their portions of the matrix according to P0.
4. for/= n-2,

(a) the processor that owns the data required to compute Pi computes it and then
broadcasts it to all other processors;

(b) all processors update their portions of the matrix according to Pi.
Naturally, every time the computation hits data that lies on the boundaries between processors,
a limited amount ofcommunication is required to bring appropriate rows and columns together.

The overall Schur decomposition involves more than just the application of Francis HQR
steps. Deflation decreases the problem size as subdiagonals converge to zero. Since a Francis
HQR step requires an unreduced Hessenberg matrix, at some point in the Schur decomposition
we have the following matrix [18]:

H12 H.13 ]022 923
H33

where H33 has already converged and H22 is the largest unreduced Hessenberg matrix above
H33 in the current iteration. One might worry that the property of each row and column being
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0 0 1 1,1-1-1
001
0 01 11.1
0011111
00111.111

122u. 222
2 2!222
222-2
B22

12222233333
2222233333
12222233333
12.2 2 2 23 3 3 3 3
12222233333
13333300000
1333330000 n3333300000i13333300001133333000000000011111
0000011111
000011111

FIG. 3. Chasing ofthe bulge after deflation.

distributed amongst all the processors no longer applies to 022. In the Schur decomposition,
however, H12 and H23 are also involved in the computation (see Figure 3) as well as the Schur
vectors, so that the overall work distribution remains equal even after deflation has reduced
the problem size. Again, we point out that it is the parallelism within the application of each
Householder transformation that is the key to the success of this approach. In 4, experimental
results confirm that the overall performance of the code is fairly accurately modeled bythe
first few iterations.

3.3. Analysis o1’ the simple parallel algorithm. Before discussing the finer details of
the parallel code, let us analyze the simple algorithm given above. This will give us an idea of
how well the basic approach works. For simplicity, we restrict our timing analysis to a single
Francis step. We justified this restriction in the previous subsection and will further justify it
with discussion of experimental results in 4. We also ignore shift derivation, convergence,
or decoupling set-up costs. We show later how this extra work can be done without incurring
excessive overhead.

3.3.1. Cost analysis. For our analysis, we will use the following model: performing a
floating point computation requires time y. Sending a message of length n between two nodes
requires time ot + n, where ot represents the latency, and/3 the penalty per double precision
number transferred. For convenience, we shall assume all communication is to the nearest
neighbor (processor in a network), and hence no network conflicts occur. Processors can send
and receive simultaneously.

We start by computing the sequential expense of the algorithm: computing a Householder
transformation from a vector of length three requires C, which are some small constant flops.
Applying such a Householder transformation of size three to three rows or columns of length
n requires 10n flops. Within the loop indexed by i, each transformation is applied to n

+ 1 triplets of rows and + 3 triplets of columns. Applying the transformations to the
Hessenberg matrix therefore requires 10(n + 4) flops and applying the transformations to the
Schur matrix requires On flops. The total cost of executing a single Francis step thus becomes
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approximately

n-1

(C + 10(n + 4) + I0n) , 20nZv + O(n).
i=1

Now turning to the parallel implementation, contributions to the critical path are given
roughly as follows" computing a transformation still contributes C flops. Broadcasting this
transformation requires time ot / 3/3, since the parallel computation can be arranged to pipeline
around the logical ring of processors. After this, the processor that computed the transforma-
tion must update its part of the rows and columns. The row and column vectors are of length
approximately n/p, with a few extra introduced by the bulge. This contributes the equivalent
of about 20(n/p + 4) flops. Now, the processor that computed the current transformation can
start computing the next transformation, and the process repeats itself n times. The total
contribution becomes

t" ) " )Cv+IO +4 +10-9/+ot+3/3 =Cnv+20--V+40n’+not+3nfl+O(1).
i=1 P P
(1)

Here we cannot ignore O (n) terms, since if p is comparable to n, these terms matter.
Equation (1) ignores the communication required when a boundary of processors is

reached, which happens every h iterations. Each "border" row contains roughly (n i)/p
elements per processor, and each "border" column contains roughly i/p elements per pro-
cessor. Using transformations of size three implies that when the boundary of processors is
reached, the next transformation will also cross the boundary. Hence 2n/p items must be
communicated to the right and returned. This means that the total communication volume for
"border" or boundary data is

n(4)(2)

The communication volume in (2) can be done in anywhere from one to eight messages
depending on the implementation. Eight messages are required when both rows and both
columns for the two iterations are sent separately and returned again. One message is possible
if data are only sent rightward around the ring, and the results accumulated into a buffer and
sent back in O (1) communications at the end of the Francis step. For the purpose of our
model, we assume two communications, requiring time

(3) 2 (o + 2n--fl)P

for a total estimated parallel time of

(4)
n2

2
n n2

Test(n, p, h) Cn’ -+- 20--y + 40n, + not + 3nil + hot + 47--/3np + O(1).
P

We conclude with a few additional comments.

That is, because of the pipeline between computation and communication, the effective overhead is the cost for
the first message transfer to the nearest neighbor. While the second transfer of the same message starts on the next
node, the first node has already started the computation.
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Equation (4) ignores a slight disruption in the pipeline of communication and computa-
tion, because it is no longer the processor that computed the current transformation that also
computes the next transformation. This disruption is minor and we will ignore it.

It may appear that at the end of a single Francis step, the processors must synchronize.
However, if Pp-2 is the last processor to compute a transformation, P0 will complete its
computation early in the pipeline and will have enough information to start the next Francis step
before the pipeline is flushed.2 If Pp-2 is not the last processor to compute a transformation,
a slight bubble in the pipeline can be expected. This could occur depending on the exact
mapping of data used or after deflation.

However, (4) does reflect the expected cost per iteration during the first few iterations.
Since experimental results show that the first few iterations quite accurately predict the overall
performance of an implementation that includes deflation, we will use (4) for subsequent
analysis, ignoring the stated deficiencies in our model.

3.3.2. Sealability. On current generation architectures, the above model shows that the
bulk of inefficiency comes from the number ofmessages generated, since ot is typically several
orders of magnitude greater than either/3 or V. To investigate the scalability of the approach,
we start by computing the estimated speedup, based on the estimated cost of a single Francis
step:

(5) speedupest(n, p, h)
Tseq(h) 20n2 p

4 pTest(n, p, h) 20-V +4 + O(n) 1 + - + 0(-)

If h is chosen big enough, e.g., h n/p, the second term in the denominator also becomes
O(p/n), and we can make the following observations: if p is fixed, and n is allowed to grow,
eventually perfect speedup will be approached. Furthermore, the estimated efficiency attained
is given by

(6) efficiencyest(n, p, h) speedupest(n, p, h)
1 + O -p)"

From this last equation, we can say something about the scalability of the implementation: in
order to maintain efficiency, we must grow n linearly with p. This poses a serious problem:
memory grows linearly with p, but memory requirements grow with n2. We conclude that
this approach to parallelization will not scale, since memory constraints dictate that eventually
efficiency cannot be maintained, even if the problem is allowed to grow to fill the combined
memories.

The previous modeling extends to the overall algorithm in a simple manner. On average,
to find the eigenvalues of a matrix of size n requires 2n HQR iterations. In every other iteration,
there is typically a deflation of size one or two. Since deflation occurs less frequently in the
beginning than the end, our overall model satisfies

overall flops 3 20k2 20n3,
k=l

where 3 is a heuristic fudge factor. Compare, for example, 18] which uses a similar heuristic,
but different fudge factor, to suggest overall flops at 25n3.

Similarly, we can extend all of the formulas in the previous subsection. In (4), the number
of communication start-ups is n + 2n/h. For the overall algorithm, before the bundling

2Recall that every other processor owns diagonal blocks in an antidiagonal mapping.
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described in 3.4.4, we can estimate

communication start-ups 3. k+ +
k=l

3.3.3. Theoretical limitations, For many dense linear algebra algorithms, better scala-
bility can be obtained by using a so-called two-dimensional data decomposition. Examples
include the standard decomposition algorithms, like LU, QR, and Cholesky factorization
[13, 19], as well as the reduction to condensed form required for reducing a general matrix
to upper Hessenberg form [6, 12]. It is therefore natural to try to reformulate the parallel QR
algorithm in an attempt to extract an algorithm that has better scalability properties. In this
section we show theoretically that there is an inherent limitation to the scalability of the QR
algorithm that indicates that a more complicated data and work decomposition alone cannot
improve the scalability of the parallel implementation.

We present a simple analysis of the theoretical limitations of the QR algorithm. There is
a clear dependence in the chasing of the bulge that requires at least O(n) steps to complete
one Francis HQR step. The associated computation can be thought of as running down the
diagonal of the matrix. Moreover, the last element of the matrix must be computed before
the next Francis step can start, since it is needed to compute the shift. Since there are O(n2)
computations performed in one such step, the speedup is limited to O (n), which indicates that
the maximal number of processors that can be usefully employed is O(n). Hence, p <_ Cn
for some constant C.

Let us now analyze the implications of this: if efficient use of the processors is to be
attained, the equation p < Cn must hold for some constant C. The total memory requirements
for a problem of size n is Kn2 for some constant K. Hence,

Kp2memory requirements- Kn2 >_ -- O(p2).

Notice, however, that memory only grows linearly with the number ofprocessors. We conclude
that due to memory restrictions, it is impossible to solve a problem large enough to maintain
efficiency as processors are added. In the conclusion, we indicate how it may be possible to
overcome this apparent negative result.

3.4. Refinements of the parallel algorithm. The above analysis shows that there is
reason to believe that trying to generalize the Hankel-wrapped mapping to yield the equivalent
of a two-dimensional wrapping will not result in the same kinds of benefits as it would for a
factorization algorithm. However, there are a number of refinements that can be made that
will improve the performance of the parallel QR algorithm. Moreover, the algorithm as it was
described in 3.2 is far from a complete implementation.

3.4.1. Accumulating Q. The algorithm in 3.2 ignores the accumulation of the orthogo-
hal matrix Q. There is a perfect parallelism in this operation, requiring no more communication
than must already be performed as part of the updating of H.

Each stage of the Francis HQR step in Figure 1 requires the computation Q +-- Q Pi.
Since Pi is broadcast during the update of the Hessenberg matrix, all processors already have
this information. The computation Q +- Q Pi reflects three columns of Q. Which three get
reflected depends on i. Since Q is not accessed elsewhere within the HQR kernel, we can
assume Q has the best data storage possible for reflecting three columns. This data storage is
a one-dimensional row mapping. With a one-dimensional row mapping, the data in any row
is always contained on a single processor. Each row in a column transform can be computed
independently. So there is no extra communication required to complete the column transform,
and this extra work is embarrassingly parallel.
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FIG. 4. Bundling Householder transformations and order of updates.

3.4.2. Deflation. We previously mentioned that as subdiagonal elements become numer-
ically zero, the process proceeds with unreduced submatrices on the diagonal. This process
is known as deflation. One convenient way to determine the points where such a block start
and end is to broadcast enough diagonal information during the bulge chase so that at the
end of a complete HQR step, all processors hold all information required to determine when
breakpoints occur. After rotating columns i, + 1, and + 2, column remains fixed for the
remainder of that Francis HQR step. Therefore, the three elements of the tridiagonal portion
of H in column (H(i + 1, i)) can also be broadcast with the three elements defining
the Householder reflection at step i. This requires sending six elements instead of three per
transformation. While this creates a certain redundancy, the overhead is O(n), and hence
lower order.

3.4.3. Determining shifts. Related to the refinement mentioned above concerning defla-
tion, it is convenient to broadcast all entries of the tridiagonal of the newly formed Hessenberg
matrix, as we describe in 3.4.2, since this allows all processors access to the data required to
compute the next shifts.

3.4.4. Bundling transformations. As is argued in 3.3, the bulk of the communication
overhead is due to communication start-up cost. This cost can be amortized over several com-
putations and applications of Householder transformations by bundling several Householder
transformations before broadcasting.

We direct the reader’s attention to Figure 4.
This picture represents the data in the block that currently holds the bulge. This block is

assumed to be completely assigned to one processor. In chasing the bulge a few positions, to
where it moves from the position indicated by "B"s to the position indicated by "b"s, a number
ofHouseholder transformations are computed. To do so, only the computation associated with
the region marked by "1" needs to be performed. Thus these transformations can be bundled
by performing this minimal computation, followed by the broadcast, after which the other
regions, marked by "2" and "3" can be updated. The net effect is that the number of start-ups

3As is noted in Henry [20, 23], the minimal information needed to determine the upcoming transforms is roughly
eighty percent ofthe total flops required to actually complete the entire update in region "1" ofFigure 4. This "partial"
step is referred to as a lookahead step and can also be used to determine better shifts (cf. Henry [22]).
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is reduced by the number of transformations that are bundled. Naturally, bundling across
processor boundaries becomes complicated and has only marginal benefit.

Repeating the analysis in 3.3 above, we get the following estimates: computing r trans-
formations, updating only region "1" in Figure 4 requires approximately

r(C + 10(r + 4))7’

time. Broadcasting the transformations requires time

o + 3r/3.

Next, updating regions "2" and "3" on the processor that computes the transformations requires
time

to update matrix A, and

n
lOr-F

P

to update matrix Q. This is repeated n/ r times, and border information must be communicated
every h transformations, giving a (very rough) total estimated time of

// //0/ //220n2 g.+ Cng + 40ng + -oe + 3n/ + 2 + 4 /3 + O(1)
p r h pp

Clearly the above estimate is only a rough estimate: it suggests that increasing bundling factor r
arbitrarily will continue to improve total time. Notice that this estimate is only reasonable when
the pipe is undisturbed. However, every time a boundary is encountered, the boundary will
be disturbed and therefore larger bundling, factors will increase load imbalance. Nonetheless,
our model gives us insight.

4. Performance results. In this section, we report the performance of a prototype work-
ing implementation of the described parallel implementation. Our implementation is a par-
allelization of the LAPACK [1] routine DLAHQR, and is mathematically exact except that
the sequential routine applies one final rotation per converged eigenpair so that the resulting
"Schur" form has some regularity. Hence, there is no need to report in detail on the numerical
accuracy of the implementation: all numerical properties of the LAPACK code apply to this
parallel implementation.

We report performance obtained on an Intel ParagonTM XP/S Model 140 Supercomputer,
running SUNMOS version S 1.4.8. The following is crucial to our analysis:

Since finding all eigenvalues of a very large matrix takes a considerable
amount of time (measured in days) we report the performance of the algo-
rithm during the first five iterations. For problems of size 2750 or less, and
for 64 processors or less, we saw extrapolating total time from measuring
five iterations always yielded a predicted performance that was within three
percent measured performance when the code was executed to completion.4

In addition, it is hard to measure speedup with respect to a single processor, due to insufficient
memory to hold a large matrix. As a result, we measured the performance of the best-known
sequential QR algorithm and report the parallel performance with respect to that: the single

4This is possible because we restricted our timings to a Schur decomposition.
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p g/

4 2000
8 2800
16 4000
32 4800
48 6000
64 8000
96 9600

TABLE
Parallel HQR.

Scaled
speedup Efficiency

2.5 .63
5.2 .65
10.0 .63
17.1 .53
23.0 .48
30.1 .47
37.4 .39

node performance ofthe fastestQR algorithm (not necessarily a standard double shift algorithm
from LAPACK) peaks at 10 Mflops for the five iterations. We report scaled speedup as being
the speedup obtained with respect to the calculated time required to run a given problem on
a single node performing at 10 Mflops. In this case, actual flops within the algorithm were
calculated and used for results, and not heuristics.

Many parameters are used to describe the parallel implementation, including the. number
of nodes used p, the matrix size n, the blocking factor h, and the bundling factor r. All the
runs in Table were for problems of size approximately 10 to 14 Mbytes per processor, all
with blocking factors h given by n/p, with a bundling factor of r 2. Our models predict that
varying h and r impacts communication overhead incurred. However, in practice, the major
source of inefficiency appears to come from the fact that row and column updates do not have
the same memory access patterns and therefore execute at different rates. Our experiments
indicate row transforms are 13 percent faster than column transforms. At each step there is
a roughly even amount of work for all the nodes, but there is not the same amount of row or
column work. This means that at each step there is a delay for a few of the nodes to complete
the ring broadcast. Hence, although our model predicts the load balance to be quite good, the
different rates of execution make it much less well balanced. This shows up in the timings
given in Table 1. Notice that, at best, about 65 percent efficiency is attained.

5. Conclusion. The research described in this paper was meant as a response to claims
that no parallelism exists in the QR algorithm. The theoretical results in this paper show
there are approaches to implementing the QR algorithm that allow parallelism to be extracted
in a natural way. The actual implementation of this method on a high performance parallel
computer shows that, in practice, parallelism can be extracted as well.

We caution the reader against misinterpreting the results in this paper as largely supporting
the notion that new methods like those developed by Bai and Demmel [4] and Dongarra
and Sidani [11] must be pursued if nonsymmetric eigenvalue problems are to be solved on
massively parallel computers. Let us address some of the arguments that can be made to
support such an interpretation and how these arguments are somewhat unsatisfactory.

No parallelism exists in the nonsymmetric QR algorithm. We believe the major results in
this paper are a counterexample to this statement, both in theory and practice.

The performance of even the sequential algorithm leaves something to be desired. One
argument, for matrix-matrix multiplication-based methods is that matrix multiplication can
achieve much higher performance rates than a kernel that applies a Householder transfor-
mation. This more than offsets the added floating point operations required for such novel
solutions. This argument is true only because the matrix-matrix multiplication is recognized as
an important kernel that warrants highly optimized implementation. It is the data reuse avail-
able in the matrix-matrix multiplication that allows near-peak performance to be achieved
on a large number of platforms. However, a careful analysis of reuse of data when multiple
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Householder transformations are applied, which could be exploited with bundling, shows that
the performance of the sequential QR algorithm could be greatly improved if such a kernel
were assembly coded. Clearly a user who can afford a massively parallel computer would be
able to afford to assembly code such a kernel.

One could argue that assembly coding this kernel would only improve the 40 percent of
total time spent in useful computation and hence would actually decrease efficiency. However,
we argue that since most overhead is due to load imbalance, the total time should benefit, not
just the time spent in useful computation.

Parallel QR algorithms cannot be scalable. One could draw this conclusion from 3.3.3.
However, notice that the analysis holds for the algorithm when only a single double-shift is used
during each iteration. If a method is parallelized that uses s shifts, the total computation per
iteration is increased to O(sn2), while the dependence during the bulge chase only increases
to O(n + s) if multiple bulges are chased in a pipelined fashion. We conclude that the limit
on speedup is now given by O(sn2)/O(n + s) O(sn). O(sn) processors can be usefully
employed, leading to memory requirements

memory requirements Kn2 >-- O

As long as p/s2 O(1), i.e., s O(/), it may be possible to achieve scalability while
meeting the fixed memory per processor criteria.

Scalable implementations ofthe QR algorithm may be achievableforparallel implementa-
tions that use s shifts simultaneously, provided the number ofshifts grows with the square-root
of the number ofprocessors.

We must note that our data decomposition inherently requires n to grow with p and there-
fore it will not provide for the required parallel implementation. Therefore, generalizations to
two-dimensional data decompositions will be necessary.

Notice that some of the above comments indicate that many of the observations made
from the earlier sections were merely due to the fact that in this paper we restricted ourselves
to discussing the parallel implementation of widely used QR algorithms.

In contrast, we mention the advantages of using the QR algorithm:
Fewer flops, fast convergence. In many cases (cf. [5]), other algorithms can require

several times the number of floating point calculations (although they can be in matrix multi-
plication).

High accuracy. The QR algorithm has always remained one of the most accurate
algorithms for the unsymmetric Schur decomposition.

Parallelism. This paper demonstrates that for a moderate-sized system, parallelism is
possible.

We conclude by saying that the reason parallel QR algorithm implementations may not be
competitive is because insufficient resources have been allocated to study their implementation.
Those resources are currently being used instead to explore novel algorithms. If someone has
the required resources, our research points clearly to what properties a parallel implementation
must have to be successful.

Acknowledgments. Our final runs were made on Sandia’s ParagonTM XP/S Model 140
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system. SUNMOS stands for Sandia and University ofNew Mexico Operating System and is a
joint collaboration between Sandia National Laboratories and UNM. SUNMOS is copyrighted
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AN OVERDETERMINED SCHWARZ ALTERNATING METHOD*

HUOSHENG SUN AND WEI-PAI TANGt

Abstract. Developing modern extensions of the Schwarz alternating method (SAM) has been a primary focus in
the research of domain decomposition during the past 10 years. Among the various research efforts, the generalized
Schwarz alternating method (GSAM) was an attempt to use the Robin condition

0u
wu -t- (1 cO)nn

on those artificial boundaries to improve the performance of the SAM. Its convergence rate is much faster than
the classical SAM (with a large overlap), yet only a minimum overlap is required. Unfortunately, sensitivity of the
convergence of the GSAM to the parameter o) has limited its practical applications. In this paper, a new kind of
coupling is proposed which possesses the same benefits as the GSAM. The advantage of our new algorithm over
the GSAM is that the optimal convergence rate is achieved on a wider range of the parameter. That is, selection of
the optimal parameter is not crucial to the new algorithm’s performance. Numerical tests have been carried out for a
variety of difficult problems including nonsymmetric and indefinite problems.

Key words. Schwarz alternating method, generalized Schwarz splitting, generalized Schwarz alternating method,
overdetermined Schwarz alternating method, domain decomposition, parallel computation, overlap

AMS subject classifications. 65F10, 65N10

1. Introduction. Schwarz-type alternating methods have become some of the most im-
portant approaches in domain decomposition techniques during the past few years [2, 3, 5,
7, 9-11, 13, 15-18, 20]. The theoretical foundations for the classical Schwarz alternating
method (SAM) and its modern extension are maturing [11, 19, 21]. Our list of references can
only reflect a small portion of the studies done in this direction. Current popular approaches
are seeking superior preconditioners to improve performance. A multilevel preconditioner,
for example, is a typical technique used by many [3, 17, 19, 21 ]. However, one of the most
interesting aspects of the SAM, namely, the coupling on those artificial boundaries, has not
received enough attention. Our studies show that further investigation in this direction can be
promising as well.

It is well known that the amount of overlap affects the rate of convergence, yet large
overlap is not desirable. Tang proposed generalized Schwarz splitting a few years ago [18].
One special element of his approach to the solution of an elliptic PDE is to use the Robin
boundary condition

cou + (1
on

on the artificial boundaries. R Lions 11 presented a very similar idea, "a variant for nonover-
lapping subdomains," in using the Robin condition on the interfaces between subregions.

It was shown that a fast convergence can be achieved with minimum overlap if an optimal
co is chosen 18]. The convergence is even faster than with the classical SAM with a large
overlap. The minimum overlap requirement is, of course, an attractive feature of the general-
ized Schwarz alternating method (GSAM). Unfortunately, the analysis also indicates that the
convergence can be sensitive to this parameter. In particular, to identify a robust algorithm
for estimating the optimal parameter in real applications is an extremely difficult task. An

*Received by the editors December 9, 1993; accepted for publication (in revised form) March 9, 1995. This
research was supported by the Natural Sciences and Engineering Research Council of Canada, and by the Information
Technology Research Centre, which is funded by the Province of Ontario.

tDepartment of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
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attempt to use a similar idea in a symmetric successive overrelaxation (SSOR) for removing
the sensitivity is not successful.

Therefore, retaining the good features of the GSAM, namely fast convergence and the
minimum overlap requirement, and eliminating the sensitivity of any parameter to the conver-
gence, are the two most important characteristics we need for the new approaches.

It is easy to see that the motivation behind the GSAM is to use the information of both
the unknown and its derivative in the coupling of the neighboring subdomains. A weighted
combination ofthe unknown and its derivative forces a contribution ofboth. If the combination
is proper, a fast convergence with a minimum overlap can be achieved. This combination,
therefore, poses a "stronger" constraint, or consistency of the neighboring solutions, on those
artificial boundaries. On the other hand, the most forceful combination of this constraint can
only be reached, in a very narrow range of the parameter co. Though the GSAM suffers from
its practical implications, it demonstrates a successful attempt to use a stronger coupling.
If a more vigorous coupling between the solutions of those neighboring subdomains can be
introduced, the ideal goal may become reality.

Based on the above observation, we are looking for alternative couplings which can be
introduced between the neighboring subdomains. In fact, the enforcement of the solutions
between the two neighboring subdomains may not necessarily be just on the artificial bound-
aries. On the whole overlapping part of the two neighboring subdomains, the two solutions
also have the same values for both the unknown and its derivative. Therefore, we can introduce
an artificial boundary layer for the corresponding artificial boundary. The Robin condition
is imposed on the entire layer. The primary motive of the new approach is to impose the
constraints on the boundary layer rather than on a single boundary as the GSAM did. We
hope that this stronger enforcement will be beneficial to the convergence behavior of the new
approach.

In the next section, the new method, the overdetermined Schwarz alternating method
(OSAM), is introduced. Section 3 describes the technique for the discretization of the artificial
boundary layer. The analysis of the convergence for the model problem is shown in 4.
Numerical testing results are shown in 5. The last section concludes.

2. Overdetermined SAM. Let L be an elliptic operator

where w, w2, s, t, and c are functions of x and y which satisfy

1/31 (X, y), //32(X y) > C > O, c(x, y) > O.

Consider the following boundary value problem:

L(u) f, 2,
(2)

u g,

where 2 is a bounded region in R2. For simplicity, we consider only the two-overlapping-
subdomain case (see Figure 1). The generalization to an irregular solution domain or mul-
tisubdomain is straightforward. The rectangular solution region 2 is partitioned into two
overlapping subdomains f2 and f2. Let

1-’21 02 1, 1-’12 010 2,

F1 0" O 0"1, F2 0" O 0"2.

1Our methods can also be applied to nonself-adjoint and indefinite cases (see 5).
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F221
Fl12

FIG. 1. Artificial boundary layers oftwo overlapping subdomains.

Here, 1-’12 and 1-’21 are the artificial boundaries for subdomains ’1 and f22, respectively. To
make the picture more readable, the ’2 has been shifted upwards slightly. We introduce
two artificial boundary layers/21 and/22 (shaded parts in Figure 1), which are next to the
corresponding artificial boundaries I"12 and 1-’21 (they will be called boundary layers, for
simplicity, later). The thickness of these layers depends on the grid. When a uniform grid
is employed, the corresponding thickness of the boundary layer will be the grid size h. For
a general triangular mesh, the boundary layer will be the union of all triangles for which at
least one of its edges or nodes is on the artificial boundary. The motivation for this choice is
to allow the minimum overlap needed in the new algorithm. Denote 1-" and12 1-’21 as the inner
boundaries of the boundary layers/21 and/22, respectively.

The Robin condition is imposed on the entire boundary layer. Then, a new problem can
be stated as follows:

O)
/(u) f,

b(ul)]1 b(u2)lc,,

XEI,

(4)
L(/,/2 f,

uzlr2 g,

b(uz)lz;2 b(ul)lz;2,

where b(u) cou + (1 co) Ou There are infinitely many choices for the function co. To focus
our discussion, we onl.y investigate a very special case in this paper:

1,
(5) co co(x, y)

0,
(x, y) is on the artificial boundary,
otherwise.

Therefore, the constraint on the artificial boundaries is Dirichlet type and Neumann type in
the rest part of the boundary layer. Compared to the original SAM, the new form has a
stronger coupling between the two solutions of the neighboring subdomains. Problem (3)-(4)
is obviously overdetermined. In general, the solution for an overdetermined problem may not
exist, and a least square type of solution should be sought. In this case, the solution of (2) is
a solution of (3)-(4).

An iterative algorithm for solving this problem can be easily extended from the classical
SAM:
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Choose

for
solve

solve

k-l,2

L(u)- f,

Ul lr g[r,,

b(Ul) Ic, b(u-2 )1/1

(x, y) e f21,

L(u) f, (x, y) e 2,

u2[r2- glr2,

end for

The implementation and analysis of this algorithm will be shown next.

3. Discretization of the boundary layers. Each of the problems (3)-(4) is overdeter-
mined. To design a deterministic algorithm, reconstruction of the coupling on the boundary
layer is necessary. When the problem is discretized, the constraint on the artificial boundary
layer affects only the grid nodes on the boundary of the layer (assume the boundary layer is one
grid thick), for example, the grid nodes on 1-’ 12 and 1-’t12 of the subdomain f21. The grid nodes
of the boundary layer are called inner boundary layer nodes if they are inside the subdomain
and outer boundary layer nodes otherwise.

We observe that the solution on I-’t12 and 1;1 satisfies both the difference equation2 and
the derivative coupling between two solutions on the neighboring subdomain. Therefore, a
natural approach is to apply a weighted combination of these two conditions. It is enough
to demonstrate how the two constraints on I-’tl2 are combined into a single equation. The
following part of this section gives the procedure.

Let u and u2 be the solutions on subdomains f2 and 2, respectively. For each interior
node (i, j) in f21, a difference equation

(6) Du i,j u i,j i,j i,j i,j
i,j a0,-1 i,j-1 Af_ a_l,oUi_l, %. ao,oUi,j

__
al,oUi+l,j _+_ ao, lui,j+l bi,J

can be derived using any common discretization strategy) We use u! to denote the solution
t,J

u at node (i, j). Let (i, j) be a node next to I"tl2 in the subdomain f21. Both this node and its
neighboring nodes are indicated by "(C)". Then, the neighbor node (i, j + 1) is located on 1-"12.
Both the node (i, j + 1) and its neighboring nodes are indicated by "V" (see Figure 2). By the
construction of our boundary layer, it is clear that node (i, j + 2) is located on the artificial
boundary F2. The difference equation at node (i, j + 1) is then

i,j+lul i,j+l i,j+lul _i,j+l i,j+lb/1Du],j+I = ao,-I i,j -- a-l,O U]-l,j+l-t-ao,0 i,j+l-+-a,,o U]+l,j+l-t-ao, i,j+2

(7) bi’j+l

By the Dirichlet condition on 1-’12, we have

(8) U U
2

i,j+2 i,j+2"

2We assume that this boundary value problem has been discretized by finite difference or finite element methods.
3Both central and upwind schemes are tested for our new algorithms. Their convergence characteristics are rather

similar.



888 HUOSHENG SUN AND WEI-PAI TANG
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1
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I- -r -I"

4 --I- --I- 4 iI-

F1
FIG. 2.

Substituting (8) into (7) and solving for u.,,j+l, we get

i,j+l _bi,j+l .i,j+lul i,j+l _i,j+lb/+ _i,j+l/./2(9) a0,0 bli,j+ tt0,-1 i,j a-l,0 Ui-I,j+I ttl,0 ,j+l tt0, i,j+2"

if ai,J+1
0,0 0 (in general, this is true for an elliptic equation), we solve for u. from (9),j+l

to get

(bi,j+l _i,j+l _i,j+l i,j+l i+l,Ju2 i,j+l(10) Ui,j+ tt0,_l Ui, tt_l,0 b/i_l,j+ --al,0 Ui+l,j+ --a0,1 i,j+2)/ao,o
From the Neumann condition on Ftl2, we have

Ox r’ Ox r’12 12

In discrete form, at node (i, j + 1), this reads

(11) u! =u! u2 -u?,j+l t,j Jr i,j+l t,j"

Similarly we have, at nodes (i 4- 1, j + 1),

tt
2(12) u]+l,j+ u]+,j + uZi+a,j+l i+l.,j"

Substituting (12) into (10), u!,,j+. can then be expressed as

{b j+l i,j+lb/1 i,j+l (b/,]_l, nt b//2_ltti,j+l ttO,-1 i,j tt-l,O ,j+l i-l,j)

i,j+l(b/+ nL b/2 i+l’Jb/2 } i,j+l(13) --al,O 1,j i+l,j+l b/Ll,j) aO,1 i,j+2 /00,0
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There are two conditions (13) and (11) for the unknown uil’j+ in (6). Let 0 < 0 < 1 be
the weight parameter. Then a weighted combination of (13) and (11) gives

u 0 {bi’j+l -i’j+lul..- ai’_+l(u_ + u/_l,j+lt,j+l --"0,-1 t,J ,0 1,j U/2-1j)

_i,j+l(u]+l, ... U+I U
2 i+l,Ju2 ], i,j+l

--1,0 j ,j+l i+l,j) a0,1 i,j+2 /ao,o

(14) +(1 O)(bl] j + bl
2

bl 2..i,j+l t,J)"

Substituting (14) into (6) for any interior nodes next to V12, we can essentially eliminate
all the nodes on 1 in the final matrix equation for .

It should also be pointed out that our new algorithm may appear to require more overlap
for the boundary layer. However, after a combination of the two conditions on the boundary
layer, only the minimum overlap is really needed for this new approach. In other words, the
unknowns on the boundary layer can be eliminated totally from the matrix equation of the
subdomain before the iteration starts.

4. Convergence analysis. As shown in 18], Schwarz splitting is a useful tool for an-
alyzing the convergence behavior of the Schwarz-type algorithms. Here, a three-subdomain
case is presented. The generalization to more subdomains in the strip case is straightforward.

Consider problem (2), and assume its solution domain is decomposed in the y-direction
into three overlapped subdomains. The discretized matrix form can be written as

All A12 0 0 0 Xl b
A21 A22 A23 A304 0 x2 b2

(15) Ax 0 A32 A33 0 x3 b3 b
00 A43 A44 A45 x4 b4
0 0 0 A54 A5 x b5

The order ofthe unknowns is arranged so that {x, x2} are located in f2a, {x2, x3, x4} are located
in f22, and {x4, x} are located in f23. {x}, {x4} correspond to the unknowns in the overlapping
parts "212 and f223, respectively.

The GSAM procedure for (2) is equivalent to a 3 by 3 block Gauss-Seidel iteration for
the enhanced matrix problem of (15)[18],

All A12 0 0 0 0 0 Xl bl
A21 B2 C2 A23 0 0 0 X,2 b2
A2 C’2 B’2 A23 0 0 0 x2 b2

(16) 2 0 0 A32 A33 A34 0 0 X3 b3 --/9,
0 0 0 A43 B4 Ca A45 x,4 b4
0 0 0 A43 C’4 B’4 A45 x4 b4
0 0 0 0 0 A54 A55 x5 b

where

(17) A22 B 4- Ca C2 q- B2, A44 B4 q- C4 C4 q- B4.

The splitting in (17) corresponds to the coupling on the artificial boundaries ofthe GSAM. The
corresponding matrix splitting is called a generalized Schwarz splitting (GSS). The analysis
of the convergence is, therefore, to study the spectral radius of the iteration matrix M-1N,
where
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b ,I

FIG. 3. 1-D overlapping grid.

(18) M

All A12 0 0 0 0
A2 B2 0 0 0 0
0 0 B’2 A23 0 0
0 0 A32 A33 A34 0
0 0 0 A43 B4 0
0 0 0 0 0 B’4
0 0 0 0 0 A54

0
0
0
0
0
A4
A

(19) N

0 0 0 0 0
0 0 C2 A23 0

A21 C’2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A43 C’4
0 0 0 0 0

0 0
0 0
0 0
0 0
C4 A45
0 0
0 0

The OSAM procedure for (2) can also be expressed in the Schwarz splitting form.
First, the derivation for a one-dimensional (I-D) model problem is presented. Although
the one-dimensional case has no practical importance, it will, however, be used for a higher-
dimensional case. Consider

(20) y" + qy f, x 6 (0, 1),

where q(x) > O. Denote the number of total nodes as n and the number of overlapping
subdomains as k. For convenience, we assume the overlap pattern is uniform. Each subdomain
and overlapping part contains rn and nodes, respectively, excluding the boundary layer,
which is one grid in width. We also assume that the artificial boundary for each subdomain
corresponds to one grid and that no three subdomains have a common overlap (see Figure 3).
The open circles represent the artificial boundaries, and the asterisks represent the other grids
of the boundary layer for each subdomain.

After discretization using the central finite difference scheme, the resulting linear algebraic
equation from (20) is

(21) Ax b,
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where A is a tridiagonal matrix with p (p > 2) on the diagonal and -1 on the off-diagonals.
For readability, only the three-subdomain case is displayed.

The partitioned form of A is, then,

(22) A--

-1

-1

-1
-1

-1

The rows which correspond to the inner boundary layer nodes are indicated by "+--" or "-+".
The reconstruction of the boundary layer procedure can be described as follows. First, we
multiply the rows (m, 1), (m + 1), 2(m l), and (2m + 1) (i.e., those rows corresponding
to the inner boundary layer nodes) by r/-- O/p and add to rows rn + 1, m, 2(m l) + 1,
and 2m l, respectively. If the same operations are carried out for the right-hand side, the
solution of the new matrix equation A’x’ b’ will be the same as that of Ax b, since A’ is
row equivalent to A. A’ is as follows:

(23)

( P -1

-1

pl 0-1

P -1

P
0-1

-1
p! -1

pl
-1

0-1

P -1
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where pt p r/. This step is equivalent to a half-step of the elimination of the boundary
layer, namely the weighted combination for the boundary layer nodes. The overlapping block
matrices Az2 and A44 in (22) are now modified to

p -1 0 0 p’ -1 0 0
-1 p -1 0 -1 p -1 0

A22 A44 ".. ".. A2 A4.
0 p -1 0 p -1
0 0 -1 p 0 0 -1 p’

To implement the Neumann boundary condition on the inner boundary layers, the GSS is
applied. The above overlapping block matrices are split into

(24)

where

Az=Bz+Cz=C;+B;,

A4 B4 + Ca C + B,

p’ -1 0 0 0 0 0 0

B2 B4 C2 ---C4
0 p -1 0 0 0 0
0 0 -1 p’-l-0 0 0 0 1+0

p’-l-0 -1 0 0 1+0 0 0 0
-1 p -1 0 0 0 0 0

B;=B= C;=C,=

0 0 -1 p’ 0 0 0 0

The diagonal entry pt of the overlapping block matrices A2 and A4 is split into

where

p’= (p’- 1 + 0) + (1 -0) t5 + (1 -0),

(25) p’- + 0 p (O/p + (1 0)).

Note the right-most side in (25). The two terms, O/p and (1 0), have been subtracted
from the diagonal entry p of the original matrix. These two terms reflect the contributions
of two conditions on the inner boundary layer, namely the difference operator on the inner
boundary layer and the Neumann boundary.condition. This is different from the GSAM,
where the splitting only contains the Robin condition.
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Then the enhanced form of A’, denoted by , is

-1 p -1
-r/ 0-1

0-1 1-0 -1

0-1

-0 0-1 1-0 -1

Using the same convention as in [18], matrix A’ is equivalent to its enhanced form ,
under splitting (24) if and only if matrices B2 C and B4 C are nonsingular according
to Theorem 3 in [18]. It will be shown later that this is true if 0 < 0 < 1. The diagonal
blocks in the above matrix are not the regular tridiagonal form after the splitting, and are
not convenient for the convergence analysis. However, the regular tridiagonal form on the
diagonal can be easily recovered. We multiply rows rn l, m + + 1, 2m l, and 2m + + 1
by (-r/) and add to rows rn + 1, rn + l, 2m + 1, and 2m + l, respectively. This results
in a new matrix, denoted by A"

-r/ 0-1 1-0 -1

-1

1-0 0-1

p -1

-/ 0-1 1-0

p -1

-1
1-0

which is now equivalent to matrix/. We call ’ an enhanced OSAM matrix of A.

0-1
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Let Tm (p) be the m-dimensional tridiagonal matrix with p on the diagonal and -1 on
the off-diagonals. Denote by Tm (p,/3) and Tmf (p,/3) the two matrices which are identical to

Tm (p), except for the last diagonal entry of Tm (p,/3) and the first diagonal entry of Tmf (p,/3),
which are p -/3. Similarly, T’,,(p, ) denotes a matrix which is identical to Tm(p), except
that both the first and last diagonal entries are p -/3. Then the OSAM enhanced matrix
can be represented as

where

0 0 0 0 0

0 0 0 0 0
0 0-1 1-0 r/ 0

is an m by m matrix with only three possible nonzero entries located on the/th, (1 4- 1)th,
and (1 4- 2)th columns of the last row. Matrix L can be obtained by rotating U 180. The
convergence behavior of the OSAM depends on the spectral radius of the Jacobi matrix J
M-1 N, where

0 Tbm(p,[3) 0 N= L 0 U

0 0 r(p,/ 0 0

For Tn (p), we have [8]

sinh(n + 1)co/sinh co,

det(Tn (p)) n + 1,

sin(n + 1)co/sin co,

p>2, 2coshco=p,

p-2,

p<2, 2cosco-p.

Thus, the following result can be obtained by using the expansion of the determinant of the
last (or first) row.

LEMMA 4.1. Let Tlm(p, fl), Tbm(p, fl), and Tmf (p, ) be defined as above; then

(m+l)-/3m,
det(Tm (P’/3)) det(Tmf(P’/3))

(sinh(m + 1)co-/3 sinhmco)/sinhco,

(m + 1) 2tim + fl2(m 1),
det(T,(p, fl))

(sinh(m + 1)co 2fl sinh mo 4- f12 sinh(m 1)co)/sinh co,
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Let

t(t)= (tl) tl) (l) T,...,t,)

be the last columns of the matrices (Tm (p,/3)) -1 b -1(T (p,/)) respectively, and

be thefirst columns ofthe matrices (Tin (p,/3)) -1 (Tmf (p,/3)) -1, respectively. It is not difficult
to see that

tb) (b) tl) f)
m-j+l tm-j+l

and

i/A/m(2,/), p 2,
(26) t{l) det(T/_l(p))/det(Tm/(p,/3)) sinhiog/Alm(p, ), p > 2,

t{b) det(T/ I(P,/))/det(Tm(P,/3))= [ Ali-l(2’/5)/Am(2’/3),
| AI_I(P, )/Am(P, )(27)

p= 2,

p>2,

where

det(Tm (2,
A/m (p,/3)

det(Tm (p,/)) sinh o9,

p=-2,

p>2,

det( bT (2,/5)),A(p,/3)
det( bT, (p,/5)) sinh o9,

and det(To(p)) det(To (p,/3)) 1.
Applying a transformation similar to that used in [18], the Jacobi matrix J has the same

nonzero eigenvalues as the following matrix G:

0 gl 0

g2 0 0 g3

g3 0 0 g2

0 0 gl 0

where

(28)

(l) .(l) (1)--O)tm_ (1gl O/pt_t_ + (1 O t-l+
(b) (b) (b)O)t_ (1g2 O/pt_l_ + (1 O)tm_l+l,

g3 O" .(b)
/ptl+2 + (1 O)t{b+ --O)t(l b).

Matrix G has four eigenvalue values, which are:

1,2 4-V/gl (g2 g3), )3,4 4-V/gl (g2 + g3).
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Substituting (26) into (28), we have

(m fl(m + 1))/Am(2, fl),
gl

(sinh(m l)co fl sinh(m 4- 1)co)/A/m(p,

(1 fl)2(m --/)/Abm(2, fl),
g2

(1 pfl + f12) sinh(m 1)o0/Abm(p, fl),

((/4- 1) 2ill 4- fl2(1 1))/Abm(2, fl),
g3

(sinh(/4- 1)co 2fl sinh/co 4-/2 sinh(/- 1)co)/Abm(p, fl),

In particular, when

(m 1)/(m 4- 1),
fl

sinh(m 1)co sinh(m 14- 1)co,

we have gl 0. Only one iteration is needed for the three-subdomain case. Generally, for
any k subdomains, the Jacobi matrix J has the same nonzero eigenvalues as the following
2(k 1) by 2(k 1) matrix Gk,

( 0
g2 0
g3 0

0
0 g3

0 g2

g2 0
g3 0

g3

g2

0
g2 0 0 g3

g3 0 0 g2

0 gl 0

In order to obtain a consistent solution from the OSAM with the original problem (22), it
is necessary to show that the enhanced OSAM matrix ’ is equivalent to matrix A.

THEOREM 4.2. For the model problem, the matrix A is equivalent to its enhanced OSAM
matrix ’, for 0 < 0 < 1.

Proof. Since A and A’, , and ,’ are row equivalent, we only need to prove A’ is equivalent
to A. From the GSS corresponding to (24), we have

where 0 < fl 0/p + 1 0 < 1 for 0 < 0 < 1. From Lemma 4.1, det(B2 C) : 0. So
is equivalent to A’ by Theorem 3 in [18]...This completes the proof. ]

In a two-dimensional case, the resulting linear algebraic equation is a block version of
the corresponding one-dimensional case. Suppose the solution domain has an n2 grid and is
decomposed in the y-direction into three strips. Each subdomain has n by m grids, excluding
the artificial boundaries and boundary layers, and all the other assumptions are the same as in
the one-dimensional case.
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The partitioned coefficient matrix is

( P -I

-I P -I
-I P -I

-I P -I +--
-I P -I

-I P -I
---> -I P -I

-I P
(29)
where I is an n by n identity matrix and P Tn (p) with p 4 for the model problem.
Similarly, the rows which correspond to the inner boundary layer nodes are indicated by

+-- or "-+". After the splitting of the overlapping blocks, the final enhanced OSAM
matrix is

( P

-(R) -F F

F -P -(R)

-I P -I

-I P -I

-(R) -f’ F

F -1-’ -o

,P -I

-I P
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where (R) r/i with O/p,

(30) P P (O + 17), F

/1-0 r/

0 1-0

0 1-0 0

7 1-0

As in the one-dimensional case, (9 and 17 are subtracted from P to reflect the contributions
of both the differential operator and the Neumann boundary condition on the boundary layer.
The difference between the OSAM and the GSAM is now clear. Notice that the matrix 17 in
(30) is a tridiagonal matrix. For GSAM the corresponding splitting is P (P
and 17’ is a diagonal matrix. 17’ diag(ot), where c (1 co) / (1 09 + coh), and h represents
the mesh size. The difference in a three-dimensional case is also not difficult to see.

The splitting matrices M and N of t have the same block sparsity pattern as in a one-
dimensional case. They are the block version of the corresponding matrices in the
one-dimensional case. Each block is either an identity or a tridiagonal matrix. The Jacobi
iterative matrix of the OSAM J M-1N is also similar. Let En be a matrix in which each
column corresponds to a normalized eigenvector of matrix Tn (p). Then En is an orthogonal
matrix such that E Tn(p) En diag{p/}, Pi P 2cos(izc/(n + 1)), 1, 2 n.

Let

lm(R)En 0 0

U= 0 Im (R) En 0

0 0 Im(R)gn

then J and J’ UT JU are similar:

J’ UTJU UT(M-N)U (UTM- U)(UTNU)

(UTMU)-I(UTNU) 1-1

Matrices M and N are exactly the same as M and N, except that those tridiagonal matrices
are changed to diagonal matrices as follows"

F --+ diag{vi}, Vi (1 -0) +
P --+ diag{pi }, pi P 2 cos coi,

P --+ diag{/}, / (p r/- +0) 2(1 + ) coscoi,

where O) zr/ (n + 1).
The above matrix J’ can be spectrally decomposed into n one-dimensional Jacobi iterative

matrices. Let Q be the permutation matrix which permutes row (k 1)n + to (i 1)3m + k,
k 1,..., 3m, n. Then we have
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FIG. 4. 2-D three-subdomain case.
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minimum overlap

/91
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half overlap

FIG. 5. 2-D seven-subdomain case.

Qrj, Q Qr(/r-1 )Q (Qr/rQ)-i (QrQ)

M- N
Mf N2

My N.

Each diagonal block M[-1Ni is a 3m by 3m matrix, which is a Jacobi iterative matrix for the
corresponding one-dimensional case. As in the analysis in GSAM [18], the largest eigenvalue
of J’ is decided by the maximum eigenvalue of M-1N1.

For the model problem in the two-dimensional (2-D) case, the maximum eigenvalues
p versus the parameter 0 for the OSAM are calculated and shown in Figures 4 and 5. For
comparison, the maximum eigenvalues, still denoted by p, versus the parameter co for the
GSAM are also shown there. Both parameters range from 0 to 1. Themaximum eigenvalues are
between 0 and 1. For a minimum overlapping case, the total number of grids n in each direction
is 58 for 3 subdomains or 136 for 7 subdomains. For the corresponding half-overlapping case,
the total number of grids varies slightly to fit the decomposition.

It can be seen from Figures 4 and 5 that the OSAM gives better convergence behavior.
For a wide range of the parameter 0, the OSAM is better than the GSAM and the SAM, which
is the special case of the GSAM with co 1. Sensitivity of convergence of the OSAM to
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its parameter is almost insignificant. Moreover, the OSAM with a minimum overlap is still
much better than the SAM with a half-overlap. As the number of subdomains increases, the
improvement is even more significant.

5. Nulnerieal tests. Results for several testing problems in a 2-D case arepresented in
this section. All the tests are carried out on a Sun 4/670 server, which is normally rated at
four MFLOPS. The arithmetic is performed in Fortran 77 double precision. The differential
equations are discretized by the standard central difference scheme. The upwind scheme has
also been tested. The convergence characteristics are similar to those of the central scheme.
To save space, these results will not be listed. Except for the first problem, all the rest are
nonself-adjoint asymmetric problems. There is one discontinuous coefficient problem and
one indefinite problem.

For each test problem, the solution domain is decomposed into a different number of
subdomains, such as 4 by 4, 10 by 10, etc. In all the cases, each subdomain contains a 20
by 20 grid of unknowns and the minimum overlap is considered. Thus, the total number of
unknowns will be increased as the number of subdomains increases. We are mainly concerned
with the improvement of the OSAM over the SAM and the reduction of the sensitivity of the
convergence behavior to the parameter.

The domain decomposition method is used as a preconditioner, and Bi-CGSTAB is em-
ployed for the acceleration scheme. The convergence behavior for other acceleration schemes
is similar. The iteration is stopped if the 12 norm of the residual is less than 10-5 times the
initial residual norm.

There are several notations in the tables of results. The SAM represents the result for
using the traditional Schwarz alternating method as the preconditioner. The "." and "**"
mean that the OSAM does not converge within 100 and 200 iterations, respectively, and the
iteration is stopped. "Iter" and "SubD" represent the number of linear iterations needed to
reach the precision and the total number of subdomains, respectively. We also define the

SAM-OSAM The notation :b represents the best improvementimprovement factor to be 7 SAM
factor of the results.

5.1. Helrnholz equation. In this test, the following problem is considered:

-Au+u f, xf2,

u g, xO,

with S2 (0, 1) x (0, 1) and true solution u ex+y sin(2x) cos y.
To verify our convergence analysis, the problem is solved using pure domain decom-

position first. The solution domain is decomposed into three strips. The number of itera-
tions versus parameter is shown in Figure 6. The two curves indicated by "osam.comp" and
"gsam.comp" represent the number of iterations (from numerical testing) versus the parameter
co for the GSAM, and 0 for the OSAM, respectively. The other two curves, "osam.anal" and
"gsam.anal," are the number of iterations needed, which are calculated analytically from our
spectral results. The numerical tests match our analysis very closely.

For the rest ofthe tests, the domain decomposition technique is applied as a preconditioner.
The number of iterations is much decreased. Furthermore, the sensitivity to the parameter is
also reduced. The corresponding results with the same decomposition pattern as for the above
test are shown in Figure 7. The advantages of using the domain decomposition method as a
preconditioner are obvious.

The more general case is that in which the solution domain is decomposed in both direc-
tions. Table (a) gives the result of the Helmholz equation in this case. From Table (a), it can
be seen that a small parameter value 0 is not good for the OSAM. In this case, the Neumann
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FIG. 6. Number of iterations (analytical and computational).
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FIG. 7. Number ofiterations: three strips with domain decomposition as preconditioner.

condition is more dominant than the differential operator on the boundary layer, which means
the Neumann condition shares more "weight" in the weighted combination. The Neumann
condition is bad, as we have already shown in the previous analysis. But for 0.2 < 0 < 1,
the OSAM is an obvious improvement over the SAM. There is little sensitivity shown for
0 > 0.2. Note that the improvement in performance and the reduction of the sensitivity to the
parameter 0 exist not only for the model problem, but also for the rest of our tests. Moreover,
the OSAM improves more with difficult problems.

5.2. Stress in helical spring. If a single turn of a helical spring of small angle ot and
radius R is deformed into a plane ring under the influence of an axial load, the stress-function

can be shown to satisfy the differential equation [6]
3

di)xx @ di)yy -- di)x 2G) O,
R-y
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TABLE

Helmholz equations Stress in helical spring

SubD 1010 88 44 SubD 8x12 6x8 34

0 Iter Iter Iter 0 Iter Iter Iter
0.1 79 37 0.1 68 42 18

0.2 54 37 15 0.2 17 12 7
0.3 13 12 7 0.3 14 11 6
0.4 12 10 6 0.4 16 13 6

0.5 12 10 6 0.5 17 14 6

0.6 12 10 6 0.6 17 13 6

0.7 12 10 6 0.7 18 14 7

0.8 13 10 6 0.8 20 15 7
0.9 13 11 6 0.9 20 15 7

1.0 13 11 7 1.0 19 14 9

SAM 22 18 10 SAM 29 20 10

rb 0.455 0.444 0.400 Zb 0.517 0.450 0.400

(a) (b)

and it vanishes on the boundary , where 1-" is the boundary of the cross-section in the (x, y)-
plane which contains the axis ofthe spring. G is the modulus ofrigidity and ) sin ot cos or/R.

The special case we considered is that in which the problem has rectangular cross-section
f2 (-.5, .5) (-1, 1) and R 5. The problem has an exact solution [14],

(1 y2)(1 -4x2)(5 y3)(0.0004838y + 0.0010185).
The angle ot is specified for a fixed modulus of rigidity G. In this case, the solution domain
is no longer a square. We test the OSAM for the case of different mesh lengths in the two
directions. The solution domain is decomposed into 3 by 4, 6 by 8, and 8 by 12 subdomains,
respectively.

Unlike the previous one, the results of this problem show that the OSAM performs better
than the SAM with only one exception: 0 0.1. For the optimal case, 0 0.3, the OSAM
takes only half as many iterations as the SAM. The general convergence behavior of the
OSAM with respect to the parameter 0 follows the same rule as in the last test. Table 1 (b)
represents the detailed results of this test.

5.3. Variable coefficients of second order derivative terms. In the previous two cases,
the second order operator is the Laplacian. This problem has continuous variable coefficients
for second order derivative terms. The unknown is defined on a unit square with homogeneous
Dirichlet boundary condition. It satisfies the following equation:

((1 / x2)btx)x -Ji- btyy + (tan y)3Uy --100X2.
The numerical results were given in Table 2(a). In general, the improvement factor is still

a little more than one-third on average, and the best case of the OSAM saves almost half the
work of the SAM.

5.4. Discontinuous coefficient problem. In this test, the following equation was con-
sidered:

(gxUx)x + (gybly)y + gx -+" tly sin(yrxy).
The unknown vanishes on the boundary of the solution domain f2 (0, 1) (0, 1), where

1, [0, .5] [0, .5],
10+3, [.5, 1] [0, .5],

Kx Ky 10_3 [0, .5] [.5, 1],

1, [.5, 1] [.5, 1].
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TABLE 2

Variable coefficients

SubD 10xl0 8x8 4x4
0 Iter Iter Iter
0.1 26

0.2 41
0.3 16 13 8
0.4 15 12 7
0.5 17 13 7
0.6 17 14 7
0.7 18 14 7
0.8 19 14 7
0.9 20 16 7
1.0 19 15 8
SAM 28 23 11

r 0.464 0.478 0.364

(a)

Discontinuous coefficients

SubD 1010 88 44

0 Iter Iter Iter
0.1

0.2 87 63

0.3 16 15 10

0.4 16 12 8
0.5 13 11 7

0.6 16 11 7
0.7 17 12. 7
0.8 19 11 9
0.9 16 11 9

1.0 17 12 10
SAM 31 22 13

"gb 0.548 0.500 0.462

(b)

Generally, discontinuous coefficient problems are relatively difficult to solve. The har-
monic scheme 1, 12] is applied to discretizing the second order derivative terms in this test.
The numerical linear approaches are the same as for the last several tests, which aim to com-
pare the OSAM and the SAM. The results are shown in Table 2(b). It can be seen that the
improvement factor in this test is larger than those in the last several ones. From this test, the
OSAM shows great potential for difficult problems. This will be further demonstrated by the
following test.

5.5. Variable-coefficient, indefinite problem. The problem tested is

sin(50rex) sin(5Orey))Uy]sin(5Orex))Ux]x [(1 + yLu [(1 + 7

(31) + 20sin(lOrex) cos(lOrey)Ux 20 cos(10rex) sin(lOrey)Uy + cu,

where u exp(xy) sin(rex) sin(rey) is defined on a unit square. This testing problem is taken
from the paper of Cai, Gropp, and Keyes [4]. The sign of the coefficient c in (31) has a keen
effect on this problem. The difficulty of the linear system depends on both the mesh widths
Ax,/Xy and the magnitude of c. For a fixed number of grids, the larger the magnitude of the
negative value c, the more difficult the problem will be. In this work, the cases for c -20,
-70 were tested. We will see that the second case requires much more work than the first one.

The numerical results are reported in Table 3. From these results, the difficulty of this
problem is obvious as compared with the corresponding count ofiterations ofthe previous tests.
The difficulty is also reflected in the performance of the OSAM with respect to the parameter
0. As 0 --0.3, the OSAM failed to compete with the SAM in the count of iterations for this
problem, but the OSAM was better than the SAM in all .the previous tests.

When c -20, the problem is more weakly indefinite than for c -70 with the same
number of grids. The results show that the work done for c -20 is only a little more than
in corresponding situations in the last several tests. The improvement factor varies from one
third to one half. However, when c -70, the OSAM demonstrates its superiority over the
SAM. The improvement factors for all three decomposition cases are greater than one half.
For the 10 by 10 subdomain case, the SAM took 144 iterations, while the OSAM only needed
43 iterations for the optimal parameter. It is more than three times faster than the SAM. Even
in the worst case, 0 1, which is known to not be good from the analysis and tests, the number



904 HUOSHENG SUN AND WEI-PAI TANG

TABLE 3
Resultsfor indefinite problems.

SubD

0.1

0.2

0.3

0.4,
0.5

0.6

0.7

0.8

0.9

1.0

SAM

1010

Iter
c -20 c -70

21 49

20 58

21 46

23 43

22 49

26 60

25 82

37 144
0.459 0.713

88 44

Iter Iter
c -20 c -70 c -20 c -70

** 55 **
** 29 173

194 18 76

18 38 10 29

17 31 9 26

18 38 9 27
18 37 9 21
18 33 9 19
19 48 10 19

18 41 11 19
30 85 14 42

0.433 0.665 0.357 0.548

of iterations is 82 for the OSAM, and the improvement factor in this case is still larger than
one third. For an 8 by 8 subdomain case, the SAM took 85 iterations, but the OSAM requires
less than half of that with only one exception, 0 0.9. When 0 0.5, the OSAM took
only 31 iterations. This test further demonstrates that the OSAM performs better for difficult
problems.

6. Conclusion. In this paper, a new extension ofthe classical Schwarz alternating method,
the overdetermined Schwarz alternating method, is proposed. In this new approach, a stronger
coupling is imposed on the artificial boundary layers. The superior convergence behavior is
demonstrated for a wide range of test problems. In particular, the weighted parameter 0 does
not cause the sensitivity problem from which the GSAM suffers. So far, our testing has been
restricted to the single level approach. A multilevel preconditioner approach is a natural future
extension of this work.
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RANDOM RELAXATION OF FIXED-POINT ITERATION*

MARKKU VERKAMA

Abstract. This paper considers a stochastic fixed-point iteration where each coordinate is updated with a certain
probability and otherwise left unchanged. The iteration is interesting from the viewpoint of parallel distributed com-
putation because the realized sequences belong to the class of asynchronous fixed-point iterations. ,It is demonstrated
with a linear system that the convergence conditions for randomly relaxed iterations are less stringent than their
asynchronous counterparts, and that they can illuminate the tightness of the convergence conditions for asynchronous
iterations, which are typically worst-case conditions.

Key words, asynchronous algorithm, fixed points, stochastic stability, linear systems
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1. Introduction. In this paper we examine the following stochastic iteration in the n-
dimensional Euclidean space Rn. For a given function f R - R, letxi(k + 1) (x(k))
with probability p and let xi (k + 1) xi (k) with probability 1 p. All randomizations across
the coordinates and across the iterates are independent in the process. In other words, the
coordinates are updated independently at each iteration step and the iterations are independent
as well. An iteration of this type will be called a randomly relaxed iteration. When the
coordinates of x are updated randomly, a sequence of random vectors in R is realized. We
are interested in the convergence of the random vector sequences to a fixed point of f.

Randomly relaxed iterations are closely related to so-called asynchronous fixed-point
iterations. In the (zero-delay) asynchronous execution of the iteration

(1.1) Xi f (Xl Xn), 1, n,

the coordinates of x are updated in arbitrary order, each infinitely many times. In so-called
totally asynchronous iterations the values of the coordinates used on the right side of (1.1)
may also be arbitrarily out-of-date, so that x (k) does not sufficiently describe the state of the
system [2], [6]. Such iterations also go under the name chaotic relaxation. It is clear that
randomly relaxed iterations belong to the class of asynchronous iterationsman arbitrary set of
coordinates is updated at a time. Hence the analysis of randomly relaxed iterations can give
new insight into the convergence of asynchronous iterations, especially zero-delay iterations.
A difference to iterations with delays is that coordinate values older than x(k) cannot appear
in the computation of x (k / 1) in randomly relaxed iterations.

Tsitsiklis 11 has shown, in a rather general sense, that zero-delay asynchronous iterations
converge if and only if there exists a Lyapunov function that testifies to this. Related results
were obtained in [3] and [4] for linear systems in R. These studies, like most of the studies on
asynchronous iterations, are, however, concerned with the notion of convergence that requires
all possible sequences {x(k)} to converge to a fixed point of f. It is therefore interesting to
note that a randomly relaxed iteration can converge, for example, almost surely (that is, with
probability 1) even if the necessary conditions of [11] are violated. This can happen if the
probability measure over the events that produce diverging sequences is zero. This kind of
analysis can give an idea of the rarity of worst-case events. One can thus think that results of
the convergence of randomly relaxed iterations shed light on the tightness of the convergence
conditions derived for asynchronous iterations.

*Received by the editors January 12, 1994; accepted for publication (in revised form) March 6, 1995. This
research has been supported by the V/in6 Tanner Foundation, the Finnish Cultural Foundation, and the Swedish
Foundation of Culture in Finland.

Systems Analysis Laboratory, Helsinki University of Technology, Otakaari 1, FIN-02150 Espoo, Finland
(markku.verkama@ntc.nokia.com).
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To illustrate this we shall consider iterations with affine functions. For these, both nec-
essary and sufficient conditions for convergence under total asynchronism are known [6].
Necessary and sufficient conditions for the quadratic mean (q.m.) convergence of randomly
relaxed iterations will be derived here. These conditions turn out to be less stringent than the
conditions in [6]. It is also shown that a randomly relaxed iteration can converge in a stochastic
sense for some p < even if the Jacobi iteration x(k + 1) f(x(k)), which corresponds to
p 1, is unstable. It thus appears that a certain type of asynchronicity can induce stability
into otherwise unstable iterations.

This study is not the first one that uses stochastic models to analyze asynchronous it-
erations. The effects of random communication delays and processor failures have been
considered in [1] and [10], and a Poisson transition model has been used to analyze the effects
of different processing times in [8].

We shall use standard vector notation throughout the paper. Subscripts refer to vector and
matrix elements. The transpose is denoted by the prime; the unit matrix is I. denotes
the Euclidean norm, and I1" I1o denotes weighted maximum norm; that is, Ilxll (x’x) a/2

and Ilxllw max/Ixil/wi (Wi > 0). p(A) denotes the spectral radius of a matrix A. A (R) B
denotes the Kronecker product of matrices A and B and it is given by

I allB almB 1A(R)B-- "..
an B anm B

where A (aij). The matrix AI is obtained from A by taking absolute value of all elements
of A; hence, IAI (laijl). (ij denotes the Kronecker. delta. Finally, El.] denotes expected
value.

2. Random relaxation. Next we define random relaxation and a convergence concept
suitable for the analysis of randomly relaxed iterations.

DEFINITION 2.1. Let {i(k); k O, 1 (i n) be random sequences such that
Pr[i (k) 1] p and Pr[i (k) 0] 1 p, where p E (0, 1] is a constant. Randomly
relaxedfixed-point iteration ofafunction f R w-> R is defined by

(2.1) xi(k + 1) xi(k -- i(k)(fi(x(k)) xi(k)), n, k O,

Iteration (2.1) defines a sequence of random vectors for a given initial vector x (0). Note
that for any k0, the probability of the event "i(k) 0 for all k >_ k0" (i.e., of the event
that xi is not updated after k0) is zero, and that by Borel’s zero-one criterion [9, p. 228] all
coordinates are updated infinitely many times with probability 1. It is, thus, intuitive that if the
iteration (2.1) converges in some sense, it must converge to a fixed point of f. In particular,
if x* f(x*) and if x(ko) x* for some k0, then x(k) x* for all k > k0.

There is another way oflooking at random relaxation. Define the operators Tj R - Rn,
j 1 2n, by taking all the possible coordinate combinations of f and the identity
operator; that is, either Tj,i(x) "= f/(x) or Tj,i(x) xi. Then at each step of the iteration,
one ofthe operators is applied with a certain probability pnj (1 p)’-"J, where nj {0 n }.
This makes explicit the relationship to the zero-delay asynchronous iterations in 11]. When
p 1 only the operator f is applied, and iteration (2.1) becomes the Jacobi-type fixed-
point iteration. Otherwise, the Jacobi iteration as well as the Gauss-Seidel-type iterations are
possible realizations among others.

When we define the diagonal random matrices E(k) (i(k)ij), (2.1) can be written
equivalently as

(2.2) x(k + 1) x(k) + E(k)(f (x(k)) x(k)).
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Since i (k) are identically distributed across k, we will refer to the generic random variables
as i and E; the same convention will be used with other random variables and matrices as
well.

In this paper we consider the following concept of convergence.
DEFINITION 2.2. Let x(k), k 1, 2 be generated by the iteration (2.1) startingfrom

an initial vector x(O). We say that the iteration (2.1) converges in q.m. to a fixed point x* of
fif

(2.3) lim E[llx(k) x*ll 2] 0
k---

for any x(O).
This definition is adapted from the standard definitions used in probability theory; see,

e.g., [7], [9].

3. Some convergence results. Let us now consider iterations with anne functions of
the form

(3.1) f (x) Ax / b,

where A is an n x n matrix and b is an n vector. Assume that I A is nonsingular. Then f
has a unique fixed point x* (I A)- b.

It was shown in [6] that totally asynchronous fixed-point iterations of f converge to x* if
and only if

(3.2) p(IAI) < 1.

This is also a sufficient condition for the convergence of zero-delay asynchronous iterations.
It is, however, not generally known if and how (3.2) can be relaxed for these iterations.
Clearly, a necessary condition is always p(A) < 1, because otherwise the Jacobi iteration
x(k + 1) Ax(k) + b is unstable.

Next we derive results concerning randomly relaxed iterations with the same function.
Using (2.2) we can write the randomly relaxed iteration as

(3.3) x(k + 1) x(k) + E(k)(A l)x(k) + E(k)b.

Inserting y x x* into (3.3) shows that, without loss of generality, we can always consider
the iteration x(k + 1) q(k)x(k) where q(k) I + E(k)(A I).

It will be useful to define i(k) i(k) E[i(k)] i(k) p and denote Z(k)
(i(k)gij) E(k) pI. Hence, E[i(k)j(1)] p(1 p)gij3u and E[Z(k)] 0. One can
then write

(3.4) q(k) I + p(A I) + Z(k)(A I).

This shows that the randomly relaxed iteration contains a deterministic part and a stochastic part
with a zero expected value (even though zero is not a possible realization). The deterministic
part corresponds precisely to the underrelaxed Jacobi iteration x(k+ 1) x(k) + p(f(x(k))

A necessary and sufficient condition for the convergence of (3.3) in q.m. is given in the
following.

THEOREM 3.1. Denote J {1 + j (n + 1) }j=0 {1, n + 2, 2n + 3, n2} and let R
be an n2 n2 diagonal matrix such that rii 1 if J and rii 0 if J. The randomly
relaxed iteration(3.3) converges in q.m. ifand only if

(3.5) p((I + p(A I)) (R) (I -t- p(A I)) + p(1 p)R((A I) (R) (A I))) < 1.
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Proof The stochastic dynamic system x(k + 1) q(k)x(k) is asymptotically stable in
q.m. if and only.if p(E[P (R) q]) < 1 (e.g., [7, p. 214]). Straightforward calculation gives

E[ (R) ] E[(I + p(A- I) + Z(A I)) (R) (I + p(A- I) + Z(A I))
(I + p(A I)) (R) (I + p(A I)) + E[(Z(A I)) (R) (Z(A I))]

(I+p(A-I))(R)(I+p(A-I))+E[Z(R)Z]((A-I)(R)(A-I)).

Condition (3.5) follows when we note that Z (R) Z is a diagonal matrix with the diagonal blocks
i Z, SO that E[Z (R) Z] p(1 p)R. [3

The condition of Theorem 3.1 can also be expressed in terms of a matrix equation.
THEOREM 3.2. Consider the matrix equation

(3.6) (I + p(A I))’K(I + p(A I)) K + p(1 p)(A I)’I(A I) -G

where (kiiij) (i.e., I is a diagonal matrix with its diagonal equal to the diagonal ofK).
(i) Ifthe randomly relaxed iteration (3.3) converges in q.m., then equation (3.6) has a

positive definite solution K for every positive definite matrix G.
(ii) Ifequation (3.6) has a positive definite solution Kfor some positive definite matrix

G, then the randomly relaxed iteration (3.3) converges in q.m.
Proof We only need to show that E[g2’Kq] K equals the left side of (3.6), and

the result will follow directly from Theorems 6.1 and 6.2 in [7, pp. 214-215]. Inserting
P I + p(A I) + Z(A I) we get

E[P’Kq] (I + p(A I))’K(I + p(A I)) + (A I)’E[ZKZ](A I).

Noting that ZKZ (ijkij) so that E[ZKZ] p(1 p)/, we arrive at (3.6).
It is interesting to note that with p 1, Theorems 3.1 and 3.2 together reduce to the

following well-known result. The Lyapunov matrix equation A’KA K -G has a positive
definite solution K for a positive definite G if and only if p(A) < 1.

Theorem 3.2 has an important consequence pertaining to almost sure convergence. Namely,
if E[q’Kq] K is negative definite for some positive definite K, then V (x) x’Kx is a suit-
able Lyapunov function and V(x (k)) is a positive supermartingale, showing the convergence
of (3.3) in almost sure sense [5].

COROLLARY 3.3. If the randomly relaxed iteration (3.3) converges in q.m., then it also
converges almost surely; that is

Pr[ lim IIx(k) x* 0] 1.
k-+ cx3

Because randomly relaxed iterations belong to the class of asynchronous iterations, one
expects that the convergence condition (3.2) derived for asynchronous iterations is also suf-
ficient for the convergence of (3.3) in q.m. This is indeed the case as is shown in the next
theorem.

THEOREM 3.4. Assume that p(IAI) < 1. Then the randomly relaxed iteration (3.3)
converges in q.m. for all p 6 (0, 1].

Proof By a corollary to the Perron-Frobenius theorem [2, p. 150], p(IAI) < implies
that IIAII < for some w. From the equivalence of norms, Ilxll _< cllxll for any x and for
some constant c (precisely, c ,,/-ff.,maxi wi), so that

EIIx(k)ll z <_ c2EIIx(k)ll2 c2EIl(k 1)...q(0)x(0)ll 2

< c2E[IIoP(k 1)112w IIP(0)l12llx(0)l12] c2llx(0)ll 2u(Ell’pll e),
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where the fact that q(k) are independent and identically distributed was used. Hence,
EIIx(k)ll 2 --+ 0 if EIIq[I 2 < Now the realizations of q are matrices with the ith rowW

equal to the ith row of A (denoted by ai) or to the ith row of I. Hence, for any realization of
q and for any vector x we have

[[qxl[w < max{[xl[/wl [a’ix[/w Ixnl/wn, ]anxl/w}’
max{llxll0, Ilaxll} --Ilxll

so that IIq I1 < 1, and in particular, IIP < when q A Likewise IIP 112 < 1 for
all realizations and IIqll < for at least one realization of q. Thus EIIqll 2 < for all
p E (0, 1].

If Ellx(k) x*ll 2 -+ 0, then also E[x(k)] -- x*. Conversely, if the sequence.E[x(k)]
diverges, then the randomly relaxed iteration cannot converge in q.m. We have the following
result on the behavior of E[x(k)].

THEOREM 3.5. Let x(k) be generated.by the randomly relaxed iteration (3.3). Then
E[x(k)] --+ x* for all x(O) ifand only if

(3.7) p(I + p(A I)) < 1.

Proof. E[x(k)] E[P(k 1)... P(0)x(0)] E[q(k 1)]... E[q(0)]x(0)
E[q]x(0) (I + p(A I))x(O), from which the result follows. [3

The expected value convergence of (3.3) is thus equivalent to the convergence of an
underrelaxed Jacobi iteration. It follows immediately from (3.7) that if A has real eigenvalues
greater than unity, then the randomly relaxed iteration (3.3) is unstable. By the Perron-
Frobenius theorem, p(A) is an eigenvalue of A if A is nonnegative. Hence we have the
following corollary to Theorems 3.4 and 3.5.

COROLLARY 3.6. Let A be a nonnegative matrix. Thenfor any p (0, 1 ], the randomly
relaxed iteration (3.3) converges to x* in q.m. ifand only if p(A) < 1.

This means that the convergence condition derived for totally asynchronous iterations,
p(IAI) < 1, is tight for nonnegative matrices.

4. Remarks. Let us then consider some implications of the results presented. It follows
from Theorem 3.1 that ifthe Jacobi iteration converges (i.e., p(A) < 1), then also the randomly
relaxed iteration converges in q.m. for some p < 1. To see this, set p in (3.5) to arrive at
p(A (R) A) < 1. This is equivalent to p(A) < so that, by the continuity of spectral radius, (3.5)
must hold for some p close to 1. However, this does not guarantee that (3.5) is satisfied for all
p 6 (0, 1). One can also find examples where condition (3.5) holds for some p 6 (0, 1) even
though p(A) > 1 (cf. the numerical example in 5 below). This indicates that asynchronicity,
as described by random relaxation, can in fact improve the stability of schemes such as the
Jacobi iteration. An interesting research problem is whether a corresponding deterministic
updating scheme could be uncovered that would have the same effect.

Theorem 3.2 can be used to derive other sufficient conditions for the convergence of
randomly relaxed iterations. For example, inserting K I into (3.6) we get that p(AtA) < 1
guarantees q.m. convergence for all p 6 (0, 1]. If A is normal (AA’ A’A), this is equivalent
to p(A) < 1. This presents a considerable relaxation to condition (3.2).

5. Numerical example. Let us consider iterations with the matrix

-0.61 -0.11 -0.20 0.81 0.43
0.28 0.06 0.09 -0.47 -1.04

-0.36 -0.14 0.08 0.30 -0.12
0.27 0.04 -0.01 -0.80 -0.33
0.20 -0.08 0.11 -0.51 -0.73
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FIG. 5.1. The spectral radius condition (3.5) ofq.m. convergence as afunction ofp in the numerical example.

FIG. 5.2. A simulation of the iteration x(k + 1) x(k) + E(k)(A I)x(k) with p 0.35 and x(O)
(2, 1, 0, 1, .-2).

This provides an example where suitable asynchronism can be stabilizing. We have p(IAI)
1.6407 and p(A) 1.5067; in other words, the necessary condition for the convergence of
asynchronous iterations is not satisfied and even the Jacobi iteration is unstable. Nevertheless,
it turns out that condition (3.5) holds for all p 6 (0,/5) where/5 0.60, see Figure 5.1. When
p decreases, the time intervals between coordinate updates become longer on the average.
Hence, the interpretation is that randomly relaxed iterations converge in q.m. as well as almost
surely if there is enough asynchronism. This phenomenon was first observed in numerical
simulations of asynchronous Cournot processes in 12]. Figure 5.2 illustrates a simulation of
the randomly relaxed iteration, x(k + 1) x(k) + E(k)(A I)x(k) with p 0.35.

6. Conclusion: A stochastic model of zero-delay asynchronous iterations has been ana-
lyzed. Necessary and sufficient conditions for convergence in q.m. have been derived for linear
systems. The results show that the convergence condition p(IAI) < 1 is tight for nonnegative
matrices. It is also shown that asynchronous iterations, produced by random relaxation, can
be stable even if the corresponding Jacobi iteration is unstable.

Acknowledgment. The author would like to thank Timo Eirola for helpful comments on
the paper.
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RAPID COMPUTATION OF THE DISCRETE FOURIER TRANSFORM*

CHRIS ANDERSON AND MARIE DILLON DAHLEH

Abstract. Algorithms for the rapid computation of the forward and inverse discrete Fourier transform for points
which are nonequispaced or whose number is unrestricted are presented. The computational procedure is based on
approximation using a local Taylor series expansion and the fast Fourier transform (FFT). The forward transform
for nonequispaced points is computed as the solution of a linear system involving the inverse Fourier transform.
This latter system is solved using the iterative method GMRES with preconditioning. Numerical results are given to
confirm the efficiency of the algorithms.

Key words, iterative methods, nonuniform fast Fourier transform

AMS subject classification. 65T20

1. Introduction. The fast Fourier transform (FFT) [1] is a powerful tool used in nu-
merous applications ranging from signal processing to rock mechanics [4]. In order to use
the FFT one must have uniformly spaced data and numbers of points which are restricted to
have certain values (e.g., a power of 2 or a product of primes). The goal of this paper is to
describe a method for computing rapidly a forward and inverse discrete Fourier transform on
sets of.data points which are either n0nequispaced and/or are unrestricted in number. Our
method is similar in spirit to the papers of Dutt and Rokhlin [2], [3], in that the method relies
on approximation of results obtained with the standard FFT. The major differences between
the two approaches is that Dutt and Rokhlin utilize a fast multipole method to perform the
approximation whereas we use a local Taylor series expansions. Our method also differs in the
construction of the forward transform in that we employ a preconditioner and use an iterative
method which does not require the transpose of the inverse transform matrix. We found our
approach easier to implement because it is based on conventional computational techniques
which are easy to program, namely the standard FFT and Taylor series expansions whose
coefficients are computed spectrally.

In the next section we describe the specific computational problem associated with the
discrete forward and inverse Fourier transform. In 3 we give a detailed description of our
numerical algorithm. The key idea behind the inverse transform is to compute transformed
values at a set of equispaced points using a standard FFT and then approximate the required
values at the nonequispaced points (or arbitrary number) using local Taylor series expansions.
The derivatives necessary for these expansions are computed spectrally. The use of local
Taylor series expansions to represent the trigonometric sum is entirely appropriate since the
sum is an analytic function. The computational procedure for the forward transform of a set
of equispaced points of arbitrary number is the same as for the inverse transform (one just
interchanges the notion of coefficients and function values). For nonequispaced points the
forward transform is computed as the solution of a linear system of equations defined via the
inverse transform. This system is solved iteratively using the generalized minimum residual
method (GMRES) with preconditioning [5]. For each iteration an inverse Fourier transform
must be computed, but, because the number of iterations is quite small, the method is efficient.

2. The problem. In this paper we consider the forward Fourier transform as solving the
trigonometric interpolation problem: Given the N distinct data points {xj (not necessarily

*Received by the editors September 14, 1994; accepted for publication (in revised form) March 9, 1995.
tIBM T.J. Watson Research Center, Yorktown Heights, NY, 10598 (cra@watson.ibm.com). The work of this

author was partially supported by ONR contract N00014-92-j- 1890.
tDepartment of Mathematics, UCLA, Los Angeles, CA 90024 (mdahleh@math.ucla.edu). The work of the

second author was partially supported by the National Science Foundation grant DMS-9206192.

913



914 CHRIS ANDERSON AND MARIE DILLON DAHLEH

uniformly spaced) on the interval [0, 2zr] and associated function values {yj }, find the N
coefficients {ot so that the trigonometric sum formed with these coefficients interpolates the
given data; i.e.,

() "kxj
Otk etYJ

=0

(2)
N-1

Otk Z yje-i kxj

j=O

Alternately, the inverse discrete Fourier transform consists of evaluating the trigonometric
interpolant; i.e., given a set of Fourier coefficients { and a set of points {xj determine the
values {yj by evaluating the sums

(3)

Then

forj --0 N- 1.

3. The numerical method.

3.1. Inverse transform. Our procedure for the forward discrete Fourier transform uses
our construction of the inverse discrete Fourier transform, and so we describe the inverse
transform first. The procedure for the inverse transform consists of using the standard fast
inverse transform on a set of M 2q equispaced points to determine a set of local Taylor
series expansions centered at these points. The Taylor series expansions are then evaluated at
the desired set of nonequispaced points or equispaced points of arbitrary number.

Assume we have the N distinct points {xj in an interval [0, 27r] and we are given a set
of N Fourier coefficients {fl }. We first choose a value of M which is a power of 2, and for
which 2rr(N 1) < M. Let {m} be th set of M equispaced points in the interval [0, 2re].

Construct a new set of coefficients {/k by padding and scaling the coefficients {ilk },

M

k-- () ilk, k < N,

O, N<k<M.

M is introduced so that the inverse transform of the padded coef-The scaling factor

ficients {/ yields a function which is equivalent to that of the original coefficients
at the points {xj }.
Using the discrete inverse FFT, compute the values and the first p derivatives of the
function

(4)
M-1

keikY(x)
:0

N-I

ZkeikXj.YJ
=0

forj =0 N- 1.
The set of values {Otk} are thus the coefficients of the data {yj when expressed in the

discrete basis obtained by evaluating the Fourier basis elements at the nodes {xj }, i.e., the
discrete forward Fourier transform of {yj }.

If the points are equispaced, then the orthogonality of the discrete Fourier basis functions
implies that
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at the points {2"m}. The derivatives are evaluated spectrally; i.e., the pth derivative
is obtained by computing the inverse transform of a set of coefficients of the form
(i k )P/k.
For a given point xj, determine the closest of the equispaced points, say 2*, to it.
Using the values and derivatives of (4) at 2* one approximates the value at the point
xj by using a pth order Taylor series expansion about 2*.

The order p of the Taylor series expansion used is determined by the desired precision
required in the function values. If these values are required to a precision e (which may be
unit round-off) then the maximal order of the approximation required to do this is the value
of p so that

(5)
(p + 1)!

where ?’ max0<k<N-1 Iflk I. This follows from the fact that the error in an order p Taylor
expansion of an individual term in (4) with wavenumber k ,is bounded by

1 l3lhp+lkp+I Iflkl hp+lkp+l
M (p -t- 1)! g (p + 1)!

2Since k < N- and h- -ff we have

N (p+l)! N (p-t-l)! M N(p+l)!

The error in approximating the sum of N Fourier components is thus bounded by N times the
maximum of this value, i.e., (5). The estimate (5) is only a bound, and in the implementation
of the approximation procedure one adaptively determines the size of p that one should use;
i.e., one accumulates the Taylor series approximation term-by-term and stops when the error
is within the desired precision. Our computational experiments indicate that far fewer terms
than the number suggested by the error bound need be used.

3.2. Forward transform.

3.2.1. Equispaced points. If the points {xj are equispaced then the forward transform
of values {yj is given by

(6)
N-1

Olk Z yje-i kxl
j=O

Since xj j (2r-), then we can rewrite the sum as

N-1 N-1 N-1

Ol--Zyje-ikxj :Zyje-ijk()--yje-iJz
j=0 =0 j=0

Thus, the Otk’S are the values of the function ZT__= yj e
-i j z evaluated at the N equispaced

points Zk k (2re) in the interval [0, 27r ]. The task of evaluating the forward transform for
equispaced points thus has the same form as the evaluation of the inverse transform, so one can
use the technique for the inverse transform described previously with only slight modifications.
In particular, since the factor does not appear in the forward transform sum, one does not



916 CHRIS ANDERSON AND MARIE DILLON DAHLEH

scale {yj} by () when padding these values to create the 34 values {j }. Also, the error
bound for the Taylor series approximation becomes

Nv
(7)

(p + 1)!

where v max0_<j_<u_ ]yj 1. While this error bound does depend on N, the dependence is
rather weak, and our computational experiments indicate that it is of no great concern.

The problem of the forward transform for nonequispaced points is more challenging
because the the coefficients {oek} are not given by the sum (6). Thus, a different procedure
must be employed. In our procedure we build upon the fact that we can compute the inverse
transform for nonequispaced points rapidly. In particular, the goal of the forward transform
is to find coefficients {ok} so that the inverse transform of these coefficients interpolates a
given set of function values {yj }. Expressed in matrix/vector notation, the forward transform
consists of finding the vector of coefficients ff so that the linear system

(8) a
is satisfied. A is the representation in matrix form of the inverse Fourier transform.

Our procedure for the forward transform is just to solve, the linear system (8) for the
coefficients o7. We choose to solve this system iteratively, because this will involve operations
of the form A for vectors , i.e., applications of the inverse transform which can be computed
efficiently using the technique described above.

The iterative method we choose to use was the GMRES method with preconditioning [5].
The GMRES method is a Krylov subspace iterative method for solving nonsymmetric linear
systems. There are several advantages to this method. First, each iteration can be performed
quickly because the bulk of the work is contained in the matrix multiplication step A(i)

which is just the evaluation of the inverse transform for each iterate. Second, it is optimal in
the sense that it minimizes the residual in a given Krylov subspace. Third, it does not require
the knowledge of At. The major disadvantage of this method is that it may require several
iterations to converge. At each iteration, one computes the next basis element for the Krylov
subspace. All previous basis elements are needed. If one needs a large number of iterations
to converge, then one may need significan storage for this procedure. However, with the
preconditioner described below, the method converges in a few iterations, and the storage
requirements of GMRES does not pose a problem.

A preconditioner for the system (8) consists of an operator which takes a set of values f
and returns another set of values o7. After some experimentation we found that a satisfactory
preconditioner was simply the forward Fourier transform of the values {yj assuming that they
are associated with equispaced points. (Thus the preconditioner is the exact inverse of the
matrix A in the case of equispaced points.)

4. Numerical experiments. We have implemented our method in Fortran using double
precision arithmetic. All the calculations were run on a Sparc 10. For the inverse transform
we report two types of errors. The first is the relative cx>norm which is defined to be

maxl</<N lY Yi]
E

maxl<i<N ]Yil

and the second is the relative 2-norm error defined by
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TABLE
p is the order of the Taylor series. Random .01 perturbation for the uniform grid. Smooth coefficients. Error

tolerance is 10-1.

N p bound p required Sec. Dir. sec.

16 17 7 .01 0

32 18 7 .02 .01

64 18 7 .03 .03

128 18 7 .09 .12

256 18 8 .21 .49

512 19 8 .48 2.02

1024 19 8 i.02 8.32

E E2
1.1825 10-8 1.2164 10-8

1.1792 10-8 1.5152 10-8

8.2338 10-9 i.2762 10-8

5.8926 10-9 1.3183 10-8

4.8255 10-9 1.4178 10-8

3.0118 10-9 1.4329 10-8

2.4349 10-9 1.4618 i0-8

TABLE 2
p is the order of the Taylor series. Random. perturbation for the uniform grid., Smooth coefficients. Error

tolerance is 10-l

N p bound p required Sec. Dir. sec. E
16 17 11 .01 0 1.6951 10-8

32 18 11 .03 .01 1.1192 10-8

64 18 11 .05 .05 8.0280 10-9

128 18 11 .12 .13 5.7089 10-9

256 18 11 .3 .49 4.4565 10-9

512 19 12 .68 2.02 3.8060 10-9

1024 19 12 1.56 8.32 4.0123 10-9

E2
1.6017 10-8

1.5587 10-8

1.4234 10-8

1.4554 l0-8

1.4754 10-8

1.4754 10-8

1.4547 10-8

TABLE 3
p is the order ofthe Taylor series. Random perturbation of. 1. Random coefficients. Error tolerance is 10-3

N p bound p required Sec. Dir. sec. E
16 17 11 .01 0 1.2223 10-8

32 18 11 .02 .01 8.0229 10--9

64 18 11 .05 .03 6.7398 10-9

128 18 11 .12 .12 4.9839 10-9

256 18 12 .32 .49 3.6305’ 10-9

512 19 12 .74 2.16 3.4041 10-9’

1024 19 12 1.63 8.14 2.4524 10-9

62
,9.1421 10-9

7.0160 10+/-9

7.1751 10-9

6.4089 10-9

5.8583 10-9

4.8901 x 10-9

4.0691 10-9

where y represents the approximation of the yi. For the forward transform we report the final
residual error.

4.1. Inverse transform experiments. The first set of experiments are concerned with
the inverse transform We consider two cases. In Tables 1-3, we present results for points
which are not equispaced but whose number is a power of 2. We examine how the degree
of nonuniformity of the points affects the number of terms in the Taylor series, p, needed to
obtain a desired accuracy. We define the nonuniform grid as follows:

Xj X;nif -Jr- h factor

where Xnif represents the jth grid point on a uniform grid, h is the grid spacing, r/a uniformly
distributed random number between 0 and 1, and factor is either .01 (Table 1) or .1 (Table
2). As one can see from Tables and 2, for both perturbation factors, our method is slower
than the direct evaluation of (3) for n < 64 and faster for n > 64. One would expect as
the perturbation factor increases from .01 to. 1, the number of Taylor series terms required to
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TABLE 4
p is the order ofthe Taylor series. Uniformly spaced nonpower of 2. Smooth coefficients. Error tolerance is 10-l.

N p bound p required Sec. Dir. sec.

11 17 8 .01 0

37 18 8 .04 .01

61 18 9 .04 .03

123 18 9 .1 .11

179 18 9 .26 .24

371 19 9 .49 1.04

E E2
1.5206 10-8 1.5441 10-8

9.4308 10-9 1.5486 10-8

1.0360 10-8 1.5632 10-8

7.0404 10-9 1.3590 10-8

6.7775 10-9 1.4953 10-8

5.2059 10-9 1.4134 10-8

TABLE 5
Forward transform. Random .01 perturbationfrom uniform grid.

N Iterations Sec.
16 3 .12

32 3 .22

64 3 .46

128 3 .98

256 3 2.32

512 4 6.69

Residualeor

5.8663 10-7

9.3676 10-7

8.8786 10-7

8.7670 10-7

9.6058 10-7

1.2012 10-8

TABLE 6
Forward transform. Random. perturbationfrom uniform grid.

N Iterations Sec. Residualeor

16 8 .25 1.0326 10-7

32 9 .59 4.09265 10-7

64 9 1.27 9.6050 10-7

128 i0 2.85 3.8367 10-7

256 10 6.95 7.1286 10-7

512 10 15.5 6.5907 10-7

obtain a given accuracy increases. This is in fact what happens. We use an error tolerance
of 10-l The number of points for which our method is faster than the direct method is
lower than the break-even point reported for a similar problem in either [2] or [3]. In [2], the
break-even point occurs for n > 256 and in [3] the break-even point occurs for n > 2048.

For Tables and 2, we use smooth Fourier coefficients generated by/3 sin(x). In
Table 3 we use randomly generated coefficients. The coefficients are contained in the interval
[0, 1]. As one can see, for a given perturbation factor, the required number of Taylor series
terms does not depend on the smoothness of the coefficients. Again, the order of the Taylor
series required is substantially lower than the order predicted by our error estimates.

In Table 4 we present the results for a calculation with uniformly spaced points which
are not a power of 2. One sees that our method is faster than the direct evaluation of (3) for
calculations of more than 371 points.

4.2. Forward transform experiments. As we have mentioned previously, the compu-
tational task for the forward transform for equally spaced points has the same form as that
for the inverse transform; therefore, there is no need to discuss it independently. Thus, in this
section we only consider the case of the forward transform for data which is nonequispaced
and whose number is a power of 2. In Tables 5 and 6, we consider a .01 perturbation and a. 1
perturbation, respectively. For a given perturbation the number of GMRES iterations needed
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to converge remains almost constant. This is an indication that the preconditioner is doing
a good job. Without the preconditioner the number of iterations increases dramatically with
increasing N.

As the size of the perturbation increases, the number of iterations also increases. One
should expect this behavior because the larger the perturbation the further the preconditioner
is from the true matrix inverse. Even so, a ten-fold increase in the perturbation produces less
than a three-fold increase in the CPU seconds needed for the calculation. In comparison with
directly evaluating (1), the break-even point for the forward transform is about N 4096. As
better preconditioners are developed this number should drop.

In [2], Dutt and Rohklin present an iterative method for the solution of the algebraic
problem. Our approach differs from theirs in that they use a conjugate gradient method
whereas we use GMRES. Since the matrix A in (8) is not symmetric, one cannot use the
conjugate gradient method directly for this system. Dutt and Rohklin therefore work with a
reformulation of the matrix problem. By using GMRES we avoid using this reformulation.
We also employ a preconditioner--a component we found to be critical for success.

5. Conclusions. In this paper we present a method for computing the forward and inverse
discrete Fourier transform. The method for the inverse transform (and the forward transform
Of equispaced data with arbitrary numbers of points) is a combination of the standard FFT and
approximation using local Taylor series expansions. Both the forward and inverse transforms
are easy to implement and faster than directly evaluating (1) and (3) for a reasonably small
number ofpoints. The procedures reduce significantly the penalty of using the discrete Fourier
transform on numbers of points which are not power of 2 or the product of primes.

The forward transform for nonequispaced data relies on the inverse transform and the
iterative method GMRES with a preconditioner. The choice ofthe preconditioner was essential
for the iterative method to converge rapidly. In our implementation wefound that the procedure
for the forward transform on nonequispaced points is less efficient than the direct method for
numbers of points less than 4096. However, with improved coding and development of more
appropriate preconditioners, this value should decrease. The methods presented here clearly
extend to higher-dimensional discrete Fourier transforms.
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FAST RECURSIVE LEAST SQUARES ADAPTIVE FILTERING BY FAST
FOURIER TRANSFORM-BASED CONJUGATE GRADIENT ITERATIONS*

MICHAEL K. NG AND ROBERT J. PLEMMONS

Abstract. Recursive least squares (RLS) estimations are used extensively in many signal processing and control
applications. In this paper we consider RLS with sliding data windows involving multiple (rank k) updating and
downdating computations. The least squares estimator can be found by solving a near-Toeplitz matrix system at each
step. Our approach is to employ the preconditioned conjugate gradient method with circulant preconditioners to solve
such systems. Here we iterate in the time domain (using Toeplitz matrix-vector multiplications) and precondition
in the Fourier domain, so that the fast Fourier transform (FFT) is used throughout the computations. The circulant
preconditioners are derived from the spectral properties ofthe given input stochastic process. When the input stochastic
process is stationary, we prove that with probability 1, the spectrum of the preconditioned system is clustered around
and the method converges superlinearly provided that a sufficient number of data samples are taken, i.e., the length

of the sliding window is sufficiently long. In the case of point-processing (k 1), our method requires O(n log n)
operations per adaptive filter input where n is the number of least squares estimators. In the case of block-processing
(k > n), our method requires only O(log n) operations per adaptive filter input. A simple method is given for tracking
the spectral condition number of the data matrix at each step, and numerical experiments are reported in order to
illustrate the effectiveness of our FFT-based method for fast RLS filtering.

Key words, signal processing, adaptive filter, recursive least squares, Toeplitz matrix, circulant matrix, covariance
matrix, fast Fourier transform, preconditioned conjugate gradient method, sliding windows, condition estimation

AMS subject classifications. 65F10, 65F15, 43E10

1. Introduction.

1.1. Background. Adaptive filters are used extensively in many signal processing and
control applications: for instance, in system identification, equalization oftelephone channels,
spectrum analysis, noise cancellation, echo cancellation, and linear predictive coding. A large
number ofbooks and papers have been written on various aspects ofthese applications, notably
[1.3, pp. 17-75], [2, pp. 1-5], and [24]. In these applications the recursive least squares (RLS)
algorithm is a well-known and extremely powerful tool.

The standard linear least squares problem can be posed as follows: given a complex
M-by-n data matrix X with full column rank n (so that X*X is Hermitian positive definite)
and an M-vector d (desired signal vector), find the n-vector w (filter coefficient vector) that
solves

(1.1) min lid Xwll,

where 11" 112 denotes the usual Euclidean norm. Here X* denotes the conjugate transpose. The
solution to (1.1) is given by

(1.2) w- (X*X)-IX*d.

Here X*X is often called the normal equations matrix [11, p. 142], and is known as the
information matrix for (1.1) in the signal processing literature [13, p. 383]. It measures the
information content in the experiment leading to (1.1).
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Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong. Current address:

Computer Sciences Laboratory, The Australian National University, Canbarra, ACT 0200, Australia.
Computer Science Department, Wake Forest University, Box 7388, Winston-Salem, NC 27109. This research
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In RLS computations arising in adaptive control and signal processing, it is required that
one recalculate w when observations (i.e., equations) are successively added to, or deleted
from, the problem (1.1); i.e., the.least squares estimator at step is found by solving for the
n-vector w(t) in

min lid(t) X(t)w(t)ll2.

Here d(t) is a desired signal M-vector at step t, and X (t) is a corresponding M-by-n data matrix
at step t. In the area of signal processing, RLS algorithms are often used to process signals
that result from time-varying environments. RLS estimations for a time-varying finite impulse
response or a transversal filter are often obtained by limiting the filter memory. The most
common technique uses an exponential data weighting infinite memory method controlled by
a forgetting factor ,, with 0 < y < 1 [13, p. 478]. This facilitates simplified computations in
contrast to finite memory sliding data window methods, but at the cost of diminished tracking
and stability characteristics. [15, 23]. In many applications it is desirable to use a true finite
memory algorithm, i.e., a sliding window algorithm, in order to avoid undesired effects from
data in the distant past. A typical situation is where the parameters of the underlying model
that generates the signal are subject to jump-type variations of random amplitudes [26, 27].
For a sliding window M-by-n data matrix, the least squares estimators can be computed by
modifying the Cholesky factor of the normal equations with O(n2) operations per adaptive
filter input where n is number of filter coefficients; see, for instance, [21].

Recently, fast recursive least squares (FRLS) algorithms have been a topic of considerable
interest because of their low computational cost [13, pp. 583-584]. In most applications in
signal processing, for instance linear predictive coding and system identification, the Toeplitz
(displacement) structure of the data matrix allows one to develop computationally efficient
algorithms, which are fast in the sense that they require only O(n) operations per adaptive
filter input. But the numerical stability of these FRLS algorithms has always been in question
14, 15, 23]. In particular, Luo and Qiao and Qiao 15, 23] have rebently shown that all known

infinite memory FRLS algorithms are unstable when the forgetting factor, used to diminish
the effects of the old data, is less than 1.

The purpose of this paper is to propose a new FFT-based iterative RLS algorithm with
reasonable complexity for computing least squares estimators recursively, that may also avoid
some of the instability problems associated with direct FRLS methods.

1.2. FFT-based preconditioned iterative method. The use of conjugate gradient meth-
ods with circulant preconditioners for solving n-by-n Toeplitz systems Anu v has been
studied extensively in recent years. The key idea is to use n-by-n circulant matrices Sn to

precondition the Toeplitz systems so as to speed up the convergence rate of the method (see,
e.g., Chan and Strang [4]). That means, instead of solving the original Toeplitz system, one
solves the preconditioned system

SIAnu s-lv
by the conjugate gradient method.

Circulant matrices can always be diagonalized by the discrete Fourier matrix Fn with en-
tries given by [Fn]j,, (1//-ff)e-zij/’. Thus linear systems with circulants can be solved
in O (n log n) operations using the fast Fourier transform (FFT). Also, matrix-vector multipli-
cations Any can be computed using the FFT in O(n log n) operations, by first embedding An
into a 2n-by-2n circulant matrix; see [4]. It follows that the number of operations per iteration
of the preconditioned conjugate gradient (PCG) method is of order O (n log n), using the FFT.

The convergence rate of this FFT-based PCG method has been analyzed by Chan and
Strang [4]. They proved that if the diagonals of the Toeplitz matrix An are Fourier coefficients
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of a positive function in the Wiener class, then the spectrum of the preconditioned system
S An will be clustered around 1 for large n, and thus the method will converge superlinearly.
More precisely, for all e > 0, there exists a constant c(e) > 0 such that the error vector bj of
the preconditioned conjugate gradient method at the jth iteration satisfies

lbj sl/2anSl/2 < c(6)rJ lbOl sl/2a, sl/2

when n is sufficiently large. Here

2 v.SI/2AnSI/2v

Hence the complexity of solving a large class of Toeplitz systems can be reduced to O(n log n)
operations in.such situations.

We remark that circulant approximations to Toeplitz matrices have been considered and
used for some time in image processing, signal processing and time series analysis; see [8,
18] for references. Besides Strang’s circulant preconditioner Sn, several other successful
circulant preconditioners have been proposed and analyzed; see [6, 9, 25]. Recently, the
use of circulant preconditioners for Toeplitz least squares problems was.considered by Chan,
Nagy and Plemmons [7, 8] and Ng and Chan 18]. In these papers, formal convergence results
are established for the least squares problems, and some applications to signal and image
processing are derived.

1.3. Outline. In this paper, we consider the recursive least squares computations where
the data matrices are assumed to have a Toeplitz (displacement) structure. We propose a new
algorithm for computing least squares estimators recursively. Our approach uses sliding data
windows involving multiple updating and downdating computations, for superior tracking
capabilities. When X (t) is an M-by-n rectangular data matrix (M is the length of the sliding
window) with full column rank, then the least squares estimator w(t) at step can be obtained
by solving the normal equations

(1.4) X(t)*X(t)w(t) X(t)*d(t).

We note that X (t)*X (t), although generally not Toeplitz, is an n-by-n "near-Toeplitz" matrix,
as it can be written in the form T(t)- L(t)*L(t)- U(t)*U (t), where T (t) is Toeplitz, and L(t)
and U(t) are lower triangular and upper triangular Toeplitz matrices, respectively (see 2).

Our approach is to apply the preconditioned conjugate gradient algorithm with circulant
preconditioners to solve the system (1.4) at each step t. In our algorithm, the proposed n-by-n
circulant preconditioner C(t) is taken to be an approximation to T(t). We prove that if the
input stochastic process is stationary and its underlying spectral density function is positive
and in the Wiener class, then our circulant preconditioner C(t) will be positive definite,
and its smallest eigenvalue will be uniformly bounded away from zero with probability .1,
provided that sufficiently large numbers of data samples are taken, i.e., M is sufficiently
large. Under the same assumptions, we also prove that the spectrum of the preconditioned
matrix C(t)-lx(t)*X(t) is clustered around with probability 1. Thus, when we apply the
conjugate gradient method to the preconditioned system, the method converges superlinearly
with probability 1.

We also derive a convergence analysis of the sliding window RLS involving multiple
updating and downdating computations. We prove that with probability 1, if the desired
response and the input stationary stochastic process are related by a multiple linear regression
model, then the 2 norm of the difference between the least squares estimator computed by
the sliding window RLS algorithm and the constant regression parameter is bounded by a
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constant, provided that a large number of data samples is taken, i.e., M is sufficiently large.
Under the same assumptions, we prove that with probability 1, the average least squares error
of the sliding window RLS is also bounded by a constant.

The outline of the paper is as follows. In 2, we first formulate the sliding window RLS
method for a Toeplitz data matrix and analyze the convergence rate of the preconditioned
conjugate gradient method probabilistically. In 3, we present our FFT-based RLS algorithms
and study the convergence ofthe sliding window RLS algorithm. In 4, numerical experiments
are reported for the sliding window RLS scheme in order to illustrate the effectiveness of the
method. A simple method is also given for tracking the spectral condition numberof the data
matrix at each step. Some concluding remarks are given in 5.

2. Sliding window RLS with Toeplitz data matrix. To present the sliding window RLS
method, we first introduce some notation from adaptive filter theory 13, p. 18].

discrete time index or step: t,
order of filter: n,
input sample scalar at time t: x(t),
input sample row vector at time t: x(t)* Ix(t), x(t 1) x(t n + 1)],
optimal filter coefficient column vector (the least squares estimator) at time t" w(t)
[Wl(t), w2(t) Wn(t)]T,
desired signal scalar at time t: d(t),
filter output scalar at time t" o(t) x(t)*w(t),
difference (estimation error) between the desired response d(n) and the output o(t)
produced by the filter at time t: e(t) d(t) o(t),
length of sliding window" M (we assume that M > n),
rank number for updating and downdating computations" k (k < M).

In the sliding window RLS method, the corresponding data matrix at step (t > M) is an
M-by-n rectangular Toeplitz matrix of the form

x(t- M + l)

(2.1) X(t)

x(t)

x(t M- n + 2)

x(t- M + 1)

x(t n + 1)

We assume that M n + 2 > in X(t). Thus all data samples are available at step
except when M. In this case, we let x(j) 0 for j < 0. Moreover, we always

assume that the data matrix X (t) is of full column rank n at each updating and downdating
step M, M + k, M + 2k By minimizing the estimation error over the steps from
t-M+ltot,

(2.2) [e(j)l 2,
j--t-M+l

the least squares estimator w(t) can be found by solving the least squares problem

min lid(t) x(t)w(t)ll2.

Here d(t) is a known M-vector given by

(2.3) d(t) [d(t M + 1), d(t M + 2) d(t)] T.
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It follows that the solution w(t) can be obtained by solving normal equations

X(t)*X(t)w(t) X(t)*d(t).

Since the data matrix X (t) is assumed to have full column rank n, the normal equations matrix
is nonsingular. We remark that the data matrix has a special structure. Each row of X (t)
is a fight-shifted version of the previous row. By utilizing this special rectangular Toeplitz
(displacement) structure of the data matrix, the normal equations matrix X*(t)X(t) can be
written in the form

(2.4) x(t)*x(t) r(t) (t)*(t) u(t)*u(t),

where T(t) is Hermitian and Toeplitz, and L(t) and U(t) are lower triangular and upper
triangular Toeplitz matrices, respectively (see, e.g., 18]). As the product of a lower triangular
Toeplitz matrix and an upper triangular Toeplitz matrix is not Toeplitz, in general, the normal
equations matrix X(t)*X(t) is not Toeplitz. We call X(t)*X(t) near-Toeplitz.

Here, the first column of the Hermitian Toeplitz matrix T (t) in (2.4) is given by

[0(t), (t) ._ (t)],

where

t-ljl

?,j(t) Z x(s)x(s + Ijl), j --O, 1 n- 1.
s=t-M-n+2

Moreover, in the statistics literature, if the input stochastic process is stationary, the parameters

(2.5) ?j(t) =-- ,j(t)
M+n-l’

j--0,1 n-l,

are called estimators of the autocovariances rj of the stationary process; see, for instance,
Priestley [22, p. 322]. We also note that the first column of the lower triangular Toeplitz
matrix L(t) and the first row of the upper triangular Toeplitz matrix U (t) are given by

[0, x(t-M-n+2) x(t-M)]T and [0, x(t) x(t-n+2)],

respectively (see, e.g., 18]).

2.1. Updating and downdating computations. Figure 2.1 displays the sliding data win-
dow RLS method. Here, k rows, denoted by the k-by-n updating matrix Y (t), are added, and k
rows, denoted by the k-by-n downdating matrix Z(t), are removed, forming the M-by-n data
matrix X (t + k) at step + k. We note that the k-by-n updating matrix Y (t) and downdating
matrix Z(t) are given by

Y(t)

x(t + 1) x(t n + 2)

x(t + k) x(t + k- n + 1)

and

z(t)

x(t- M + l)

x(t-M+k)

x(t M- n + 2)

x(t-M+k-n+ 1)
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k rows deleted
z(t)

k rows added

II IIII
II IIII
II IIII x(t) d(t)

FIG. 2.1. Sliding window RLS method: Updating with Y(t) and downdating with Z(t).

The right-hand side data vector d(t + k) is modified in a corresponding fashion. In practice,
the sliding window length M can be modified adaptively in the recursive computations. This
is accomplished easily. For instance, to increase (decrease) M one can downdate with fewer
(more) rows than used for updating. For simplicity of notation, however, we describe only the
case where the window length M is fixed, i.e., we describe the FFT-based sliding window RLS
algorithm only for combined rank k updates and downdates. Next we show how to generate
the normal equations matrix X (t + k)*X (t + k) and the right-hand side vector of the normal
equations X(t + k)*d(t + k) at the next step.

We use the fact that at the step -t- k, the normal equations matrix can be written as the
following form which corresponds to (2.4),

X(t + k)*X(t + k) T(t -t- k) L(t + k)*L(t + k) U(t + k)*U(t + k),

where the first column of T (t + k) is given by

[,0(t + k), , (t + ) ,._ (t + :)]

and

t+k-lJl
yj(t + k) x(s)x(s / Ijl).

s=t-M+k-n+2

Here the first column of the lower triangular and the first row of the upper triangular Toeplitz
matrices L(t + k) and U(t + k) are given by

[0, x(t-M+k-n+2) x(t-M+k)]r and [0, x(t+k) x(t+k-n+2)]

respectively. Both the matrices L(t +k) and U (t +k) can be easily generated from the updating
matrix Y(t) and downdating matrix Z(t). Moreover, the first column of the Toeplitz matrix
T (t + k) can be generated by

T(t + k)el T(t)el + Y(t)*Y(t)el HZ(t) (Z(t)r)*en,

where H is the n-by-n antidiagonal identity matrix, and e and en are the first unit and last
unit vectors. By utilizing the special Toeplitz (displacement) structure of the data matrices
Y(t) and Z(t), the first column of T(t + k) can be obtained by the FFT in O (max{n, k} logn)
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operations. We note that the right-hand side vector X (t + k)*d(t + k) of the normal equations
at the step + k can be obtained in O(max{k, n} log n) operations by using similar updating
and downdating computations, i.e.,

X(t + k)*d(t + k) X(t)*d(t) Z*(t)dd(t) + Y*(t)du(t),

where the vectors dd(t) and du(t) are given by

dd(t) [d(t M + 1), d(t M + 2) d(t M + k)] r

and

respectively.

du(t) [d(t + 1), d(t + 2) d(t + k)] r,

We remark that in the case of point-processing, i.e., when k 1, the updating and
downdating computations for the sliding window RLS process is much simpler than the case
of block-processing (k > 1). More precisely, we do not need to use the FFT to compute the
first column of the Toeplitz matrix T (t / 1). and the right-hand side vector at the step + 1.
The first column of T (t + 1) can be generated by

T(t + 1)el T(t)el + x(t + 1)x(t) x(t M n + 2)Hx(t M + 1).

Similarly, the right-hand side vector X* (t + 1)d(t + 1) is computed by the following formula:

X*(t + 1)d(t + 1) X(t)*d(t) d(t M + 1)x(t M + 1) + d(t + 1)x(t + 1).

Here, the complexity of these rank 1 updating and downdating computations is O (n).
Recall that our propose is to use the circulant preconditioned conjugate gradient method

to compute the filter coefficient vectors at each adaptive time step. In the next section, we
introduce our circulant preconditioner and show that the circulant preconditioned system
converges very quickly at each adaptive time step.

2.2. FFT-based preconditioned conjugate gradient iterations. In this paper, we only
focus on the optimal circulant preconditioner C(t) at the step t, which is defined to be the
minimizer of II Qn T(t)IIF over all n-by-n circulant matrices Qn [9]. Here I1" IIF denotes the
Frobenius norm. The following lemma gives the spectral properties of the optimal circulant
preconditioner. Its proof can be found in Tyrtyshnikov [25].

LEMMA 2.1 (of Tyrtyshnikov). Let An be an arbitrary n-by-n Hermitian matrix and Cn
be the optimal preconditioner, which is defined to be the minimizer of ll Qn An IF over all
n-by-n circulant matrices Qn. Then Cn is Hermitian and

(2.6) ,min(An) _< min(Cn) _< max(Cn) _< max(An)
where ,kmax(’) and )min(’) denote the largest and the smallest eigenvalues, respectively. In
particular, if An is positive definite, then Cn is also positive definite.

We remark that most of the other circulant preconditioners do not satisfy (2.6); see Chan
and Yeung [6]. Since T(t) is a Toeplitz matrix, the first column of C(t) can be obtained in
O(n log n) operations by the FFT; i.e., the circulant matrix C (t) can be generated in O(n log n)
operations [9].

Next we analyze the convergence rate of the conjugate gradient method when applied to
solving the preconditioned system, which can be expressed as

C(t)-l[X(t)*X(t)]w(t) C(t)-lx(t)*d(t),
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at each step t. As we deal with data samples from random input processes, the convergence
rate will be considered in a probabilistic way, which is different from the deterministic case
discussed in 1.2. For simplified notation in the following discussions, we define an integer

J--M+n-1,

which refers to number ofdata samples given in the data matrix X(t) (cf. (2.1)).
We first make the following practical assumption (A) on the input signal process, so that

results of the convergence rate can be derived.
(A1) The input discrete-time stochastic process is stationary.
(A2) The underlying spectral density function f(O) (see Haykin [13, pp. 116-117] for

definition) of the input process is real-valued, positive, and in the Wiener class; i.e.,
the autocovariances {r of the process are absolutely summable:

(2.7) Irl<<.

(A3) The variances of the estimators (t) given in (2.5) are bounded by

(2.8) Var(F (t))-= Var (g(t)) <
/

J -7’ k 0, -4-1, +2

where/3 is a constant.
(A4) The stationary process has zero-mean, i.e., g(x(t)) --/z 0 for all. where g is the

expectation operator.
Here are some remarks on the assumptions.

1. The assumption (A1) is often true in signal-processing applications. For instance
(A1) holds for autoregressive (AR) processes, moving-average (MA) processes and
autoregressive and moving-average (ARMA) processes, which are commonly used
as input stochastic stationary processes, see Haykin [13, pp. 90-94].

2. In time-series analysis, assumption (A2) is often valid. For example, the spectral
density functions of ARMA processes are rational functions [3, p. 121]. The pos-
itiveness of the spectral density function can be guaranteed by the causality of the
process [3, p. 85], whereas the absolute summability of the autocovariances can be
assured by the invertibility of the process [3, p. 86]. In the time-series literature, the
Hermitian Toeplitz matrix Rn with its first column given by

[r0, El rn_2 rn_l]T

is called the covariance matrix of the input stochastic stationary process [13, p. 82].
Moreover, we have the following lemma about the spectrum cr (Rn) of Rn given in
Haykin [13, p. 139].

LEMMA 2.2. Let the inputprocess satisfy assumptions (A1) and (A2). Then the spectrum
cr (Rn) of Rn satisfies

(2.9) a(Rn) c_ [fmin, fmax], Vn > 1,

where fmin and fmax are the minimum andmaximum values off (0), respectively. Inparticular,
if f (0) is positive, then Rn is positive definite.

We note that further remarks on the assumptions can also be found in [18]. We first
establish the result that the smallest eigenvalue and the largest eigenvalue of X(t)*X(t) are
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uniformly bounded away from zero with probability 1. Basically, the lemma states that the
normal equations matrix is a good approximation to the covariance matrix Rn in the stochastic
sense. In time-series analysis and signal processing, the normal equations matrix is sometimes
called a sample covariance matrix [22, pp. 321-322], 13, pp. 378-379].

LEMMA 2.3 (Ng and Chan [18, Thm. 2 and Lem. 4]). Let the input process satisfy
assumption (A). Then for any given > 0 and 0 < 6 < 1, there exists a positive integer N
such thatfor n > N,

Pr )min -;[X(t)*X(t)] > )min(Rn) e >_ frnin e > 6

and

Pr )ma {X(t) (t)] <,kma(Rn)+<fm+ > 1-6,

provided that the number ofdata samples J (-- M + n 1) is sufficiently large (J >> n).
Next we prove that the circulant preconditioned matrices have clustered spectra. The

result is stated as the following theorem.
THEOREM 2.4. Let the input process satisfy assumption (A). Then, for any given > 0

and 0 < 6 < 1, there exist positive integers K and N such thatfor n > N,

Pr{at most K eigenvalues of ln C(t)-lX(t)*X(t) have absolute value > > 6,

provided that the number ofdata samples J is sufficiently large J n).
Proof We define the following events:

*XE1 {at most K eigenvalues of 7[C(t) X(t) (t)] have absolute value > e },
E2 {)min (C (t)) is uniformly bounded away from zero}, and

E3 {at most K eigenvalues of In C(t)-X(t)*X(t) have absolute value > e }.

By the results proved in Ng and Chan 18, Thm. 3 and Lem. 4], we have, for any given
> 0 and 0 < 6 < 1, that there exist positive integers K and N such that for n > N, Pr

{E > 6. Using Lemmas 2.2 and 2.3, we have Pr {E2} > 6. Then we note that

Pr{E and E2} Pr{E} + Pr{E2} Pr{E1 or E2} >_ 26.

Since events E and E2 together imply E3, the theorem follows.
Using Theorem 2.4, we can easily show that the conjugate gradient method, when applied

to the preconditioned matrix C(t)-lx(t)*X(t), converges superlinearly with probability
provided that the number of data samples J(= M + n 1) is sufficiently large., i.e., M is
sufficiently large. For details of the proof of the superlinearly convergence rate, see Chan
and Strang [4]. Thus the number of iterations required to achieve a fixed accuracy remains
bounded as the filter order n is increased (see the numerical examples in [18]). Recall that for
each iteration, the work is of order O (n log n) operations. Therefore, the work of obtaining
the least squares estimator w(t) at each step to a given accuracy is also of order O(n log n).

3. FFT-based sliding window RLS algorithm. As the FFT-based preconditioned con-
jugate gradient method is efficient in solving the normal equations (1.2), we employ the method
in the sliding window RLS computations. In the following, we describe our FFT-based slid-
ing window RLS algorithm. We assume that the sliding window RLS process is initialized,
i.e., at time M, the Toeplitz matrices T(M), L(M), and U(M) are given and the least
squares estimator w(M) is also computed. Otherwise, the first step can be done by applying
the conjugate gradient method to solving the preconditioned system

C(M)-I[X(M)*X(M)]w(M) C(M)-X*(M)d(M),
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in factored form [7, 18], with the zero-vector as our initial approximation to the filter coefficient
vector. The general step of our algorithm is described as follows.

ALGORITHM: FFT-BASED SLIDING WINDOW RLS ALGORITHM. Let M denote the length
of the sliding data window, and let k denote the block length of the update and downdate
blocks. The n-by-n Toeplitz matrix T(t), the k-by-n downdating matrix Z(t), the k-by-n
updating matrix Y(t), and the associated right-hand side M-vector X (t)*d(t) at step in the
RLS process are given. Let w(t) denote the least squares estimator at step t. This algorithm
computes the least squares estimator w(t + k) at step + k.

Generate information for the three n-by-n Toeplitz matrices T (t + k), L(t + k), and
U(t + k) and the associated right-hand side n-vector X(t + k)*d(t + k), using the method
proposed in 2.1.

Find the first column of the optimal circulant preconditioner C (t + k) for T (t + k)
using the method described in 2.2.

Apply the conjugate gradient algorithm, as in 2.2, to solving the preconditioned
system represented as

C(t + k)-l[X(t + k)*X(t + k)]w(t + k) C(t -t- k)-lx(t + k)*d(t + k),

with starting initial guess w(t).

Next we provide some remarks about the algorithm:
1. The FFT-based sliding window RLS algorithm consists of three basic parts. The

FFT can be used to generate normal equations and circulant preconditioners in the
first and second parts. The number of operations required is O(max{k, n} log n). In
the third part, by using FFT, the cost of matrix-vector multiplications involving the
matrices C(t + k) -1, T(t + k), L(t + k), L(t + k)*, U(t + k), and U(t + k)* can be
done efficiently in O (n log n) operations. It follows that the number of operations per
iteration in the preconditioned conjugate gradient method is O(n log n). The total
work of obtaining the least squares estimators at each step to a given accuracy is of
order O(n log n) operations for point-processing and O (max{k, n} log n+n log n) for
block-processing. In the case ofblock-processing when k >_ n, the method on average
will require only O(log n) operations per adaptive filter input. A corresponding
scheme for averaging the computations over n steps has been considered for the
LMS algorithm by Marshall and Jenkins 16].

2. The basic tool of our fast sliding window RLS algorithm is the FFT. Since the FFT
is highly parallelizable and has been implemented on multiprocessors efficiently 1,
p. 238], our algorithm can be expected to perform efficiently in a parallel environment
for large-scale or for near real-time applications. One could, for example, assign each
step of the algorithm to a different group of processors. A group of processors would
be responsible for generation of the right-hand side vector X (t)*d(t) of the normal
equations, and the first columns of the Toeplitz matrices T (t), L(t), and U (t) at step
t, respectively. Then a group of processors can be used to generate the first column of
circulant preconditioner C(t). The conjugate gradient method can be implemented
on an another group of processors.

3. When the input stochastic process is stationary and the adaptive filter system is
subjected to the effect of white noise, both the expected value of the least squares
estimators w(t -t- k) and w(t) are equal to the solution of the discrete Wiener-Hopf
equation, see [13, pp. 165-167]. Thus if k is not large, w(t) will be a good initial
approximation (instead of a randomly chosen one) to the least squares estimator
w(t -t- k) when the input process of the adaptive system is time varying in practical
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applications. It follows that the number of iterations of the preconditioned conjugate
gradient method can possibly be reduced with this choice of starting vector; see the
numerical results in 4.

Next we demonstrate the convergence of the sliding window RLS algorithm involving
multiple updating and downdating computations. We consider two aspects of the problem in
the analysis: (1) the estimate w(t), and (2) the average least squares error of the RLS process.
We use a probabilistic approach to consider these aspects of the problem. For the analysis, we
first assume that the desired response d (t) and the input sample column vector x(t) are related
by a multiple linear regression model. In particular, we write

d(t) eo(t) + x(t)*,

where is an n-by-1 constant regression parameter vector of the model and eo(t) is the
measurement error. We also assume that the measurement error process {e0(t)} is white
noise with zero mean and variance r2. In addition, we assume that the input process satisfies
assumption (A). This assumption is equivalent to saying that the adaptive system operates in
a stationary environment.

We first give the following lemma which is useful later in the analysis of the convergence
of the sliding window RLS algorithm.

LEMMA 3.1. Let {e0(t)} be a discrete-time white noise process where the mean of the
process is equal to 0 and the variance ofthe process is equal to r 2. IfVar(eo(t)2) v Vt
1, 2 then for any given > O,

where e0(t) is an M-vector given by

(3.2) e0(t) [e0(t M + 1), eo(t M + 2) e0(t)] r

andt M,M +
Proof Since {e0(t)} is a white noise process, i.e., it is a sequence of uncorrelated random

e0 (t M+ j)2 is equal tovariables, the mean and the variance of the random variable .ff=
.g2 and v/M, respectively. By Chebyshev’s inequality (see Fuller [10]), we get the following
result:

1 M

Ze(t- M + j)2
j--1

The remaining results can be derived in a straightforward way by considering simple proba-
bility arguments. [3

We let a(t) denote the weight-error vector at step t, defined as the difference between the
least squares estimator w(t) produced by the sliding window RLS algorithm and the regression
parameter vector , of the multiple linear regression model, i.e.,

(3.3) a(t) w(t) @.

We first prove that with probability 1, [[a(t)[[2 is bounded by a constant depending on the
variance of the process of the measurement error and minimum values of the spectral density
function f (0) of the input process.
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THEOREM 3.2. Let the inputprocess satisfy assumption (A). Let the desired response d (t)
be given by (3.1). Ifthe variance ofeo(t)2 is bounded Yt 1, 2 thenforany given 6 > 0
and 0 < 6 < 1,

62 .qt_ 752
(3.4) Pr []a(t)[I2 < > 1 6,

fmin 6

provided that the number of data samples J is sufficiently large (J >> n), where 75 2 is the
variance of the measurement error {e0(t)}.

Proof We assume in 2.1 that the normal equations matrix X(t)*X(t) is non-singular.
Thus the least squares estimator w(t) at step is given by

w(t) [x(t)*x(t)]-x(t)*(t),

where d(t) is an M-vector given by (2.3). Therefore, by (3.1) and (3.3), we have

a(t) [X(t)*X(t)]-X(t)*eo(t),

where the vector e0(t) is given by (3.2). It follows that

(, )_lIla(t)ll2 7x(t)*x(t) x(t)*eo(t)
x(t)*x() x(t)* eo()

2 2

(3.5) rain 7X(t)*X(I) eo() 2"
Then we note by Lemma 2.3 that

Pr{Xmin(X()*X()) fmin-} > 1-,

where fmin are the maximum and the minimum values of the positive spectral density function

f (0) of the input stationary process. Combining the above result with Lemma 3.1, we have

{(3.6) Pr Ila(t)[l < > 1 2
fmin e j64

where v is the variance of eo(t). The theorem follows by using simple probability arguments
in (3.6), provided that J is sufficiently large. S

We see from the bound (3.4) that the g2 norm of the weight-eor vector is magnified by the
smallest eigenvalue of X (t)*X (t). Thus the sensitivity of the sliding window RLS algorithm
is determined initially by the conditioning of the normal equations matrix X(t)*X (t).

Next, we consider the average least squares eor of the sliding window RLS algorithm.
For the sliding window RLS method, we solve the least squares problem (2.4), and thus the
average least squares eor is given by (2.2). In the following analysis, we let g(t) denote
the average least squares eor of the sliding window RLS estimate at each step t, i.e.,

1
g(t) 7 [e(j)[2"

j=t-M+l
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Recall that J is the number of data samples taken in the sliding window RLS method at step
t. We will show that with probability 1, the average least squares error g (t) is bounded by a
constant depending on the variance of the process of the measurement error and the maximum
and minimum values of spectral density function f (0) of the input process, provided that J
is sufficiently large.

THEOREM 3.3. Let the input process satisfy assumption (A). If the desired response d(t)
is given by (3.1), thenfor any given > 0 and 0 < 6 < 1,

fmax + >1-3Pr I’(t)l <(rz+e2) 1+
fmin--e

provided that the number ofdata samples J is sufficiently large (J n).
Proof. By (3.1) and (3.3), we can write

Is(t)l- -] lid(t) S(t)w(t)ll

-[d(t) X (t)w(t)]*[d(t) X (t)w(t)]

la*(t)X(t)*eo(t)-le*jo(t)eo(t) + 1a*(t)X(t)*X(t)a(t) + e;(t)X(t)a(t) + J
1 a 1

X< eo(t) + (t)*X(t) Ila(t)ll22

IX(3.7) +2 ---e0 (t) (t)*X(t) Ila(t) 112
/J 2 J 2

Combining Theorem 3.2, Lemma 2.3, andLemma 3.1, the theorem follows by considering
probability arguments and using (3.7). [q

Based on Theorems 3.2 and 3.3, it follows that the sliding window RLS algorithm always
converges when the adaptive system is operated in a stationary environment.

4. Numerical experiments. In this section, numerical experiments are reported to il-
lustrate the convergence performance of the FFT-based sliding window RLS algorithm. All
the computations are done using Matlab on an HP-715 workstation. We first illustrate the
convergence rate of the preconditioned conjugate gradient method by using adaptive finite
impulse response (FIR) system identification computations. FIR system identification has
wide applications in engineering 13]. Figure 4.1 is a block diagram for the implementation
of our algorithm in an adaptive FIR system identification model. The input signal x(t) drives
the unknown system to produce the output sequence d(t). We model the unknown system as
an FIR filter. If the unknown system is actually an FIR system, then the model is exact.

We apply our method to first and second order autoregressive models as input stochas-
tic processes. The first order autoregressive AR(1) and second order autoregressive AR(2)
processes are given by

x(t) + px(t 1) v(t) and x(t) -1
t- )lXt-1 + )(.2Xt-2 v(t)

[22, pp. 238, 241], respectively, where {v(t)} is a white noise process with variance r/2. In
our tests, we choose the parameters in each input process so that the corresponding spectral
density functions f(O) are positive and in the Wiener class. The variance 02 of {v(t)} is
chosen as 1. The reference (unknown) system is an nth order linear phase FIR filter with
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x(t)

Unknown System

FIR System {w(t)}=

FG. 4.1. Adaptive FIR system identification model.

eo(t)

o(t)

uncorrelated Gaussian white noise added. The finite impulse response {tb}=l used for the
unknown system is given by

]2k-n 11uTg=l.1- k-1 2, n.
n-1

We note that the shape of the FIR filter is triangular. The Gaussian white noise measurement
error {e0(t)} with variance Z"2 is added into the FIR system identification model to test the
performance of the RLS algorithm. In the figures below, N M/n is the number of blocks
of the data samples used in data matrix X (t), where the size of each block is equal to n. Recall
that M is the length of the sliding window RLS. In the numerical tests, the stopping criterion
of the preconditioned conjugate gradient method is that the 2 norm of the residual vector after
j iterations is less than 10-7.

We first consider the number of iterations at each recursive updating and downdating
step of the FFT-based sliding window RLS algorithm. We use k as rank numbers for
the updating and downdating computations to test our method. Figures 4.2 and 4.3 show the
average numbers of iterations of the normal systems and of the preconditioned systems at each
adaptive time step, averaged over 20 runs of the algorithm. In the tests, we use zero vector
and current filter coefficient vectors as our initial guesses at time step M and at time step
M + k, M + 2k respectively. From the numerical results, we see that the conjugate

gradient algorithm for our preconditioned systems converges very quickly, and the number
of iterations required for convergence is always less than that of nonpreconditioned systems.
Figure 4.4 shows how the choice of the initial vectors in the preconditioned conjugate gradient
method improves the convergence. In these tests, the current solution vectors and randomly
chosen vectors are used as initial guesses at each adaptive time step to test the performance
of the algorithm. From the numerical results, we see that when k 1, the reduction in the
number of iterations required for convergence in preconditioned systems at each updating and
downdating step is significant. However, when k n, the reduction is not as significant as
k 1. This trend is not surprising, since w(t) is expected to be a less effective starting vector
at time + k, for larger k.

Next, we consider the 2 norm of the weight-error vector a(t) and the average least square
error (t) at each recursive step to test the convergence behavior of our algorithm. Figure 4.5
shows the 2 norm of the weight-error vector and the average least square error for AR(1) with
p -0.9999 as input stationary processes at each recursive updating and downdating step.
In these cases, the variances of the Gaussian white noise measurement error {e0(t)} are equal
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FI6. 4.2. (Left) AR(1) input process when n 32, p -0.9999, variance of noise 0.025, and no

preconditioner is used. (Right) AR(1) input process when n 32, p -0.9999, variance ofnoise 0.025, and
FFT-basedpreconditioner is used.

Recursive Rank Updating and Downdating Step

N=4

./.-,/\/ ,,,.
..’...N.6.
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Recursive Rank Updating and Downdating Step

FIG. 4.3. (Left) AR(2) input process when n 32, Xl -1.4, X2 0.45, variance of noise 0.025, and
FFT-based preconditioner is used. (Right) AR(2) input process when n 32, X] -1.4, X2 0.45, variance of
noise 0.025, and FFT-basedpreconditioner is used.

to 0.025. We remark that the numerical results are average values based on 20 runs of our
algorithm. From the figures, we note that both Ila(t)l]2 and ’(t) are bounded by a constant
depending on the variances of the background white noise. We also see that as M N n
increases, the average least squares error I" (t)l increases; however, [la(t)ll2 decreases.

The latter phenomenon can be explained by considering the expected value of the weight-
error correlation matrix K(t) defined by

K(t) g(a(t)a(t)*)

at step t. Haykin [13, pp. 487-489] proved that the least squares estimator w(t) is unbiased,
i.e.,

(w(t))

and the expected value of K(t) is given by

(4.1) K (t) "rZ[x (t)*X (t)] -1,
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FIG. 4.4. (Left) AR(1) input process when n 32, p -0.9999, variance of noise 0.025, and FFT-based
preconditioner is used. (Right) AR(1) input process when n 32, p -0.9999, variance of noise 0.025, and
FFT-basedpreconditioner is used.
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FIG. 4.5. (Left) AR(1) input process when n 32, p -0.9999, and variance of noise 0.025. (Right)
AR(1) input process when n 32, p -0.9999, and variance ofnoise 0.025.

where Z"2 is the variance of the measurement error {e0(t)}. We can rewrite (4.1) as follows:

:2 [X(t)*X(t)]
-1

I(t) 5- J

From Lemma 2.3 we observe that with probability 1, IlK(t)ll2 is bounded by

2

IIK(t)lle _<
(fm )’

provided that J. is sufficiently large. Based on the result about the correlation matrix of the
weight-error vector, we will expect Ila(t)lle to decrease as J increases. Moreover, Figure 4.6
shows the effect ofbackground white noise on la(t) le and I" (t)I. Different levels of variances
re of the Gaussian white noise are used. We see that both Ila(t)lle and I’(l)l increase as re

increases.
In the following tests we compare our FFT-based sliding window RLS algorithm with

standard recursive least squares O(n) operations [13, p. 485] and,fast transversal filter O(n)
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FIG. 4.6. (Left) AR(1) input process when n 32, p -0.9999, and N 4. (Right) AR(1) input process
when n 32, p -0.9999, and N 4.

operations algorithms 13, pp. 586-599]. An exponential weighting factor g is generally used
in the standard recursive’least squares and fast transversal filter algorithms. The inverse of

?’ is approximately related to a "measure" of the memory of the algorithm. Here, the length
of the sliding window M used in our FFT-based sliding window RLS algorithm is related to

?, by the approximation formula,

Figures 4.7 and 4.8 show the prior average least squares error (d(t) w*(t 1)x(t))2 and
the 2 norm of weight-error vector of different adaptive filter algorithms when an AR(1) input
process with p -0.9999 is used. Different levels of variances of the Gaussian white noise
are used to test the performances of different adaptive filter algorithms. We see from Figures
4.7(b) and 4.8(b) that the fast transversal filter algorithm given in [13, pp. 586-599] does
not converge when noise is added to the adaptive FIR system. However, both the standard
recursive least squares (Figures 4.7(a) and 4.8(a)) and our FFT-based sliding window (Figures
4.7(c) and 4.8(c)) algorithms converge very quickly.

Next, we compare the complexity of our algorithm with the standard recursive least
squares algorithm. Figures 4.9 and 4.10 show the number of kilo-flops used by the standard
recursive least squares algorithm and the FFT-based preconditioned conjugate gradient method
for rank 1, rank 4, rank 10, and rank n recursive updating. We see that when the order of the
filter is small, the complexity of our algorithm is greater than that of the standard recursive
least squares algorithm. However, when the order of the filter is large, the complexity of our
algorithm is quite competitive with the standard least squares algorithm. From Figures 4.9
and 4.10, we note that the reduction in the complexity of our algorithm is significant for rank n
recursive updating. Thus our algorithm is particularly useful in signal processing applications
where the sizes of the filters are very large. (For example, in the case of acoustic echo or active
noise cancellation problems, n is between 250 and 2000, depending on the precise application
17], [20].) In addition, more effective parallel implementations of our FFT-based scheme are

possible [21 ].
Finally, we remark that our FFT-based sliding window RLS scheme also facilitates track-

ing the smallest and largest eigenvalues of the normal equations matrix X(t)*X(t) at each
time step. The procedure is to determine the optimal circulant approximation to the normal
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FIG. 4.7. (a) Standard recursive least squares algorithm with 9/= 0.9922. (b) Fast transversalfilter algorithm
with y 0..9922. (c) FFT-based sliding window RLS algorithm with N 4.

equations matrix. We note that by (2.4) and linearity of the optimal circulant approximation,
we have

IIC x(t)*x(t)ll < IIC(t) T(t)IIF + liCe(t) L(t)*L(t)IIF + Ilfv(t) u(t)*u(t)ll,

where we define

(4.2) C C(t) Cc(t) Cv(t).

Here circulant matrices C(t), C(t), and Cu(t) are the optimal circulant preconditioners of
the matrices T(t), L(t)*L(t), and U(t)*U(t) respectively. By Lemma 2.1, we have

(4.3) )min(X(t)*X(t)) < ,min(C) _< ,max(C) < )max(X(t)*X(t)).

By considering the spectral condition number tc(C(t)), it follows from (4.3) that

(4.4) z(C(t))
)max(C (t))

< z(X(t)*X(t)), or V/z(C(t)) < c(X(t)).
,min (C (t))

Here tc (.) denotes the spectral condition number ofa matrix. Thus (4.4) provides a lower bound
on the spectral condition number of X(t)*X(t). For the generation of the circulant matrices
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F6.4.9. (Left) Rank updating when N 4 and AR(1) input process with p -0.3 is used. (Right) Rank 4
updating when N 4 and AR(1) input process with p -0.3 is used. Dashed curve: Standard RLS. Solid curve:
our FFT-based PCG.
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FIG. 4.11. (Left) AR(1) input process when n 32, p -0.9999, and N 4. (Right) AR(2) input process
when n 32, X1 -1.4, X2 0.45, and N 4.
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CL (t) and Cu(t), Chan, Jin, and Yeung [5] have proved that the circulant matrices CL (t) and
Cu(t) can be generated in O(n log n) operations. It follows that the eigenvalues of C can be
obtained in O(n log n) operations. Consequently, if (4.4) is large, then the data matrix X(t)
is ill-conditioned. Regularization schemes can then be used to stabilize the computations
in the FFT-based sliding window RLS algorithm if X(t) is ill-conditioned. In particular,
Hanke, Nagy, and Plemmons [12] have devised a regularization scheme based on modifying
the eigenvalues of C (t) that can be applied to overcome the effects of ill-conditioning in X (t).
In addition, other regularization techniques for Toeplitz least squares problems have also been
studied by Chan, Nagy, and Plemmons [7, 8]. These approaches using regularization can lead
to stable and robust implementations of our FFT-based sliding window RLS algorithm. Figure
4.11 lists the corresponding average spectral condition number of the circulant matrix C and
the data matrix X (t) (symbol X) at each recursive updating and downdating step. We note
that the condition number for C provides a reasonable lower bound as it adaptively tracks the
changes in the condition number of the data matrix at each time step.
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5. Concluding remarks. In this paper we have proposed a new FFT-based sliding win-
dow recursive least squares algorithm. Preliminary results show that, for many important
problems, FFT-based iterative methods can compete with direct methods in an adaptive signal
processing environment. A summary of some of these results is also included in 19].

Also, we remark that our iterative FFT-based sliding window algorithm can be adapted
to handle two-dimensional (2-D) signal processing applications. Here direct methods are
well known to experience numerous difficulties (see, e.g., 13]). Chan, Nagy, and Plemmons
[8] have studied block least squares computations, min lib Tx]12, where T is a rectangular
Toeplitz-block matrix. They consider there the solution of block least squares problems by
the preconditioned conjugate gradient algorithm using square nonsingular circulant-block and
related preconditioners, constructed from the blocks of the rectangular matrix T. Precondi-
tioning with such matrices allows efficient implementation using the 2-D FFT. This extends
the earlier work on preconditioners for Toeplitz least squares iterations for 1-D problems out-
lined in 2. Our iterative FFT-based sliding window RLS algorithm described in 3 can thus
be applied to 2-D signal processing applications, where the data matrix X (t) generally has a
Toeplitz-block structure.
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A CONVOLUTION ALGORITHM WITH APPLICATION TO DATA
ASSIMILATION*

RANJIT M. PASSIt, R. KENT GOODRICHt, MARK LIMBERt, AND JOHN C. DERBER

Abstract. A computationally efficient algorithm to approximate a convolution w f is derived when the real-
valued weighting functions w are dimensionally separable, i.e., W(Xl, x2) Wl(Xl)VO2(x2) and w(xk) w(-xk),
and the function f(i, j) is defined on a discrete integer lattice in 2. The algorithm consists of a product of operator
polynomials P, (D), k 1, 2, which are composed of simple averaging operators D operating on f. It generalizes
the smoothing algorithm of Goodrich, Passi, and Limber [Proc. 24th Symposium on the Interface: Computing Science
and Statistics, 1992] for data constrained to a uniformly spaced, large-dimensioned orthogonal grid lying in a two-
dimensional space, using a Gaussian weighting function w(r) exp(-r2/b2).

The new algorithm has a direct application to data assimilation problems in meteorology and oceanography.
Data assimilation optimally combines output of a numerical model with observational data to derive more accurate
initial conditions needed for numerical integration of the model equations. Computer simulations with the algorithm
were found to be about ten times faster than a comparable algorithm of Derber and Rosati [J. Phys. Ocean, (1989),
pp. 1333-1347].

Key words, operator polynomials, Gaussian function, separable functions, data assimilation, product polynomial
algorithm

AMS subject classification. 65N60

1. Introduction. Nowcasting and forecasting are important activities in meteorology.
Nowcasting combines the output of a numerical forecast model with observations to provide
dynamically balanced initial conditions used by the model to calculate the forecast. Now that
the numerical models of the general circulation of the ocean have matured, these two activities
are playing an important role in oceanography also to provide a realistic description of the
various oceanic regions.

To describe adequately the general circulation ofthe ocean requires a fine spatial resolution
and extremely small time steps for model integration. This combination leads to large in-core
computer memory and computer processing time for the model integration. In addition, the
numerical models have to be coupled with data assimilation schemes to derive accurate initial
conditions for computing model forecasts. To make the nowcasting and forecasting practical,
it is necessary that numerical modeling and data assimilation schemes be computationally
efficient and not require inordinately large computer in-core memories.

The nowcasting step involves two separate operations of (i) optimally melding model
output with observations (data assimilation), which is followed by (ii) dynamically balancing
the melded output so that transients are not introduced in subsequent model integration. In this
paper, we are mainly concerned with data assimilation where one combines the model output
with the observations using a linear least squares method. Because of the large dimensions
involved, the minimization in the least squares procedure is performed by the method of
steepest descent, as it avoids inversion of the covariance matrix Y]m of the model output
(Derber and Rosati [5], hereafter, referred to as DR). The minimization procedure requires
several matrix multiplications of the type mg, where Y]m stays fixed but vector g is varying.
Because the dimensions of ]m are large and in-core memory parsimony is a necessity, -]m is
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not stored in-core. For a Gaussian covariance function, DR developed an algorithm to evaluate
Zing that was computationally efficient and avoided a direct evaluation and storage of Nm.
This was achieved by repeated applications of a Laplacian operator.

In this paper, we develop a new algorithm (the product-polynomial operator (PPO) al-
gorithm) that, while maintaining the accuracy, approximates mg more efficiently than the
Laplacian algorithm; the approximation is affected by applying a product of operators that are
polynomials in simple averaging operators. In addition, it is shown to admit, with equal ease
and efficiency, a wider class of covariance functions which can be expressed as a product of
factors that are even functions in a single dimension. The theory is developed in 7-2, but is eas-
ily generalized to higher dimensions. Finally, using computer simulations, our approximation
is compared with the actual matrix multiplication, mg, and with the DR algorithm.

In 2 we first develop the statistical framework needed to arrive at a common formulation
ofthe optimum interpolation problem, leading to the least squares minimization solution by the
steepest descent, iterative process, and the step where the matrix multiplication mg has to be
evaluated. This is followed, in 3, by the development and description ofthe PPO algorithm for
approximating Nmg, along with a discussion on the determination of the operator-polynomial
degrees, approximation accuracy, and implementation procedures. Although our emphasis is
on the data assimilation aspect, in 4 we describe some steps that maintain dynamical balance
in the different fields and minimize the effects of transients in our ocean data assimilation
experiments. Finally, in 5, we present the results Of numerical simulations that compare the
performance of the PPO and the DR algorithms.

2. Statistical formulation of the data assimilation problem. The purpose of data as-
similation is to estimate the true state of the ocean O by combining the model output Tm and
observations To. The combined estimator (after dynamic initialization, in some cases; see
[4]) is then used as the initial condition for the model integration. The vectors (9 and Tm are
N-vectors defined on the model grid m; the observation vector To is an M-vector defined on
the observation grid o.

Usually, M << N, and To alone cannot provide an adequate representation of O. Thus,
assimilation is performed resulting in initial conditions on m, which are used for the numerical
integration of the model equations. We assume there exists a mapping such that D(m) o.
Then Oo, the true state of the ocean at the observation grid, can be written as Oo D(O).
Often D is assumed to be a linear mapping so that

(2.1) IDo DID.

The motivation to perform such data assimilation is the assumption that both the model
values and the observational data are unbiased estimators of the true state of the ocean, so
that the optimal combination of the two will lead to an estimator of ID, which has a smaller
error variance than either of the two. Under the unbiasedness assumption, we can write the
following linear model:

(2.2)

where e and eo are vectors of zero mean, random errors in the model output, and observations,
with m and No as their respective covariance matrices. It is reasonable to assume that the
errors in To and Tm are statistically independent. Then the least squares solution to the true
state ID is obtained by minimizing the quadratic functional

(2.3) Q (Tm O)’n (Tm ()) -+- (To D()’-1 (To DO),
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where the prime indicates matrix transposition. It is customary to write in terms of correc-
tions to the model values

(2.4) Q TyITc + (D% Tco)’Y/ (DT To),

where Tc Tm O and Tco DTm To. Ordinarily, this minimization should be quite
simple except for the large dimensions of the model grid and hence that of the covariance
matrix Era; thus, the routinely used optimization procedures are rendered inadequate, and
more efficient minimization algorithms must be devised.

With a given Em, DR gave an efficient, preconditioned conjugate gradient algorithm for
minimizing Q, which avoids computingE (also, see 10]). It iteratively reduces the gradient
vector g to zero; i.e.,

(2.5) lTc + D’E-(D(Tc) Tco) --+ O.

Preconditioning is supplied by the matrix ]m. The iteration steps of the conjugate gradient
method are as follows. Let Tj be the iterative solution to Tc at iteration j. We start with
initialization:

(2.6a) T1 0,

(2.6b) g. -D’IT0,
(2.6c) hi ]mgl,

(2.6d) do e0 0.

Then, the iterations are carried out via equations (2.7a)-(2.7h) given below:

(2.7a) dn hn + fln-ldn-1,

(2.7b) en -g + fln-len-1,

(2.7c) f,, e,, + DtDdn,

(2.7d) or,-

(2.7e) gn+l g, +
(2.7f) Tn+ T, +
(2.7g) hn+l mgn+l,

(gn+,
(2.7h) /+1

(gn, h)

where n is the iteration index. These steps are repeated until convergence is achieved. The
terms involving -1 in (2.6b) and (2.7c) are easily computed, since the assumption of sta-
tistically independent observation errors yields o and - as diagonal matrices. The major
computation is involved in (2.6c) and (2.7g), where the multiplication h+ mgn+ is
carried out.

For most implemented covariance structures, this operation is quite expensive, more so
for repeated applications of the operation. In fact, there is a two-fold problem at this step: one
is the multiplication operation that we just mentioned; the second is the practical problem of
actual storage of the large-dimensioned computed covariance matrix. Although the computed
matrix can be stored on a file and read when needed, the input/output operations can result
in excessive demand on computer time, especially in repeated applications. Thus, a fast and
accurate algorithm must be developed to handle this matrix multiplication operation.
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3. Product-polynomial operator algorithm. The DR algorithm alleviates the above
difficulties, to some extent, when the covariance structure of ]m is based on a Gaussian
function

(3.1) e(r) a exp(-r2/b2).

e(r) represents the covariance between two model grid values, r is the distance between
the two grid points, and b is the correlation length scale. The parameter a represents the error
variance of the model values. With (3.1), the matrix multiplication mg can be expressed as

b2 .1

The DR algorithm approximates the h(m, n) array via K applications of the operator
V V2Z; (1 + N-), where is the discrete Laplacian operator and K is an empirically determined,

large integer 11 ].
A close examination of the DR algorithm reveals two possible improvements. The first is

to replace the operator/2/( by some other polynomial in V2, p(V2) that is a better approximation
to (3.2) than Z;/(. If a more accurate approximation is achieved, then it would be possible to pick
the degree of p much lower than K, thus saving many computations when computing p(V2).
As we analyze this possibility, we notice the second improvement: since the quantity we are
trying to estimate is a convolution product over a discrete space, it should be possible to give an
analysis that exploits this fact directly without using continuous approximations that lead to the
application of the operator/2/( 11 ]. We found that, in this new domain analysis, the Laplacian
operator could be replaced by a product of polynomials in simple averaging operators. In fact,
the implementation of our observations showed that our algorithm is readily adapted to a much
more general covariance structure that is (termed as) separable.

DEFINITION. A realfunction ofseveral variables f (Xl x,) is separable ifit can be ex-
pressedas aproduct offactors that are evenfunctions ofa single variable; i.e., f (x x,

1--I (xi) such that fi (-s) fi (s) for all s, and fi are absolutely integrable.
A referee has provided us with an intriguing insight into looking at the behavior of the

Laplacian operator/2/(. Using the analogy of the classical differential equation

y’= Ay with y(0) Y0,

the operator Z;/( can be seen as a forward Euler approximation to the associated diffusion
equation

y’= V2y.

This suggests that the DR algarithm can be made computationally faster by using better
integration methods, e.g., the Adams-Bashforth second-order method, and we fully subscribe
to the referee’s suggestion. In fact, this suggestion opens up the possibility of any number of
modifications to the DR algorithm, depending on the order of the Adams-Bashforth method
employed. Although we will improve the computing efficiency, we still would not have the
enhancements that the PPO algorithm offers, viz, ease of implementation, generalization to a
wider class of covariance functions, parallel computing, and better accuracy in the boundary
regions.

We shall derive the PPO algorithm in the general framework of computing convolutions
using separable smoothing functions. The Gaussian structure in (3.1) forms a special case.

3.1. Preliminaries and notation. For notational convenience, the details of our develop-
ment are provided in two-dimensional Cartesian coordinates; the results are easily generalized



946 R.M. PASSI, R. K. GOODRICH, M. LIMBER, AND J. C. DERBER

to higher dimensions. The Fourier transform of g will be denoted by , and the convolution
operation will be denoted by *. We will require the covariance functions to be separable, i.e.,
in two dimensions, e(s, t) fl(s)fz(t) with fk(x) fk(-x).

Let ,2 be the group of all ordered pairs (m, n), where m and n are integers. Let L (Z2)
be the set of all sequences {amn stlch that [amn < c. We define the matrix operator
E on L (Z2) by E(g)(m, n) g e(m, n), where e is a fixed element of L (U,2). It is easily
seen that g e 6 L l(2). Since gGe . , this suggests using a typical Fourier analysis
on the group. With this setup, we can now derive our algorithm.

The matrix multiplication, analogous to (3.2), is written as

(3.3a) h(m, n) Z g(s, t)e(m s, n t)
S,t

(3.3b) (g e)(m, n),

where g e is the convolution of the two, two-dimensional arrays [13]. We will exploit
to our advantage the following facts that (1) the covariance functions are separable, which
leads to their Fourier transform to be functionally separable and real, and that (2) the matrix
multiplication operation E (g) is equivalent to a convolution of two, two-dimensional arrays,
so that the Fourier transform of E (g) is a product of the Fourier transforms.

3.2. Derivation of canonical forms. The development of the PPO algorithm is aided
by deriving two canonical forms that are functionally similar. One canonical form expresses
the two-dimensional convolution h (m, n) in the Fourier domain, and the other represents the
resultant of when g (m, n) is operated on by the PPO. A comparison of the two expressions
leads to the selection of the polynomials that constitute the PPO.

We would like to show that h (m, n) in (3.3a) can be approximatedby successively applying
yet-to-be-determined polynomial operators P (D1) and P2(D2) where D, k 1, 2 are the
simple averaging operators given by

(3.4a)

(3.4b)

Dig(m, n) [g(m 4- 1, n) 4- g(m 1, n)]/2,

D2g(m, n) [g(m, n 4- 1) + g(m, n 1)]/2.

The canonical expressions are given in the following theorems.
THEOREM 1. Let (0, ) be the two-dimensional Fourier transform ofg(m, n). Then

(3.5)

where

 lfolh(m, n) , (0, dp)q (O)q2(dp)e2ri(m+n4dOd,

(3.6) qk(O) f(s) exp[(-2risO)].

THEOREM 2. Let D, k 1, 2 be the averaging operatorsfrom (3.4). Then

(3.7) P(D2)P (D)g(m, n) (0, dp) P(cos 2r4)P (cos 2rrO)eri(m+edOd.

Note that the right-hand sides of (3.5) and (3.7) are similar functional forms. An exami-
nation of the two indicates that we could approximate h(m, n) as

(3.8) h(m, n) P2(D2)P (D)g(m, n),
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provided P1 (cos 2r0)
_

ql (0) and Pz(cos 2rr4) - q2(b). How good an approximation (3.8)
is depends on how well we can approximate q by polynomials P over the domain of q.
First, we prove the two results in (3.5) and (3.7).

Proof of Theorem 1. We start by computing the Fourier transform of the covariance
function

(3.9) (0, b) ZZ e(s, t)exp(-2zrisO 2rr c/)

where 0 and q are in the interval [0, ]. Because e(s, t) is separable, we can write

(0, 4))= (Z fl(s)exp[(-2rcisO)]) ( f2(t)exp[(-2rcit4))])
ql (O)q2(dp),

where q, k 1, 2 are defined in (3.6). Thus, (0, q) "separates" as a product of functions in
0 and 4. So., from (3.3b), we know E(g) is in the transform space. That is,

(3.10) E(g) . -- qlq2.

But, by the Fourier inversion theorem [7],

(3.11) E(g)(m, n) E(g)e+2rcim e+2Ein4)dOddp.

Finally, Theorem is proved when E(g) in (3.11) is replaced by the right-hand side of
(3.10). [3

Proofof Theorem 2. With as the Fourier transform of g, we can write

folfog(m, n) , (0, dp)e2ri(m+n4))dOd.

Applying operator D1 from (3.4a) to (3.12), we get

(e2riO nt_ e-2rriO)a, (0, ) eZri(m+n4))dOddp
2

(0, d?) cos(2rcO)e2ri(m+n4))dOd.

We note that every time D1 operates on g, we get an extra factor of cos(2rr0) inside the
integral. Thus, computing D1, D it is easy to see that an application of the polynomial
operator P1 (D1) yields

folfoP1 (D1)g(m, n) (0, qS) P1 (cos 2rcO)e2ri(m+n4))dOddp.

A similar application of operator polynomial P2(D2) yields

Pz(D2)g(m,n)=folfo (0, b) P2(cos 27rdp)e2i(m+nc/))dOddp.

Successive application of the two polynomial operators P1 and P2 gives the desired expression
(3.7), thus, proving Theorem 2. [3
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If we approximate E(g)(m, n) by Pz(D2)P1 (D1)(g)(m, n), then the error is bounded by

(3.13)
I(E P2(D2)PI(D1))g(m,n)I <_ I(0, )ldOddp

x sup Iql (0)qz(qS) P1 (cos 27r0) Pz(cos

where qk are given by (3.6). Thus, our goal should be to estimate qk(O) by Pk(cos 27r0),
k-= 1,2.

3.3. Polynomial-operator approximations. By (3.6) we have

ql (0) Z fl (s) exp[(-2rrisO)].

Using the assumption that fl is an even and real function, then

ql(O) fl(s)2cos(27rsO) + fl(O).
s>l

Now, we want to pick a polynomial P1 so that P1 (cos 27r0) is a good approximation to q (0).
To more easily compute this polynomial, we make the change of variables cos 2n0, such
that ranges over [-1,1]. Thus, we need to compute Tk cos(27rk0) in terms of t. This is
easily achieved using the Chebyshev polynomial recursion formula [1, p. 239]. This result
implies there exists a kth degree polynomial Tk such that Tk(t) Tk(cos 27r0) cos(27rk0),
and

Tk+l 2tTk(t)- T_l(t), k- 1, 2

where To(t) and T1 (t) t. We can compute q (0) for any value of cos(27r0) using
the recursion to compute cos(27rs0) in terms of and adding up enough terms so that the
remainder of the terms will be small. This is possible since j5 (s) is absolutely integrable,
which implies -’>_o IjS(s)l < .

Now we want to construct P as an approximation to q (0) considered as a function of t.

The idea here is to compute P asan interpolating polynomial on [- 1,1 in t. The question is
at which points do we interpolate? We use the expanded Chebyshev points 1, p. 244]. These
points are

[ (2i+1)/ (re)]/2 i--0. n,xi a + b + (a b) cos 2n+27r cos
2n+2

where a -1, b 1. This choice of points gives a nearly optimal polynomial P1 such
that max_l<t<l ]P(t) q(t)l is nearly minimized [1, p. 243]. At worst, the error is only
about four times as great using these points as it would be if we actually found the optimal
polynomial. There are algorithms for computing these optimal polynomials, for example,
the second algorithm of Remes and the differential correction algorithm [12, pp. 315-320].
We use the expanded Chebyshev points instead because of their simplicity, and because we
have not decided what degree polynomial to use. It will be less of a computational effort
to determine the degree using the expanded Chebyshev points than if we were to use these
more-complicated algorithms to determine the actual best approximation.

Thus, we let P1 (t) be the interpolating polynomial to ql (t) ql (0) at the expanded
Chebyshev points. The function q(O) ql(t) is computed to e-tolerance by using the
Chebyshev recursion formula, and

so

(3.14) ql(0) 41(0) fl(O) 4- Z fl(s)2cos(27rsO),
s=l

where we pick so such that 2 Y.ss0+l If1 (s)[ < Toll, where Tol will be determined below.
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3.4. Determination of the degree of P1. To determine the degree of P1 requires some
computational effort. We first determine an error tolerance Tol2 (given below). We pick n and
find the polynomial ofdegree n that interpolates c (0) at the expanded Chebyshev points xi,

0 n. We approximate IIq Pa by maxl<i<100 ICl (Oi) PI (ti)l where ti are one hundred
equally spaced points on [-1,1]. If ]]4 P]I < Tol2, we stop. Otherwise, we increase
the degree. We stop if the tolerance is satisfied or if the degree exceeds some predetermined
degree. In our simulations with the Gaussian weighting function, this degree stayed below
10. If the degree becomes too large, the computations become numerically unstable, and the
algorithm loses its computational advantage. One should also stop if IcT Pa starts to
increase. If the error goal IIl Pill < To12 is not satisfied then an error message is given,
and the degree that minimized Ic7 PII is used. Assuming the error goal is achieved, we
have IIq PII _< IIq cll / IIc7 Pill _< Toll + Tol2 Tol3. A similar analysis holds
for q2 and P2 with IIq2 P211 _< Tol3.

3.5. Determination of error tolerances. To determine the error tolerances above, we
need to keep in mind the goal of making

IE(g) P2(D2)P(D1)g(m,n)I < V (m,n) E ,2,

where is given. Note e should not be chosen much smaller than the expected error in one’s
measurements. To determine Toll, To12, we need an approximate error estimate

IE(g)- P2(D2)Pl(.D1)g(m,n)] < I(0, c)ldOddPllqlq2- ee211

< (M1Tol3 + M2To13)II,III,

where I111 fo fo I(0, 40 IdOd, andM Iqll (sup-norm). We have also approximated
lIP211 M2. We can estimate IIqll _< If(0)l / s_> 21f(s)l, k 1, 2. One can also show
that IIlll < Ilglll. Now, if Ilgll is large, the above error estimate is too conservative to be
of any use. Instead of an arbitrary g, we choose the special case of g 6s,t, which is one at
(s t) and zero at all other points. Then Ilgll 1 and we need to make To13 < and

M1+M2
pick Toll Tol2 r@. This is justified since

(3.15) g(m, n) ZZ g(s, t)6s,t(m, n);

i.e., g s -t g(s, t)(s,t and

(3.16) E(g) ZZ g(s, t)E(,t).

So, if we approximate E (3s,t), we have a good approximation to E (g). In our simulations, the
above strategy has worked well. Other error estimates are too pessimistic and, hence, require
much more computational effort.

3.6. What to do at the boundary. In practice, data are missing from some finite set.
We set this missing data to zero. This is justified since the convolution product contains only
nonzero data. The algorithm is applied in one dimension at a time. Each row can be done
independently. This means many of these computations can be done in parallel. The nonzero
values in the data propagate into the missing data, one unit on each end of a fixed data line,
each time we apply D. Thus, we need to add temporary memory ofsize 2n, where n
degree of polynomial P, k 1, 2. We only need to start the computations at a point once
there is a nonzero value on either side of the point.
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3.7. Computational effort. When we interpolate qg at the expanded Chebyshev points
x0 xn, we obtain a polynomial Pk in Newton form 1, pp. 40-44]

PI(x) ao + al (x xo) + a2(x xo)(x Xl) +... + an(X xo) (x Xn-1).

Replacing x by D, we need to compute

P(D:) ao + a(D: xo) + a2(Di xo)(D Xl) "’" + an(D: xo) (D: Xn-1).

We evaluate this in Newton nested form, just as we do for a polynomial. Thus, a typical step
in this evaluation is to compute kl I + k2(D k3I) where I is the identity operator. One
application of such an operator at a grid point requires three multiplications and two additions.
Evaluating D requires one more addition and a division by 2 (a shift register, so we will not
count this operation). Thus, one step in the nested evaluation is six arithmetic operations--
three multiplications and three additions. We do this at each point of the grid. We do this
operation ni times (degree of Pi). Let N be the total number of points on the grid. We can
either add 2ni points to the data points or ignore the calculations at the boundary if the degree
is small compared with the length of the line. So, we have 6niN operations so far. After we
have computed P1 (Da), we compute P2(D2). So, we have a total of 6N(nl + n2) arithmetic
operations (O(N)). Thus, if the degrees of nl and n2 are fairly small, we have an efficient
algorithm. If n and n2 are large, then there are too many computations, and the numerical
stability is a problem. The key question is how large are these degrees? It is thus important
not to make unreasonable error requirements.

Additional remarks. This technique fits into the general philosophy found in [14] and
references therein. One estimates in an optimal way the response function q by selecting
coefficients of a filter to best estimate q in the infinity (sup-norm) norm. Our algorithm
exploits this idea by using a polynomial in the simple averaging operators (filters).

4. Steps for dynamical balance. In ocean modeling, it is possible to assimilate obser-
vational data on any of the fields of temperature, salinity, current velocities, and sea surface
elevation. The problem of dynamical imbalance occurs when available observations for as-
similation do not include every field. In addition, if the observations provide only a partial
spatial coverage and/or if they are too different from the model output, it is possible develop an
imbalance. As a counterbalance, "transients" or "gravity waves" are generated, which could
lead to model instability.

To avoid generation of the transients, as an additional step, a dynamic initialization is
often performed in atmospheric data assimilation [2, 3]. However, using the following con-
servative steps, such initialization has not been necessary in our ocean data assimilation ex-
periments.

4.1. Assign more weight to model output versus observations. If initially the obser-
vations are significantly different from the model output, it is advisable that data be injected
into the system without any undue shock. This is achieved by assigning to the model output
relatively more weight than the observations. For this, instead of (2.3), we minimize the
quadratic functional

(4.1) o ot(Tm O)’Xn (Tm O) + (To DO)’X (To DO).

Thus, if we assign 10-to- weighting in favor of model output then o 10. Such a weighting
will gently nudge the model integration toward the observations. Once the model has adjusted
to the observations, the weighting factor ot can be modified to an appropriate level.
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4.2. Incorporate temporal data window. The effect of data shock can be mitigated by
letting the data gradually affect the model dynamics. This is done by implementing a temporal
weight factor that gradually allows the data to phase in and out of the window. For instance,
DR used a thirty-day triangular window where the weight changes from 0 to and from to 0
as the difference in time between the model and the observation goes from -15 to 0 to + 15.
This temporal window acts as a temporal filter reducing the effect of high frequency data. In
fact, due to ocean dynamics such implementation is actually advantageous when comparing
the large spatial and time scales with the atmosphere. The length of the temporal window
depends on the temporal scales that need to be resolved.

4.3. Increase frequency of assimilation. Imbalance between different fields can be
avoided by also increasing the frequency of assimilation. By inserting the temperature data
continuously, DR allowed the velocity field to adjust to the density field and noted no ad-
verse effect due to transients except perhaps in the data-sparse equatorial regions. In their
assimilation of satellite sea surface elevation data, Ezer and Mellor [6] also found no velocity
imbalance with continuous data insertion. However, in their earlier experiments with a larger
time between assimilation of sea surface elevation data, Mellor and Ezer [9] had to perform a
geostrophic adjustment to the velocity field.

5. Efficiency comparisons. In order to assess accuracy and efficiency of our approxi-
mation, we ran three test cases to compute the convolution E(g) given by

E(g)(m, n) ZZ g(s, t) exp[(-(m s)212 (n(5.1) t)26)/b2],

with an elliptical Gaussian smoothing function. We implemented two pieces of code in
portable FORTRAN and tested the algorithm performance on the CRAYYMP: the first routine,
called matrix-mult, performs the actual calculations of the convolution in (5.1) and the second
approximates E(g) with the PPO algorithm. We used the first as a basis from which to judge
the accuracy of the second, and to compare it with the accuracy of the DR algorithm, which
is our de facto standard.

For the first test case, we recall our basis representation (3.15) of the g(m, n) array in
terms of the Kronecker delta function. It is clear from (3.16) that to approximate E(g) we
must be successful in approximating E((s,t) at all (s, t). We choose a uniform grid with a
rectangular boundary and approximate E (6..,t) at three representative locations: the center of
the grid, a corner, at the middle point of a side. The three sub-cases will demonstrate the
capability of our algorithm at selected, isolated points. In the next test case, we want to test
the PPO algorithm performance over a region enclosed by an irregular boundary. Because
of our data assimilation interest, the Gulf of Mexico (GOM) boundary was selected for this
case, and for an overall picture, we set g Y-s t s,t, i.e., g(s, t) 1, at all points of a
uniform grid over the region enclosed by the GOM boundary. Finally, as the third case, we
test the PPO algorithm performance in an actual data assimilation experiment over the GOM
region.

Because the evaluation of the Laplacian V2 at the grid point (i, j) requires information at
both (i 4-1, j) and (i, j 4-1), the DR algorithm cannot be applied at any point on the boundary.
Thus, in choosing the three points for simulations with the Kronecker delta function, we moved
three grid spacings inward from the boundary. Also, in order to make a comparison with the
DR algorithm, the results from DR had to be normalized to bring its maximum amplitude to
the level of the matrix-mult algorithm. In all cases, the grid used was an 86 x 62 grid, which
conformed to the grid dimensions used in the actual data assimilation experiment.

While implementing the PPO algorithm, the number of terms so retained in 1 and c2
in (3.14) are calculated as functions of the grid spacing, a preset tolerance (Tol 0.001),
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FIG. 1. Test case 1. Gaussian convolution ofdeltafunctions at three strategic points--the middle, a corner, and
the middle ofa side--ofa rectangular domain. The results are presented as differences ofthe PPO andDR algorithms
from the matrix-mult algorithm.

and the scale parameter b as specified for matrix-mult. Explicitly, we set the so such that
exp 2 2 2(-So3g/b )[ _< Tol; i.e.,

(5.2) so int Iv/-ln(Tol)/(3i/b)] / 1,

where int(*) is the greatest integer function. For both c, (5.2) gave so 7. This led to the
Chebyshev polynomials P of degree 8 that uniformly approximated the c’s with an error of
0.000186.

For the first two test cases, the results due to the three algorithms are so similar that it
was difficult to tell the differences. Thus, as suggested by a referee, we present the results
as differences from the matrix-mult algorithm. Figure shows the results of approximating
convolution with the delta function. At the center (s, t) (43, 31), both the PPO and the DR
algorithms exhibit the maximum error around 0.15 (Fig. l a). However, the PPO algorithm
improves at the corner (s, t) (3, 3) with a maximum error of 0.03, which compares with
-0.2 in the DR algorithm (Fig. b). The PPO algorithm shows a similar gain in accuracy
at the middle of a side of the boundary (s, t) (3, 31) where PPO versus DR algorithm
maximum errors are 0.07 to 0.15 (Fig. c).
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FIG. 2. Test case 2. Gaussian convolution of g(s, t) V s, on an irregular domain provided defined by
the Gulf of Mexico topography. The results are presented as differences of the PPO and DR algorithms from the
matrix-mult algorithm.

PPO Algorithm DR Algorithm
SST TS_Td SST TS_Td
0A’ $1 DAY 51

FIG. 3. Test case 3. Sea-surface temperature from a data assimilation experiment using the PPO and DR
algorithms. To the accuracy of the map, the matrix-mult algorithm results (not shown) matched the PPO algorithm.
The arrow indicates notable differences between the two algorithms.

The results from the Kronecker delta simulations indicate that the PPO algorithm should
perform well over all points (as was expected from our theoretical analysis), while the DR
algorithm may perform poorly over the boundary regions. This fact is borne out in the second
test case (Fig. 2). The PPO and DR algorithms perform equally well in the interior of the grid.
However, around the boundaries the average PPO errors are around 0.1, while the average
errors due to the DR algorithm is around 0.5; the maximum errors are 0.3 for PPO and 0.8 for
the DR algorithm.

Finally, to test the performance of the PPO algorithm in a full data assimilation mode,
a primitive equation numerical model of the GOM was integrated for forty days without
data assimilation, followed by a ten-day integration with assimilation of vertical tempera-
ture profile data. The DR algorithm was also tested for comparison using K 320 re-

peated applications of the Laplacian operator on the same set of data. The model employed
a 86 x 62 grid. The resultant sea-surface temperatures are shown in Fig. 3. To the accuracy
of the map, the PPO and matrix-mult algorithms provided identical results; only the PPO
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algorithm results are shown. While there is a remarkable similarity between the PPO and
DR algorithm results, there is noticeable deviation at the location indicated by arrows. The DR
algorithm produces a high of 31.3 degrees instead of 30.3 degrees by the PPO (and matrix-
mult) algorithm.

In addition, the PPO is quite fast. For a single convolution approximation (matrix mul-
tiplication) on a single CRAY YMP processor with "real" data on a 86 x 62 grid, the PPO
algorithm takes approximately 0.09 seconds and the DR algorithm takes 2.2 seconds, as com-
pared with 15.4 seconds with matrix-mult. For a comparison of computation times in the full
data assimilation mode, the DR algorithm took 6.87 seconds per assimilation step using a

single CRAY YMP processor versus .68 seconds with the PPO algorithm. We hasten to add
here that the DR algorithm when modified with the Adams-Bashforth second-order method
would probably be quite competitive with the PPO algorithm. In the present form, the DR
algorithm could be made faster by using values of K somewhat smaller than 320 used in the
simulations. However, in our test runs with smaller values, the model integration was unstable.

6. Concluding remarks. We have formulated the problem of data assimilation in terms
of a statistical linear model, where the true state of the ocean/atmosphere is estimated by
minimizing a quadratic functional. Matrix multiplication Emg is identified to be the major
computational bottleneck, where Em is a fixed covariance matrix based on some covariance
formulation and g is a multidimensional, varying vector defined on a specified uniform rect-

angular grid.
Although, our initial thrust was to improve the efficiency of the DR algorithm based on

Gaussian covariance functions, we have made several generalizations:
1. Identify that mg is a convolution and, thus, express it in the spectral domain (3.5).
2. Identify simple averaging operators (3.4) and show their ability to smooth with a wider

class of covariance functions characterized by the separability property; Gaussian
covariance functions are an. obvious case of separable functions.

The overall effect is that, for computing convolutions, we have come up with a simple, elegant,
and efficient algorithm that supports a wider class of covariance structures that may be en-
countered in the physical sciences. However, the utility of the enhancement to a wider class of
covariance functions is yet to be explored. Whereas the Gaussian functions fall into this class
quite naturally, the other covariance structures do not appear to be amenable to factorability.

Although, the derivation is carried out in two dimensions, its extension to higher di-
mensions is obvious. Our Fourier transform pair in one dimension is the integers and the
circle group. In higher dimensions, we take the corresponding product of these groups as our
Fourier pair.

The algorithm is efficient if one of the functions remains fixed and the convolution is
computed many times. This is because we must construct a polynomial fit to a Fourier
transform of the fixed factor. If we are able to find a fit within our error tolerance with a
low-degree polynomial, then we are able to efficiently and accurately estimate the convolution
with our polynomial fit applied to a simple averaging operator.

Acknowledgments. The authors thank the reviewers for their constructive comments.
The advice on looking at the DR algorithm in terms of a solution to the diffusion equation was
greatly appreciated.
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A GENERAL HEURISTIC FOR CHOOSING THE REGULARIZATION
PARAMETER IN ILL-POSED PROBLEMS*

MARTIN HANKE AND TOOMAS RAUS

Abstract. For a variety of regularization methods, including Tikhonov regularization, Landweber iteration,
v-method iteration, and the method of conjugate gradients, we develop and illustrate a heuristic for choosing an
appropriate regularization parameter. Our choice requires no particular a priori knowledge, since the parameter is
determined from computable information only. However, if an estimation for the noise level in the data is at hand,
then this can be used as a justification. In contrast to known parameter choice heuristics, a posteriori error estimates
for the computed approximations can be given. Numerical examples show that the new parameter choice rules are
promising alternatives to known parameter choice rules.

Key words, ill-posed problems, Tikhonov regularization, iterative regularization, conjugate gradients, a poste-
riori parameter choice
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1. Introduction. We consider regularization methods for the solution of the ill-posed
linear equation

(1.1) Tx-- y,

where T is a bounded operator between Hilbert spaces X’ and y, and y belongs to the range
(T). We are interested in the solution x Try of (1.1) of minimal norm; here, Tt is the
Moore-Penrose generalized inverse of T. Recall that this problem is called ill posed when
there lacks a continuous dependency y - x. This is known to be the case if and only if the
range of T is nonclosed in . As a matter of fact, if only approximate data ) are given, any
straightforward numerical computation ofx is unstable (for finite-dimensional discretizations,
this will be reflected by large condition numbers of the corresponding matrices).

Ill-posed equations (1.1) arise frequently in the context of inverse problems, where it is
the aim to recover unknown parameters of a physical system from measurable data. A typical
example (although nonlinear) is the determination of the interior conductivity of a medium
from measured flux at its boundary; see Engl [.3] for several other examples arising in industrial
applications.

For a stable numerical approximation of the solution x of (1.1) some regularization tech-
nique has to be applied. We refer to the survey 11 for a discussion of different possibilities
for incorporating regularization and their algorithmic implementation. Roughly speaking, a
regularization method provides a sequence of approximations {Xr}r>O, with x0 being some
initial guess and Xr -’ Try as r -- cx, provided exact data y 6 7(T) are available. In
general, however, approximate data do not belong to the domain of T, in which case Ilxr
diverges to infinity as r -- oc. Thus, we are left with the important problem of choosing an
appropriate regularization parameter r. When r is too big, the numerical implementation will
be unstable and Xr will be useless; when r is too small, the approximation Xr is dominated by
the initial guess.

Essentially, two types of methods for choosing the regularization parameter r can be
distinguished: rules which use information about the noise level Y II, and rules which
do not use such information. The former ones associate each approximation Xr with some
positive number Or (think of the residual norm I1 Txr II, for example), and the regularization
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parameter r r(3) is chosen such that rr( has about the order of the noise level. Given that
the sequence {Or satisfies certain assumptions, convergence of the approximations follows,
i.e., Xr( -- Try as 6 --+ 0. Moreover, convergence rates may be derived for the case when
the solution Tty has additional properties. It is clear, however, that the accuracy of these rules
depends on precise knowledge of [[y

The second type of parameter choice rules, on the other hand, seeks to avoid any a priori
information, including the noise level. In other words, the chosen regularization parameter
r r() depends solely on the given data . Typically, these methods are based on a heuristic
estimation of the unknown error T*y xr II, in one way or the other. Thus we shall speak
of heuristic parameter choice rules for this type of method below. In practice, such heuristic
rules are often the only possibility, because at most only a rough guess of the noise level is
usually known. Although these methods often work as well as, or even better than, the rules
using information about the noise level (cf. [11] for computational results and comparisons),
it was shown by Bakushinskii [1] that no convergence theory as above (i.e., as 3 -- 0) can
exist for heuristic parameter choice rules. In other words, there always exist "bad" right-hand
data converging to y, for which the corresponding approximations xr( fail to converge to
T*y. Because of Bakushinskii’s negative result, mathematicians sometimes hesitate to trust
heuristic parameter choice rules.

To overcome these concerns we suggest in the following a new methodology for deriv-
ing heuristic parameter choice rules for the most important regularization methods. To our
knowledge, for each regularization method the resulting algorithm is new, although some
similarities to known algorithms may exist. Our approach is based on a very general obser-
vation in connection with our experience with so-called order-optimal parameter choice rules
(cf. Definition 2.1 below), which preassume knowledge of [lY 11. In fact, the suggested
heuristic rules are always deduced from known and established order-optimal ones. In this
way, we are able to derive error bounds for the resulting approximations xr(. A by-product
of each new rule is an estimate for IlY II. This allows a simple a posteriori check of our

parameter choice: if the estimate of the noise level is presumably too small, the regularization
parameter should be discarded, and some other parameter choice rule should be used instead.

We emphasize, however, that no rule for choosing the regularization parameter in ill-posed
problems, and in particular no heuristic rule, should be considered a "black box routine." One
can always construct examples where the chosen regularization parameter is far from optimal.

The outline of this paper is as follows. In 2 we motivate our basic idea and present
the resulting parameter choice rules for some of the most important regularization methods,
namely for Tikhonov regularization, Landweber iteration, and v-method iteration. In 3,
we choose a common framework for the analysis of these regularization methods and derive
the theoretical estimates. One of the most important regularization methods is the method
of conjugate gradients (CG), because it can be very efficient for large-scale problems. Our
algorithm and the theoretical results carry over to this method; see 4. This is probably the
most important practical consequence of our general approach, because so far there exist only
very few reliable parameter choice rules (i.e., stopping rules) for CG. After a brief comment
on some modifications for the discrete setting, we provide some numerical results in 6.

2. Examples. Let us start with a few preliminary remarks. First, we restrict ourselves
to problems with T _< 1. This can be done without loss of generality, since otherwise we
simply rescale (1.1). Given perturbed data with

Ily

the exact solution T*y can only be approximated within limited accuracy. It is thus a natural
approach to ask for approximations that converge to T*y as quickly as possible as - O. In
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this context, we review some results from the literature; cf., e.g., Vainikko and Veretennikov
[20] or Louis 14].

DEFINITION 2.1. Given lz > O, a parameter choice rule for a regularization method is
said to be order-optimal or #), ifthe regularization parameter r r(y, f) is chosen in such
a way thatfor some c > 0 the error bound

(2.1) IITty Xr(ll c 82/z/(2#+1)091/(2/z+l)

holds, whenever IlY and

(2.2) Try xo (T*T)Uw, Ilwll o.

In ill-posed problems T is usually a smoothing operator, hence condition (2.2) corresponds
to a certain degree of smoothness of Tty x0. It can be shown (cf. [20, 14]) that the exponents
on the right-hand side of (2.1) are the best possible under these conditions. Note the loss of
information: Tty can only be approximated within an accuracy of some fractional power of
8. The larger # is, i.e., the better x0 approximates the nonsmooth parts of T*y, the better T*y
can be approximated.

The maximum, #0 say, of all admissible/z in (2.1) depends on the particular regularization
method. We call/z0 the qualification of the method (cf. [20]), and we are only interested in
parameter choice rules which are order-optimal for #0.

We emphasize that the order-optimal parameter choice rules that we present below are all
a posteri0ri in nature. Besides 8, no further information is required. In particular, we do not
need to know whether some condition like (2.2) holds. The point is that if such a condition
is satisfied then we obtain an approximation with order-optimal accuracy, without modifying
the algorithm. Let us give some examples.

2.1. Tikhonov regularization. The most well-known regularization technique is Tikhonov
regularization; cf. Groetsch [6]. Here, Xr is determined as the minimizer of

I1- Txll 2 -t-- IIx -x011
r

over x E A’. This yields

Xr XO + (T*T + r-11) -1 T*( Txo).

The qualification of Tikhonov regularization is /0 1. The discrepancy principle is a
parameter choice rule, which is order-optimal for 0 </z < 1/2; cf. [6]. A parameter choice
rule which is order-optimal for all 0 < # < 1 has been developed independently by Raus,
Engl, and Gfrerer; cf. 17, 5, 4]. It requires that we apply one step of iterative refinement to

Xr (cf. [11, Alg. 5.2]),

Zr (T*T + r-1 i)-1 T*( Txr), II
X Xr -1- Zr

and that we subsequently determine

n is sometimes called iterated Tikhonov approximation. Given fixed r > 1, theNote that x
regularization parameter r r(8) is defined to be the smallest number for which Or < r8
holds.



A GENERAL HEURISTIC FOR ILL-POSED PROBLEMS 959

If (2.2) is fulfilled for some/z _< #0, then the error analysis in [17, 5, 4] shows that for
r>0

(2.3)
llTty --Xrll <_ c((r + 1)-too9 + rl/26),

<_ c((r + 1)-*-1/2o9 + 3).
Note that this gives a sequence ofbounds corresponding to the continuous range of parameters
# in (2.2). It can further be shown that the upper bounds in (2.3) are the best possible in the
sense that there are converse results which specify a sort of one-to-one relation between the
exponent/z in (2.2) and the powers -/z and -/z 1/2 in (2.3); cf. [6, 3.2] and [16]. In
other words, we can expect the sequences Tt Xr and Or to behave asymptotically like the
right-hand sides of (2.3), where the parameter/z in (2.3) is the supremum of all/z for which
(2.2) holds.

Note that the above bound for the error Tty Xr attains its minimum for

r (o9/3)1/(2/*+1),

which is precisely the same range of r for which the bound for Or decreases to the order of 3.
Further, note that the right-hand side bound for Or in (2.3) is (up to multiplicative constants)
by a factor of (r + 1)-1/2 smaller than the bound for the error. Because of our discussion on
the validity of (2.3) in the previous paragraph, this suggests the following heuristic parameter
choice rule.

HEURISTIC PARAMETER CHOICE RULE. Compute the numbers qgr := (r + 1)l/2rlr,.r > O,
and consider them as approximations of Tt Y Xr I]. Accordingly, determine the (heuristic)
regularization parameter r. as a location ofthe global minimum of {gr}.

We mention that in the special case when x0 0, we have

Or (, r-2(TT + r-1I)-3) 1/2.

Another heuristic parameter choice rule, namely the quasi-optimality criterion, was suggested
by Tikhonov and Glasko 18]. They choose the regularization parameter r for which

(2.4) $r (V, r-2(TT + r -I I)-4TT*) 1/2

attains its minimum. Our theory, however, does not apply to this method. Instead, we refer to
Leonov 13].

Other quite successful parameter choice rules for Tikhonov regularization which do not
use any information about the noise level are Wahba’s generalized cross-validation (cf. [22])
and Hansen’s L-curve criterion (cf. [12]).

2.2. Landweber iteration. In the context ofill-posed problems, the method ofsuccessive
approximations is often called Landweber iteration (cf. [20, 14]). Starting with initial guess
x0, xr+ is obtained from Xr via

(2.5) Xr+l Xr -{- T*( Txr), r e 1o.

It is known that the iteration (2.5) has an inherent regularizing property. This means that the
regularization parameter r 6 1N0 is simply the iteration index, and any stopping rule of the
iteration renders a parameter choice rule.

Here, as below, c denotes a generic constant.
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The qualification of Landweber iteration is/0 oe, and it is known that the discrepancy
principle is an order-optimal stopping rule, cf. Vainikko [19]. With this method the iteration
is terminated when for the first time

/’Jr :’--I1- Zxrll

Again, r > 1 is a fixed number.
It is known that the same estimates hold as in (2.3), i.e.,

(2.6)
IlZty xrll <_ c((r + 1)-co + rl/2),

ir c((r .qt_ 1)-z-1/2CO nt_ ),
provided r 6 N and the solution Try satisfies (2.2) for some /z > 0. Converse results
connecting the validity of the bounds in (2.6) with (2.2) have been established in [7]. With
the same argument as above, we therefore suggest the following rule.

HEURISTIC PARAMETER CHOICE RULE. Compute the numbers

(/9 (r .qt_ 1)l/20r (r + 1)/2ll Zxrl[, r No,

and consider them as approximations of TrY Xr II. Accordingly, determine the (heuristic)
regularization parameter r. as a location ofthe global minimum of {q)r },

Another order-optimal stopping rule for Landweber iteration has been suggested by Engl
and Gfrerer [4]. Instead of the residual they monitor differences between consecutive iterates
(see [4] for details). For their method, estimates like (2.6) hold, hence our approach imme-
diately yields another heuristic rule. We are not aware of any further heuristic stopping rules
for Landweber iteration.

2.3. u-methods. A more sophisticated iterative procedure was developed by Brakhage
[2]; see also [8, 10]. As opposed to (2.5), the v-methods ale two-step iterative procedures,
i.e., Xr+l is determined from Xr and Xr- via

Xr+ [drX -- (l.- #r)Xr_l 21- o)rT*@ Txr), r No.
Here, x0 is the initial guess and x_l 0. The coefficients/Jr and mr can be given explicitly; we
refer the reader to the aforementioned papers. The definition of these coefficients depends on a
parameter v > 0 (hence the name v-method). This parameter also determines the qualification
of the method, i.e., we have #0 v. Although #0 is finite, the v-methods are much more
efficient than Landweber iteration. Roughly speaking, they require only about the square root
of iterations compared with Landweber iteration (cf. (2.7) below).

The analysis of the v-methods is based on their alternative (nonrecursive) definition via
Jacobi polynomials. Using this connection, an order-optimal stopping rule (for all 0 < /z <_
#0) has been developed only recently; cf. 10]. As for Tikhonov regularization, the discrepancy
principle is not order-optimal for the full range 0 < # < /z0. The order-optimal stopping
rule determined in 10] recursively computes a sequence Or in the course of the iteration and
terminates as soon as, for the first time,/’Jr Z’ (’g > 1, fixed).

For r 6 N the following bounds are the best possible under the information (2.2) with
O</z <#o"

(2.7)
I]Tty Xrll < c((r + 1)-2/Zo9 q- r3),

r]r < C((F -1-- 1)-2#-10) .qt_ ).
Note that r -4- 1 has taken the role of (r -t- 1)/ in (2.3) and (2.6). Thus, for the v-methods,
we propose the following modification of the previous stopping rules.
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HEURISTIC PARAMETER CHOICE RULE. Compute the numbers q9 :-- (r + 1) Or, r N0 and
consider them as approximations of TrY Xr II. The computation of fir can be implemented
as in [10, Alg. 4.2]. Determine the (heuristic) regularization parameter r. as a location of
the global minimum of 0 }.

It can be shown that this heuristic stopping rule is asymptotically equivalent to the so-called
update criterion, which has been suggested previously in [8]. By asymptotically equivalent,
we mean that the ratio of q)r as defined in [8, Alg. 3.1] (substituting r for k) and the present (/9
is bounded by positive numbers from above and from below, independent of r, T, and . This
means that the theoretical analysis from the following section holds for the update criterion
as well (but see also the complementary theoretical results in [8]). We remark that the update
criterion results from a completely different motivation.

3. Error bounds. The examples from the foregoing section can be viewed within a well-
known spectral theoretical framework; cf., e.g., [6, 20, 14]. We briefly review this general
setting, where, for notational convenience, we restrict our attention to the case x0 0; the
more general case can be handled analogously.

In each of the above examples, {Xr can be expressed via a sequence of functions {gr as

(3.1) x gr(T*T)T*.

Accordingly, we have for the residual Txr the expression

(3.2) Txr hr(TT*) with hr()) 1 )gr()).

Note that hr (0) 1.
For example, in Tikhonov regularization we have

r 1
gr () hr ()+ r).’ 1 + r)

Landweber iteration can be defined via (3.1) with

r-I

gr()) (1 ))k, hr()) (1 ))r;
k=0

for the v-method, gr is such that hr is a translated and rescaled Jacobi polynomial (see [2, 8]
for more details).

We assume throughout that there exists an increasing sequence {Pr },

/90 l, /gr --- OC as r

(3.3) /gr+l

such that, uniformly for ) [0, 1],

tOE
<c for r > 0,

Tty Xr hr(T*T)Tty -t- gr(T*T)T*(y ),

Recall that/0 is the qualification of the regularization method (3.1). In the examples above,
(3.4) is fulfilled with ,Or r + (Tikhonov, Landweber) and ,Or (r + 1)2 (v-methods),
respectively.

Since the total error for Xr can be expressed as

)l/2lgr())l <_ cplr/2,
(3.4)

.lhr()OI < cP7 0 < # < Io
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one immediately obtains from (3:4) and the spectral theorem the estimates for the error as
given in the previous section. Consequently, 1/Pr can be viewed as modulus ofconvergence
of the regularization method.

For the parameter choice rules we also assume that there are functions Sr fulfilling the
inequalities

(3.5) ;sr()) _< cp- for 0 </z < 2#0 + 1, 0 < ) < 1,

and

(3.6) Ihr())l 2+l/tz < CSr()), 0 <_ ) < 1.

If #0 ec then we consider 1/#0 to be zero in (3.6). In many cases, e.g., in Tikhonov
regularization and for the Landweber iteration, we will define Sr via equality in (3.6). Equality
in (3.6) is also the basic assumption for the general theory in [17]. We only know of the
v-methods as a relevant example where the appropriate functions Sr do not satisfy (3.6) with
equality.

With the functions sr we can define an order-optimal parameter choice rule for the regu-
larization method (3.1) via numbers

(3.7) Or (, sr(TT*)V)1/2, r _> O,

by choosing the smallest regularization parameter r r(J[y [[) for which

Here, r has to be a fixed number, greater than the supremum over [0, 1] of all functions Sr,

If (2.2) is satisfied for some 0 </z </x0, then one easily concludes that

Or-" II(sr(rr*))l/2]vll <_ II(sr(r*r))l/2Z(T*r)wll -t- II(sr(ZZ*))l/2@ Y)]I;

hence (3.5) yields the bound

(3.8) Or < C(P--1/2co + I1 yll).
Now we state our main result concerning the corresponding heuristic parameter choice

rule.
THEOREM 3.1. Let assumptions (3.1) through (3.6) be satisfied and assume that IlYll _>

Ily 11, TrY (T’T)uw with 0 < lz < #o, and Ilwll co. Furthermore, let r r, <
be a global minimum ofthe sequence

(t9 p lr/20r"
Then we have the error bound

(3.9) IIr*y Xr,]l C (l .ql_
II yll) 2/z/(2/z+l)o)l/(2/z+l

Or,

where c is a uniform constant and

(3.1,0) 6, max{Or,, I1- YlI}.

Proof. We estimate the two terms in the error decomposition

(3.11) Try Xr hr(T*T)Tty + gr(T*T)T*(y ).



A GENERAL HEURISTIC FOR ILL-POSED PROBLEMS 963

Consider first the case when/z0 ocz. We estimate the first term in (3.11) by means of the
moment inequality and assumption (3.4) with/z 0:

Ilhr(T*T)TtYll --II(T*T),h,.(T*T)wll

<_ IIhr(T*T)wlll/(2+l)llThr(T*T)(T*T)twll 2/(:z+1)

< ccol/(2z+)llhr(TT*)yll2tz/(2tz+.

Using (3.6), this yields

Ilhr(T*T)TtYll <_ c o)1/(2/z+l) (y, sr(TT*)y) lz/(21z+l).

Consider next the case when/z0 < o. We define the operator

Br (hr(T*T)) l/,

and observe from (3.4) that {Br is uniformly bounded. Applying the moment inequality to

Br T’T, and using the fact that/z </zo yields

Ilhr(T*T)TtYll II(BrT*T)"BrO-"wll
IIBr-"wlI1/(a+I)IITBr+I/2(T*T)"wll 2"/(:z"+1

<_ c (_ol/(2z+l) ll(hr(TT*))(2z+l)/2"yll2z/(2z+l).
Thus, from (3.6) it follows that (3.12) holds for #0 < oo as well. Since

II(sr(ZT*))/2yll

(3.12) with r r, implies

II(sr(TT*))/2II + Ilsr(ZT*)ll 1/2 IlY 11
< rlr-t-clly-Y, ll,

Ilhr, (T*T)ZtYll c o)l/(21z+l)(Or, -1-" cllY 11)2"/(2"+1.

In other words, using the definition (3.10) of 3, we have shown:

(3.13) Ilhr, (T*T)TtYll <_ c o)l/(2/z+l),2#/(2/z+1).

To estimate the second term in (3.11), we first note that

> >1
Ily 11 Ily

by assumption. Thus, it follows from (3.3) that we can find some number r0 such that

(co/Ily- :11)2/(2+1 _< Pro <-- C(Co/IlY 11)/(2+.

Hence, the minimal value 0r, can be estimated from (3.8) as follows:

(3.14) (/gr, < 0ro < C IlY 112/(2+1)col/(2+1.

Using the first inequality in (3.4) we obtain

ol/2 Ygr,(T*T)T*(y fy) < C,_r, IlY 11
rlr,
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where we have used the definition of q)r for the last equality. Inserting (3.14) and keeping
(3.10) in mind, this yields

Ily ll 32/x/(2/x+l)ogl/(2/x+l)(3.15) IIgr,(T*T)T*(y )11 -< c ,
fir,

Finally, (3.11), together with (3.13) and (3.15), verifies the assertion.
The assumption Y > Y in the statement ofTheorem 3.1 is quite natural. It means

that the exact right-hand side is not completely dominated by noise; otherwise, no reasonable
reconstruction is possible. Order-optimal parameter choice rules usually return Xr 0 in such
a case; since we do not know the magnitude of the perturbation, we cannot do anything alike.

We mention that there is no guarantee that the sequences {99r as determined above will
actually attain a global minimum. It is easy to see that the numbers q9 are all nonnegative
and finite. However, it may happen that 0r -+ 0 as r --+ oc. In this case no global minimum
exists. Such an event should be handled with care, and we recommend considering it as a
failure of the parameter choice rule; note that one cannot conclude in this case that belongs
to the domain of T (cf. [8, Ex. 6.1]).

The situation in which the global minimum is attained for several values ofr is not a critical
one. Our theory is not affected by this and applies for all respective parameters. Nevertheless,
we suggest taking r, as the smallest parameter for which the minimum is attained.

Let us now turn to an interpretation of the bound (3.9). To this end, consider the smallest
parameter r, for which the global minimum of {99r is attained. Furthermore, let 3, r/r, be
the resulting estimate for Y I1o Note that if we use the order-optimal parameter choice rule
with 3, /r as an a priori guess for Y I[, this method would precisely yield xr, as a regularized
approximation. As long as 3, is of the order of Ily 11, it can be seen from Theorem 3.1
that the computed approximations converge to T y with order-optimal accuracy. On the other
hand, if 3, does not decrease as quickly as -+ y, then the convergence will be suboptimal.
More dangerous is the case when 3, decreases more quickly. In this case, the additional factor
[[Y ll/& in (3.9) blows up, and the approximations Xr, may diverge. Therefore, the value
of 3, should always be monitored, and the computed approximation should be discarded if
is significantly smaller than the expected noise level.

Stipulating additional conditions, however, we can get rid of the factor IlY 11/& in
(3.9). To show this, we denote by Q the orthoprojector in 3) onto the orthogonal complement of
the closure of TC,(T). To facilitate the argumentation we assume in the sequel for noniterative
methods (with regularization parameter r 6 IR-) that gr(.) and s()) are continuous with
respect to r for every fixed ) 6 [0, 1].

COROLLARY 3.2. If in addition to the assumptions of Theorem 3.1,

IIQ(y )ll >_ elly ll

for some e > O, then (t9r attains a global minimumfor some finite r, > O, and

C 2/z/(2#+1) 1/(2/z+l)(3.16) IITty Xr, < 3, co

where 3, is as in (3.10).
Proof By virtue of (3.6), Sr (0) > c hr (0) c, which implies

/2rr- II(sr(ZZ*))a/2ll >_ IIQ(sr(ZZ*))/2ll Sr (0)IIO:ll.

Since Q Q( y) it follows from the additional assumption that

(3.17) /’If >_ ,,/S IlY- 11,
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and hence (Dr oQ as r --+ ec. Consequently, there exists a finite r, for which (Dr, becomes
minimal, and the assertion follows from (3.9) and (3.17). q

As will be shown next, if condition (3.18) holds uniformly as - y, then this is strong
enough to prove convergence of Xr, -- T y.

THEOREM 3.3. Let y (T) and {Y}>0 be a sequence ofperturbations of y with
y -+ y as -- O. Assume that there exists e > 0 such that

Q(y y)ll Ily y for all > O.

For each > O, denote by {x} the regularized approximation and by r,(6) the regularization
converges to Tty as --+ O.parameter defined in Corollary 3.2. Then Xr,(

Proof Let x Tty and fix 3 > 0. Since/z0 > 0, it follows from (3.5) that Pr)Sr())
converges to zero as r --+ cxz, pointwise on [0, 1]. Hence, by the Banach-Steinhaus theorem,

Ilsr(TZ*)Zxll 0(/9-1/2),

Consequently,

II(sr(TT*))/2YII II(sr(ZT*))/2Zxll + II(sr(TT*))/Z(Y- Y)II

0(p21/2) -+-C Ily yll,

and

/ Cr/2 Y II, r --+ oc.(Dr /gr Fir 0(1) + ya
_1/2 yChoose r r(3) such that r(3) and Pr IlY 0 as 3 0" this implies

@r,(6) r(6) 0, 3 0.

Because of (3.18), inequality (3.17) with y follows as in the proof of Corollary 3.2,
hence,

/ y /2 1
(3.19) Pr,() Ily- g Pr,(3)r,()- @r,(3)- O(l), 0.

Since Pr 1, r,() can go to zero only if Or,( goes to zero as well. This leads to two
cases which have to be distinguished. Assume first that a subsequence of {r,(3)} converges
to some r < as 0: then r 0 and (3.6) implies Txr y; by continuity, the
coesponding approximations Xr,( converge to Xr T y. Assume next that a subsequence
of {r,(3)} goes to infinity as 0: this, together with (3.19) implies that both terms in the
eor decomposition (3.11) go to zero; hence, Xr,( Try as 0.

To prove stronger results, for instance convergence rates for Xr, T y, we need to find
better bounds than (3.13) for the approximation eor. Such bounds may be obtained, for
example, if r, can be estimated from below. This, however, is an extremely difficult problem,
very much related to the aforementioned converse results.

4. The conjugate gradient method. One of the most efficient regularization methods is
the conjugate gradient method (CG) applied to the normal equation T*Tx T*y (cf. [14, 9]).
Like the other iterative methods from 2 it has an inherent regularizing property; that is, the
iteration count r 6 N0 can be seen as the regularization parameter. Although the CG-iterates
can be expressed as in (3.1), they cannot be analyzed with the techniques from the previous
section, since the functions gr to be used in (3.1) depend on .
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Nemirovskii 15] has shown that the qualification of CG is/z0 xz, and that the discrep-
ancy principle is an order-optimal stopping rule. Furthermore, for r > 0, Nemirovskii obtained
(more or less explicitly) the following bounds, provided (2.2) is fulfilled and IIY _< :

(4.1)
^1/2]lTty Xrl[ <_ c(p;-W .qt_ t-)r o),

Or C(P-z-1/209 + )"

Here, as in Landweber’s method, Or 11 Txrll; Pr in (4.1) is defined as

Po 1, Pr gr (0), r N.

Note that in all examples from 2 we have Pr " gr (0) for r 6 N, the ratio of the two numbers
going to as r --+ oo.

Our considerations motivate the following stopping rule for CG.

HEURISTIC PARAMETER CHOICE RULE. Compute the numbers

ol/20r "--,r Fir max{l, gr(O)}l/2lly Txrll, r No,

and consider them as approximations of TtY Xr II. Accordingly, determine the (heuristic)
regularization parameter r. as a location ofthe global minimum of {Pr }.

We emphasize that gr (0) is easily computed recursively in the course of the iteration
(cf. display (2.11) in [9]), and hence the above stopping rule is efficiently implementable.
Theorems 3.1 and 3.3 and Corollary 3.2 hold accordingly. For the proofs we refer to [9].
They are considerably more complicated and rely on techniques developed by Nemirovskii
in [15]. We finally mention that the idea of computing gr(O) for diagnostic purposes has
previously been suggested in [14] 1. So far, there is no other heuristic stopping rule for CG
with a theoretical foundation; cf. 11 ].

5. The discrete setting. For a numerical implementation, (1.1) has to be discretized to
obtain a finite-dimensional matrix equation

(5.1) Ax b.

For this discrete problem, however, we encounter an additional difficulty. For example, if the
null space of A is trivial then the normal equations system for (5.1) always has asolution,

^compwhatever data D are used. Denote this solution by 2. Then, the computed numbers
defined via

satisfy

r/comp. ({9*sr(AA,))I/2 1/2_ comp:-- ]r

pr/2((A2)*sr(AA*)A2) 1/2 "--II(prsr(A*A)A*A)I/22]I.
It is an immediate consequence of (3.5) and the Banach-Steinhaus theorem that

(prsr(A*A)A*A)1/22 0 as r --> o.

^compTherefore, the computed quantities g3r always converge to zero as r --+ ec, i.e., the global
infimum of {0rcmp equals zero.

1Be aware of the misprint for gr(O) on p. 127 of [14].
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FG. 5.1. Error history and estimates {qgr versus r for Tikhonov regularization.

We emphasize that this phenomenon is only due to the discretization process: the com-
^compputed numbers qr and the numbers qgr for the continuous problem (1.1) are no longer related

for r > r, say. In fact, in our computations we have typically observed a significant increase
_comp compof r as r becomes large, before Or eventually starts to decay towards zero. To satisfy

formal needs, we might nevertheless modify our parameter choice rule by first defining r as
_compthe parameter r where r eventually starts to decrease, and by choosing r, as the location of

the global minimum of {(/grcmp in [0, r]. However, in practical computations, the parameter r
is rarely made so large that one would encounter this phenomenon; instead, the location of the

^comp"global minimum" of qr is usually obvious. To illustrate this claim we show a typical plot
of the error history TrY Xr and its approximations qgr in Figure 5.1. This plot shows the
results for a sample run of Tikhonov regularization corresponding to the problem described in

6.2 below with 0.1% noise. The plot exhibits a distinct minimum of the comparison sequence
{Pr }, and a "hump" as r goes to infinity. The magnitude of the regularization parameter r,
is the same as for the optimal regularization parameter; the error Tty Xr, is by about a
factor of 1.8 worse than the best possible error.

Another point that we would like to mention is the behavior of our method when we
increase the level of discretization. Since the theory developed in 3 is independent of the
dimension n of the chosen Hilbert space, we expect similar outputs when the discrete problems
approach the continuous problem, i.e., when n --+ cxz. In fact, in our numerical experiments
the sequences {qgr did not change much when we increased n, but kept the relative data error
at a constant level. As a consequence, the chosen regularization parameter r, stagnated at a
certain level. Moreover, the estimates r/r, for IlY in Theorem 3.1 approached a constant
value as n --+ cxz, comparable to the true data error. In view of this, the error bound (3.9) of
Theorem 3.1 asserts order-optimal accuracy, which is what we want to get.

We mention, however, that with increasing n the best possible regularization parameter
typically goes to infinity, and the error of the corresponding approximation goes to zero. This
is a phenomenon which cannot be explained by the "deterministic" continuous setting that
we have used for our paper, but is in agreement with the statistical approach to regularization



968 MARTIN HANKE AND TOOMAS RAUS

methods advocated by Wahba [22] and others. The method of generalized cross-validation
for estimating the regularization parameter is based on this theory, and captures the expected
behavior of the optimal regularization parameter as n --+ cx. There is no hint, however, that
generalized cross-validation can realize error bounds like (3.9) or even order-optimal accuracy.

Just recently, Vogel [21] has shown that the regularization parameter chosen by the L-
curve criterion also stagnates when n -- oc. It would be interesting to find a method for
which deterministic error bounds like (3.9) hold, and which give the "correct" (i.e., expected)
behavior of the regularization parameter as n -- ec. We plan to come back to this problem in
some future work.

6. Numerical results. We now summarize some of our numerical experiments with two
model problems. For each problem, perturbed data are generated by adding 1% and 0.1%
noise, respectively (i.e., if b and b denote the exact and the perturbed right-hand sides then

lib bl]/]lb]] 0.01 or 0.001). As usual, the noise is a random vector, normally distributed
with zero mean. For each of the two noise levels we have applied Tikhonov regularization, the
v-method with v 1, and CG to (the same) 20 noisy copies of the right-hand side, respectively.
In all the examples, x0 0 is the initial guess.

6.1. Model problem 1: A compact operator equation. Our first problem is taken from
[8]. It is a first-kind integral equation

(Tx)(s) k(s, t)x(t) dt y(s), 0 <_ s <_ 1,

where

zr2s(1 t), 0 < s < < 1,
k(s,t)

2t7r (l-s) 0<t <s < 1

is the Green’s function for the differential operator Lx -x’t/jr2 with boundary conditions
x(0) x(1) 0. The integral equation is discretized by collocation with piecewise linear
splines and 51 equidistant collocation points sj j/50, j 0 50. As in [8] two different
right-hand sides are considered, namely

yl(s) (7s6- 18s5
nt- 15s4- 5s nt-s)Jr2/3,

yZ(s) --7S + 24S7 28s6 - 14S5 -- s + S Jr 14.

The two right-hand sides differ in the admissible range for the parameter/z in (2.2): for yl,

(2.2) is satisfied for 0 < # < 5/8; for Y2 the range is 0 </z < 9/8.

6.2. Results for Yl. In the sequel, we describe the results with y y. We restrict our
attention to a comparison of the order-optimal and heuristic parameter choice rules, and to
their accuracy as compared to the best possible regularization parameter. For the order-optimal
rules we have to fix a parameter r, which in all cases must be greater than 1; cf. 2. We took
r 1.1, since our experience indicates that this is a reasonable choice for many applications.
In Figure 6.1 the relative errors of the regularization methods are shown. The two plots
correspond to the two different noise levels. Each plot contains three columns: the left-hand
column presents the results for Tikhonov regularization, the middle column corresponds to
the v-method, and the right-hand side column contains the results for CG. In every column, for
each of the 20 experiments (corresponding to the 20 different perturbations of the right-hand
side) the relative errors are drawn for the optimal regularization parameter (solid line), the
order-optimal parameter choice rule (dotted line), and the corresponding heuristic parameter
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FIG. 6.1. Model problem 1, y Y1" relative errorsfor 1% noise (left) and 0.1% noise (right).

TABLE 6.1
Model problem 1, y Yl average iteration counts.

Noise level
v-method Conjugate gradients

Opt. Ord. Heu. Opt. Ord. Heu.

1% 48.0 33.9 27.0 4.5 3.6 3.0

0.1% 111.9 98.9 82.0 7.5 6.0 5.0

choice rule (dashed line). The actual accuracy is not so important; what matters is the relative
accuracy of the competing rules.

Table 6.1 complements the figure by providing the average iteration count of the two
iterative schemes corresponding to the optimal iteration index (Opt.), to the order-optimal
stopping rule (Ord.), and to the heuristic stopping rule (Heu.).

As can be seen from Figure 6.1, the order-optimal stopping rules provide better approxi-
mations than the heuristic rules. The stability of the reconstructions is comparatively robust,
i.e., the accuracy is quite independent of the actual noise sample. Although less information is
used, the heuristic parameter choice rules perform not much worse than the deterministic rules.
In fact, the error of the heuristic rules is never more than twice the error of the corresponding
order-optimal rule, except for the case of CG with 1% noise, where differences up to a factor of
2.5 occur. However, it should be remarked that CG requires only about four to five iterations
to reach optimal accuracy in the 1% noise case, and the stopping indices of the two stopping
rules under consideration never differ by more than 1 (cf. Table 6.1); it seems unrealistic to
expect a better coincidence of the stopping indices.

In view of Theorem 3.1 it is also instructive to consider the ratio Or,/IIY YII; cf. (3.9).
In all experiments this ratio is between 0.89 and 1.41. With 0.1% noise, the ratio never drops
below 0.96. In other words, the heuristic rules provide very reliable approximations.

6.3. Results for Yz. Figure 6.2 and Table 6.2 illustrate the numerical results for the first
model problem with right-hand side y y2. Since y2 satisfies (2.2) for larger values of/z
as compared to y, the iterative methods require less iterations to reach optimal accuracy.
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FIG. 6.2. Model problem 1, y y:: relative errorsfor 1% noise (left) and 0.1% noise (right).

TABLE 6.2
Model problem 1, y Y2 average iteration counts.

v-method Conjugate gradients
Noise level Opt. Ord. Heu. Opt. Ord. Heu.

1% 16.8 13.9 10.0 3.0 2.9 1.2

0.1% 31.8 33.8 29.1 3.9 3.0 3.0

This is evident from Table 6.1, and it particularly applies to CG. In fact, r 3 is throughout
the optimal stopping index for CG in the 1% noise case. While this is essentially matched
by the order-optimal rule (except for two experiments where stopping index is r 2), the
heuristic rule returns r, 2 in four and r, in sixteen experiments, respectively. This is
the reason for the comparatively large gap in the accuracy between the two stopping rules in
the left-hand figure. For 0.1% noise, both stopping rules terminate CG after three iterations
whatever perturbation is used, whereas the optimal stopping index is almost always r 4.

As above, the a posteriori estimates r/,, for the perturbation error in the data turn out to
be very good approximations, except for the outlying CG approximations in the 1% noise case
where r, 1. For these latter approximations r/r, goes up to almost five times the actual noise
magnitude. Nevertheless, as has been mentioned earlier, it wouldbe more dramatic if the ratio
dropped significantly below 1.

6.4. Model problem 2: A convolution over ]2, The second model problem is a two-
dimensional deconvolution taken from [11, 8.2]. The corresponding integral operator T
has continuous spectrum instead of a sequence of isolated singular values as in the previous
problem. We include this problem to see whether these spectral properties affect the perfor-
mance of the parameter choice rules. For details on the problem and the (simple collocation)
discretization we refer to 11]. Figure 6.3 and Table 6.3 provide the results of the numerical
experiments (the properties of the additive noise are the same as before).

Note that the iterative methods require many more iterations; this is due to the fact that the
solution has very sharp contours; the actual values of # for which (2.2) holds are not known.
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FIG. 6.3. Model problem 2: relative errorsfor 1% noise (left) and 0.1% noise (right).

TABLE 6.3
Model problem 2: average iteration counts.

v-method Conjugate gradients
Noise level Opt. Ord. Heu. Opt. Ord. Heu.

1% 68.0 45.4 17.6 30.8 18.2 6.5

0.1% 871.1 177.2 151.2 209.8 52.2 47.4

Furthermore, CG needs more iterations because the spectrum of T is a continuum; see the
discussion in 11 ].

From a qualitative point of view, the robustness of the parameter choice rules does not
change at all. As before, the errors of the regularized approximations obtained with the
heuristic parameter choice rules are at most by a factor of 1.6 worse than those of the order-
optimal rules; for the reduced noise level, the ratio between the corresponding errors decreases
even down to at most 1.04.

On the other hand, the a posteriori estimates for the 1% noise level are larger, up to 4.5
times the actual value. For 0.1% noise, however, all estimates are between 1 and 1.5 times
the actual magnitude.

7. Concluding remarks. Heuristic parameter choice rules have found renewed interest
in recent works on the regularization of ill-posed problems. The major drawback of many
of the suggested rules is the lack of a thorough theoretical analysis. With this in mind,
the parameter choice rules presented in this paper are especially attractive, since they are
based on the established theoretical framework developed for order-optimal parameter choice
rules. As a consequence, we obtain a posteriori bounds for the actual error of the regularized
approximation; cf. Theorem 3.1.

We conclude from the numerical experiments that the actual performance of the new
parameter choice rules is quite promising, except for the conjugate gradient method, where
the results are somewhat worse in the case of 1% noise. With even more noise the heuristic
parameter choice rules tend to a too-conservative choice of the parameter; however, it was
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always possible to detect this from the computed estimate for ]]y ]]. Note that with
significantly more noise than 1%, sound reconstructions are almost impossible, anyway.

It must again be emphasized that the proposed rules should not be understood as black box
routines, and the presented numerical results can only indicate the limitations of these rules.
Other examples naturally will meet other limitations. It is our philosophy and our intention to
suggest these rules primarily for diagnostic purposes; the use of a variety of different parameter
choice rules should always be the ultimate goal.
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Corollary 3.2, and to Curtis Vogel and an anonymous referee for useful remarks concerning the
presentation. The second author greatly appreciates travel support by the Christian-Doppler-
Society, Austria.
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Abstract. Many numerical simulations remain too resource-intensive to be directly incorporated into engineering
design and optimization efforts. An attractive alternative to direct insertion considers models for computational
systems: the expensive simulation is evoked only to construct and validate a simplified input-output model; this
simplified input-output model then serves as a simulation surrogate in ensuing design and optimization studies.
We present here a nonparametric statistical procedure for the validation and optimization-purposive application of
simplified (static) input-output models for noisy computer simulations.

For the case of unbounded symmetric measurement noise, we show that, with probability greater than e2,

the difference between the noise-free simulation output and the proposed surrogate is bounded over more than
of the specified input domain by U, the largest discrepancy observed between the noisy simulation output and the
proposed surrogate in a validation sample of size N lne2/ln(1 el/2). Several a priori and a posteriori density-
independent and density-dependent bounds are presented for the expected noise contribution to the model prediction
error estimator, U; for the important case of a normal parent, bias-variance balance requires that the standard deviation
of the noise decrease no more slowly than (2 lnN)-1/2 as N --As an example, we consider the selection of the inclusion concentration of a random fibrous composite to obtain
a desired effective thermal conductivity: a parallel Monte-Carlo finite-element simulation is polled to validate a
microstructure-independent effective-conductivity upperbound; this upperbound then serves as a simulation surrogate
in subsequent discrimination exercises. A validation-based nonparametric a posteriori error framework is evoked to
quantify the effects of surrogate-for-simulation substitution on system predictability and optimality.

Key words, design, optimization, simulation surrogates, nonparametric validation, parallel computing, PAC-
learning algorithms, order statistics, Monte-Carlo methods, random media
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1. Introduction. Computer simulation plays an increasingly important role in engineer-
ing design and optimization. Two alternative approaches to the incorporation of simulation
into engineering synthesis are direct insertion and simulation surrogates.

In direct insertion, the simulation is directly evoked by the parent mathematical program-
ming procedure. Direct insertion permits accurate system-performance prediction and great
flexibility in design-space definition and dimension. However, direct insertion is often not
viable for resource-intensive, large-scale simulations: optimization procedures may exhaust
resources before interesting, or even feasible, results are obtained; inevitable variations in de-
sign specifications and optimization criteria cannot be efficiently accomodated; only limited
prior information can be incorporated. Lastly, direct insertion requires a degree of automation
that many large-scale simulations do not readily admit.

In the simulation surrogate approach, the large-scale numerical simulation is evoked only
to construct and validate a simplified model which relates selected design-variable inputs to
system-performance outputs; this simplified input-output model then serves as a simulation
surrogate in ensuing optimization studies. Surrogate techniques enjoy several advantages:
optimization procedures will not terminate prematurely; midprocess modifications to design
objectives can be efficiently accomodated; simulation results can be effectively recycled;
prior information can be gainfully exploited; design interactivity is enhanced; and simulation
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automation, though desirable, is not necessary. However, the surrogate approach also suffers
from several significant disadvantages: simplified input-output models introduce additional
prediction errors; the input space definition and dimension must be prescribed "a priori";
design localization deteriorates as the dimension of the input space increases.

Clearly, the direct insertion and surrogate approaches must be treated as complementary
and potentially collateral, with inexpensive simulations or final analyses preferring the former,
and expensive simulations or exploratory studies selecting the latter. Although continuing
advances in parallel computing (Gustafson, Montry, and Benner (1988); Fox et al. (1988);
Fischer and Patera (1994)) will certainly render current calculations less expensive, increased
computational capability will also enable new simulations that offer increased physical and
engineering relevance. As formerly expensive calculations migrate to the direct insertion class
of simulations, formerly "impossible" problems will replenish the surrogate category. There
is, therefore, a continuing need for both direct insertion and surrogate approaches; our concern
here is with the latter.

The work to date on surrogate procedures for noise-free simulations ranges from early ef-
forts to characterize average properties of simulation outputs (McKay, Beckman, and Conover
(1979)), to more recent activities focussed on the replication of detailed input-output rela-
tionships for subsequent application in optimization studies (Sacks, Welch, Mitchell, and
Wynn (1989); Sacks, Schiller, and Welch (1989); Cox and John (1992); Morris, Mitchell,
and Ylvisaker (1993); Yeilyurt and Patera (1995)). These surrogate procedures do not,
however, explicitly treat the situation in which the simulation output is subject to signifi-
cant "measurement" noise, and the methods cannot, therefore, address the important issue of
bias-variance balance.

Simulation measurement noise--broadly defined as the difference between the (assumed)
deterministic output of a "continuous" mathematical system and the corresponding (per-
haps random) output of an associated approximate solution procedure--arises in many dif-
ferent computational techniques: in finite-difference, finite-element, and finite-volume pro-
cedures for partial differential equations, measurement error comprises discretization error,
incomplete-iteration error, and arithmetic rounding; in Monte-Carlo techniques for the evalua-
tion of deterministic integrals or the statistics of chaotic or stochastic processes, measurement
error takes the more familiar form of estimator variance. In this paper, we propose a non-
parametric statistical procedure for the validation and optimization-purposive application of
(static) noisy-simulation surrogates; the Bayesian-validated surrogate procedure for noise-free
simulations developed in Yeilyurt and Patera (1995) is, in fact, a special case of the more
general framework developed in the current work.

We briefly remark on the relationship between the current work and the much broader
field of statistical prediction. The preference for a statistical approach--ostensibly similar to
physical-experiment design--to the noise-free simulation-surrogate approximation problem
reflects, first, the perforce limited samples associated with expensive simulations (this is par-
ticularly acute in the absence of computational economies of scale), and second, the lack of
regularity information for complex simulation input-output relationships. However, surrogate
procedures for noise-free computer experiments differ significantly from statistical prediction
techniques for physical experiments in that, for the former, noise mitigation is not a factor
in efficient "design" (Sacks et al. (1989), Yeilyurt and Patera (1995)). It may appear that
in developing surrogates for noisy simulations we might now appeal more directly to corre-
sponding statistical prediction techniques for physical experiments (Box, Hunter, and Hunter
(1978); Seber and Wild (1989); Hirdle (1990)).

We believe this is not (or need not be) the case: noisy simulations and noisy physical
experiments remain essentially different. In particular, in a typical numerical simulation, first,
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we need not be concerned with unknown or confounding variables since, by construction, all
independent variables are explicit in the formulation of the originating simulation, and second,
we can directly control the magnitude of the measurement noise through, for example, mesh
refinement or precise replication. Because numerical simulations correspond to a "naive"
physical experiment, surrogate procedures for noisy numerical simulations permit both sim-
pler formulation and more explicit error estimation than corresponding methods for physical
experiments. For example, nonlinear nonparametric kernel-smoothing regression techniques
for physical experiments (Wahba (1975), Silverman (1985), Hirdle (1990)) balance predictor
bias and measurement variance by an asymptotic relationship between validation sample size
and kernel scale; in contrast, the simulation surrogate procedures we propose here balance
surrogate bias and measurement error by direct requirements on validation sample size and
the (presumed controllable) noise level.

The paper is organized as follows. In 2 we review the optimization-purposiveness struc-
ture introduced in Yeilyurt and Patera (1995), motivate the desired form for the surrogate-
validation statement, and introduce our random simulation hypotheses. In 3 we present
the validation result and derive the validation error estimate. In 4 we examine the noise
contribution to the model prediction error estimator. Lastly, in 5 we present several ex-
amples, including a random-media effective-conductivity nested Monte-Carlo finite-element
calculation which constitutes a "real," as opposed to contrived, application. We note that in
the current paper we take the proposed surrogates as given, "graybox" models; regression
procedures by which to generate either blackbox models or corrections to graybox models are
discussed in Yeilyurt and Patera (1995), Yeilyurt (1995), Otto et al. (1995), and Paraschivoiu
(in progress).

2. Optimization purposiveness. We take as given a design-variable M-vector p in an
admissible (closed) design space f2 C M, and a (here single) output s which is described
by the input-output function $(p) f2 -- ; we require only that $(p) 6 L(f2). We
assume that there is no systematic simulation error: $(p) is the deterministic input-output
function for both the underlying "continuous" mathematical system (e.g., an integral) and
the. numerical simulation in the limit of no measurement noise (e.g., the Monte-Carlo sample
mean as the sample size tends to infinity). We next presume that the target value of the output
s is prescribed as , and that the "best" design point p* is defined by

(1) p* arg min (p, ;),
p.f2

where

(2) (p, .) I(p) l.

A much more general optimization framework, in which the objective function, (p, ), is an
arbitrary function of the simulation input-output relationship S(p), is developed in Yeilyurt
and Patera (1995); the specific case given here, related to the problem of "discrimination"
(Seber and Wild (1989)), leads to a simpler exposition which is adequate for our current
purposes.

We next introduce the simulation surrogate, S(p), which should, first, admit consider-
ably simpler evaluation than the original input-output function, $(p), and, second, provide a
reasonable approximation to ,_q(p) over the design space f2. We then replace ,_q(p) in (2) with
,_q(p) to construct the approximate design problem

(3) * arg min IS(p) )1
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the discussion that follows is perhaps clearest when ,_q(*) ). The advantage of (3) over
(1) is, of course, more ready and certain solution; perhaps more importantly, midprocess
modifications in design specifications, here represented by X, can be treated without re-appeal
to S(p). We must, however, understand how errors in the surrogate will be reflected in
predicted system configuration and performance.

We describe a particular surrogate-validation error estimate which leads to practically
relevant purposive statements. We first assume, given small positive real parameters 0 < el <
1 and 0 < e2 < 1, and an importance function p (p) which is strictly positive and integrates
to unity over , that we can find a model prediction error estimator B such that

(4) p(p)dp>_ 1-e} >_ 1-e,

where Pr{event refers to the probability of event, and dp is a differential element of S2. The re-
sult (4) can be viewed as a probably approximately correct statement (Valiant (1984), Gallant
(1990)), and is also related to the probabilistic framework of information-based complex-
ity theory (Traub, Wasilkowski, and Wozniakowski (1988)). In words, this validation error
statement indicates that, over some volumetrically important subdomain of f2, the surrogate
LC-prediction error is less than B with high probability.

It can then readily be shown (Yeilyurt and Patera (1995), Yeilyurt (1995)) that, with
probability greater than e2, for any region 74 C Q for which fr P (p)dp > el, there exists
a (in fact, many) * 6 for which

(5)

where

(6) maxiS(p) S(*) [.

The choice of 7-4 may be optimized with respect to various metrics (Otto et al. (1995)); for
example, in Yeilyurt and Patera (1995), is chosen as the region 7"4’ of "size" ve (1 <
v < 1/el given) that minimizes ,. From (5) we deduce,assuming minimal continuity
requirements on S(p) and $(p), that for sufficiently accurate S(p) (small B) and sufficiently
small e (small ), there exist many design points * arbitrarily near * at which actual
system performance, as measured by [,_q(O*) X[, is arbitrarily close to the optimal system
performance predicted by the surrogate. If we thrther presume that If(p) X[ and IS(p) X[
are quasi-convex, we can construct, based solely on the surrogate S(p), a random region K;
that shrinks to * as B --+ 0, el -+ 0, and that, with probability greater than e2, contains
the actual design point, p* (Yeilyurt and Patera (1995), Yeilyurt (1995)).

The many practical ramifications of these purposiveness estimates are described in 5
of this paper and, more extensively, in Yeilyurt and Patera (1995) and Otto et al. (1995);
other approaches to optimization purposiveness in the context of nonlinear nonparametric
regression can be found in Silverman (1985) and H/irdle (1990, Chap. 8). Note that, although
our estimates in volume are independent of input dimension M, the variations in individual
components of p will increase with increasing M. As a consequence, our methods are viable
for large M only if the inputs are strongly correlated through p (p), as in shape optimization
(Otto et al. (1995), Otto (in progress)), or if screening techniques are applied prior to surrogate
construction-validation (Welch et al. (1992)).

It remains to find a validation algorithm which yields the error estimate (4). For the case
in which there is no measurement error in the simulation (that is, given a p 6 f2, s S(p)
can be determined with infinite precision), the algorithm and associated proof are very simple
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(Yeilyurt and Patera (1995)). We consider here the slightly more complicated case in which
the simulation result is subject to measurement noise. More precisely, we shall assume that our
simulation output is now a random variable, R, characterized by mean ,9(p), the deterministic
input-output function of the underlying exact (unapproximated) mathematical model; finite
variance ow (p); and scale-parametrized (smooth) conditional probability density

(7) fglp(rlp) g
crw(p) trw (p)

Equivalently, we can express the simulation output as

(8) R S(p) + W,

where W is a (possibly unbounded) absolutely continuous measurement noise random variable
with probability density

(9) fwlI,(wlp) g
crw(p) crw(p)

As the expectation of R given p is S(p), or, equivalently, the expectation of W is zero, we
implicitly preclude biased simulation estimators; we shall further assume that the noise is
symmetric, g(w) g(-w). These assumptions, though not essential, greatly facilitate the
subsequent analysis, in particular in the case of unbounded noise. Note that we. aim to predict
the exact mathematical-model output, S(p), not the simulation result, R, since the simulation
measurement error is presumed not relevant to the mathematical system which the numerical
calculation purportedly represents.

3. Validation procedure. In this section we present (in 3.1) and prove (in 3.2) our
central validation result for noisy simulations.

3.1. Validation statement. We take as given 0 < e < l, 0 < e2 < l, and 0 _< ot _< 1,
and define V (p) and N as

(10) fwlP(wlp)dw ot

and

(11) N .lns2
ln[1 el(1 Or)]

respectively. We next construct the sample ofindependent identically distributed ordered pairs

(12) {(P1, R1) (PN, RN)}

where each (Pj, Rj) has joint probability density function

(13) fP, R(P, r) p(p)fllP(rlp)

the importance function-cum-marginal density p (p) can thus be viewed as a Bayesian prior
on the simulation input vector (Yeilyurt and Patera (1995)). Then,

(14)
e211S(p)-S(p)I<_U}

p(p)dp > el } >_ 1 82
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where

(15) U max (IRj S(Pj)I + y(Pj)}
jell N}

is the noisy modelprediction error estimator (that is, the surrogate "bias"). Identifying U B,
we recognize the probably approximately correct error statement, (4), motivated in 2.

The Monte-Carlo algorithm associated with (14) and (15) is transparent: we sample N
values of the design random vector over f2, Pj, j N, according to the specified
density p(p); we compute a (noisy) simulation result, Rj, at each design point Pj; finally,
we calculate the model prediction error estimator, U, from (10) and (15). The result can
be interpreted from two perspectives: as a tolerance limit, U, for IS(P) S(P)I; and as a
nonparametric joint confidence interval over e of the design domain, f2, for the surrogate-
simulation misfit, -U < S(p) $(p) _< U, or, equivalently, for the noise-free simulation

result, S(p) U < $(p) < $(p) + U. We now turn to a proof of (14).

3.2. Proof of validation error estimate. To begin, we define q as the q "quantile" of
IS(p) S(p)l,

(16) q min ff such that U(()>_ q,

where

(17) (’) / p(p)dp.
Jp2 11S(p)-S(p)l<

We then introduce the domain

(18) - {p ff211S(p)-S(p)I > _,}

and associated partition

(19) Q + u Q-,

where

(20)
+-{p6 ]$(p)-$(p)>0},

Q- {p 6 S(p) S(p) < 0}.

It then follows from (16), (18), and the right-continuity of ((), that

(21) fQ p(p)dp fie1

for some , 1 </3 < 1/el. Note that, if 5c(() is continuous (that is, no contours of IS(p)
S(p)] are of finite measure), then/3 will be unity.

We now define (p, w) 6 7? S2 R, and introduce 7- C D,

(22)

T+ {(p, w) DIp +, to > -I’d(P)},

T- {(p, to) DIp -, to <_ V(P)},

T=T+uT-.
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It then follows from (21) and (22) that

(23)

fwlP(Wlp)dw) dp

We now introduce Wj Rj ,S(Pj), the noise contribution associated with the Pj sample
point; from (7)-(9) and (13) we know that (Pj, Wj) has joint probability density function

(24) fP, w(P, w) p(p)fwlp(wlp).

We therefore infer from (23) and (24) that

(25)

Pr{3 j* e (1 N} such that (Pj,, Wj,) T}

(1 flel(1 --0/))N >_ 1 (1 el(1 -o/))N

and thus

(26) Pr{3 j* 6 {1 N} such that (Pj,, Wj,) 7"} > e2

for N satisfying the sample-size requirement (11).
To complete the. demonstration we note from (18) and (22) that, for (Pj,, Wj,) "T,

(27)
Ig. 8(1.)1 + .(e.) 18(1".) 8(r..) + W.l +

> IS(Pj,)- S(Pj,)I >_ l-e,

Therefore, from (16) and (27)

cK211S(p)-S(p)I<_IRj,-S(Pj, +’ (P/*)}
p(p)dp

f
(28) > ] p(p)dp >_ el

Finally, (14) follows from

IIS(P)-S(P)I<_IRj*-S(Pj +’= (P/*)}
p(p)dp >_ 1 el

f
(29) =V ] p(p)dp >_ 1 el

and the probability statement (26). This result can be extended to multiple outputs by appli-
cation of Boole’s inequality (Yeilyurt (1995)). In summary, the proof is simply a binomial
argument in a product space comprising both the input and the noise contributions to the
simulation result.
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4. Model prediction error estimator. In this section we aim to understand the effect
of the simulation noise on the model prediction error estimator, U. In particular, improved
validations(smaller e and e2) implies, from (11), larger N, and hence greater likelihood that U,
the Rj $(Pj)[ sample maximum, will reflect--in fact, select--larger noise contributions. We
remark that the rigorous application of the validation statement (14) to the purposive structure
described in 2 is not dependent on estimation of the noise; our noise estimates serve only to
minimize the computational effort or to sharpen the bounds. In this sense, we can proceed
somewhat less stringently, looking at expectation rather than confidence intervals.

4.1. Bounded noise. We consider here the case in which the noise is bounded:
fwlI,(WlP) 0 for Iwl > (cw/2)aw(p), where cw > 0 is independent of p; equivalently,
g(v) 0 for Ivl > cw/2. Bounded noise is a reasonable model (or bound) for the mea-
surement noise associated with finite-element methods for partial differential equations. For
bounded noise it is interesting to consider o 0, which implies from (10) and (11) that

(30) V (P) (cw/2)rw (O)

and

(31) N
In 82

ln(1 el)

respectively. Finally, from (8) and (15) we derive that

(32) U _< max
j{1 N}

maxIS(r’j) S(l’)l + cww

where _max
ow maxo Crw (p). In the limit that _max

ow --+ 0, both the sample size requirement,
(31), and the model prediction error estimator, (32), approach the corresponding limits for a

noise-free simulation (Yeilyurt and Patera (1995)); at least in this particular limit, our noisy
result is, in some sense, sharp. Biased bounded noise is considered in Yeilyurt (1995).

4.2. Unbounded noise. We consider here the case of unbounded noise, in which the
probability density for the noise is potentially nonzero for all values of w 6 R. To make our
ideas more concrete, we shall assume that o 1/2, so that F (P) 0 (independent of both
p and the form of the assumed-symmetric g(w)), and

(33) N
In 2

ln(1 )
Unbounded noise is relevant to Monte-Carlo simulations (Rubinstein (1981)). We will occa-
sionally appeal to a canonical "Monte-Carlo subproblem," by which we shall refer to a specific
simulation procedure in which the simulation random output is the result of a standard sample
mean calculation,

(34) R--k=l
where the Qk are (for any particular p 6 S2) independent identically distributed random
variables with mean $(p), finite variance r(p), and probability density function fQ(q). It

follows thatw(P) CrQ (p)//-, and that R is asymptotically normal as N" -- ec. We refer
to N" as the subproblem sample size to avoid confusion with the validation sample size, N.
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We measure the effect of the noise by the random variable Y 3;(_P_P, W),

(35) 3(P, W) max S(Pj) + Wj S(P)I max I$(P’) $(Pj’)I,
j{1 N} j’6{1 N}

where P (P1 PN) and W (W1 WN). Note that, even in the absence of noise,
our validation statement does not permit a priori estimation of IS(p) $(P)I without further
assumptions on N(p) and $(p); our focus here is on understanding the incremental effect of
noise on the model prediction error estimator. (The presence ofunbounded noise also increases
N, (33), with respect to the bounded-noise and noise-free cases, (31); this "secondary" effect
is not reflected in Y.) Ultimately, we will require a relationship which specifies the allowable
simulation noise, as a function of el and 82, such that "variance" does not dominate surrogate
"bias." We implicitly assume that the simulation noise can be controlled through precise
random sampling and subproblem replication, as in our model Monte-Carlo subproblem (34);
if this were not the case, we would need to pursue a kernel smoothing approach (Wahba (1975),
Silverman (1985), Hirdle (1990)), in which local-in-p validation averages (or, equivalently,
smoothness requirements) replace subproblem replication.

4.2.1. Bound for expected noise contribution. We consider here estimates for the ex-

pectation of Y with respect to P and W conditioned on the event that A 1, where A is the
indicator random variable,

A [ 0 if f{pll$(p)_(p)l_<U p(p)dp < el
(36)

/ if f{pef21 iS(p)_(p)l<U p(p)dp > el,

that signals successful validation. Denoting the sample space as ,E "2N X ]U, we can
express the required conditional expectation as

f{(p,w)6 E IA:I} Y(P’ tO) HY:I UP, w(Pi, ti)dPidlloi
(37) EI,,WlA=I(Y)

f{(p,w)6 EIA=I} HY=I fP, W(Pi, uoi)dPiduoi

Denoting

(38)

we deduce that

]--arg max S(Pj)+Wj-S(Pj)I,
je{1 N}

Y < IS(Py) + Wy S(Vy)l- IS(Py)
(39) <_ Wyl Z,

where Z Z(P, W) is the random variable

(40) Z- max (IWil).
j{1 N}

Since Z is nonnegative, and since the denominator of (37) is, by (14), greater than or equal to
e2, we conclude that

N

Ep, WlA=I(Y) < f ;Z(p__, W__) I-I fP, W(Pi, wi)dPidwi/(1
a{(p, w__) 6 E Ia=l} i:1

N

<_ f. Z(p, w_W_) H fP, w(Pi, wi)dPidwi/(1
a{(p, w__) } i-----1

(41) EDw__(Z)/(1 2)
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Finally, applying standard conditional-expectation and order-statistic manipulations (Mood,
Graybill, and Boes (1974); David (1981); Arnold and Balakrishnan (1989)), we arrive at the
explicit expression

N

Ep’w(Z) fo I-I P(P)U
k=l

(42) H(1 2FwlP(-vlpj))2fwlp(vlpi)vdv dp,
i=1 jsi

where Fwlp(wlp) is the cumulative distribution function associated with fwlP(wlp). Expres-
sion (42) now admits a priori treatment since all dependence on the uncharacterized functions
$(p) and $(p) has been eliminated.

Estimationfor unknown density. We consider here a further bound which requires knowl-
edge only of the (assumed-finite) variance, o’S(p), of the noise conditional density fwlP.
Applying the Cauchy-Schwarz inequality to the integral over v in (42), we find

N

(43) EE, w__(Z < fa H ,o(p)
k=l

x 1--[(1 2Fwle(-vlP)) 2fwle(vlpi)dv
i--1 j#i

Next we apply the Cauchy-Schwarz inequality to the sum over to obtain

N

(44) Ep, w(Z) < fa H ,o(p)
U
k=l

(1 2fwlp(-vlpj))2 2fwlp(vlPi)dv
i---1 ji

x (pe) dp.
=1

Noting that we can conservatively (albeit crudely) replace the exponent of the
(1 2fwie(-vlpj)) term in the integral over v by unity (this is not required if ow(p) is
constant), we find

(45
k=l =1

A final application of the Cauchy-Schwarz inequality then yields

(46)

where

(47) crv (f P(P)crv(P)dP)
1/2

In cases where crw(p) is known only at the validation sample points, the integral (47) is
approximated by an N-point Monte-Carlo quadrature,

(48)
N )1/2av crw(PJ)
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where {Pl PN is the validation input sample realization. In the case where aw(p) is, in
fact, constant, the prefactor in (46) is easily improved to

-v/ZN/(ZN- 1).

In effect, (46), (47) extends certain standard results for extreme values (David (1981),
Arnold and Balakrishnan (1989)) to the case of "marginal," or noisy (Ho, Sreenivas, and Vakili
(1992)), order statistics. The bound (46), (47) indicates that, as expected, isolated noisy regions
of the input space f2 will not unduly contaminate the model prediction error estimator. This

result also suggests.heuristics for designing computationally efficient "coupled" subproblem-
validation evaluation procedures. For example, if we generalize (34) to permit p-variable
subproblem sample size, N’(p), a simple constrained optimization ,exercise demo,nstrates that

av is minimized at fixed computational costdefined as Z.4=I .A/’(pj)fbr JV’(pj) OQ (pj).
This particular coupled strategy is oflimited computational relevance, as (46), (47). is not sharp
for the noise densities typically encountered in practice.

Our fully assembled bound, (41), (46), and (47) (or (48)), states that av must decrease

no more slowly than 1/q/- if the noise contribution to the model prediction error is not

to dominate. For example, for our Monte-Carlo subproblem, (34), we need to increase the
subproblem sample size, N’, roughly in proportion to the validation sample size, N, to bound
the noise.contribution as N -- cxz. Rephrasing our condition in terms of el and e2 from (33),
we require that

Crv/- In E2
(49)

(1 ez)v/-/2

remain bounded as el --+ 0, g2 -"+ 0 (note we approximate ln(1-e/2) by (-e/2)). Although
the dependence on eL and certainly 62 is relatively weak, (49) is pessimistic for most noise
densities that will obtain in practice. [q

Estimationfor known density. In the event that we know (or can approximate) the noise
conditional density, fwlP, we can directly evaluate (42) as

(50)

where

Ep, w(Z) N 1 (v)N-l2(v)vdv

(51) Z-I(V J p(p)(1 2FwI,(--vlp))dp

(52) 2-2(V) f p(p)2fwlp(v]p)dp

In cases where fwlI" is known only at the validation sample points, the integrals (51) and (52)
are effected by an N-point Monte-Carlo quadrature,

(53)

(54)

Zl(v) -71 (1 2FwlP(-Vlpj))
1

j=l

N

272(v) _,2fwl,(vlpy),
j=l

where {Pl PN} is the validation input sample realization. Our fully assembled bound
is., thus, (41), (50), and (51)-(52) or (53)-(54), in which (50) is evaluated by numerical or

symbolic integration. [3
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FIG. 1. Plot of EI,,w(Z)/(aw(2 lnN) 1/2) as afunction ofsample size Nfor the normal parent.

Estimationfor normal parent. We briefly discuss the application of the bound (41), (50),
(51)-(52) to the particular case in which the noise density is normal, first, because of the
central importance of the normal density in many Monte-Carlo calculations, and second, to
demonstrate that, in practice, (49) is unduly pessimistic. We consider a particularly simple
situation, aw (p) aw constant, for which (50) admits ready numerical evaluation. In Figure
we plot Ep, w(Z)/(aw(2 lnN) /2) as a function of samplesize for 10 _< N _< 104. As expected
from asymptotic theory (David (1981)), this normalized expectation slowly approaches unity
as N increases. We thus conclude that, if the noise contribution is not to dominate the model
prediction error estimator, aw must decrease no more slowly than (2 lnN)-/2. More precisely,
from (33), (41), (50), and Figure 1, we require that

’/aW(ln(_lne2)+ln2) ’/2

remain bounded as e --+ 0, 82 --+ 0. This condition is clearly much less stringent than (49).
(It is certainly of interest to develop an asymptotic theory for the normal parent E,,w(Z)
which includes variance-variability (aw(p) constant), as this would permit the design of
practically relevant optimally coupled subproblem-validation evaluation procedures; to date,
however, we have been unable to obtain a useful expression.)

We conclude by remarking that our estimates of this section and 3 are similar to--but
simpler thancorresponding L(f2) estimates for the kernel smoothing approach (Hirdle
(1990)). Our results are simpler because we are less ambitious" first, we obtain estimates only
for a "holey" (or "quantile") L-seminorm which admits .the possibility of an uncharacterized
region of relative volume as large as e (Traub, Wasilkowski, and Wozniakowski (1988)); and
second, we rely on precise sampling and replication for noise control. An advantage of the
"holey" seminorm is that we require only minimal regularity hypotheses on $(p) and S(p);
however, if we do assume further smoothness, the "holey" L-seminorm and true L-norm
can, of course, be related. For example, if we presume that IS(p) S(p)I has sufficiently
many derivatives in the neighborhood of a unique maximizer ff in the interior of S2 C IM,
then (Yeilyurt (1995))

{elH./2]
2/M

ase -+0.(56) -, IIS(p) S(p)ll(
p() O)M
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Here HI refers to the absolute value of the determinant of the Hessian matrix of
evaluated at p , and OM is the volume of a hypersphere in IM of unit radius (we
2(--2)0)e_2; 092 , O) 2). The expression (56) again illustrates the adverse effect of
increased input-space dimension, M, on predictability and localization.

4.2.2. A posteriori guide. The distribution of Y of (35) is clearly sensitive not only to

fwlv, but also to the relative magnitude andform of IS(p) $(p)]. The bounds of the previous

sectin assume the worst-case scenario, in which the noisemnot the variation in_IS(p)
,9(p)Imselects ] of (38). There are, however, instances in which the form of IS(p) -,9(P) will
preclude many validation input points from contending for the Rj $(Pj)] sample maximizer,
thereby reducing Ep, WIA=I (IWjI), and hence EP, WIA=I (Y), relative to Ep, wIA=I (Z).

In order to better reflect the form of [,9 (p) $(P) in our estimate ofthe noise contribution,
we propose the simple a posteriori noise guideline,

(57) 3(P, __W) I$(Py) + Wy (Py)]- ]$(P)) (P))].
Although neither $(Pj) nor Wj are known individually, calculation of ] from (38) requires
only the sum $(Pj) + Wj, which is simply the noisy simulation result, Rj. It is true that
the second term in (57) requires $(P.?), however the relative additional computational effort
required to recornpute the noise for this sinfile input point will, in general, be small. The
desirable properties of the random variable Y Y(P, W) follow directly from (39):

(58)

(59)

Y_<#,
Ep, wIA=I(") <_ Ep, wIA=I(IWjI) <_ Ep, wIA=I(Z)

The random variable I7 is thus an upper bound for the noise effect for any particular realization
which, in expectation, will be sharper than our previous estimates based on the maximum
sample noise. In particular, Y will only reflect the noise from the validation subsample
containing input points which are viable candidates for the Rj $(Pj)I sample maximizer.
In actual practice (see 5.2), we will construct confidence intervals for , a particular realization
of our noise bound.

5. Examples. In this section we apply our surrogate-validation algorithm and associated
error analysis to several test (5.1) and actual (5.2) noisy simulations in order to illustrate
the performance and capability of the approach. We consider only unbounded noise, and set
ot 1/2 in all examples.

5.1. Test eases. In test case i we specify M 1 (p p), f2 [0, 1], p(p) 1, and

(60) (S(p)-(p))i- { 0,1, 0..9<p<l.< p <’9

We take fwlP to be normal with constant standard deviation, rw(p) rw. As our first set
of parameters (test case I), we choose rw .1, and el .1, e2 .1 (thus N 45 from
(33)). We then perform the validation algorithm described in 3.1 L 10, 000 times, and
denote the validation success indicator variable, model prediction error estimate, actual noise
contribution, and a posteriori noise guideline for the th trial as ae, ue, Ye, and e, respectively.
We define the number of successful validations as LA eL1 ae. For this test case we
find LA/L .902; as expected, LA/L is quite close to the success rate predicted from (14),

e2 .9. Turning now to the noise contribution to the model prediction error estimate, we
Lobtain ZSA -e=l Yeae 118 for the empirical average of Y conditioned on A 1. Our two

bound procedures, (41), (46), (47) and (41), (50), (51)-(52) yield .745 and .275, respectively.
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Given the form of IS(p) $(P)I and the relatively low noise level, both bounds are, not

surprisingly, quite conservative. Conversely, Y should be extremely sharp: indeed, we find
Le=1 ea 118 for the empirical average of I3 conditioned on ALA

For our second set of parameters (test case I2), we select crw .1 and 81 .02, 82 .1
(thus N 230 from (33)). We now find that LA/L 1.000, significantly greater than
1 82; since 1 > 1 (see (21)), our probability statement (26) is conservative. We obtain

L}--e=1 yeae 192 for the empirical average of Y conditioned on A 1" the noise is largerLA
for 81 .02 than for 81 .1 as N (and the validation subsample of candidate maximizers) is
larger in the former case. Our two bound procedures, (41), (46), (47) and (41), (50), (51)-(52)
yield 1.69 and .334, respectively. The (41), (46), (47) bound is relatively worse for e .02
than for el --. because of the increased validation sample size, N, required in the 81 .02
case; the (41), (50), (51)-(52) bound is relatively sharper for 81 .02 than for e =. 1 because
the 81 .02 case is closer to the assumed-worst-case scenario. Finally, our a posteriori noise
bound, I, remains the best estimate for the noise effect, as I correctly disregas those input
sample points (Pj < .9) which, for crw .1, are not candidates for the IRj $(Pj)I sample

Lmaximizer: we find Z-2A Ye= eae .192 for the empirical average of I conditioned on
A=I.

For our third set of parameters (test case I3) we choose crw 10 and 81 1, 82
(thus N 45 from (33)). We find LA/L 1.000, again significantly greater than 1 82;

in this case, the increased validation success rate can be traced to the bounds (27)-(29). We
Lobtain T2A =1 Yeae 23.8 for the empirical average of Y conditioned on A 1. Our two

bound procedures (41), (46), (47) and (41), (50), (51)-(52) yield 74.5 and 27.5, respectively;
as expected, the latter bound is now quite sharp, since for ow 10 the maximum is entirely
variance-dominated. The a posteriori noise guideline can provide relatively little improvement

Lin this case: we find Z-2z =1 :eae 24.7 for the empirical average of I conditioned on
A=I.

In test case II we specify M 2(p (P(13, P(2)), S2 [0, 1] 2, p(p) 1, and

(61) (S(p) S(P))II sin(zrp(13) sin(zrp(23).

We take fwl’ to be normal with constant standard deviation, rw(p) rw =. 1, and choose

81 .1, 82 .1 (thus N 45 from (33)). Performing L 10, 000 trials of the validation
algorithm, we obtain LA/L .994; here again, the increased validation success rate originates
in the bounds (27)-(29). Note that successful validation (ae 1) implies that I(S(p)
$(P))III > ue over an "uncharacterized" region of relative volume, /z, no greater than 81;

for this two-dimensional input space, however, the "uncharacterized" region will, perforce,
Linclude excursions of geater than in at least one input variable. We find Z-gz -e= yeae

.0736 for the empirical average of Y conditioned on A 1. Our two bound procedures
(41), (46), (47) and (41), (50), (51)-(52) yield .745 and .275, respectively; as for test case I1,
these bounds are rather pessimistic. The a posteriori noise guideline remains relatively sharp,

LY-e-1 eae 114, however there is some deterioration relative to the ideal performanceLA
obtained in test case 11.

5.2. Multicomponent media.

5.2.1. Formulation. We consider here the calculation of the transverse effective thermal
conductivity of a random fibrous composite comprising a continuous phase of thermal con-

ductivity unity and a dispersed phase of volumetric concentration q5 consisting of co-oriented
insulating cylindrical rods of unity diameter (Sangani and Yao (1988); Cruz and Patera (1995);
Cruz, Ghaddar, and Patera (1995); Ghaddar (1995)). The calculation proceeds in a periodi-
cally replicated supercell, x [0, 0] x [0, 0], containing N. 4qS02/zr cylinders, as shown
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FIG. 2. Fibrous-composite supercell [0, 0] x [0, 0] containing Nc cylindrical insulating inclusions.

in Figure 2; the placement of the cylinder centers within the supercell, x (x xvc),
is prescribed in terms of an assumed isotropic and homogeneous joint probability density
function, fx (xC; q, 0). The (by isotropy, scalar) transverse supercell effective conductivity,
normalized by the continuous phase conductivity, is then defined as

(62) ke(ffi, O) I k(xc, , O)fXc(X-.c; 0)dxC
O,O]x[O,O])Nc

Here k(xc, b, 0) is the transverse configuration effective conductivity for a particular 0-
supercell cylinder placement, defined as the actual heat transfer across any (say) xl plane, nor-
malized by the product of the imposed xl temperature gradient and the superficial area/depth,
O; k(xc, c, O) is a functional of the solution to the microstructure conduction problem on
x (x), x(2)) 6 [0, 0] x [0, 0]. Note that the longitudinal effective conductivity is trivial (in
fact, structure-independent) for a co-oriented fibrous composite.

The effective property analysis is completed by (Cruz and Patera (1995)): defining the
effective conductivity, k(b), as ke(c, 0 --+ c); determining a correlation-length function,
(R) (b), such that, for 0 > (R) (b), (i) ke(c, O) no longer changes appreciably, and (ii) the standard
deviation of the random variable K,

(63) K k(Xc, c, O),

is sufficiently small. It then follows that ke(b) (or, equivalently, ke(, (b)) serves as an
accurate effective conductivity for any macroscale problem for which the domain is large
compared to (R)(b). (More generally, we may consider any macroscale problem for which
the concentration and inclusion distribution vary only over a lengthscale large compared to

(R)(4); within the purposiveness framework described in 2, however, we are restricted to
uniform-concentration macroscale problems.) For the purposes ofthe current paperwe will not
consider the limiting process in 0; rather, we shall compute the supercell effective conductivity-
concentration relationship for a particular 0, 00 6, which is sufficiently large that size effects
are reasonably small (Cruz and Patera (1995)). Note that, in practice, for each concentration

b we choose that 0 closest to 00 for which Nc is an integer.
Finally, in order to proceed further, we must know the inclusion joint probability density

function. Unfortunately, in most physical systems, details of the inclusion distribution are,
at best, costly to obtain, and, more typically, simply unavailable. Furthermore, although it is
possible to develop effective property bounds which are either independent of the inclusion
joint probability density or dependent only on certain low-order correlation functions (Hashin
(1983); Torquato (1991)), these bounds are often not sufficiently tight for a priori application.
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For example, for our insulating fibrous medium, the best possible structure-independent upper
bound for ke(dp, O) is ke(dp) (1 q)/(1 + 4) (Hashin (1970)), however the correspond-
ing lower bound is, perforce, zero. We propose to exploit the complementary attributes of
structure-dependent and structure-independent approachesby adopting the latter as surrogates
for the former; if the structure-independent upper bound, ke (b), proves an accurate estimate
for ke(qb, 00). for a physically relevant inclusion density function, then (i) we will have ex-
panded the prognostic range of the upper bound, and (ii) we will have obtained a simple,
robust expression for the effective conductivity for the particular random medium of interest.

As our (arguably) physically relevant inclusion joint probability density function we
assume

(64)

where

(65)

and

(67)

fx(X) 1/0, x [0, 00] [0, 00],

(66) fxlx._, x (xlx_ x) { O,
fp

x ’ 79j
1/ dx, x eTj,

j-1

79j [0, 001 [0, 001 \ U Ox
n=l

for j 2 Nc. Here Dx is the (periodically extended) disk with center x, and diameter
2. The density (64)-(67) describes a "random sequential addition" process (Widom (1966),
Torquato (1991)), and is closely related to several other commonly used microstructure dis-
tributions (Torquato (1991), Cruz and Patera (1995)).

5.2.2. Simulation subproblern. Our numerical procedure consists of Monte-Carlo and
finite-element treatment of the integral and integrand, respectively, of the supercell effective
conductivity relationship, (62). In particular, the calculation of the configuration conductivity
for a particular cylinder placement Xc, K k(Xc, b, 00), is effected by (Cruz and Patera
(1995); Cruz, Ghaddar, and Patera (1995); Ghaddar (1995)): automatic domain decomposition
and parallel partition; automatic parallel mesh generation; second-order isoparametric finite-
element discretization ofthe supercell conduction partial differential equation (Laplacian) over
[0, 00] [0, 00]; parallel conjugate gradient iterative solution ofthe symmetric positive-definite
system of finite-element equations; computation ofthe effective property as an energy norm on
the finite-element solution; implementation on the Intel iPSC/860 hypercube multiprocessor.
We occasionally encounter configurations in which extremely close inclusions either prohibit
successful mesh generation, or produce discretizations characterized by excessive degrees of
freedom, extreme ill-conditioning, or poor parallel load balancing. For these problematic
realizations we evoke variational "nip-element" procedures which mitigate the numerical
difficulties associated with geometric stiffness while simultaneously providing rigorous, sharp
upper and lower bounds for the configuration effective conductivity (Cruz, Ghaddar, and Patera
(1995)). In what follows, we shall assume that the nip-element, discretization, and incomplete-
iteration errors are sufficiently small that the configuration conductivity simulation solution is
effectively exact. The particular ("representative") realization shown in Figure 3 comprises
26,000 finite-element degrees of freedom and requires 2 minutes of computation on 16 nodes
of the Intel iPSC/860 hypercube.
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FIG. 3. Typical geometry, parallel partition (for 16 processors), andfinite-element meshfor inclusion concen-
tration q .492.

We now turn to the Monte-Carlo component of the algorithm. For any particular concen-
tration b, we approximate the integral (62) as the sample mean

(68)
Ur

K --_KiNr i=1

where Ki k(X_f el), 0o), 1 Nr. The Nr microstructure realizations, {X X__v },
are generated by an acceptance-rejection Monte-Carlo sampling procedure (Rubinstein (1981))
for the joint probability density function (64)-(67). We approximate the variance of K,
a (4, 0o), by the sample variance,

(69) (, 00) -(, 0o)
1 N

Nr (K -E)2
i--1

Finally, we assume that Nr is sufficiently large that the density of the random variable

(70) V
/Nr[K ke((, 00)]

is approximately normal with zero mean and unity variance.
Before turning to the validation results, we make several final remarks. First, our as-

sumptions on V in (70) in no way affect our validation statement (14), nor, in fact, our

density-independent noise bound, (41), (46), (47) (or (48)). Second, although the measure-
ment noise is, in fact, bounded (0 < K <_ ke(dp)), the range of K is large compared to
the standard deviation of K, and thus the unbounded assumption is more profitable. Third,
rK (qS, 0) will decrease with increasing 0 due to spatial averaging effects. It is, however, more
economical to effect variance reduction by increasing Nr than by increasing 0, as the former,
first, requires less memory, and, second, leads to better conditioned problems. Nevertheless,
even for 0 (R)(b), CrK(qS, 0) will be relatively small. Fourth, for computational efficiency,
Nr should be chosen so as to control--but not unnecessarily eliminate--the noise contribu-
tion to the model prediction error. We select, based on earlier "pilot" calculations (Cruz and
Patera (1995)), Nr 20; this modest sample size reflects the relatively small variance of K.
Although for Nr 20 the t-distribution is already approximately normal (Mood, Graybill,
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and Boes (1974)), we have no such assurances for the sample mean. Fifth, and finally, we
note that, for Nr 20, the effective conductivity calculation, (68), for a particular (relatively
time-consuming) concentration, 4 .492, requires approximately 47 minutes of computa-
tion and costs roughly $10 on (16 processors of) the Intel iPSC/860 hypercube. If the same
computation were performed on a workstation (respectively, serial/vector supercomputer), the
time-to-compute (respectively, cost-to-compute) would increase significantly; the relative ad-
vantage of the parallel approach increases with increasing problem size (Fischer and Patera
(1994)).

5.2.3. Surrogate validation results. We now formally identify our multicomponent sur-

rogate problem in terms of the general variables introduced in earlier sections of the paper:

M - 1,

s2 [.05, .5],
p (p) 1/.45 (uniform),

S(p) ke(, 00),

S(p) ke() (1 )/(1 + ),

aQ(p) (, 0o),
y(= 20),

RK,

w(o) ,Oo/,
g(v) (1/2)/2e-v2/2

(The most "interesting" behavior of the effective conductivity occurs near maximum packing,
.82 (Beyman (1983)). However, we do not consider this case here, as the random

sequential addition Monte-Carlo sampling procedure becomes prohibitively inefficient for
concentrations greater than a "jamming" threshold of roughly .55 (Sangani and Yao (1988),
%rquato (1991), Cruz and Patera (1995)).) Finally, we specify .1, e2 .1, and thus,
from (33), N 45.

Performing the validation procedure of 3.1, we find for the model pLediction eor es-
timate u .0574" with confidence level greater than 90%, Ike(, 00) ke()l is less than
.0574 over more than 90% of the concentration range [.05, .5]. In Figure 4 we plot the
suogate-simulation discrepancy, Kj ke(j)l, and the estimated noise standard deviation,
a(j, Oo)/Nr, at the validation input points, j, j N. Our bound procedures for
the noise contribution to the model prediction eor, (41), (46), (48) and (41), (50), (53)-(54),
then yield .0273 and .0110, respectively; the latter suggests that the noise contribution to the
prediction eor is, relatively, not too large. Lastly, with 160 additional evaluations of K we
can construct 90% confidence intervals for ke(), 0o), Ike(y, 00) k())l, and hence of
[.290, .294], [.0462, .0507], and [.00663, .0111], respectively. This a posteriori result is os-
tensibly disappointing; note, however, that from (41), (50), and (53)-(54) we can only infer
that E,WIA=I(Y) .0110, whereas from (58) we can conclude (with confidence level .9)
that y .0111 for our particular validation realization. The a posteriri noise estimate is

"shawer" than the coesponding a priori bounds because Ike(, 00) ke()l is nonuniform,
with significantly larger discrepancies at larger concentrations.

Finally, we briefly reconsider the optimization-puosive a posteriori analysis summarized
in 2 (Yeilyurt and Patera (1995), Yeilyurt (1995)). We take the target value for the nondimen-

sional effective conductivity to be .5, for which our suogate, ke() (1 )/(1 + ),
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FIG. 4. Surrogate-simulation discrepancy, (IKj ke(j)l o), and estimated noise standard deviation,
(cr"’K(dPj, O0)/r [), at validation input points, Cj, j N.

predicts the design point * .333, that is, ke(qb*) .5. Then, from (5) and (6), we can
construct design intervals, 7-., which contain concentration values, , for which the actual ef-
fective conductivity, ke(,, 00), is within a known tolerance of); for example, with confidence
level greater than -e2 .9, on over halfthe interval 6 [.333-.45e, .333+.45el]
[.288, .378], the actual effective conductivity, ke(qS, 00), is within u +6n .110 (6n .0528)
ofthe target value ) .5. In the context ofa preliminary design exercise, this result may be suf-
ficient without any further analysis. If we make the additional assumption that Ike(, 0o)
and Ike() )1 are quasi-convex (probably true for this apparently monotone input-output
function), we can show that, with confidence level greater than e2 .9, the interval
[.155, .5] contains *, the value of the concentration at which the actual (noise-free sim-
ulation) effective conductivity, ke(qb, 00), is closest to the target value, ) .5 (Yeilyurt
(1995)). This (admittedly not so) restricted region can now serve, for example, as a reduced
search domain in a subsequent, more refined, design exercise. Perhaps most importantly, we
can now repeat our optimization analysis for different ) without re-appeal to the originat-
ing Monte-Carlo finite-element simulation; our probability estimates are joint over multiple
studies (Yeilyurt and Patera (1995), Yeilyurt (1995), Otto et al. (1995)).

For the particular example presented, in which the input space is only one-dimensional,
and the input-output function is rather simple, the complete surrogate framework is, arguably,
an algorithmic indulgence. We contend, however, that this example is representative of more
complex problems (e.g., prediction ofthe sedimentation rate ofdense suspensions from Monte-
Carlo finite-element simulations, prediction of the properties of new materials from atomistic
calculations) for which the surrogate procedure is no longer a luxury, but a necessity. These
problems, in turn, require improvements in, and enhancements to, the simple (train) test
surrogate framework presented in this paper. Several of these new developments, includ-
ing elemental approaches, sequential techniques, elemental-sequential (adaptive) procedures,
proximal-candidate a posteriori analyses, and cross-validation schemes, are described in Otto
et al. (1995).
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SATORU IWATAt, KAZUO MUROTAt, AND IZUMI SAKUTA*

Abstract. A primal-dual framework of combinatorial relaxation algorithms is proposed for computing the
highest degree of a minor of order k of a rational function matrix. The algorithm can be used for computing the
index of nilpotency of a matrix pencil (or the index of the associated differential algebraic equation). It is a linear
algebraic version of the Hungarian method for the assignment problem. The proposed framework stands in contrast
to the previous combinatorial relaxation algorithm based on weighted matchings, and may also be regarded as an
extension of the Wolovich algorithm for row/column properness. Several algorithms are evaluated through computer
experiments.
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1. Introduction. Let A(x) (Aij(x)) be an m x n rational function matrix with Aij(x)
being a rational function in x with coefficients from the real number field R. This paper deals
with algorithms for computing the highest degree of a minor of order k (< min(m, n)) of
A(x):

(1.1) 6(A) max{degdetA[I, J]lllI IJI k},
l,J

where A[I, J] denotes the submatrix of A with row-set I and column-set J and the degree
of a rational function f(x) p(x)/q(x) is defined by deg f(x) deg p(x) deg q(x). By
convention we put deg f(x) -cxz if f (x) 0. This is one of the fundamental problems in
combinatorial matrix theory [3] and has various applications in practice.

By computing 6(A) (k 1, 2 we can obtain the Smith-McMillan form at infinity
(described in 2), which is also known as the structure at infinity in the literature of control
theory (Commault-Dion [5], Hautus [12], Verghese-Kailath [23]). When A(x) is a regular
pencil oforder n, on the other hand, 6(A) (k 1, 2 determines the structural indices ofits
Kronecker form (see Murota 15, 2.2]), and hence the index v as well as the dynamical degree
of freedom of the associated differential algebraic equations (DAEs) (Brenan-Campbell-
Petzold [2], Gear [9, 10], Hairer-Wanner [11]). To be specific, the index is given by v
3n- (A) 6n (A) + 1, whereas the dynamical degree of freedom is equal to 3n (A). Thus the
problem of computing 3(A) (k 1, 2 is of fundamental engineering significance.

It is not a coincidence but a necessity that the structural approach has been made recently
both in the control theory and in the literature ofDAEs. Taking advantage of the combinatorial
nature inherent in the computation of 6(A) (k 1, 2 the structural approach derives
combinatorial characterizations under certain genericity assumptions on the numerical values
involved. In the literature ofcontrol theory a graph-theoretic method for computing the Smith-
McMillan form at infinity has been developed independently by Commault, Dion, and Perez
[6], Suda, Wan, and Ueno [21], and van der Woude [25] based on the primitive structural
model that considers all the nonzeros independent parameters. Using the more sophisticated
framework of Murota 13, Chap. 4], which distinguishes between independent parameters and
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nonzero fixed constants, Murota and van der Woude 17] have derived another combinatorial
characterization in terms of matroid-theoretic concepts and algorithms. For the numerical
analysis of DAEs, on the other hand, extensive study has been done on the index problem
of DAEs and a number of practical methods for the structural analysis have been developed
(Bujakiewicz [4], Duff-Gear [7], Pantelides [19], Ungar-Kr6ner-Marquardt [22])..

It has been recognized through these studies that structural considerations should be use-
ful and effective in practice and that the generic values computed by structural algorithms
will have practical significance. At. the same time, however, the limitation of the structural
approach has also been demonstrated. A structural algorithm may fail to render the correct
answer if numerical cancellations do occur for some reason or other. In emphasizing the need
for an appropriate genericity assumption, Murota and van der Woude 17] demonstrated this
for the Smith-McMillan form at infinity. Pantelides [19] had already recognized this phe-
nomenon in the structural analysis of DAEs, and very recently Ungar, Kr6ner, and Marquardt
[22] expounded upon this point, referring to the following example (significant in chemical
engineering) due to Gani and Cameron [8].

The problem arises from an analysis of distillation columns and amounts to finding the
index of the following matrix pencil A (x) of order 13:

(34)
(35.)
(35.2)
(36)
(39)
(40)
(41)A(x)--
(42)
(44.1)
(44.2)
(45.)
(45.2)
(46)

1)1 1)2

--al 1 bll -b12
-a2 -b21 b22

-1 -1

where we assume NC 2 in the notation of [22], and attach the equation numbers and the
variable names taken from [22]. The symbol ,, designating an occurrence of a variable in
an equation, is to be considered an independent (or generic) parameter. In contrast, the six
parameters al, a2, bll, b21, b12, b22 appearing in the lower-right corner cannot be regarded as
independent parameters, since they satisfy the relations

a + a2 1, bl + b21 O, b12 + b22 O.

Structural algorithms, ignoring these relations among the parameters, yield an erroneous an-
swer"- 1 in contradiction to the true index v 2.

In this paper we are interested in algorithms which yield correct values even in the non-
generic case, namely those algorithms which return v 2 for the above example. In particular,
we are interested in such algorithms that rely primarily on structural information and ask for
numerical information only when it is needed to ensure correct answers. The recent algorithm
of Murota 15] is of this kind. It is a combinatorial relaxation-type algorithm that employs the
weighted matching problem as a relaxed problem. In contrast, the elimination-type algorithm
(described in 2) does not fall into this category, though it will be considered for comparison
in our evaluation of the algorithms.



COMBINATORIAL RELAXATION ALGORITHMS 995

An algorithm of combinatorial relaxation type generally consists of the following three
phases.

Phase 1: Consider a relaxed (or an easier) combinatorial problem of the original
algebraic problem and find a solution to the relaxed one.
Phase 2: Test for the validity of this solution with respect to the original problem. If
valid, output the solution and stop.
Phase 3 (in case of invalid solution): Modify the relaxation so that the invalid solution
is eliminated.

This type of algorithm has been found for the Newton polygon for Puiseux-series solutions to
determinantal equations [14] and for the degree of determinant of a skew-symmetric matrix
[16].

It may be said that such an approach was already implicit in the algorithm described
in Wolovich [24] for transforming a polynomial matrix into the row-proper form and for
computing 8m as a byproduct, where m denotes the number of rows. This algorithm takes
the sum of row degrees (the maximum degrees of the entries in a row) as an estimate of m
and tests for row properness. In case the estimate turns out to be nonproper it modifies the
matrix so as to improve the estimate without changing 8m. From this, we might regard it as a
combinatorial relaxation-type algorithm. We extend this algorithm for computing 8k(A) for
k r, where r denotes the rank of A.

The present paper aims to propose a primal-dual framework of combinatorial relaxation
algorithms for computing the maximum degree of subdeterminants. Like the Hungarian
method for the assignment problem 1, 20], the algorithms keep a set of admissible potentials
(feasible dual variables), which determines the estimate (dual objective value), and check its
tightness (dual optimality) by solving a simpler (restricted primal) problem. If it turns out to
be nontight, we obtain information useful for modifying the potentials as well as the matrix.
Thus the proposed framework can be interpreted as a linear algebraic version of the Hungarian
method. It stands in contrast to the previous combinatorial relaxation algorithm based on

weighted matchings (see Remarks 3.1 and 3.2) and may also be regarded as an extension of
the Wolovich algorithm for row/column properness. Several algorithms are evaluated through
computer experiments.

This paper is organized as follows. In 2, we describe the Smith-McMillan form at
infinity and its relationship to the maximum degree of subdeterminants. Section 3 provides
the framework, the details, and the time complexity of the proposed algorithm. Experimental
results are described in 4, followed by discussions in 5.

2. Smith-McMillan form at infinity. In this section, we describe the Smith-McMillan
form at infinity, which is a canonical form of a rational function matrix. A rational function
f(x) is called proper if deg f(x) <_ 0, and a rational function matrix A(x) is also called
proper if all of its entries are proper. A nonsingular proper matrix U (x) is said to be biproper
if its inverse is also proper, or equivalently, if deg det U (x) 0. The Smith-McMillan form
at infinity is the canonical form of a rational function matrix under biproper equivalency as
stated below (Hautus [12], Verghese-Kailath [23]).

THEOREM 2.1 (Smith-McMillan form at infinity). For any rationalfunction matrix A (x)
ofrank r, there exist biproper matrices U(x) and V (x) such that

(2.1) U(x)A(x)V(x)- (F(x) O)O O

where

1-’(x) diag (x t’, x t2 x tr), t > t2 > > tr.
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Since the maximum degrees of subdeterminants 3 (k r) defined in (1.1) are
invariant under biproper transformations, we have

t=3(A)-3_I(A) (k=l r),

where 30(A) 0 by convention. Therefore we can compute the set of 3 (k 1 r) from
the Smith-McMillan form at infinity, and conversely, the latter from the former.

We note that the set ofproper rational functions forms a Euclidean ring with a rather trivial
division rule. By specializing the standard elimination procedure in a general Euclidean ring
[18], we can obtain a procedure for the Smith form in the proper rational function ring, and
furthermore a procedure for the Smith-McMillan form at infinity as a minor variant thereof.

ELIMINATION ALGORITHM FOR SMITH-MCMILLAN FORM AT INFINITY.
Step 1: If A (x) 0, then go to Step 6.
Step 2: Permute rows and columns independently so that deg Al(X) is larger than or

equal to that of any other entry.
Step 3: For each entry in the first row or in the first column, calculate its quotient:

Ai(x)
qi (x) for 2, 3 m,

All(X)

Alj(x)
qj(x) for j 2, 3 n.

a(x)

Step 4: Subtract (the first row)xqi(x) from the ith row (i 2 m), and then
subtract (the first column)xqj(x) from the jth column (j 2 n). Then we
obtain a matrix as follows:

All(X) 0 0
0 A22(x) A:n(x)

0 am;(X) Am’,,(x)
Note that deg Al(X) > degAij(x) (i 2 m; j 2 n).

Step 5: Execute Step 1 to Step 4 on the lower-right submatrix recursively.
Step 6: At this point, A(x) has been transformed to

Al(x) 0 0

0 A22(x) ". O

0 0 Art(X)
0 0

where degAll(X) > degA22(x) >_ > degArr(X). We can further transform it
to the form (2.1) with t deg A(x) for k r by multiplying the kth row
with xt/A,,(x) for k r.

The elimination procedure above requires O (min(m, n)mn) additions and multiplications
of rational functions. After several iterations, however, the number of terms in each entry
will increase. Therefore, the whole procedure takes more than O(min(m, n)mn) time. This
phenomenon is shown in 4.
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3. Combinatorial relaxation algorithms. In this section, we present a new framework
of combinatorial relaxation-type algorithms for computing 3. This shares the approach of
"combinatorial relaxation" with the previous algorithm of Murota [15], while featuring po-
tentials (dual variables) rather than matchings in constructing the combinatorial estimate.
The proposed framework may be thought of as a linear algebraic version of the primal-dual
approach to the assignment problem that is well known in the context of combinatorial opti-
mization [1, 20].

3.1. Outline of the proposed framework. For a rational function matrix A(x), let R
and C denote the row-set and the column-set, respectively. By potentials we mean integer
numbers associated with rows or columns. With appropriately chosen potentials, say, p
(Pi R) and 9/ (9/j J 6 C), we compute an estimate 6(A; p, F) of 3(A) such
that 3(A) _< 3(A; p, g). We then test for tightness (equality) in this inequality without
computing 6(A). If the estimate turns out to be nontight, we modify the matrix A(x) as well
as the potentials.

The outline of the combinatorial relaxation algorithm to compute 3 for a fixed k is
summarized as follows (see 3.5 for a concrete example).

Phase 0: Choose appropriate (p, g).
Phase 1" Compute the combinatorial upper estimate 6(A; p, 9/).
Phase 2: Test whether 3(A; p, F) 6(A) or not. If the equality holds, output
3 (A; p, F) and stop.
Phase 3" M...odify A to another_, matrix A’ and (p, 9/) to (p’, 9/’) such that 6(A’)
6(A) and 3(A’; p’, 9/’) < 6(A; p, 9/), namely A’ has the same true value as A and
an improved estimate. Put A := A’, p := p’, g "= g and go to Phase 1.

3.2. Phase 1---combinatorial estimation. The combinatorial estimate, denoted as
(A; p, 9/) in 3.1, is specified in this section. Define cij by

(3.1) cij deg Aij(x),

where by convention we put Cij --OO if Aij(x O. We choose a set of potentials
P (Pi R) and g (Fj j 6 C) which satisfies the condition

(3.2) -Jr- 9/j > Cij for/ 6 R and j 6 C.

Such potentials are said to be admissible. Then for I c_ R and J C C with II JI it holds
that

(3.3) deg det A[I, J] <_ p(1) + 9/(J),

where p(1) Zi6I Oi and 9/(J) _.jj 9/j.
By considering the maximum possible value of the right-hand side, i.e., by introducing

6(A; p, 9/) max p(I) + max
III--k IJI--k

we obviously have

(3.4) p(I) + 9/(J) < 3(A; p, 9/)

for I c_ R and J c_ C with III IJI k. The inequalities (3.3) and (3.4) imply

(3.5) 6(A) < ,(A; p, 9/),
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which shows that 8k(A; p, V) serves as an upper bound on the true value. Remember that
(p, y) must be admissible in the sense of (3.2) before (3.5) can be true.

The estimate 8k (A; p, y) admits an alternative expression suitable for its efficient com-
putation. Consider the following permutations for the row-set R and the column-set C of
A:

(3.6) r m --> R

(3.7) or’{1 n}-- C

such that P:(1) _> Pr(2) _>"" >_ Pr(m);

such that g(1) >_ cr(2) >’’" >_ )/or(n).

Then it is easy to see that

k k

6"(A; p, y)- P,(i) + Y(j).
i=1 j=l

REMARK 3.1. We could optimize the choice of potentials (p, ?’) to minimize the estimate
3(A; p, y). Then the estimate 3(A; p, ?,) would coincide in value with the maximum weight
of a matching (transversal) of size k, which has been employed in 15] as another combinatorial
estimate for (A), and would satisfy (3.5) with equality in the generic case (see [15, Thm. 3]).
In this paper, however, we consider algorithms that do not rely on the optimal choice of (p, ).

3.3. Phase 2retest for tightness. This section provides a way to test whether 6(A)
k(A; p, y) or not without computing (A) directly.

Define I, J, [, and as follows"

(3.8) I {i R lPi > Pr(+l)}, [ {i 6 R lPi > Pr()};
(3.9) J {j

Exceptionally, in case k m, we put I [ R, and in case k n, we put J ] C.
Then p(1) attains the maximum subject to ]II k if and only if I I [. Similarly,
V(J) is maximized subject to IJI k if and only if J J ]. Therefore (3.4) holds with
equality if and only if I I [ and J J ]. Define a constant matrix A by

lim x-p-Aij(x) if [ and j ];a --(aj), aj
otherwise.

PROPOSITION 3.1 (tightness). Thefollowing three conditions (a)-(c) are equivalent.
(a) 6(a) 3k(a; p, Y).
(b) There exist I I and J J such thatrankA[l, J] II[ J[ k.
(c) Thefollowingfour conditions (rl)-(r4) are satisfied:

(rl) rank A[R, C] >_ k;
(r2) rank A[It, C] 1I1;
(r3) rankA[R, J] [J[;
(r4) rank A[1, J] >_ 1I1 + [Jgl k.

Proof See Lemma 6 of [15] for (b)>(c). Let us prove (a)CC(b). From the definition of
A, we have

which implies

(3.10)

Aij(x) xpi-yj (Aj + o(1)) for 6 [ and j .,
detA[I, J] xp(I)+(J)(detA[I, J] + o(1))

if I

_
[, J

_
3, and III- IJI.
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Suppose 3k 3k, and then there exist I and J with III= [J] k that satisfy both (3.3)
and (3.4) with equalities. Hence I c_ and J

_
], and it follows from (3.10) that A[I, J]

is nonsingular. Thus (a)=(b) has been shown. Conversely, suppose I

_
I, J

_
J, and

rankA[I, J] II] IJI k. Then we must have I c__ and J c__ ], and consequently
(3.4) holds with equality. Furthermore, from (3.10), we obtain an equality in (3.3). Therefore,
deg det A[I, J] 3k, which together with (3.5) showSk k. [-]

According to Proposition 3.1 above, the test for 8k in Phase 2 can be reduced to
computing the ranks of the four constant matrices. Actually, for (rl), (r2), and (r4), we use the
Gaussian elimination by elementary row transformations, and for (r3), we use the Gaussian
elimination by elementary column transformations.

3.4. Phase 3modification. When the estimate (A; p, F) turns out to be nontight, we
modify the matrix as well as the potentials. Recall that the maximum degree of subdeterminants
of a fixed order is invariant under biproper equivalence transformations. That is,

(3.11) a(x) U(x)a(x)V(x)

satisfies 3k (A’) 6k (A) ifboth U (x) and V (x) are biproper. We use this type oftransformation
in the modification of the matrix A (x).

Let U be a nonsingular constant matrix of order rn such that

Uhi 0 if/Oh > IOi,

and define a transformation matrix U (x) by

(3.12) U (x) diag (x; p) U. diag (x; -p),

where diag (x; p) designates the diagonal matrix diag (x p’, xp2 xPm). Then U(x) is a
biproper matrix. Similarly, using a nonsingular constant matrix V that satisfies the condition

Vjh 0

we define a transformation matrix V (x) by

if gh > Fj,

(3.13) V (x) diag (x; -9/) V diag (x; V),

which is also a biproper matrix.
We now explain how to construct such a pair of constant matrices U and V efficiently

according to which of the four conditions (rl)-(r4) is violated by the constant matrix A (see
Proposition 3.1 (c)).

When (rl) is violated" In checking the condition (rl) by means of the Gaussian row
elimination with column pivoting, applied to the matrix A with rows rearranged by
r according to the magnitude of ioi, we obtain a nonsingular matrix S of order m
such that Sr(l)r(i) 0 if < and such that SA has (m rank A) zero vectors

among its row vectors. Let H be a subset of I such that [H] II k + 1 and
(SA)[H, C] O. Construct the constant matrix U as follows"

(3.14) U[H, R] S[H, R], U[R H, H] O, U[R H, R H] IIR_/I,

where IIn-/-/I denotes the unit matrix. Let V be the unit matrix of order n.
When (r2) is violated: In checking the condition (r2) by the Gaussian row elimination

with column pivoting, applied to the matrix A[I, C] with rows rearranged by r
according to the magnitude of ioi, we obtain a nonsingular matrix S of order Il such
that Sq)i) 0 if < and such that S. A[I, C] has (lI[ rank A[I, C]) zero
row vectors. Let H c_ I be the singleton set coFesponding to a zero row vector in
S. A[I, C]. Then construct U as in (3.14). Let V be the unit matrix of order n.
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When (r3) is violated: In checking the condition (r3) by the Gaussian column elimina-
tion with row pivoting, applied to the matrix A[R, J] with columns rearranged by
cr according to the magnitude of 9/j., we obtain a nonsingular matrix S of order [Jl
such that Sj)q) 0ifl < j and such that A[R, J]. Shas (IJl-rankA[R, J])
zero column vectors. Construct the constant matrix V of order n in a (transposed)
way similar to that in which we constructed U in the case of (r2), namely

(3.15) V[C, H] S[C, H], V[H, C- H] O, V[C- H, C- HI Iic_i-i I.

Let U be the unit matrix of order m.
When (r4) is violated: In checking the condition (r4) by means of the Gaussian row

elimination with column pivoting, applied to the matrix A[I, J] with rows re-
arranged by r according to the magnitude of Pi, we .obtain a nonsingular matrix
S of order 1I1 such that Sr(l)r(i) 0 if < and such that S. A[I, J] has
(1I rank A[I, J]) zero row vectors. Let H be a subset of I corresponding to
(k IJ / 1) zero row vectors in S. A[I, J]. Then construct the constant matrix
U in the same way as in (3.14). Let V be the unit matrix of order n.

After modifying the matrix A(x) to A’(x) by (3.11)with U(x) and V(x) thus constructed,
the set of potentials is updated as follows. Put Cij deg Aij(x as in (3.1). It follows from
(3.11), (3.12), and (3.13) that

diag (x; -p) A’(x) diag (x; -9/) U diag (x; -p) A(x) diag (x; -9/) V,

which, together with (3.2), implies

(3.16) Di + 9/j > cij for/ 6 R and j 6 C.

We update the set of potentials to improve the estimate, exploiting the fact that (3.16) holds
with strict inequality for some 6 R and j 6 C. Roughly speaking, we reduce the potentials
of such rows or columns without violating the admissibility. A more specific description,
according to which condition of the four is violated, is given below.

When (rl) is violated:

max max(clj- 9/j), max cij-(3.17) pf jj j(c-J)
Pi

(3.18)
iR

/ if 6 [,Y()

otherwise;

When (r2) is violated:

max max(cj 9/j), max cij(3.19) p j (c-)
pi

(3.20) 9/j max(c!.- p)
iR tj

if/ 6I,
otherwise;

When (r3) is violated:

max max(cj Pi), max cij Pr(k)(3.21) ,vj i[ i(R-D

(3.22) p!= max(c!.- 9/j)
jC tJ

ifj J,
otherwise;
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When (r4) is violated:

(3.23) Pi- Pi

where

(3.24)

if/ EH; { yj ifj E J,
otherwise, YJ yj + fl otherwise,

fl min {pv(lil) a(iJnl) a(lJnl+l),

min (Ph + ?’ --Ch)
hH,jJ

Exceptionally, the first term is excluded from the minimization when I R, and
the second is excluded when J C.

As to the admissibility of the updated set of potentials, the following lemma holds.
LEMMA 3.2. The updated set of potentials (p’, y’) is admissible with respect to the

fori Randj C.modified matrix A’. That is, p + y] > cij
Proof. The proof is immediate when (rl), (r2), or (r3) is violated. When (r4) is violated,

however, this lemma follows from (3.16).
The following theorem shows that the estimate is improved by the modification described

above.
THEOREM 3.3. Thefollowing inequality holds:

(3.25) 3k(A’; p’, y’) < 3k(A; p, y).

Proof. With respect to p’ and V’, we define permutations r’ of R and a’ of C, in a similar
way to r, a (see (3.6) and (3.7)). We now prove (3.25) according to which condition of the
four is violated.

When (rl) or (r2) is violated" Itfollows from the definition ofp’ and (3.16) that Pi < Oi
for 6 R. Furthermore, since Ph + Yj > Chj for h 6 H and j E ], we have Ph < Ph
for h 6 H. Similarly, we have ?,j < yj for j 6 a7 and Vj < Va(k) for j 6 (C ]).
As a result,

k k k k

/gtr’(i) < Z Pr(i), Z ;’(J) Z /a(j).
i=1 i=1 j=l j=l

Hence, 6k(A’; P’, y’) < 3k(A; p, y).
When (r3) is violated: It can be shown in a way similar to that in which the case (r2)

is violated.
forh Handj E J,wehave/3 >0. ItWhen (r4) is violated: Since Ph + Yj > Chj

follows from the definition of p’ that

k k

Z P’r’(i) < Z Pr(i) --/lnl.
i=1 i=1

On the other hand, the definition of y’ implies

k k

j=l j=l

Since IH[ k [Jl and/3 > 0, we obtain’k(A’; p, y’) < 3"(A; p, y).
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REMARK 3.2. The previous algorithm [15] of combinatorial relaxation type mentioned
in Remark 3.1, which will be called the matching method in this paper, also makes use of
the potentials (dual variables). The test for tightness is reduced to the rank conditions on
a constant matrix defined with the aid of the optimal dual variables. If the combinatorial
estimate (maximum weight of matchings) turns out to be nontight, the matrix is modified by
a biproper transformation determined with reference to the optimal dual variables. The set
of potentials, however, is not updated from the current one, but recomputed by solving the
weighted matching problem from scratch. Thus the matchings, which are the combinatorial
counterpart of determinants, play the primary role in the matching method. In this sense, the
matching method might be regarded as a primal approach rather than aprimal-dual.

3.5. Example. Let us consider 33(A) for a polynomial matrix

C1 C2 C3 C4

R1 X4 X 0 2x
R2 x5 X6 + X4 X2

A(x)
R3 x4 + x x5 -x 0
R4 2x2 x 0 x + 2

following Example of 15]. As an initial set of admissible potentials, we take

p (0, 0, 0, 0), ?’=(5,6,4,3).

Then we have 33(A; p, V) (0 + 0 + 0) + (6 + 5 + 4) 15 and

I 0, /7 {R1, R2, R3, R4},
J {C1, C2, C3}, ] {C1, C2, C3}.

Hence

+---- j --+

0 0 0 0
1 1 1 0
0 0 0 0
0 0 0 0

In this case, (r 1) and (r3) are violated. Let us change A(x) according to the modification rule
for the case when (rl) is violated (see 3.4). The modification matrix U(x) is the unit matrix,
and hence A’(x) A(x) (not changed). The set of potentials, however, is updated to

/9’ (-1, 0,-1,-3), ,’ (5, 6, 4, 4).

Then we have6(A’; p’, V’) (0 + (-1) + (-1)) + (6 + 5 + 4) 13 and

I {R1, R2, R3}, [ {R1, R2, R3},
J {C1, C2}, ] {C1, C2, C3, C4}.

Hence

? 1 1 0 2

(AI) I 0
$ -1 0

0 0 0 0



,COMBINATORIAL RELAXATION ALGORITHMS 1003

In this case, (r3) and (r4) are violated. First suppose we change A’(x) according to the
modification rule for the case of (r3), whereas the other possibility is considered later. We
detect the violation of (r3) through the Gaussian .column elimination

1

(A’)[R, J]- S 1
0

,)-
0

in which we note g,tc2 > )/C1. Hence we have H {C1} and

1 0 0 0)-1 0 0
0 0 0
0 0 0

According to (3.13) we have

V (x) diag (x -5 X -6, X -4, X -4) V diag (x5, X6, X4, X4)

)
which modifies At(x) to

(3.26)
0 x 0

A" (x) A’ (x) V (x) -x-1 X6 "Jr- X4

X X --X
2x2 1 x 0

0
x+2

The updated potentials, defined by (3.21) and (3.22), are.

(3.27) p" (-1, 0,- 1,- 1), )," (3, 6, 4, 4).

Now, 33(A"; p", V") (0 + (-1) + (-1)) + (6 + 4 + 4) 12 and

I {R2}, /7 {R1, R2, R3, R4},
J (C2, C3, C41, ]- {C2, C3, C4}.

Hence

J ---+

0 1 0 2

(att)ti= I 0 1 1 0
0 -1 0
0 0 0 0

In this case, all of (rl)-(r4) are satisfied. Consequently, we conclude that 63(A) 63(Att)
3(A"; p", ),t,) 12.

Let us explore the other possibility of modifying A (x). Namely, we change A (x) accord-
ing to the modification rule for the case of (r4). Then we have a different modified matrix and
a different set of potentials, as follows. We detect the violation of (r4) through the Gaussian
row elimination

1  )(10S.(A’)[I,J]= 0. 1 0 1
0 -1 1 1 0 0
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in which we note pR2 > PR1 PR3" Hence we have H {R1, R3} and

-1 0 O)0 0 0
0 -1 0
0 0 0

According to (3.12) we have

U(x) diag (x-(-l, x-, x-(-1 x-(-3) U. diag (x -1 x0 x-1
X -3)

0 0 0
0 --X -1 0
0 0 0

which modifies A’ (x) to

(oA"(x) U(x)A’(x) x5
x
2x2

--x- --x 2x x \
X6 + X4 X2 )--x -1 --2x x

x 0 x+2

In updating potentials, we have/ 1 from (3.24) and

p" (-2, 0, -2, -3), ?’" (5, 6, 5, 5).

Note that A" (x) and (p", g") defined here are different from those in (3.26) and (3.27). Now,
63(A"; p", g") (0 + (-2) + (-2)) + (6 + 5 + 5) 12 and

I {R1, R2, R3}, [ {R1, R2, R3},
J {C2}, 37 {C1, C2, C3, C4}.

Hence

J

" 0 0 -1 2
(A") I 0 0

,[. 0 0 -2 0
0 0 0 0

In this case, all of (rl)-(r4) are satisfied. Consequently, we conclude again, but using a different
A"(x), that 3(A) 3(A") 3(A"; p", ?’") 12.

3.6. Algorithm description. We have so far fixed the size k ofa submatrix. It is necessary
to compute 3k for k 1, 2 r for obtaining the Smith-McMillan form at infinity.

Before describing the whole algorithm, we should remark how we can detect ;
For a rational function

alxdl -k- a2xdz + -+- aexde

f (x) (d > d2 > > de),
q(x)

we define min-deg f(x) de deg q (x) with respect to its expression. Put dmin
min/,j min-deg Aij(x) while dmax maxi,j deg Aij(x). If.. is finite, it must satisfy 6 >
k. drain. Hence we can conclude that 3 -c when 3(A; p, V) < k. dmin for some
admissible (p, ,).

We now summarize the algorithm for computing 6k for k 1, 2 r(= rank A) as
follows. It is not necessary to input r, since it is computed in the procedure.
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ALGORITHM FOR COMPUTING 3(A) (k 1, 2 ).
Step 0: Compute dmin. Set k := 1. Find a set of initial potentials (p, F) which satisfies

Pi + Vj >-cij for 6Randj 6C.
Step 1: Compute

k k

i--1 j=l

where r and r are permutations such that Pr;l > Pr(2) > > Dr(m) and V;1 >

’(2) > _> ’r(n). If 3 < k dmin, then halt (at this point (k 1) equals the rank
r).

Step 2: Put

I {i R lPi > Pr(+)},
J "--{j C yj > Y(+a)},

[’-{i 6RIPi >

Y {j C IVj > Y(};

where exceptionally I R and J C in case k rn and k n, respectively. Put

j { lim x -pi-}j Aij(x
X--’+(X)

0

if/6Iandj 6J,
otherwise.

If the four conditions (rl)-(r4) in Proposition 3.1 are satisfied, then output k. If at
least one condition of the four is violated, go to Step 3. If k min(m, n), then halt.
Otherwise k :-- k + 1 and go to Step 1.

Step 3: Modify the matrix A(x) and the potentials as described in (3.17)-(3.23), ac-
cording to which of (rl)-(r4) is violated. Go to Step 1.

In the algorithm described above, we may start with an arbitrary set of admissible poten-
tials. It is desirable, however, to adopt reasonably small integers as the initial potentials.

One of the natural choices is to put

(3.28) Pi max cij for R, Vj 0 for j 6 C.
jc

In this case, ?’j 0 for j 6 C throughout the computation. Hence ioi for 6 R always
coincide with the row degrees. Since J 0 and ] C, the four rank conditions in the
test for tightness (see Proposition 3.1) are reduced to a couple of conditions, (rl) and (r2).
This algorithm will be called the row-degree method, and is an extension of the well-known
algorithm for 3m(A) of an m x n row-full rank matrix A(x) based on the concept of row
properness (Wolovich [24]).

Another natural choice is, of course, the symmetric (transposed) version of the above,
i.e.,

(3.29) Pi 0 for R, ),,j max ij for j 6 C.
iER

This algorithm, however, does not behave in a manner symmetric to the row-degree method.
This is because the symmetry between rows and columns is broken in the process of modifi-
cation. In fact, any condition of the four may possibly be violated. Thus this algorithm is not
the "column-degree method," and the primal-dual framework is not a simple extension of the
Wolovich algorithm.
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3.7. Complexity. In this section, we analyze the time complexity of our algorithm. First
we consider the number of possible modifications when k ranges from 2 to r.

LEMMA 3.4. The total number ofmodificationsfor k 2 r is bounded by r(dma
dmin).

Proof. Let Ae) denote the matrix constructed for k * such that ae(A) ae(A{e))
a’e(A<e)), where the potentials are omitted for notational simplicity. First note ae+/-l(A {e)) <
a+/-l (a <e)) and 3"+1 (ae)).5 2"ge (a<e) a_ (A<e)) (concavity). Then (the number of modifi-
cations for k g + 1) < ae+ (A (e)) ae/l (A (e)) < 2ae(A) ae_ (A) ae+ (A). Therefore,
the total number of modifications in the course of computation for k 2 r is bounded
as follows:

r-1

Z(e+ (A (e))
g=l

< (A) 4- ar- (A) 6r(A)

< dmax +(r- 1).dmax-r.dmin
r. (dmax dmin). V1

Consequently, fromLemma 3.4, the number ofmodifications is O (r) provided that (dmax-
dmin) is a constant, which is the case with matrix pencils.

Next, we consider the time complexity with respect to m and n (the size of the matrix)
and r (the rank of A).

THEOREM 3.5. The time complexity ofthe proposed algorithmfor computing all the ak is
0 (rmn max(m, n)), provided that (dma dmin) is a constant.

Proof. The time complexity for computing ak for k 1, 2 r can be estimated by
(r+the number ofmodifications) x O (mn max(m, n)). According to Lemma 3.4, the number of
modifications is O(r), and therefore the whole time complexity is O(rmn max(m, n)). [3

3.8. Extension. We will extend the proposed algorithm so as to corr.pute

ak(A; Io, J0) max{deg det a[l, J] I D_ Io, J D_ Jo, Ill -l J] k},
I,J

the maximum degree of a minor of order k, which covers the specified row-set Io and column-
set Jo.

For (p, ?’) admissible in the sense of (3.2) we define

6k(A; Io, Jo; P, V) max p(I) + max F(J),
I_lo,[I[=k JDJo,lJ[=k

and then we have

(3.30) 3k(A; Io, Jo) < ak(A; Io, J0; P, Y).

With permutations r and a such that

/ {1 I(0,}--+I0," {lI0l+l m}--+R-I0
{1 IJol} Jo,

a
{IJol-t- 1 n} C- Jo

it holds that
k k

6(Z; Io, Jo; P, F) Pr(i) nt- /a(j).
i=1 j=l

such that Pr(IZol+l) > Pr(IZol+2) >"" > Pr(m);

such that Ya(IJol+l) > Ya(IJol+2) ’’" a(n),
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We redefine I,.Jt, , and ] as follows:

I {i (R- Io) lPi > Pr(k+l)}, r[-- {i (R- Io) [Pi >

J {j 6 (C- Jo) l?’j > ?’(k+!)], ]- {j (C- Jo) lVj >_

Exceptionally, in case k m, we set I [ R Io, and in case k n, J f C Jo.
The definition of the constant matrix A is also modified:

lim x-pi-j Aij(x) if/ 6 (Io U/7) and j 6 (Jo U aT),Apj )--> otherwise.

Proposition 3.1 for tightness is rewritten as follows.
PROPOSITION 3.6 (tightness). Thefollowing three conditions are equivalent.
(a) 3k(A; Io, Jo) 3k(A; Io, Jo).
(b) There exist I D_ Io U I and J D_ Jo U J such that rank A[I, J] 1I] ]J] k.
(c) Thefollowingfour conditions are satisfied:

(rl) rankA[R, C] > k;
(r2) rank A[Io U I, C] [Io U I1;
(r3) rank A[R, Jo U J] ]Jo U J];
(r4) rank A[Io I, Jo J] >_ IIo U Il + ]Jo U Jl k.

The matrix A(x) is modified on the basis of the following fact. For simplicity, Io and Jo
are assumed to be the first 1Io[ rows and the first [Jo] columns. Then A’(x) U(x)A(x)V(x)
satisfies 3k (A’) 8k (A) if

Io R-lo Jo C-Jo
U(x)= Io ( Uo(x) 0), V(x)-- Jo ( Vo(x) V2(x) )R Io Uz(x) U1 (x) C Jo O gl (x)

where Uo (x) is an Io[ x 1Iol matrix with deg det Uo (x) 0, U1- (x) is a biproper matrix, and
Uz(x) is an arbitrary rational matrix; and Vo(x) is a IJol x IJol matrix with deg det Vo(x) O,
V1 (x) is a biproper matrix, and V2 (x) is an arbitrary rational matrix.

4. Experimental evaluation.

4.1. Method. We perform experiments on Sun SPARC Station 10 to evaluate the three
combinatorial relaxation-type algorithms, the primal-dual method (PD) with initial potentials
given by (3.29), the row-degree method (RD), and the matching method (M). All of these are
implemented in C language. For comparison, we also realize in Maple (a computer algebraic
system) the elimination method (E) described in 2.

Our program restricts input matrices to Laurent polynomial matrices of which each entry
is a polynomial in x and 1/x.

We provide two types of sample problems, regular pencils (P) and band matrices (B). A
regular pencil xE F used here is generated randomly in the following way:

/ g with probability ! for g 4-1, 4-2 4-K,
Eij I 0 with probability p;

l-q

Fij
h with probability 5k-- for h 4-1, 4-2 -t-K,
0 with probability q.

We put K 1, p 0.0625, and q 0.5.
On the other hand, we provide band matrices in the following way. First we put

X diag (x; d), d (dl, d2 dn),
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where di is generated randomly as follows:

di with probability
2L + 1

for g 0, 4-1, 4-2 4-L.

With a lower bidiagonal matrix

and an upper bidiagonal matrix

we construct a pentadiagonal (band) matrix A(x) p2XQ2. We put L 10. Obviously,
both P and Q are biproper, and hence the Smith’McMillan form at infinity of A(x) is the
same as that of X, which is easily obtained by sorting (dl dn). Therefore, we know 3k(A)
in advance, and we use this type of matrix as sample data to ensure that our program returns
correct answers.

We measure CPU time and the number of modifications (for PD, RD, and M) to evaluate
each algorithm.

4.2. Results. Before we report experimental results, we should recall that the time com-
plexity is O(rmn max(m, n)) if (dma drain) is bounded by a constant (see Theorem 3.5). In
fact, we have (dmax dmi,) < with the pencils, and (dmax dmin) < 2L + 2 with the band
matrices. Therefore, the time complexity is O(rmn max(m, n)).

Table and Figure show the results for the pencils, and Table 2 and Figure 2 show the
results for the band matrices. In Figures and 2, the abscissa is log2 n, where n is the size
of a matrix, while the ordinate is lOgl0 T, where T is the CPU time. Algorithm PD failed for
n 128 because of a memory shortage. The experiments with algorithm E for large n were
given up because it would have taken many days.

It is observed in our experiment that for an n x n matrix A, approximately O(n3"4) time is
needed by each combinatorial relaxation algorithm, while time complexity given by Theorem
3.5 is O (n4) since rank A n in both problem types P and B. On the other hand, the elimination
method takes approximately O (n4) time in our experiment, whereas the number of operations
on rational functions is O (n3), as mentioned in 2.

In the above experiment, no distinction in computing time is recognized among algorithms
PD, RD, and M. Since algorithm RD lacks symmetry, it is natural that this algorithm takes
longer than the other algorithms for a matrix with a special structure. For example, let us
consider

1 1 1 1
X X2 Xn-1

A(x) x2 x4 x2(n- 1)

Xn-1 X2(-1) X (n-l)2

The results for the matrix with n 16 are shown in Table 3.
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TABLE
Statistics over 10 pencils of each size. CPU time in seconds and the number of modifications show the mean

values of 10 iterations (K 1, p 0.0625, q 0.5" Sun SPARC Station 10).

Algorithms

PD CPU time (s)
Stand. Dev.
# Modifications

RD CPU time (s)

M

Stand. Dev.
# Modifications

CPU time (s)
Stand. Dev.
# Modifications

CPU time (s)
Stand. Dev.

n
8 16 32 64 128

6.67 x 10-3

8.61 x 10-3

0.3

1.17 x 10-2

8.05 10-3

0.7

1.17 10-2

8.05 10-3

0.1

3.23
4.83 10-1

6.17 10-2

8.05 10-3

0.9

5.67 10-2

8.61 10-3

1.1

6.83 10-2

9.46 10-3

0.3

4.41 10
4.94

6.72 x 10-1

1.77 x 10.2

1.0

5.70 10-1

2.19 10-2

0.8

6.62 x 10-1

3.04 10-2

0.2

1.10 103
2.11 x 10

7.73
1.20 x 10-1

0.6

6.91
1.04 10-1

0.7

7.61
1.41 x 10-1

0.1

9.87 x 10
5.33 10-1

0.1

1.04 x 10
4.56 x 10-1

0.0

loglo T

PD +-
RD

4.

log2 n

FIG. 1. Resultsforpencils. The abscissa is log n, where n is the size ofa matrix, while the ordinate is loglo T,
where T denotes CPU time (K 1, p 0.0625, q 0.5; Sun SPARC Station 10).

5. Discussion. First we compare various aspects of the three combinatorial relaxation
algorithms: accuracy, running time, and facility in implementation.

Numerical difficulty is inherent in the problem of computing the maximum degree of sub-
determinants, and hence inevitable with any kind of algorithm. We intend, however, to exert
the greatest possible effort to circumvent this numerical difficulty by making use of combina-
torial (or structural) information. The total amount of numerical computation, which causes
the accumulation of rounding errors, increases in proportion to the number of modifications
in combinatorial relaxation algorithms. In this regard we recommend method M among the
combinatorial relaxation algorithms, because it usually requires fewer modifications.
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TABLE 2
Statistics over 10 band matrices ofeach size. CPU time in seconds and the number ofmodifications show the

mean values of lO iterations (L 10; Sun SPARC Station 10).

PD

RD

M

Algorithms

CPU time (s)
Stand. Dev.
# Modifications

CPU time (s)
Stand. Dev.
# Modifications

CPU time (s)
Stand. Dev.
# Modifications

CPU time (s)
Stand. Dev.

n
8 16 32 64 128

1.50 10-2

5.27 10-3

6.5

1.50 10-2

5.27 10-3

5.5

1.50 10-2

1.23 10-2

3.6

2.92
1.12

1.03 10-]

1.31 10-2

12.1

9.83 x 10-2

1.46 10-2

11.9

1.13 10-]

1.89 10-2

6.8

4.52 10
4.13 10

9.92 10-1

3.54 10-2

15.9

1.01
4.92 10-2

15.7

9.37 10-2.81 10-2

8.5

7.65 10
6.94 102

1.19 10
3.22 10-18.1

1.11 10
2.03 10-]

18.1

1.04 10
2.57 10-1

10.2

1.28 104
1.27 104

1.41 102
7.38 10-]

18.9

1.35 x 102
1.81
11.6

logo T

PD
RD

log2 n

FIG. 2. Resultsfor band matrices. The abscissa is log n, where n is the size ofa matrix, while the ordinate is

log10 T, where T denotes CPU time (L .10; Sun SPARC Station 10).

TABLE 3
CPU time in seconds and the number ofmodifications for the matrix A(x) of(4.1) with n 16.

Algorithms
PD
RD
M

CPU time (s) # Modifications
1.67 139
2.03 156

8.33 10-.2 0

When r rank A (x) < rain(m, n), however, even the recommended method, M, requires
a large number of modifications and hence suffers from numerical difficulty in detecting
3k(A) --ec for k r + 1. In fact, we often encountered this numerical difficulty in
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experiments with some singular pencils. Ifwe know the rank r in advance, we should therefore
stop the computation at k r.

As to running time, the experimental results show that although we take more time to
compute the estimate in method M than in method PD or RD, the whole running time of
these three are almost equal. This is due to the fact that M involves a smaller number of
modifications.

Let us focus on facility in implementation. In this respect, method PD, as well as method
RD, is advantageous, because it does not rely on any sophisticated algorithms in combinatorial
optimization, whereas method M depends on a refined algorithm for the weighted matching
problem.

Next we discuss the applicability of our programs of combinatorial relaxation algorithms.
Recall that our implementation is restricted to Laurent polynomial matrices. In order to make
our program capable of dealing with rational function matrices, we have to use simplification
procedures for rational functions, which are realized in computer algebraic systems. Taking
this into consideration, the combinatorial relaxation-type algorithm for the maximum degree
of subdeterminants is expected to be implemented in computer algebraic systems.

6. Conclusion. In this paper, we have proposed a primal-dual framework of combinato-
rial relaxation algorithms for computing the maximum degree of subdeterminants. Further-
more, we have realized combinatorial relaxation algorithms in computer programs and made
experiments. It turns out that combinatorial relaxation algorithms are effective for computing
the maximum degree of subdeterminants and the index of nilpotency.

The numerical difficulty is inherent in the problem. In particular, the index of nilpotency
is very sensitive to perturbations unless it coincides with that obtained under a genericity
assumption. Hence the structural approach has been taken extensively. When we model
practical engineering systems such as electric networks or chemical plants, however, we often
encounter numerical cancellations (or degeneracy) arising from fixed constants or an algebraic
relationship among system parameters. In this case the naive genericity assumption is not
valid, and the answer of a naive structural approach loses its physical significance. Hence
it is necessary to use more than the naive structural approaches. We may employ a more
sophisticated framework in the structural approach, as in [13, Chap. 4] and 17], on the basis
of the observation that this kind of cancellation phenomena is robust against perturbations to
physical parameters, because such constants or relations are determined by the combinatorial
or geometric structure of the system rather than by physical characteristics. Alternatively, we
may resort to algorithms of the kind treated in the present paper. We conclude this paper by
mentioning that our algorithms gave the correct answer v 2 to the example problem from
[22] described in the Introduction.
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VERIFICATION MAY BE BETTER THAN ESTIMATION*

C. FALCO KORNt, B. HORMANN:, AND C. P. ULLRICH

Abstract. Error bounds for an approximate solution of a linear system of equations are usually derived from
backward error analysis. It is known that such error bounds do not guarantee a certain accuracy in the approximation.
On the other hand, verification provides componentwise guaranteed bounds. A series of examples gives evidence
that for H-matrices error verification may be better than traditional error estimation with respect to both the quality
of the delivered bounds and computational performance.

Key words, error analysis, error estimation, verification, linear systems, numerical libraries, LAPACK, ITPACK

AMS subject classifications. 65G05, 65G10

1. Introduction. Wilkinson showed that a computer solution is the exact solution of
a nearby problem thus initiating backward error analysis. Subsequently, main results from
this theory were incorporated into all major numerical packages like ITPACK, LINPACK, or
LAPACK. But backward error analysis is not able to guarantee lower bounds on the number
of correct digits in the approximation. In this paper we outline the basic idea behind error
verification and demonstrate its effectiveness by a series of examples.

2. Backward error estimation. Let" be an approximation of the solution to the linear
system Ax b. The (normwise) backward error is defined by

min max ,
E,U Ilal[ Ilbll

such that," satisfies (A + E)" b + f. The (normwise) forward error [[x-" [[/[Ix is related
to the backward error by the condition number x(A) [[A[[. [[A -11[. Indeed, if [[E[[ _< [[A[[
and Ilf[I _< llbll, Theorem 2.7.2 in [7] gives the bound

IIx Y 23
<c(A),

Ilxll 1-r

where r z(A) must be less then 1.
Although all packages compute the error (and thus the accuracy) in terms ofthe underlying

backward error, definitions for the backward error and the condition number vary. (See, for
example, ], where a condition number is proposed which depends not only on the data matrix
but on the approximation " and the right-hand side b as well.) In practice, however, the exact
condition number is not known. Moreover, the normwise forward error cannot be translated
into a statement about the number of correct digits if the components in Z are not of the same
order of magnitude. (See [7, Ex. 2.2.1, p. 54].)

*Received by the editors September 21, 1994; accepted for publication (in revised form) January 19, 1996.
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Institut for Informatik, Universitit Basel, Mittlere Strasse 142, 4056 Basel, Switzerland (hoermann@ifi.

unibas.ch).
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3. Verified error bounds. In contrast to an error estimating routine, an error verifying
routine determines upper bounds for the vector of relative errors which is defined as

Ixi 2i
ti (xi :/: 0),

where again 2 is an approximation and x is the exact solution of the linear system Thus,
a vector w from a verifying routine satisfies wi > ti. It tells us that at least [-log(wi)J
digits are correct in the th component of the approximation Furthermore, all components in
the approximation are correct to at least mini(l- log(wi)J) digits We say that 2 has a true

accuracy of mini([- log(ti)J) digits. We call mini(l- log(wi)J) the lowest verified accuracy
and max/([- log(wi)J) the highest verified accuracy.

Error verifying routines were implemented by Falc6 Korn [2]. His thesis provides the
whole theoretical background. A concise English description can be found in [3, 4].

4. Examples. We preset the solution x and compute the right-hand side b Ax by a
matrix-vector product. The right-hand sides will be b 1 Ax where all components of x 1
are equal to 1, b2 Ax2 with the ith component of x2 set to l/i, and b3 Ax3 with x3
like x but with the last component set to 25. Examples and 2 are computed on a NeXT
workstation (NeXTstation II) and Example 3 is computed on a Macintosh IIci. Floating-
point numbers conform to the IEEE double format which corresponds to at least 16 decimal
digits.

4.1. Example 1. LAPACK [1] provides two different error estimation methods, both
derived from backward error analysis. The first one (Estimation 1) is based on the DxxCON
routine (where xx denotes one of LAPACK’s storage schemes) which estimates the normwise
condition number (see 2). The second one (Estimation 2) is computed with the DxxRFS
routine. It calculates a componentwise backward error and an estimation of a componentwise
condition number depending on A, b, and the approximation 2.

For large narrow banded systems, Estimation 1 is feasible only for symmetric, positive
definite, tridiagonal matrices [9]. To compare results over a wide range of dimensions, we
consider the one-dimensional discrete Laplacian

2 -1

(1) a -1 ". ".

-1 2

First we compute approximations of Ax bi (i 1, 2, 3) using LAPACK’s DPTTRF and
DPTTRS routines 1]. Then we estimate the error using Estimations and 2 for xx PT and
compare their results to the output of a verifying routine; see Table 1. Note that figures in
the rows labeled with Estimation and Estimation 2 denote [- log()J, where denotes the
normwise forward error as given by the corresponding LAPACK routines.

To summarize, accuracy statements from either estimation or verification are comparable
to each other as long as all components ofthe solution vector are ofthe same order ofmagnitude.
If this is not the case, overestimations may occur (see the last five rows). This is a consequence
of the remarks at the end of 2.

For this example, verification is significantly slower than both estimations. Since no PT
verifying routine is available yet, such a case is mapped onto a verifying routine which operates
on PB-matrices.
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TABLE
True accuracy, estimated accuracies, and verified accuracies of three approximations corresponding to the

linear systems with matrix (1) and right-hand sides bl, b2, and b3. LAPACK’s PT routines were usedfor Estimations
and 2. Figures in the parentheses indicate execution times normalized by the time needed to compute Estimation

for a dimension of 106.

bl

b2

b3

Dimension
True accuracy
Estimation
Estimation 2
Lowest verified
Highest verified
True accuracy
Estimation
Estimation 2
Lowest verified
Highest verified
True accuracy
Estimation
Estimation 2
Lowest verified
Highest verified

10 10 10 10
13 12 10 9
12 10 8 6
11 9 7 5
11 9 7 5
13 12 11 10
13 12 10 9
12 10 8 6
11 9 7 5
11 9 7 5
14 14 13 13
6 12 6 6
12 10 8 6
11 9 7 5
5 5 5 5
14 14 14 14

10
6
4 (1)
3 (2)
3

}(4)
9
6
4 (1)
3 (4)
3

}(4)
13
6
4 (1)
3 (2)
3

(4)
14

Now consider the two-dimensional discrete Laplacian:

(2) A

Since this matrix is not tridiagonal, we use LAPACK’s PB routines. Table 2 summarizes the
results. The verifying routine is now significantly faster than both estimations. For the case
where the right-hand side is b3, it gives the only realistic answer.

4.2. Example 2. For dense matrices the dominant time factor is the factorization of the
matrix. In cases where L and U are computed once to solve several linear systems, we compare
the time for the computation of an approximation" with the time needed to obtain a statement
about its accuracy.

The following strictly diagonally dominant matrix is used in [8], a statistical study on
condition numbers and estimation methods:

i-j

(3) A (aij) i+j-l’ 7 j,
n, i=j.

We proceed as in Example 1. Since the matrix is dense we use LAPACK’s GE routines. Table 3
lists execution times normalized by the time needed to compute ’. It shows a typical situation
for dense systems: Estimation is faster than Estimation 2, while the verifying routine offers
the fastest way to obtain an error bound.

The accuracy results for this example are listed in Table 4. LAPACK’s Estimation 1
overestimates the true accuracy.

4.3. Example 3. Iterative solvers stop when the backward error reaches some prescribed
threshold. (See Chapter 4.2 of 10].) Since ITPACK [6] does not provide condition estimators,



1016 TIMELY COMMUNICATION

TABLE 2
True accuracy, estimated accuracies, and verified accuracies of three approximations corresponding to the

linear systems with matrix (2) and right-hand sides b 1, b2, and b3. LAPACK’s PB routines were usedfor Estimations
and 2. Figures in the parentheses indicate execution times normalized by the time needed to compute Estimation

for a dimension of6400.

Dimension 1024 2500
True accuracy 14 13
Estimation 13 12

b Estimation 2 11 10
Lowest verified 11 11
Highest verified 13 13
True accuracy 14 13
Estimation 13 12

b2 Estimation 2 13 13
Lowest verified 11 11
Highest verified 14 14
True accuracy 6 7
Estimation 13 12

b3 Estimation 2 13 13
Lowest verified 5 5
Highest verified 14 14

6400
13
12 (1)
10 (0.2)
10

(0.04)
13
13
12 (1)
13 (0.2)
10

}(O.O4)
14
6
12 (1)
13 (0.2)
5

}(O.O4)
14

TABLE 3
Runtime ratios solving a linear system with matrix (3) and right-hand side b l. LAPACK’s GE routines were

usedfor the computation ofc andfor both estimations.

Dimension 300 600 900
Computation of
Estimation 4.7 4.5 4.5
Estimation 2 12 14 14
Verification 1.7 1.7 1.7

1200

4.5
14
1.8

TABLE 4
True accuracy, estimated accuracies, and verified accuracies ofan approximation corresponding to the linear

system with matrix (3) and right-hand side bl. LAPACK’s GE routines were usedfor Estimations and 2.

Dimension
True accuracy
Estimation
Estimation 2
Lowest verified
Highest verified

300 600 900 1200
14 14 14 14
15 15 15 15
12 12 12 12
13 13 12 12
13 13 12 12

it is not possible to check the forward error. Nevertheless, it can be determined with a verifying
routine as long as the iterative solver relies on a splitting of the data matrix [2].

Table 5 summarizes the results for different prescribed backward errors. (As before, we
express errors in terms of accuracies.) The computing times normalized by the time needed
to compute the approximation are listed in Table 6. For low dimensions, verifying the error
is twice as fast as the solving process, but for very high dimensions determining the error with
a verifying routine can be as expensive as the computation of the approximation itself.

5. Further remarks. The quality of the delivered error bounds depends on the quality
of the bound

(4) (LU)-I _< (U)- (L) -1
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TABLE 5
Prescribed accuracy, achieved accuracy, and verified accuracies of an approximation for a linear system of

dimension 2916 with matrix (2) and right-hand side b2. The approximation was computed with ITPACK’s SSORSI
routine.

Prescribed accuracy 5 7 9 11 13
True accuracy
Lowest verified
Highest verified

0 0 4 6
0 0 2 5
6 9 11 12 14

TABLE 6
Runtime ratios solving a linear system with matrix (2) and right-hand side b2. The approximation was computed

with ITPACK’s SSORSI routine.

Dimension 100 2916 40000
Computation of
Verification 0.26 0.56 1.1

where (.) denotes Ostrowski’s comparison matrix [2]. If A LU is an M-matrix2 then
equality holds in (4) and good results can be expected. For most H-matrices3 (4) is still a
good bound. Although many positive definite matrices (in particular symmetric M-matrices)
are H-matrices, further research is needed to generalize the concept of verification to a wider
class of matrices. Furthermore, an implementation of a verifying routine relies on the ability
to manipulate the rounding direction and to check for floating-point exceptions.

Experiences with porting a library of verifying routines to another platform are reported
in [5].

The C-programming code of the verifying routines can be obtained on the World Wide
Web. At the time of this writing, the address is http-//www.+/-fi.un+/-bas.ch/
gruul/gruul, html.
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HYBRID MULTIFLUID ALGORITHMS*
SMADAR KARNI

Abstract. Extensions of many successful single-component schemes to compute multicomponent gas dynamics
suffer from oscillations and other computational inaccuracies near material interfaces that are caused by the failure
of the schemes to maintain pressure equilibrium between the fluid components. A new algorithm based on the
compressible Euler equations for multicomponent fluids augmented by the pressure evolution equation is presented.
The extended set of equations offers two alternative ways to update the pressure field: (i) using the equation of state
or (ii) using the pressure evolution equation. In a numerical implementation, these two procedures generally yield
different answers. The former is a standardconservative update, but may produce oscillations near material interfaces;
the latter is nonconservative, but becomes exact near interfaces and automatically maintains pressure equilibrium. A
hybrid scheme which selects from the two pressure update procedures is presented. The scheme perfectly conserves
total mass and momentum and conserves total energy everywhere except at a finite (very small) number of grid
cells. Computed solutions exhibit oscillation-free interfaces and have negligible relative conservation errors in total
energy even for very strong shocks. The proposed hybrid approach and switching strategies are independent of the
numerical implementation and may provide a simple framework within which to extend one’s favourite scheme to
solve multifluid dynamics.

Key words. Euler equations, compressible interfaces, shock-capturing

AMS subject classifications. 65MOG, 65M12, 65N15, 76T05

1. Introduction. Within the shock-capturing numerical approach to solve the gas dy-
namics equations, flow discontinuities are not perfectly represented on a discrete grid. They
take on diffused viscous-like profiles, typically occupying two to three grid cells for shock
fronts and five to seven grid cells for contact surfaces. Problems posed by nonzero shock
width have received attention in the literature in various computational contexts [7, 15, 16,
22]. In multifluid dynamics, the problem is not diffused shock layers but rather diffused ma-
terial interfaces across which the fluid composition changes. From a computational aspect,
this is a harder problem since shocks possess compressive mechanisms which tend to absorb
any induced error back into the shock front. Interfaces do not possess such mechanisms,
and it is easier for errors generated near or within the diffused front to escape and contam-
inate the solution. The transition across the interface is governed by numerical viscosity
mechanisms and intermediate states are not necessarily physically consistent. Indeed, when
extended to multicomponent fluids, many successful single-species schemes [9, 19, 23, 28]
encounter difficulties maintaining pressure equilibrium among the fluid components across
diffused interfaces [1, 12, 13, 14]. Consequently, updating the pressure field via the equation
of state (EOS) often generates erroneous pressure fluctuations at material interfaces, which
subsequently contaminate the solution of other flow variables. These oscillations are not the
ones commonly associated with high-order schemes. They are present already in first-order
schemes and are persistent. They not only render the solutions (at times fatally) oscillatory, but
also set off dispersive acoustic mechanisms which tend to further thicken the interfaces. While
exceptions may apply [2, 6], it is generally true that extending one’s favourite single-species
scheme to multispecies is likely to produce solutions that are plagued by oscillations and other
computational inaccuracies [1, 12, 1.3, 14]. A phenomenon of similar flavour, which has re-
ceived some appreciation within the aerodynamic community, is the occurrence of erroneous
pressure fluctuations across numerically diffused shear interfaces.

*Received by the editors January 13, 1995; accepted for publication (in revised form) May 25, 1995.
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY, 10012 (karni@cims.nyu.edu).
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Postdoctoral Fellowship, DOE contract DEFG0288ER25053, NSF grant DMS 94 96155, and ONR grant N00014-
94-1-0525.
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One possible cure is to employ algorithms which reconstruct the material front as a sharp
discontinuity [3, 4, 17, 20], thus circumventing the problems arising due to interface smear-
ing. This, however, comes at the expense of simplicity as such front-fitting/front-tracking
algorithms raise nontrivial computational issues (e.g., keeping track of subgrid geometries for
front reconstruction, net flux distribution on oddly shaped cells, stability restrictions due to
the occurrence of small cells, etc.) and become quite involved to implement in multispace
dimensions. A multifluid front-tracking algorithm has been developed in [6], based on the
notion of volume-of-fluid (see for example [20] and references cited therein). The equations
are written for the individual species, the jumps in the thermodynamic variables across the
interface are tracked (the jump in tangential velocity is captured), and the interface geometry
is reconstructed from the partial volumes of the fluid components and then evolved using the
underlying single-fluid velocity field. Assuming isentropic compression effective, thermody-
namic quantities are obtained for the fluid mixture which keep the luid components in pressure
equilibrium and also account for their possibly different compressibilities. This last property,
while less critical for gas mixtures, could prove indispensable in gas/liquid interfaces where
compressibilities of the individual components are widely different. This algorithm was used
in [10] to study oblique shock refraction at a planar gas interface and has been applied to a
more general EOS in [30].

In this paper we wish to remain within the front-capturing framework, particularly because
of its attractive simplicity. We take a different approach, based on the instrumental observation
that if the pressure field is evolved by using the pressure evolution equation, then pressure
equilibrium among fluid components is automatically maintained and the generation of spuri-
ous pressure fluctuations is avoided. This observation has led the author to develop a scheme
based on formulating the gas dynamics equations in terms of the so-called primitive variables
11, 12, 21 ]. Near material interfaces, the primitive formulation completely decouples into a

set of linear advection equations for the density and the fluid marker variable (also the cross
velocity components in higher space dimensions). Although generally nonconservative, near
material fronts the model becomes exact and does not introduce conservation errors. Applica-
tions of interest, however, invariably involve shock waves near which conservation errors are
introduced, manifested in incorrect shock speed and strength. By using a viscous perturbation
approach, these conservation errors can be controlled and kept acceptably small for shocks
of weak to moderate strengths (up to Ms 2.0) [11, 12, 29]. Solutions thus produced have
clean oscillation-flee interfaces, and relative conservation errors are within 1%-2%.

It may.be argued that sacrificing conservation completely for the sake of a primitive for-
mulation is a drastic measure which discards the baby together with the bathwater. Indeed,
the failure of schemes which are based on conservative flow models is local, predictable, and
limited to the immediate vicinity of material fronts. Everywhere else, these schemes are per-
fectly adequate. In this paper, we present an elegant hybrid scheme, which switches between
conservative and primitive updates of the pressure/energy fields. For simplicity, we focus on
a two-component ideal gas model. Ideas certainly extend to more than two components in
multispace dimension, and we believe also to nonideal cases. The latter may require some
extra care in treating the multifluid thermodynamics. Work is already in progress for gas/liquid
interfaces. We augment the standard two-component Euler system by the pressure evolution
equation. The extended (degenerate) system offers two alternative ways to update the pres-
sure field: (i) using the conserved variables via the EOS or (ii) using the pressure evolution
equations. Numerically, the two procedures are equivalent to within numerical truncation
error. Near flow discontinuities, however, they will give different answers. The former is a
standard conservative solution update, which is good everywhere except possibly at material
fronts where it might generate oscillations. The latter is nonstandard and nonconservative
but, provided it is averaged in a thermodynamically consistent manner, becomes exact at in-
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terfaces and automatically maintains pressure equilibrium between the fluid components. We
present a hybrid scheme that switches between the two pressure update procedures. Broadly
speaking, the EOS is used either to update the pressure field from the total energy equation
(conservative) or to update the total energy field from the pressure equation (nonconservative),
depending on whether the grid cell is away from/near the material front. The resulting scheme
conserves perfectly the total mass and momentum. The total energy is conserved everywhere
except across a very small number of grid interfaces, namely those that lie within the material
interface layer. In miscible multifluid models this may amount to as few as four to five cell
interfaces. In immiscible models it may amount to only one (!), but is enough to prevent
the pressure fluctuations from arising, thus preventing the oscillations in the rest of the flow
variables which follow. Relative conservation errors in total energy are negligible (at less
than 0.1% for reasonably fine grids) and decrease under mesh refinement. Furthermore, the
errors seem not to be sensitive to the strengths of the shocks that are involved. The numerical
results clearly demonstrate that the hybrid method is suitable for computing gas dynamics
involving very strong shocks (Ms > 100) and in that respect constitutes a major improvement
over the scheme in [11, 12]. Using the pressure evolution equation in this manner may be
interpreted as imposing a thermodynamically consistent boundary condition on the moving
material interface.

2. The equations. Consider the Euler system for two-component fluids, where p, u, p,
and E are the density, velocity, pressure, and total energy of the fluid mixture:

(la) Pt + (PU)x O,

(lb) (lOU)t + (Pu2 + P)x 0,

(lc) Et + (u(E + P))x O,

(ld) (pT), + (pTu)z o,

with the EOS for ideal gases

t )(2) p=(y(p)-l) E- -pu2

In the above equation, represents a marker variable whose role is to identify the fluid
composition. Various quantities can serve that purpose: p can represent the mass fraction of
one of the species [13, 14, 12], in which case equation (ld) expresses species conservation.
The resulting system conserves not only the total mass of the mixture but also the mass of
the individual components. Alternatively, fluid state variables propagate with the fluid flow
and obey an evolutionary equation of the form (1 d). Such variables may also serve as marker
variables (e.g., the specific heat ratio ?’ [25] or any function of it [2], or the heat release constant
Q in chemically reactive flows [5]), in which case equation (1 d) expresses passive advection of
the state variable with the fluid velocity. These formulations conserve the total mass but may
not strictly conserve the mass of the individual components. Another possibility is to take
to be a level-set function which, for example, measures the distance of a fluid particle from the
material interface. The evolution of 7t in this case also obeys (ld) 18]. Note that although this
choice has a front-tracking flavour, the overall algorithm remains a front-capturing algorithm
and thus avoids the .complexities associated with front tracking., y(p) is the effective specific heat ratio of the fluid mixture and depends naturally
on the fluid composition. The specific functional form of , (p) depends on the assumptions
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of the model. If p denotes the mass fraction of one fluid component, then assuming pressure
and thermal equilibrium yields an average y based on specific heat constants [1, 13, 14]

]gC1) Yl .qt_ (1 l)Cv:y2(2a) y(Tt)
/Cv, + (1 O)Cv2

Assuming isentropic compression, the effective y for a mixture of two fluid components in
pressure equilibrium is an average based on specific volumes [6]"

V 1-V
(2b) +,

where V bears a simple relation to the level-set function V 1/(I7/7r] / 1).
Note that the Euler model (1) does not account for mixing processes. Unless the fluid

components are premixed, the only mixing thatmay occur is numerical mixing due to numerical
diffusion induced by front-capturing schemes. The formulas for effective thermodynamics
should thus be interpreted in that context. These formulas are more meaningful (probably
also more critical) in the viscous case where genuine mixing takes place. Note further that
exact solutions to (1) do not depend on the specific heat constants, hence neither should the
numerical solution. The extent to which this happens in practice may serve to indicate the
appropriateness of the formula for the effective thermodynamics.

We now augment system (1) by the pressure evolution equation. This equation is obtained
by differentiating the EOS, which for ideal gases gives

(le) Pt + Upx + ypux --O.

We observe that if the fluid components are in pressure equilibrium, both p and u are
constant (continuous) across the interface. If p is evolved using (1 e), pressure remains constant
(continuous) and equilibrium between fluid components is automatically preserved.

The augmented system (la)-(1 e) is, of course, degenerate and will be analyzed below.
Here, we first note that the system offers two alternative ways to compute the pressure: (a)
using the conserved variables (la)-(ld) and the EOS (2) or (b) using the pressure evolution
equation (1 e). Numerically, the two procedures are equivalent to within numerical truncation
error. Near flow discontinuities, however, they will generally give different answers andwe can
choose which answer we care to believe. The former is a standard conservative update which
is suitable everywhere except possibly near material interfaces where pressure fluctuations
may occur due to smearing of the interface. The latter is a nonconservative update, but it
becomes exact near material fronts and automatically maintains pressure equilibrium. The
algorithm we propose involves switching between the two update schemes for the pressure
field, depending on whether the grid cell is near/away from a material interface. The switching
strategy depends on the precise definition ofthe fluid marker variable 7t. Two simple switching
strategies are discussed below which have proved effective.

The augmented system in matrix quasilinear form is

()

0 1 0 0 0

--hi
2 2u 0 0 1

-uH H u 0 u

-u 7 0 u 0

-ua2 a 0 0 u

( P

\ P

=0,
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a bt2where we use a2 x/’P/P to denote the speed of sound and H 7- + 7 to denote the
specific enthalpy. The characteristic polynomial of the matrix is

() U) (( bt)2 a2) 0,

revealing that the augmented system is hyperbolic, with a triple degeneracy in the particle
field. The matrix of eigenvalues is

(4) A= diag(u-a, u, u, u, u+a)

and the corresponding complete set of eigenvectors is

1 1 0 0

u-a u 0 0
2(5) rl H- ua r2 u r3 1 r4 0 r5

7z 7r 0 1

a2 0 0 0

1

u+a
H+ua

a2

Eigenvectors are defined to within a constant, and for consistency of physical dimensions
the nonzero entry in r3 should have the dimensions of (velocity)2. We leave this point for a

1’ 5moment and will return to it later. The eigenvectors k }k--1 are linearly independent, and so a
small change to the solution vector W (p, pu, E, pTz, p)r has a unique representation
as

5

(6) W r
k=l

for some wave strengths {0/k }k--1. The first, second, and fifth components of (6) involve only
01, 0/2, and 0/5,

0/1 ’[-0/2 +0/5 8/9,

(0/1 "[- 0/2 qt_ 0/5)b/ _. (--0/1 "]- 0/5)a 6(pu),

(0/1 + 0/5)a2 6P,

which, after using standard differential relations, have the recognizable solution

3p- paSu
0/1

2a2

(7a) 0/2
a2p 6p

a2

0/5
8p + paSu

2a2

The fourth component in (6) can now be solved for 0/4."

(7b) 0/4 plp.

The fifth component in (6) gives

’1 + puSu + u28p
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Since pressure and energy changes are related through the EOS, we use (2) to simplify further,
i.e.,

(7c)

P
(Y 1)2

/’

X

X

where we borrowed the notation X P,,oF’0P) from [14, 18, 12] The degeneracy of the
system is thus reflected in the fact that the third and fourth eigenfields can be combined into
a single eigenfield

1"3,4
X

0/3,4

3. Switching strategy. Adopting a strategy to switch between the two procedures of
updating the pressure field depends on the precise definition of the marker variable . We
have experimented with two flow models: (i) an immiscible level-set model [18] and (ii) a
miscible mass-fraction model [13, 14, 27]. The models in [1, 25] are closely related. Both
models take the form (la)-(ld), with different definitions for the variable . They have
been thoroughly analyzed in 12] with respect to their properties for computing propagating
interfaces and are briefly discussed below. The reader is referred to [13, 14, 18] for more
details. We have extended these models by (l e) in the fashion described in the previous
section and have found the following very simple switching strategies to be effective.

3.1. Level-set model. This is essentially the two-component immiscible Euler model
proposed in 18]. In this model, the marker variable p is a level-set function. It is initialized
so that at time 0 it is positive on one side of the interface (component 1) and negative on the
other side (component 2) and is zero at the material interface separating the two components
(as, for example, would be a function measuring the distance of a fluid particle from the
interface). Since material interfaces propagate with the fluid velocity, it follows from equation
(ld) that at any later time > 0, the level set t (x, t) 0 (which is a single point in this
one-dimensional case) locates the material interface, and the condition < 0 or p > 0
identifies which fluid component is being solved for. The ratio of specific heats, ?’ (gt), is then
determined according to

/ ’1, lr > 0,(8) y()
y2, 7<0,
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and the EOS (2) switches discontinuously across the interface. On a discrete mesh, one seeks
the cell interface (j + ) satisfying

(9) j" j+l < 0,

which indicates that the material interface is located somewhere between the grid point j and
the grid point j + 1. Across this one cell interface, the pressure field is evolved by using the
pressure evolution equation (le). Everywhere else, (le) is ignored and the pressure field is
updated using the EOS (2) with the appropriate value of ?,, depending on whether qt < 0 or
p>0.

A slight variation of the above procedure gives a model which is consistent with the
specific volume averaging for the effective , (2b), where 7r is used to obtain the effective ,
in the one cell occupied by both fluid components:

V 1-V
+, V-

’() ’1 /2 ]rj//l +
3.2. Mass-fraction model. This model was used in 12, 13, 14, 27] (also 1, 2, 25]). The

function 7r is the mass fraction of one gas component, and equation (ld) expresses species
conservation. 7r 1 or 0 indicate the presence of only one fluid component while
intermediate values 0 < 7r < indicate a mixture. The gas components are assumed to be in
thermal equilibrium. Using Dalton’s law of partial pressures, the effective , (Tt) of the fluid
mixture is

(10) ()
aPCv, -+- (1 )C,=

where Cvl and Cv are the specific heat coefficients at constant volume for the respective fluid
components. In this model, the interface layer is defined by the condition 0 < 7r < 1 or,
alternatively, by the condition qt’[ > 0. On a discrete mesh, one identifies the cell interfaces
where

(11) Ij+ Pjl > 0.

Across the cell interfaces where the above condition is satisfied, the pressure field is evolved
using the pressure evolution equation (le). Everywhere else, the EOS (2)+(10) is used. Note
that in the latter situations r is very close to either 0 or 1, and ’ (r) automatically takes the
appropriate value of either , or ?2. In practice, one uses the condition [rj+ pj[ > ,
where > 0 is a small number (typically between 0.01 and 0.05), to ensure that only genuine
interface layers are identified.

4. Numerical results. The hybrid approach described above is independent ofthe details
of the numerical implementation. Thus, it may provide a general framework within which
to extend one’s favourite scheme to multicomponent flow computations and yield a scheme
which is capable ofproducing clean oscillation-free interfaces as well as handling complicated
interactions involving very strong shocks.

4.1. The scheme. We have implemented a Roe-type second-order upwind scheme [23,
14, 18]. Using thefluctuation-and-signal approach [24], the scheme lends itselfto a convenient
and uniform treatment of both the conservative (la)-(ld) and nonconservative (le) parts of
the system. When restricted to only the conservative part, the scheme has an equivalent flux
formulation. There is, of course, no flux formulation for the solution of the pressure evolution
equation (le), since pressure is not a conserved quantity. As with the standard Roe method,
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the system is locally linearized about an average state. Flow gradients are projected onto the
linearized eigenvectors

(12) rl

5-5

H- 5

2

r2
1~2

\ 0

1

r4 fI + 5

2

with wave strengths

Ap -/55Au
011 252

52Ap Ap
0l2

(13) 52

013

Ap +/35Au
014 2

and are propagated by a limited Lax-Wendroffmarching step [26] with linearized wave speeds

(14)

Note that due to the degeneracy of the system, we have in this casefour eigenfields, each of
which is afive-component vector.

The Roe averages satisfy the property/(WL WR) FL FR for any two states
WL andW and the corresponding flux functions FL and F. For the two models described
above, the average values are calculated from the conservative part of the governing equations
(la)-(1 d). This guarantees that away from the material interface the method reduces to the
standard conservative Roe scheme [23, 24]. The averages are given by

(15a) +-
(1)a2=(()-1) /-2
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FIo. la. Two-component shock-tube problem computed by the level-set model in [18]. Computed (solid) and
exact (dash) solutions.

For the level-set model (see 18] for details),

(15b) 2
p

For the mass-fraction model (see 13, 14] for details),

fff Cv _Cv ,
1 2),

C

(15C) eL + /-eR
e

where e is the internal energy and y() is given by equation (10). The pressurep(-l)
field is updated using the EOS (2), while ignoring the fifth component of the solution vector
W everywhere in the flow field except across cell interfaces where either condition (9) or (11)
holds. Across those cell interfaces, the pressure field is evolved via the fifth component of
the solution algorithm by using the same limited Lax-Wendroff marching scheme with the
same conservative linearization (15). The amount of extra work required for the nonstandard
update of the pressure field is negligible since all the information needed (sound speed, wave
strengths, etc.) is already available. Once the new pressure field is calculated, the new energy
field E is computed using (2). This step is not strictly conservative (work is currently in
progress to modify this step so that it is conservative).

4.2. The experiments.
Test A. The initial data correspond to a two-component shock-tube problem, also used in

[12, 13, 27]:

WL (p, u, pz, ?’)= (1.0, 0.0, 1.0, 1.4),

WR--(DR, UR, PR, YR) (0.125, 0.0, 0.1, 1.2).

Figure shows solutions based on the conservative flow models in [13, 14, 18] and by the
present hybrid scheme. In these computations we used 200 grid points and a Courant-
Friedrichs-Lewy (CFL) number of 0.9. For the second-order calculations we used the su-
perbee flux limiter [26]. Strong oscillations plague the solution obtained by the level-set
algorithm of [18] near the material interface (Figure la). These oscillations are visible in all
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FIG. lb. Same as Figure la, computed by the hybrid level-set scheme (12)-(14), (15a), (15b). Nonconservative
solution update across one cell interface. Computed (solid) and exact (dash) solutions.

flow variables. (Interestingly, the only nonoscillatory variable is the fluid marker function 7t
which is obtained by computing at each grid point (p Tr )j / (p)j both of which are apparently
oscillating in phase, see [12].)

The oscillations are completely eliminated from the solution by switching to a noncon-
servative pressure update at the material interface using the pressure evolution equation (le)
(Figure lb). This pressure update is used across only one (!) cell interface, but is sufficient
to prevent the generation of pressure fluctuations at the interface, thereby preventing the sub-
sequent oscillations in the other flow variables. Comparison between the computed and the
exact solution (also included in the figure) shows excellent agreement, although the scheme
is not strictly conservative. With this hybrid algorithm, the total mass and momentum are
perfectly conserved but the total energy is not. For the calculation shown in Figure lb, the
relative error in total energy is 0.242% on a 200-point mesh. Repeating the same test with
800 mesh points yields relative conservation error of 0.066% in the total energy.

The solution obtained by the mass-fraction model of 13, 14] exhibits a nonphysical ve-
locity step across the material front and a density undershoot (hence, a temperature overshoot).
Both are present already in a first-order computation (velocity profile, Figure l c), with the
density undershoot becoming more pronounced in a second-order computation (density pro-
file, Figure lc); see also [1, 13, 12]. Interestingly, the computed pressure field itself (not
shown) appears to be well behaved. The computational inaccuracies are most apparent in
the velocity and density profiles. Nonetheless, the cause for this false behaviour is the initial
erroneous pressure fluctuations that disturb the pressure equilibrium. Indeed, taking measures
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FIG. lc. Two-component shock-tube problem computed by the mass-fraction model in [13, 14]. Computed
(solid) and exact (dash) solutions.
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FIG. ld. Same as Figure lc, computed by the hybrid mass-fraction scheme (12)-(14), (15a), (15c). Nonconser-
vative solution update acrossfour to five cell interfaces. Computed (solid) and exact (dash) solutions.

to prevent the pressure fluctuations from arising completely removes the false behaviour from
the density and velocity fields (Figure 1 d). Using (1e) only at cell interfaces where condition
(11) is satisfied (approximately four to five cell interfaces with e 0.05) is sufficient to pre-
vent the generation of pressure fluctuations and the computational inaccuracies in the other
flow variables which follow (Figure ld). The computed solution shows excellent agreement
with the exact solution (also included in the figures) although the computation is not strictly
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Shock Interface

FIG. 2. Shock wave impinging on a material interface.

conservative. Here again, the total mass (also the mass of the individual species) and momen-
tum are perfectly conserved, and relative conservation error in the total energy is negligible at
0.054% for the calculation shown in Figure ld. If the same calculation is repeated with 800
grid points, the relative conservation error decreases further to 0.026%.

Test B. The initial data correspond to a weak shock wave in air (Ms 1.1952), refracting
at a helium material interface (see Figure 2):

Wl--(Pl, ul, Pl, q)= (1.3333, 0.3535, 1.5, 1.4), air, postshock;

We (pa, ua, pa, ,)= (1.0, 0.0, 1.0, 1.4), air, preshock;

W3 (/93, u3, P3, ?’3)= (0.1379, 0.0, 1.0, 1.67), helium, preshock.

In shock refraction problems like this, upon being hit by the incident shock wave, the
interface is set into motion. A shock wave is transmitted across the interface into the receiving
gas, which travels at a higher or lower speed than that of the incident shock depending on the
respective speed of sound. In geometrical acoustics, the ratio of incident/transmitted shock
speeds is often called the index ofrefraction. Depending on the so-called acoustic impedance
of the receiving gas, the reflected wave is either a shock wave or an expansion [8, 10]. While
playing a less apparent role in one-dimensional shock refraction problems, both the index
of refraction and the acoustic impedance are crucial parameters in two-dimensional shock
refraction at oblique/curved interfaces, dictating the sign and amount of vorticity generation
at the interface, hence the characteristics of global dynamics [21] and the appearance of
regular and irregular shock refraction patterns (see 10, 21 and references cited therein). In
such problems, the material interface is also a physically unstable shear interface, and any
erroneous numerical behaviour may trigger completely false dynamics. In this air/helium

case, the reflected wave is a very narrow rarefaction. The transmitted shock wave is very
weak. As the sound speed in helium is higher than that in air, the weak transmitted shock
wave travels faster than the incident shock.

Figure 3a shows the computed solution by the level-set model. As soon as the incident
shock wave hits the interface and sets it into motion, strong oscillations appear in the solution.
Once generated, the oscillations disperse and appear to follow behind the transmitted shock
front. As in the previous shock-tube test, switching to a pressure update based on the pressure
evolution equation (le) across only one cell interface prevents the generation of the initial
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FIG. 3a. Shock wave in air, Ms 1.1952, refracting at a helium interface computed by the level-set model in
[18]. Computed (solid) and exact (dash) solutions.
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FIG. 3b. Same as Figure 3a, computed by the hybrid level-set scheme (12)-(14), (15a), (15b). Nonconservative
solution update across one cell interface. Computed (solid) and exact (dash) solutions.
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FIG. 3c. Shock wave in air, Ms 1.1952, refracting at a helium interface computed by the mass-fraction model
in [13, 14]. Computed (solid) and exact (dash) solutions.

pressure fluctuation and is sufficient to completely eliminate the oscillations from the solution
(Figure 3b). The agreement between the computed and exact solutions is excellent.

The computed solution obtained by the mass-fraction model (Figure 3c) also exhibits a
nonphysical behaviour. The velocity profile fails to maintain uniform velocity in the region
between the transmitted shock and the tail of the reflected fan. The pressure profiles are also
visibly nonuniform. Updating the pressure field via equation (1e) across as few as four to five
cell interfaces is sufficient to eliminate these problems (Figure 3d). The agreement between
the computed and exact solutions is again excell.ent.

Test C. We present another example of a weak shock wave in air (Ms 1.1.952) refracting
at a material interface, with in this case a heavy gas refrigerant R22 (commercially known as
freon). The initial data are

W (p, u, p, q) (1.3333, 0.3535, 1.5, 1.4), air, postshock;

W2 (/92, u2, p2, ),’2)--(1.0, 0.0, 1.0, 1.4), air, preshock;

W3 (p3, u3, p3, ?’3)-(3.1538, 0.0, 1.0, 1.249), R22, preshock.

The transmitted shock speed in R22 is lower than that of the incident shock wave in air,
and the reflected wave is a weak shock. Results are shown for the level-set model (Figure 4a)
and the hybrid level-set version (Figure 4b). The former solution is contaminated by strong
oscillations. As in the previous tests, switching to a pressure update via (1 e) across only one
cell interface is sufficient to remove completely the oscillations from the computed level-set
solution. The agreement between the computed and the exact solutions is excellent.

Test D. The data in this test correspond to a stronger shock in air (M, 3.6055) refracting
on helium (Figure 5a) and R22 (Figure 5b) material interfaces, respectively. In both cases,
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FIG. 3d. Same as Figure 3c, computed by the hybrid mass-fraction scheme (12)-(14), (15a), (15c). Nonconser-
vative solution update acrossfour to five cell interfaces. Computed (solid) and exact (dash) solutions.
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FIG. 4a. Shock wave in air, Ms 1.1952, refracting at an R22 interface computed by the level-set model in
[18]. Computed (solid) and exact (dash) solutions.
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FIG. 4b. Same as Figure 4a, computed by the hybrid level-set scheme (12)-(14), (15a), (15b). Nonconservative
solution update across one cell interface. Computed (solid) and exact (dash) solutions.
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FIG. 5a. Stronger shock wave in air, Ms 3.6055, refracting at a helium interface computed by the hybrid
level-set scheme (12)-(14), (15a), (15b). Computed (solid) and exact (dash) solutions.



HYBRID MULTIFLUID ALGORITHMS 1035

25

20

0
0 0.2 0.4 0.6 0.8

25

E 15

10

5

0
0 0.2 0.4 0.6 0.8

0.4

0.2

-0.2

-0.4

0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

FIG. 5b. Stronger shock wave in air, Ms 3.6055, refracting at an R22 interface computed by the hybrid
level-set scheme (12)-(14), (15a), (15b). Computed (solid) and exact (dash) solutions.

due to the high velocity driving the incident shock, the entire flow field is supersonic and all
the waves (including the reflected waves) are rightgoing. The incident shock aswell as the
transmitted and reflected waves are now stronger (compare with Figures 3 and 4). The aim
in this test is todemonstrate the capability of the hybrid scheme to handle well interactions
involving strong shocks.

Results with the hybrid level-set scheme are shown in Figure 5 for both a helium interface
in which the refracted wave is a rarefaction, and for an R22 interface, in which the reflected
wave is a shock. The preshock states for the air/helium case (Figure 5a) are the same as in
Test B. The postshock state is

W1--(/91, Ul, Pl, ?’1)= (4.3333, 3.2817, 15.0, 1.4), air, postshock.

The preshock states for the air/R22 case (Figure 5b) are the same as in Test C. The postshock
state is the same as W1 above. The agreement between the computed and the exact solutions
is excellent in both cases, and the relative conservation errors in total energy are negligible.
For example, for the air/helium case the relative conservation error in total energy at time
T 0.1169 is 0.1301% with 400 grid points (0.0621% with 800 grid points). For the air22
case, the relative conservation error at time T 0.1637 is 0.2249% with 400 grid points
(0.1729% with 800 grid points). Table summarizes a convergence study of the relative
energy conservation errors for an Ms 9.2659 shock wave in air impinging on a helium and
an R22 interface, respectively (errors are measured against exact solutions). The errors are
extremely small and decrease under mesh refinement at what appears to be a linear rate. These
results clearly demonstrate that the present hybrid method is capable of handling well wave
interactions involving strong shocks.
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TABLE
Relative conservation errors in total energyfor a strong shock wae in air (Ms 9.2659) impinging on helium

and R22 interfaces.

No. of points Relative error in %

air/helium

400
800
1600

air/R22

400
800
1600

(finaltime T 4.81 10-2)
0.060
0.035
0.021

(finaltime T 6.41 10-2)
0.084
0.048
0.030

Relative Conservation Error in Energy Y Model
0.06

0.05

0.04

0.03

0.02

0.01

0 200 400 600 800 1000 1200

FIG. 6. Relative conservation error in total energy as afunction ofnumber oftime stepsfor a very strong shock
wave in air, Ms 113.4, refracting at a helium interface. Computed solution by the hybrid mass-fraction scheme
(12)-(14), (15a), (15c).

Test E. It is interesting to see where conservation error is generated and how it manifests
itself. The data for the present test correspond to a very strong shock, M 113.4, hitting an
air/helium interface. Figure 6 shows relative conservation error in total energy as a function of
the number of time steps. The error is obtained by comparing the results from a conservative
and a hybrid computation:

100
I( Ej)hybrid ( Ej)conservative

(__, ej )conservative

From Figure 6 we observe that conservation error is generated only during wave interac-
tion, namely, when the shock wave hits the interface. During the first couple hundred time
steps, there is no conservation error. Error is then generated and reaches a peak value during
the interaction, which then relaxes toward a constant value. No additional error is generated
after the interaction is complete, which seems to indicate that waves propagate at the correct
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TABLE 2
Relative conservation error in total energy as afunction ofnumber oftime stepsfor a strong shock wave in air

(Ms 113.4) impinging on a helium interface.

No. of points Relative error in %

200
400
8OO
1600

0.1445
0.0788
0.0418
0.0226

4

0
0 0.5

15000

0000

5000

0
0 0.5

200

150

o 100

5O

0.8

0.6

0.4
E

0.2

00
0 0.5 0 0.5

FIG. 7. A very strong shock wave in air, Ms 113.4, refracting at a helium interface computed by the hybrid
mass-fraction scheme (12)-(14), (15a), (15c). Computed (solid) and exact (dash) solutions.

speed. In one-dimensional setups, the generation of errors is a one-off event. In higher dimen-
sions, for example, in shock-bubble interactions, errors may be provoked more commonly. In
view of the smallness of the relative error, this issue does not seem to be a concern.

Table 2 gives relative errors in a sequence of runs with increasingly fine grids from which
it is clear that (i) the solution seems to converge to the right place, (ii) convergence appears to
be linear, and (iii) conservation error is very small and seems not to be sensitive to the strength
of the shock involved. Actual results for this test are shown in Figure 7.

5. Conelusionso A hybrid approach has been presented for computing the dynamics
of compressible multicomponent fluids based on augmenting the standard multicomponent
gas dynamics equations by the pressure evolution equation. The extended system offers
two choices for updating the pressure field: (i) a conservative update using the EOS (2) used
throughout the flow field except near material interfaces where it may produce oscillations and
(ii) a nonconservative update using the pressure evolution equation (1 e) used near interfaces
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to ensure monotone solutions. A simple switching strategy between the two pressure update
procedures has been presented (i) for an immiscible flow model based on a level-set formulation
18] and (ii) for a miscible flow model based on a mass-fraction formulation 1, 13, 14, 25, 27].
The resulting hybrid algorithm conserves the total mass andmomentumofthe system. The total
energy is not perfectly conserved but relative conservation errors are negligible (of the order of
a fraction of a percent). The hybrid strategy has proved to be very effective in computing shock-
interface interactions involving shocks ranging from Ms 1.1 to Ms 100. Both the hybrid
approach and the switching strategies are independent of the numerical implementation and
may provide a convenient framework within which to extend one’s favourite single-component
scheme to multicomponents.
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A PARALLEL IMPLEMENTATION OF THE P-VERSION OF THE FINITE
ELEMENT METHOD*

YIMIN ZHU AND I. NORMAN KATZt
Abstract. An iterative method based on the textured decomposition (TD) is developed in order to solve the

systems oflinear equations arising in the p-version ofthe finite element method. The iteration is used to implement the
p-version in parallel on an MIMD computer NCUBE/six. The objectives are twofold: to achieve high computational
efficiency (that is, computational load should be balanced among the processors) and simultaneously to achieve rapid
convergence.

A superelement, consisting of four adjacent rectangular finite elements, is constructed for two-dimensional
problems. Based on the structural property of the Shape functions, each superelement is partitioned into three blocks
in two different ways, and a two-leaf TD is used. Computations for a superelement associated with each leaf are
assigned to two processors and are performed in parallel. Anew preconditioner is introduced to accelerate convergence
in a preconditioned textured decomposition (PTD). A special local communication strategy is used to avoid global
assembly and global communication.

Two model problems including a Laplace equation on a rectangular domain with a near singular solution and
a Poisson equation on an L-shaped domain, are solved. The conjugate gradient (CG) method, the TD method, the
recursive textured decomposition (RTD) method, both with and without preconditioning, and the classical iterative
methods (Jacobi, Gauss-Seidel (GS), successive overrelaxation (SOR)), are used to solve both model problems. Load
balance, speedup ratio, and spectral radii of the various iterations are studied. The test results indicate that recursive
PTD with a local communication strategy gives at least a 30% improvement in computational time over the other
methods.

Key words, p-/ersion of the finite element method, parallel implementation

AMS subject classifications. 65N22, 65N30, 65F10

1. Introduction. The finite element method is currently one of the most popular numer-
ical methods used in the solution of engineering problems governed by partial differential
equations. However, large problems, especially in three dimensions, are often not solvable
on serial computers because of prohibitive computation time. Improvements in computing
technology, based on large-scale parallel computers, offer the possibility of expanding the set
of problems that can be solved efficiently. Such parallel computers appear attractive to finite
element methods in which the local element provides a natural decomposition of the problem
into (partially) computationally independent sets.

Variants of the finite element methods include the standard h-version, which uses low-
order basis functions and achieves accuracy by refining meshes; the p-version, which uses
a fixed mesh and achieves accuracy by increasing the order of the basis functions; and the
h-p version, which combines these two approaches. For the first and last of these techniques,
which divide the domain into local elements and compute associated local stiffness matrices,
a large component of the required computations can be implemented very naturally on par-
allel computers [3]. In particular, for the h-version, domain decomposition methods [8], [9]
group collections of elements into superelements. Construction of all local stiffness matrices
associated with a superelement is independent of another superelement, so that they can be
performed in parallel on separate processors. For the p- and h-p versions, we can think of
the space of high-order basis functions in a single element as analogous to h-version group-
ing into superelements in the sense that construction of local operators can be done partially
in parallel. The majority of elemental computations are performed on local data in a fully
parallel manner.

*Received by the editors December 27, 1993; accepted for publication (in revised form) May 17, 1995. This
paper is part of the doctoral research of author Yimin Zhu. The work of both authors was supported by the U.S. Air
Force Office of Scientific Research under grant AFOSR 92-J-0043.

tWashington University, St. Louis, MO 63130 (yimin@hylas.wustl.edu, katz@zach.wustl.edu).
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Direct methods are fully satisfactory for the solution of the resulting assembled system
of linear equations for small-size problems or large sparse systems. But large-size problems
(with more than 30,000 degrees of freedom [13]), which are common in the p-version of
the finite element analysis, are inefficient both in terms of CPU time and storage. Iterative
methods are a preferable choice for problems with a large number of elements and do not
suffer from fill-in. Iterative methods can be implemented on parallel computers and achieve
computational load balance; that is, the computational load can be balanced among processors.
Classical iterative methods including Jacobi, Gauss-Seidel (GS), successive overrelaxation
(SOR), symmetric successive overrelaxation (SSOR), and Chebyshev methods [7] have been
studied thoroughly and solve well-conditioned systems efficiently. But these methods converge
very slowly for the ill-conditioned systems. Multigrid methods have proved to be efficient
solvers for problems arising by discretization of partial differential equations by the h-version
finite element method 14], 15]. A straightforward application of multigridlike ideas to the
p-version was studied by Brussino et al. [5], Foresti et al. [6], Mandel [13], [!4], and Hu and
Katz [10], [11]. The conjugate gradient (CG) method has been applied to solve discretized
systems by the p-version in Babuska et al. [3], [4] in a parallel manner, and they have achieved
impressive results. In this paper, a class of new parallel iterative algorithms based on a
textured model decomposition is introduced to solve problems arising from discretization of
elliptic partial differential equations by the p-version. Numerical results show that the textured
decomposition (TD) methods converge faster than the CG method on sample problems. The
recursive textured decomposition (RTD) method is also used in our scheme to achieve still
better results. The model problems are intended only to compare the efficiency of iterative
methods. For the relatively small number of unknowns in these problems (at most 2,500)
direct methods could be more efficient. The comparisons given here for the various iterative
methods are meant to provide a guide for their use in problems with large (more than 30,000)
unknowns.

In recent years, preconditioners have been developed for the CG methods to accelerate the
convergence. A preconditioner which uses the hierachic property of the p-version has been
proposed by Babuska et al. [4]. It is shown in [4] that the condition number grows at most as
(log p)2 for large p. We use a closely related preconditioner for the TD and RTD methods.
The preconditioning successfully reduces the spectral radius of their iteration matrices.

This paper is organized as follows: in 2, we introduce the p-version of the finite ele-
ment method [1]. We use the concepts from Szabo and Babuska’s book [2] to give a brief
introduction to one-dimensional and two-dimensional cases. The finite element space and
the corresponding hierachic basis functions are introduced. Computations of elemental stiff-
ness matrices and load vectors are discussed. Our finite element computations were made by
using MSC/PROBE 17] and PEGASYS. We discuss assembly of the stiffness matrices and
load vectors. Finally, we use the Schur complement to condense the internal variables and
corresponding load vectors.

In 3, we construct the TD method. In order to apply the TD method to parallel com-
putation, we introduce a superelement. A PTD method, based on structural properties of the
superelement, is introduced. We study a three-level recursive TD with and without precondi-
tioning.

In 4, we study parallel implementations of the TD method. First, we discuss how to
map a superelement onto two processors. Then we propose a local communication strategy to
minimize communication costs. Performance analysis focused on speedup ratios is studied.

In 5, we present the numerical results of using the TD method, the PTD method, and the
RTD method to solve two model problems: a Laplace equation on a rectangular domain with
near singular solution and an L-shaped domain problem. Both model problems are typical
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problems in elasticity for which finite element analysis is generally used. We compare these
results with the results from using the classical iterative methods: Jacobi, GS, SOR, and the CG
and preconditioned conjugate gradient (PCG) methods. Convergence rate and performance
analysis is given.

2. The p-version of the finite element method. We consider the representative prob-
lem:

(2.1a) -Au f on

(2.1b) u fl on

Ou
(2.1c) f2 on

On

where f2 is the bounded domain, 01f2 t3 02" 0’ is the piecewise smooth boundary, and
f, fl, f2 are functions that satisfy the conditions guaranteeing existence and uniqueness of
the solution.

Let

(2.2) H(2) {u 6 nl(2)lu f on 01"},

where n () is a Hilbert space.
Let

(2.3) B(u, v) ff(Vu. Vv)dxldx2

be the bilinear form defined on H(g2) H(f2), and let

(2.4) F(v) ff fv dxl dx2 + fo2 fzv ds

be a linear functional on H(f2). Then we change problem (2.1) to the standard variational
formulation: find

uex 6 H(f2),

such that

B(uex, v) F(v) Yv H(f2).

The p-version approximation consists of restricting the subspace H(f2) and finding a solution
in this restricted subspace. First, we choose a polynomial subspace Sp c__ H(f2); then we find
an approximate solution u Fe Sp) Sp, such that

(2.6) B(UFE(SP), V) F(v) Yv Sp.

The goal is

(2.7) IIUFE(Sp) --uxllec r,

where

(2.8) Ilulle B(u, u)1/2
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FIG. 2.1 The standard quadrilateral element .o. (q)
"’St

is the energy norm, E() is the energy space defined as E(f2) {u[B(u, u) < oe}, and r. is
a given tolerance.

The finite element space in two dimensions is defined as follows:

Sp Sp(f2, A, Q) {{u}[{u} E E(f2), u(Q(xl(, rl), QI(, )) SPstk,
(2.9)

k 1, 2 M(A)},

o((, ),where is the domain, A is the finite element mesh, and x Q(x
are mapping functions defined for the kth finite element which map a standard quadrilateral
element onto the kth finite element. SsPt is the space of polynomials defined on the standard
elements [2].

In the finite element method, Sp is typically constructed by partitioning f2 into subdo-
mains, called finite elements. Then the standard element C)(q).st is selected. A standard square
is shown in Fig. 2.1 which is mapped onto each finite element.

The space SsPt is spanned by the following basis functions (for further details, see [2]):
1. Nodal shape functions. A nodal shape function is associated with a vertex Ai of the

element O(q).st It is zero on the opposite sides of the vertex with which it is associated. There
are four nodal shape functions:

1
(2.10a) NI(, r/) (1 )(1 r/),

(2.10b) N2(, r/) (1 + )(1 r/),

1
(2.10c) N3(, r/) (1 + )(1 + r/),

1
(2.10d) N4(, r/) (1 )(1 +

2. Side shapefunctions. The side shape function is associated with a side 1-’ and is zero
on all three other sides of the element. There are 4(p 1), (p > 2) shape functions. These
shape functions are defined as

(2.11a) N{1) (1 r/)4i(), 2 p,

1
(2.11b) N}2) (1 + ))i(r]), 2 p,

(- )i
(2.11 c) N{3 (1 + O)bi (), 2 p,

2

(2.1 ld) N}4)- (-1)i
(1 )i(O), i-- 2 p,
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where bj is defined in terms of the Legendre polynomial Pj_

Pj-1 (t) dt, j 2, 3(2.12) J()

The term (-1)i is needed in N/(3 and N}4 to obtain invariance with respect to the rotation of
coordinates.

3. Internal shapefunctions. Internal shape functions are zero on all four sides. For p < 4
there are no internal shape functions. For p > 4 there are (p 2)(p 3)/2 internal shape
functions defined as

(2.13) N(i,j (, 0) (1 2)(1 o2)pi()Pj(]) 0 < -t- j < p 4.

These basis functions are mapped onto each element. Let kI/i denote the mapped basis functions
on an element; then we have

N

(2.14) bIFE(Sp) Xiglli, F(i) Yi;
i=1

then problem (2.6) becomes the solution of a system of linear equations

(2.15) Ax y,

where
A [aij] is called the elemental stiffness matrix with aij B(qi, j),
x is the vector of coefficients of basis functions,
y is called the elemental load vector.
After the elemental stiffness matrices are generated, we eliminate the internal unknowns

by computing the Schur complement. The elemental stiffness matrices and load vectors can
be written in block form:

All A12
b(2.16) A=

Ar2 A22

where
AI corresponds to the interior unknowns,
A22 corresponds to the boundary unknowns,
A 12 corresponds to the connections between interior and boundary unknowns.
After computing the Schur complement, the stiffness matrices can be written in the fol-

lowing form:

(2.17) t_._BABT=IA11 0 ]0 z2
where

T -1/22 A9.2 A12All A12

is the Schur complement of A with respect to A ll and

(2.18) B
a 2a[11 I2
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The elemental load vector will be modified similarly by

(2.19a) [bl, b2] T,

where

(2.19b) b2 b2 AzA-{llbl.
Remark The condensation of internal unknowns is processed element by element, so

these computations are fully parallizable.
DEFINITION 2.1. Let A (aij be an n n matrix with eigenvalues )1, < <_ n. Then

(2.20) p(A) =_ max I)il
l<i<n

is the spectral radius ofthe matrix A.

3. Textured decomposition method.

3.1. The TD method. The TD method 12] for the p-version ofthe finite element method
is a new class of linear iterative algorithms, using a class of parallel algorithms developed in
different contexts at Washington University 18], 19], [20]. Unlike the standard iterative meth-
ods, the TD method uses multiple splittings of A called leaves, say (D1, El), (D2, E2)
Dm Em and

(3.1) A D1 E D2- E2 Dm Era.

The algorithm for the m-leaf TD method is defined as

(3.2a) Dlx(k + 1) Ex(k) + b,

(3.2b) Dzx(k + 2) E2x(k + 1) + b,

(3.2c) Dmx(k -+- m) Emx(k + m 1) + b, k 1, 2

In each splitting (Di, Ei), Di is an approximation of A and -Ei contains the remaining
nonzeros of A. In the TD method, we use multiple approximations of A in round-robin
fashion which yields a textured group of decompositions of the system matrix A. In this way,
the approximation error incurred in one splitting is compensated by the other splittings in the
overall TD. The central feature of our investigation is to find a choice of D, E1 Dm, Em
for the p-version of the finite element method to assure rapid convergence and minimal idle
time.

In our investigation, we focus on two-leaf TD. First we discuss how to choose the split-
tings. The system matrix A can be written in block form

All A2 A13 1(3.3) A A21 A22 A23
A31 A32 A33

then we choose the two splittings:

(3.4a)
All 0 0

D1 0 A22 A23 -El
0 A32 A33

0

A21
A31

A12 A13
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FIG. 3.1. Superelement.

o I io
o

(3.4b) D A A 0 -Ea 0 0 A
0 0 A33 A31 A32 0

In the above decomposition, the dimensions of All and A33 are identical, say m m. Then
the overlap between two leaves is of dimension (n 2m) (n 2m). The two-leaf TD takes
the form

x q,)(3.5a) DlX(k+l) E1 + b,

(3.5b) D2x(k+2) E2x(k+l)-+ b.

Equations (3.5a,b) can be solved either by a direct solver or by an iterative solver. We discuss
this later.

3.2. The TD method applied to the finite element method. In this paper, we consider
the parallel implementations of the TD methods for solving the system of linear equations
(3.1) derived from the discretization of a two-dimensional elliptic problem by the p-version
of the finite element method on rectangular meshes. In order to be applicable to a parallel
computer, first, we group the elements into clusters. We call each cluster a superelement. A
superelement can be one element, two adjacent elements, or several adjacent elements. In our
investigation, we use four adjacent quadrilateral elements as a superelement. (See Fig. 3.1.)
Let A be the assembled stiffness matrix corresponding to a superelement. Our objectives are
to partition A so as to achieve two goals: (1) rapid convergence and (2) maximum load balance
in parallel computation.

Now we discuss how to partition the matrix A. Suppose matrix A is an assembled
stiffness matrix for a superelement with all internal variables eliminated by computing the
Schur complement. The matrix A can be reorganized as the block form

(3.6) A A21 A22 A23
A31 A32 A33

We consider two ways to partition these blocks, which we denote as BLOCK1 and BLOCK2.
In BLOCK1, each block is chosen as follows"

All corresponds to all side variables of sides 1,2,n,e;
A22 corresponds to all vertex variables;
A33 corresponds to all side variables of sides 3,4,s,w.

In BLOCK2, each block is chosen as follows"
All corresponds to side variables of sides 1,2,n,e of order < p 1;
A22 corresponds to all vertex variables and pth-order side variables;
A33 corresponds to side variables of sides 3,4,s,w of order < p 1.
Remark. Block A22 is the overlap of the two leaves. It is a key part of our partitioning,

which will help to accelerate the convergence, in our numerical investigations, we found
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FIG. 3.2. General case.

that the error in the variables corresponding to vertices always decreased slower than other
variables. If we put these vertex variables in the overlap, they will be computed twice (once in
each leaf) per iteration. This will help to decrease the error. In BLOCK2, we use the hierachic
property of the p-version of the finite element method and put the pth order of side variables
in A22 as perturbation to the variables of order < p to accelerate the convergence.

Generally, we use N superelements, each superelement contains four adjacent elements,
and there are a total of 4N elements. (See Fig. 3.2.) The assembled stiffness matrix is in the
form

All A12 A13
A21 A22 A23
A31 A32 A33

X

X

X

X

A44 A45 A46
A54 A55 A56
A64 A65 A66

X

X

X

X

X

X

An-2,n-2 An-2,n-1 An-2,n
An-l,n-2 An-l,n-1 An-l,n
An,n-2 An,n-1 An,n

The matrices indicated with X’s correspond to coupling between different superelements. The
diagonal blocks whose submatrices are denoted by Aij have been emphasized because they
are used in the textured decomposition.

Using the two-leaf TD method, Di is chosen as

AI
0
0

0 0
A22 A23
A32 A33

A44 0 0
A55 A56
A65 A66

Y

An-2,n.2 0 0
An-l,n-1 An-l,n
An,n-1 An,n

"22
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All A12 0

A21 A22 0
0 0 A33

Z

Z

Z

where n 3N.

A44 A45 0

A54 A55 0
0 0 A66

Z Z

Z

An-2,n-2 An-2,n’ 0

An-1 n-2 An-r1,n-1 0
0 0

In the above splitting, each diagonal block corresponds to a superelement, so for N
superelements, there are N diagonal blocks. Each block is defined as before. To solve
equation (3.5a), we need to solve

(3.7a)
n

(k+l) AliXk) -[-- b,AllX
i71

A3ix}k)
+

b3
(3.7b)

A32 A33 x3

For (3.5b), we need to solve

(3.8a)
A21 A22 x2 (k+l) +

j:fil,2 A2jXj b2

(3.8b) a33xk+2) (k+l)
A3jx) q- b3.

j3

In (3.7a,b) and (3.8a,b), the system matrices, i.e., All,

A32 A33 A21 A22
and A33, are all symmetric positive definite by the property of the p-version of the finite
element discretization. These equations are solved using Cholesky factorization and a block
forward solver.

From (3.6),

x(k+2) Dl E2x(k+l) .if- Db
(3.9)

D1E2DIElx (:) + R,

where

(3.10) R D-1E2D-lb -1- Drlb.
So the iteration matrix for the two-leaf TD method is

(3.11) G1 D1E2D-I.E1,
and the convergence rate of this algorithm depends on the spectral radius of the iteration
matrix G1.
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3.3. Preconditioning. We note that, for the iterative method, the system M-lAx
M-lb is called the preconditioned system of system (3.1). The matrix M is called the "pre-
conditioner." In this section, we discuss the PCG method [7], the PTD method, and how to
choose a proper preconditioner to accelerate the convergence.

3.3.1. The PTD method. In order to reduce the spectral radius of the iteration matrix
G1, we introduce a PTD method with preconditioner M-. The idea of a PTD method is to
modify the residual in each iteration, then update x. The algorithm is as follows.

ALGORITHM 3.1 (PRECONDITIONED TEXTURED DECOMPOSITION METHOD).
Given a symmetric positive definite matrix A E nxn and b E )n we use a two-leaf TD
method with preconditioner M and splittings D, D2, El, and E2 to solve the system of the
linear equation Ax b.

(3.12a)

(3.12b)
(3.12c)
(3.12d)
(3.12e)

(3.12f)
End

Setk 0, x 0, r b

while (llxk/2 xk < e)
Solve: M-?k r

Update: x + ?
DlXk+l EI + b

D2x+2 E2xk+ + b

Update k

r b- Ax

Since the auxiliary system M-1 r must be solved at each iteration in each precondi-
tioned method, it is critical that this system be "easy" to solve. On the other hand, in order that
the preconditioning be effective, we want preconditioner M to be a "good" approximation of
A..Clearly, the two requirements are in conflict since the more closely M approximates A,
the more likely that the system M-iF r will be nearly as difficult to solve as the system
Ax b. We next discuss how to choose an efficient preconditioner so that the convergence
is very fast and the equation M-1 r is easy to solve.

3.3.2. Preconditioner. In the PTD method, from Algorithm 3.1,

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

xk/2 G1-k -I- R

GI(X+?)+R
G(x+Mr)+R
Gl(X+M(b-Ax))+R
G(I MA)x + GIMb + R,

where G and R are defined in (3.11) and (3.10), respectively.
The convergence rate of the PTD matrix depends on the spectral radius of the matrix

(3.14) G = GI (I MA).

If M- A, then I MA 0, and 0; the iteration will terminate immediately.
In our investigation, we focus on choosing a proper preconditioner M- for the p-version

approximation system equation, so that the spectral radius of iteration matrix (1 is as small
as possible.
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More specifically consider a system of linear equations

(3.15) Ax b,

where A is the assembled stiffness matrix corresponding to a superelement with internal
variables eliminated. We reform matrix A into block forms BLOCK1 and BLOCK2 as in

3.2. The preconditioner M will be chosen as

(3.16)
I 0 0 1M 0 A22 0

0 0 I

In 5, we show numerically that M-1 accelerates the convergence ofthe TD method. There are
other preconditioners that have been used for the PCG method, such as the incomplete Cholesky
factorization, polynomial preconditioners (SSOR, SOR, GS, etc.) [7], and the multigrid method
as a preconditioner [15]. In 5, we study the use of the preconditioner M-1 defined in (3.16)
for the PCG and the PTD methods.

3.4. The RTD method. In the p-version of the finite element method, we use polynomi-
als of high degree for approximation. For larger p, each block of the matrix A is relatively big
and load imbalance is considerable. So we divide each block of matrices into smaller blocks
recursively and use the TD on the smaller blocks.

Consider the system of the linear equation

(3.17) Ax b,

where A is defined in 3.2 as BLOCK1.
We use a two-leaf TD to solve (3.17).
(i) Level one.

A=D1-E1 =D2-E2,

where

(3.19) D1 0 A22 A23 D2 A2
0 A32 A33 0

A12
A22
0

0

0
A33

are leaves. Let

(3.20a) D --= [AI],

A
(3.20b) D _=

A2 A22 D22 -= [A33],

which we call partition of leaves

o D
Similarly, we define E, E, E, and E.

D2
DI 0.
0 D
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At the first level, we solve

(3.22a)

(3.22b)

D1xk+l Elxk + b,

D2xk+2 E2xk+l + b,

where

(3.23a)

(3.23b)

i.e., we solve

(3.24a)

(3.24b)

(3.24c)

(3.24d)

D 0 Xl,1 Xl,1 .qt_
0 D X1,2 El2 0 X1,2 b

k+2 0 E X2,1D 0 x2,1 +
0 D2 x2,2 E22 0 xe,2 b22

k+l Elxk
lXl,1 1,2 -+- b,

D2 k+l E2xlXl,2 1,1 --b,
D- k+2 ,-,1 k+l

"2,1 /52X2,2 -+-b21,
De k+2 ,-2 k+l

2X2,2 /52X2,1 + b.
Note. Equations (3.24a) and (3.24b) can be solved simultaneously, (3.24c) and (3.24d)

can be solved simultaneously, but (3.24c) and (3.24d) need results from (3.24a) and (3.24b).
That is, the partitions of leaves can be solved in parallel, but leaves have to be solved sequen-
tially.

(ii) Level two. To solve equations (3.24a-d), we use the two-leafTD method again. First,
we discuss how to solve (3.23a). We reorganize D as follows"

(3.25) D= Al A12 A13
al a2 A3

where

Let

Al corresponds to all side variables of side 1 and n,

A2 corresponds to all vertex variables,

A3 corresponds to all side variables of side 2 and e.

(3.26) 1,1 1,1 1,2 1,2D D E D E

where

(3.27a)

(3.27b)

1,1 D1 0
0 A212 A3i, i,2D1

0 D
0 a2 a3

1,2 D1 0
D al a2 0

0 /31,2,2
’1 0 0 A33
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1,1,1

(3.29a) D1
0

1,2,1D1
0

i.e., we solve

Now we need to solve

1,1. kx+l 1,1xkl(3.28a) D1 x1,1 E1 1,2 + b,
,-,1,2 k1+2 1,2. kl+l(3.28b) r, Xl, ---E .Xl, 2 +b1,

where kl is the iteration index in this level. We have

_[o1,1,2E1

[o(3.29b)
1,2,2E1

(3.30a)

(3.30b)

(3.30c)

(3.30d)

0 x1,1,1,1
1,1,2 Xll12D1
0 Xl,l,2,1
1,2,2 Xl 12,2D1

E1 Xl,l,l,1 +
b1’20 X1,1,1,2

1,1

E1 x1,1,2,1

0 x1,1,2,2

1,1,1. kl+l 1,1,1xkl 1,1D1 "Xl,l,l,1 E1 1,1,1,2 + bl,l,
1,1,2xk+l 1,1,2xka 1,2D1 1,1,1,2 E1 1,1,1,1-t-bl, 1,

1,2,1. k+2 1,2,1. k+l 1,1D1 "Xl,l,2,1 E1 "1,1,2,2 -+- bl,2,
1,2,2. k+1 ,-1,2,2 kx+l 1,2D1 -’t1,1,2,2 t X1,1,2,1 + bl,2.

-- 1,2bl,2

Similarly, we can use a two-leaf TD method to solve (3.24 b,c,d).
(iii) Level three. To solve equations (3.30a-d) in level two, we use two-leaf textured

1,1,1decomposition again. For equation (3.30a), we reorganize the block of matrix D into the
following form:

A1,1 A1,1 A1,1
11 12 13

1,1 1,1 1,1A21 A22 A23
1,1 1,1 1,1A31 A32 A33

1,1,1(3.31) D

where

111A corresponds to side variables of side 1,
1,1A22 corresponds to all vertex variables,
1,1A33 corresponds to side variables of side n.

We then proceed as in BLOCK1 and BLOCK2.
A binary tree can be used to represent the RTD method. A binary tree is a tree where

each node in the tree has 0, 1, or 2 children. Children are often referred to as "left child" or
the "right child." The connection between children and their root parents are called links. We
define the left link and the right link with respect to the connections between a parent with
a left child and a right child. Figure 3.3 shows the mth-leaf binary tree. Figure 3.4 shows
the three levels of the RTD. When we use preconditioning for the RTD method, we modify
residuals in the final level by the preconditioner

I 0 0 11,k
l,i2

i2(m-1) 0 A22 0

0 0 I
(3.32)

where l, k 1, 2.
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where ivj = 1,2 and k = 1.,2 ,2(m- 1)

FIG. 3.3. mth-leafbinary tree.

Root

Lvel

FIG. 3.4. Three-level RTD.

4. Parallel implementations. In this chapter, we discuss how to apply our iterative
methods to a distributed parallel computer. We will discuss the mapping of a superelement
onto parallel processors, communication strategy, and performance analysis. Our computa-
tions were performed on an NCUBE/6, a 64-processor MIMD parallel computer with hyper-
cube architecture.

4.1. Superelements mapping. The hypercube interconnection system was chosen for
three main reasons:

(i) It is an inductive structure; i.e., each node has its own memory, so it is usually easy to
write programs that are independent of the hypercube.

(ii) It maps directly onto the most important common interconnection patterns.
(iii) It is so extensively interconnected that it gives a good approximation of maximal

interconnection (every processor connected to all others). Thus, if a problem does not have an
obvious interconnection structure, it will normally be acceptable to assign subproblems arbi-
trarily to hypercube nodes and let the communication software take care of routine messages
[16].

In 3.2, we discussed how to construct a superelement. Now we map superelements onto
a parallel computer. In our investigation, we use four adjacent elements as a superelement.
We use a two-leaf TD method for each superelement and map each superelement onto two
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processors Now we show how to map a superelement onto two processors. Suppose A is the
global stiffness matrix defined in 3.2 for the general case

All A12 A13
A21 A22 A23
A31 A32 A33

X

X

X

X

A44 A45 A46
A54 A55 A56
A64 A65 A66

X

X

X

X

X

X

An-2,n-2 An-2,n-1 An-2,n
An-l,n-2 An-l,n-1 An-l,n
An,n-2 An,n-1 An,n

--22

When using the two-leaf TD method, we solve the following equations in each superelement.
In the first-leaf method we solve

(4.1a)

(4.1b)

Allxk+l) (k)AliX -- bi71

A32 A33 x3
i52,3 A3ix{k)

+ b3

and in the second-leaf method we solve

(4.2a)

(4.2b)

A21 A22 x2
"at-

j51,2 A- (k+l) b2
zj.j

A33xk+2) Aj.j -+- b3.
j:3

Equation (4.1a) will be solved in one processor and (4.1b) will be solved simultaneously in
another processor. Similarly, we solve (4.2a) in the same processor where we solve (4. la), and
solve (4.2b) in the processor where we solve (4.1b). In this way, we map one superelement
onto two processors.

4.2. Special communication strategy. In 3, we discussed how to construct and assem-
ble the stiffness matrix and how to partition the assembled stiffness matrix into two kinds
of blocks. Now we reconstruct and assemble the stiffness matrix so that we only need to
assemble stiffness matrices locally (superelementwise) and communicate between neighbors.
This is important on an N cube because communication between neighboring processors is
much faster than between distant processors.

Let A be the assembled stiffness matrix for a superelement "2 with internal variables
eliminated. See Fig. 4.1. A can be written as
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1

SW s SE

FIG. 4.1. Superelement 2

A11 A12 A13 1(4.3) A A21 A22 A23
A31 A32 A33

In 3.2, we have discussed two ways of partitioning A.
For BLOCK1, each block of matrix A is chosen such that
AI corresponds to all side variables of sides 1,2,n,e;
A22 corresponds to all vertex variables;
A33 corresponds to all side variables of sides 3,4,s,w.
For BLOCK2, each block of matrix A is chosen such that
A ll corresponds to side variables of sides 1,2,n,e of order < p 1;
A22 corresponds to all vertex variables and pth order side variables;
A33 corresponds to side variables of sides 3,4,s,w of order

___
p 1.

(4.4)
A AI2

A ] A21 A22
L A31 A32

A13
A23
A33

Atll
AI
AI
AI
AI
AI

2 A13

A42 A43
A52 A53
A62 A63

A 14 A5

A4 A5
A4 A5
A4 A5

Atl6
A6
A6
A6
A6
A6

(4.5) A

At
A

AI
A
a

2 A13

A2 A3
A2 A3
A2 A3

Atl4 Atl5 Atl6-

A4 A5 A6
A4 0 A6
A4 A5 0

Now we reconstruct A in the following way. Instead of assembling the global stiffness ma-
trix, we assemble the stiffness matrix of each superelement. So, for each superelement, the
assembled stiffness matrix takes the form BLOCK1, where

A corresponds to all side variables of sides 1,2 and boundary n,e;

A2 corresponds to all vertex variables excluding SW;
A3 corresponds to vertex variables on SW;
A4 corresponds to all side variables of sides 3 and 4;

A5 corresponds to side variables of boundary w;

A6 corresponds to side variables of boundary s.
From (4.4) we see that A’I is the same as All, A22 is broken into two parts with diagonals A2
and A3, and A33 is broken into three parts with diagonals A4, a5, and A6. Let A3 0,

A5 0, and A6 0. We have the new stiffness matrix for the superelement
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Let

(4.6) A’= D1 E1 D2 E2,

where

(4.7)

(4.8)

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Ah A5 A6
A4 0 A6
A4 A5 0

AIll
0

0
D2 0

0

0 0 0 0 0

A2 A3 A4 A5, A6
A2 0 A4 A5 A6
At2 A3 A4 A5 A6
a2 a3 A4 0 A6
A2 a3 a4 a5 0

Similarly, we define E1 and E2.
Using the two-leaf TD method we have

(4.9)

(4.10)
D1xk+l E1xk -+- b,

D2xk+2 E2xk+l -[-b,

where

(4.11a)

A12 A13
A Ah A
AI A2 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Ah A5 A6
A4 0 A6
A4 A5 0

Xl 7 (k+l)

X2

X3
X4

X5

X6

0 0 0

0 0 0

0 0 0

AI A2 A]3

A52 A53
al a2 a3

0 0 0

0 0 0

0 0 0
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(4.1 lb)

AI
0

0

0

0

0

In (4.11 a,b), each matrix block is mapped onto a processor. After one iteration, we send
xs, which is associated with boundary w, to the neighbor processors on the west; send x6, which
is associated with boundary s, to the neighbors on the south; send x3, which is associated with
vertex SW, to the neighbors on the south, west, and southwest. Meanwhile, e receives values
from the neighbors on the north, east, and northeast. (See Fig. 4.2.) Then we communicate
values between the two processors associated with the same superelement, then update. In this
way, we avoid assembly of the global stiffness matrix and global communication. Intuitively
speaking, the west boundary w is a common boundary ofsuperelemente and its superelement
to the west. So the variables xs, which are the variables associated with boundary w, depend
on both superelement "e and its western superelement. After each iteration, superelement "e
sends x5 to its western superelement. The western superelement will add the received x5 to
its X which is associated with the western node of f2e, i.e., w.

For BLOCK2, we reconstruct the local stiffness for a superelement as follows"

-A A12 A’13 A’14 A5 a’6 A7 A’8-
a’2 A’22 A’23 A’24 a’ A’26 A’27 A’28
a’3 A’32 A’33 A’34 A’35 A’36 a7 a’38

F All a12 a13 1(4.12) A [A21 A22 A23 A41 A42 A43 A44 A45 A46 A47 A48
LA A A A A A A4 A A6 A A

A A A A4 A A6 A A
A A A A4 A A6 A A
_A A A A4 A A6 A A_

where

A’ corresponds to all side variables of sides 1,2, n,e of order < p 1"

A22 corresponds to all vertex variables excluding SW, and the pth-order side variables of
sides 1, 2, 3, 4, n, and e;

A corresponds to vertex variables on SW;
A4 corresponds to pth-order side variables on side w;

A5 corresponds to pth-order side variables on side s;

A6 corresponds to all side variables on 3,4 of order < p 1;
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FIG. 4.2. Local communication.

A7 corresponds to all side variables on w of order < p 1;

A8 corresponds to all side variables on s of order < p 1.
Now we let a3 0, a4 a5 0, a7 A8 0; stiffness matrix A is changed to

(4.13)

A]
A21
A31
A41
A51
A61
A71
AI

2 A13 A14 A15
A2 A3 A4 A5
A2 0 A4 A5
A2 A3 0 A5
A2 A3 A4 0

A2 A3 A4 A5
A2 A3 A4 A5
A2 A3 A4 A5

A16 AI7
A6 A7
A6 A7
A6 A7
A6 A7
A6 A7
A6 0

A6 A7

A’18
A8
A8
A8
A8
A8

0

Similarly, we define D1, D2, El, E2; then using two-leaf TD method we have

(4.14)

(4.15)

D1xk+l Ex + b,

D2xk+2 E2xk+l -]-b,

where

4.3. Performance analysis. Our performance metric for a parallel computer is the speed-
up factor S associated with a particular calculation. The way speedup is defined varies widely.
The following are two common formulations for speedup"

(4.16) So(p)

(4.17) SN(p)

Tseq (P)
TN(p)

T (p)
TN(p)

where TN (p) is the time required to solve a problem in parallel on N processors, T1 (p) is the
time required to execute a parallel program on one processor, while Tseq is the time required
to execute an equivalent sequential program on one processor.

It is unrealistic to use equation (4.17), since TI(p) includes all the overhead of parallel
computing. We choose equation (4.16) to calculate the speedup.
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FIG. 5.1. Model problem 1.

Note. (1) Speedup is dependent on both the number of processors used and the size of
the problem to be solved on the parallel computer. The polynomial degree p determines the
size of the problem.

(2) The sequential computing time Tseq is measured by running the program (no parallel
constructs at all) on a single processor. If Tseq cannot be measured directly, then it can usually
be found by running a small problem on one processor and then extrapolating to the real
problem by using a predicted or measured dependence on problem size.

5. Numerical results and comparisons. In previous sections, we discussed the p-version
of the finite element method and how to use this method to discretize elliptic partial differen-
tial equations; we then introduced a new type of iterative method, the TD method, to solve
the system of linear equations generated by the p-version of the finite element method on a
parallel computer. To determine whether the TD method converges faster than the classical
iterative methods and CG method, we use numerical experiments for solving two model prob-
lems. These experiments demonstrate how efficient the TD method is, compared with other
classical iterative methods.

5.1. Model problem 1: Rectangular domain, near singular solution. Now we discuss
a model problem, a Laplace equation on a rectangular domain with a near singular solution.
Consider the equation

Au=0 on f2=[0,1][0,1],

with

Ou Ou
(5.2) 0--- (x, 0) nn (0, y) 0,

(5.3)
On

(X, 1) gl (x),

(5.4)
On

(1’ y) g2 (Y)

where g (x) and g2 (y) are determined so that the solution is

(5.5) u (x, y) Re[(a2 q- z:z)- q_ (a2 z2)- 2a,

with constant a > and z x + iy. This example is taken from Babuska et al. [4]. See
Fig. 5.1.

Note that the solution u is a harmonic function with a singularity at z +a, +ia. The
solution becomes less smooth as a --+ 1. This is a typical model problem in structural mechan-
ics, where the solution has a singularity in a known location. The parameter a characterizes
the regularity of the solution. We solve this problem for a 1.05.

We divide the domain into four superelements (see Fig. 5.2); then we solve it with eight
processors. Using the p-version approximation (the finite element computations were made
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e =I.05 p=8 BLOCK1

10
z

10

10

10

10

10"

10"

a=I.05 p--8 BLOCK2

0 20 40 60 80 1

FIG. 5.2. Convergence of iterative methods.

TABLE 5.1
Comparison ofnumber of iterations.

RTD TD CG GS SOR
Bi 36 62 66 251 161 133
B2 30 52 66 251 161 133

TABLE 5.2
Comparison ofnumber of iterations (preconditioned iterations).

a PCG(B 1)
1.05 50

PTD(BI) PRTD(B1) PCG(B2) PTD(B2)
42 28 45 38

PRTD(B2)
24

with the commercial code MSC/PROBE), we generate the elemental stiffness matrix and load
vector. We eliminate the internal variables elementwise; then we assemble the stiffness matrix
and the load vector. We solve the following system of the linear equation

(5.6) ax b,

where A and b are the assembled stiffness matrix and load vector, respectively.
We choose initial value randomly between 0 and 1, and the iteration is stopped when

[Ix x _< 10-6. The true solution x is achieved when the iteration satisfies [IXk+2 Xk <
10-]2. First we compare the number of iterations of the RTD, two-leaf TD, CG, Jacobi (J),
GS, and SOR methods for p 8. Table 5.1 shows the results of the number of iterations for
p 8 using partition BLOCK1 and BLOCK2.

Remark 5.1. From Table 5.1 we see that both the RTD and the TD methods converge
much faster than the classical iterative method and about 30% to 60% faster than the CG
method. The RTD method converges 30% to 40% faster than the nonrecursive TD method.

Table 5.2 shows he results of the number of iterations of the PCG, PTD, and PRTD
methods for different partitions. Compared with the results in Table 5.1, we see that the
preconditioned methods converge faster than unpreconditioned methods. The PRTD method
has the fastest convergence rate among these iterative methods. It seems that when we use more
superelements, BLOCK2 will accelerate the convergence slightly compared with BLOCK1
but at the high cost of the communication and programming complexity. We suggest that for
a small number of superelements, BLOCK2 should be used to achieve best performance; for
a large number of superelements, BLOCK1 should be used.

Figure 5.2 presents the convergence of the iterative methods: the RTD method (solid line),
the TD method (dashed line), and the CG method (dashed-dotted line) for different partitions.
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FIG. 5.3. Convergence of iterative methods (preconditioned).

TABLE 5.3
Comparison ofspectral radius.

TD(B 1) PTD(B 1) RTD(B 1) PRTD(B 1) TD(B2) PTD(B2) RTD(B2)
0.741 0.708 0.641 0.580 0.741 0.699 0.631

PRTD(B2)
0.551

Figure 5.3 shows the convergence of the PRTD method (solid line), the PTD method (dashed
line), and the PCG method (dashed-dotted line) for different partitions. The left figures ofboth
Figs. 5.2 and 5.3 are BLOCK1 case, and right figures are BLOCK2 case. ek is the error; k is
the number of iterations. Comparing Fig. 5.3 with Fig. 5.2, it is clear that the preconditioning
accelerates the convergence. RTD converges faster than TD and CG; PRTD converges faster
than PTD and PCG. BLOCK2 improves the convergence, but communication is expensive.
This will be shown in performance analysis.

Table 5.3 shows the spectral radius of the iteration matrices for TD, PTD, RTD, and PRTD
for different partitions. For TD, the iteration matrix is G1 D EzD-1E (see equation
(3.22)); for PTD, the iteration matrix is ( G1 (I M-1A). (See equation (3.22).) When
we use RTD and PRTD, we use equation p(A) , e+__l to compute the spectral radius.

ek
Remark 5.2. Table 5.3 shows that the PRTD method has the smallest spectral radius

among those iterative methods in the table. BLOCK2 improves the spectral radius a little but
not significantly, but requires more time to communicate among each processors. The initial
error e increases because x is chosen between 0 and 1, whereas the exact x is of larger
magnitude. Therefore more iterations are needed to achieve the given accuracy.

In the performance analysis, first we present theexecution time required for each iterative
method for both BLOCK1 and BLOCK2. Both global communication and local communi-
cation strategies are used in our numerical experiment. The local communication strategy, as
introduced in 4.3, is also used in the CG method. Then we implement the various algorithms
on 2, 4, 8, 16, and 32 processors and compute the speedup ratios of these applications. In
the following table, L refers to the local communication strategy, and G refers to the global
communication strategy.

Tables 5.4 and 5.5 show the execution times of the TD, PTD, RTD, and PRTD methods
running on 16 processors for different partitions for both global communication strategy and
local communication strategy. The data shows that it takes more time to use BLOCK2 than
to use BLOCK1. Local communication strategy has greatly reduced the communication time
(more than 50%).

Figure 5.4 shows the speedup of the RTD method (solid line), the TD method (dashed-
dotted line), and the CG method (dashed line) achievable for different choices of parameters
and communication strategy. The left-hand side of the figure shows the speedup ratio using
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TABLE 5.4
Comparison of time (sec.) (BLOCK1).

TD(L) PTD(L) RTD(L) PRTD(L) TD(G) PTD(G) RTD(G) PRTD(G)
CPU 103.35 79.32 73.05 55.01 112.91 88.27 82.19 61.92
Comm. 6.08 5.54 5.46 5.28 14.05 12.23 11.44 10.20
Comp. 89.82 70.02 59.54 43.18 89.95 70.11 60.04 43.97

TABLE 5.5
Comparison of time (sec.) (BLOCK2).

TD(L) PTD(L) RTD(L) PRTD(L) TD(G) PTD(G)
CPU 112.44 87.91 78.74 61.25 128.11 100.01
Comm. 15.09 13.21 11.34 10.02 28.49 20.33
Comp. 86.21 67.58 57.04 41.22 86.20 67.45

RTD(G) PRTD(G)
91.35 66.59
18.85 15.01
57.09 41.14

Ss(p) a=l.05 Olobal Ss(p) a=I.05 Local

20 20

,s ,s i--"{’ ,!
10 10

5, 5

10 20 30
N

10 20 30 N

FIG. 5.4. Speedup ratio.

the global communication strategy, and the local communication strategy is shown on the
right-hand side. It shows that the local communication strategy increases the speedup ratios.
In most cases, the RTD method has the best performance.

From the results ofmodel problem 1, it is clear that the PRTD method is the winner among
the various iterative methods we discussed both on convergence rate and communication time.
The preconditioner we used accelerates the convergence of the CG, TD, and RTD methods.
The local communication strategy saves almost 50% of the communication time required for
the global communication. BLOCK2 requires more communication than BLOCK1 for the
multiple superelements case.

Similar results have been obtained for p 6, a 1.5, 1.1, 1.05, and for p 8, a
1.5, 1.1.

5.2. Model problem 2: L-shaped domain problem. The second model problem is a
Poisson equation on an L-shaped domain. Consider the model problem, a two-dimensional
Poisson equation

(5.7) -Au=f inf2

with boundary conditions

u 0 on 1,2 -’3

Ou
=0 onF 1, -’4,

On
Ou

on ’5 "6.
On
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Assume f 0; the exact solution is

(2)(5.8) uo(r, O) Z akr()k sin kO.
k=l

From the exact solution we know that there is a singularity at point O. (See Fig. 5.5.) So
we use a geometric mesh (see [2]) to divide the L-shaped domain into eight superelements
which consist of 32 elements. (See Fig. 5.6.) We use the p-version finite element method
discretization of the partial differential equation. The finite element computations were made
with a test code called PEGASYS, which is under de;eelopment by Engineering Software
Research and Development, Inc. After we generate the elemental stiffness matrices and load
vectors, we eliminate the internal unknowns, then assemble the elemental stiffness matrices
into one global stiffness. We are now solving the system of linear equations

(5.9) Ax b,

where A is the assembled stiffness matrix, and b is the assembled load vector. To solve
equation (5.9), we again use two kinds of communications: global communication, which
communicates among all the processors, and local communication, which assembles stiffness
matrices only in each superelement and communicates through its neighbors. Since the clas-
sical iterative methods, Jacobi, GS, and SOR, take more than 500 iterations (the limit we set)
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TABLE 5.6
Comparison ofthe number ofiterations.

RTD PRTD TD PTD CG PCG
p 6 72 ’58 104 78 112 98
p 7 74 64 106 80 115 101
p=8 82 76 112 84 126 105

TABLE 5.7
Comparison ofthe spectral radiusfor different iterations.

RTD PRTD TD PTD
0.815 0.771 0.875 0.842
0.823 0.787 0.881 0.845
0.850 0’822 0.90 0.849

TABLE 5.8
Comparison of time (sec.) (p 6).

TD(L) PTD(L) RTD(L)
CPU 362.5 301.3 258.4
Comm. 68.1 62.3 54.0
Comp. 278.1 250.2 198.5

PRTD(L)
215.1
45.5
174.3

TD(G) PTD(G) RTD(G) PRTD(G)
472.1 411.7 373.8’ 32115
177.4 168.5 156.6 145.1
279.5 252.1 200.i i761;/

TD(L)
cPu 402.5
Comm. 77.1
Comp. 305.2

PTD(L)
345.3
67.2

265.4

TABLE 5.9
Comparison oftime (sec.) (p 8).

RTD(L)
300.4
59.0

214.2

PRTD(L) TD(G) PTD(G) RTD(G) PRTD(G)
272.4 530.6 500.6 445.1
52’5 225.3 208.1 196.5 178.2
192.0 308.5 268.0 215.1 i93.5

to solve the systems of linear equation (5.9), we only use the TD, RTD, CG, PTD, PRTD,
and the PCG methods to solve (5.9). We focus on BLOCK1 which is efficient for multiple
superelements as seen in problem 2.

First we compare the number of iterations of the following methods: the CG, TD, RTD,
PCG, PTD, and PRTD methods. The eight superelements are mapped onto 16 processors. The
initial values are chosen randomly between 0 and 1; the stopping condition is IIxk x _< 10-6.

Table 5.6 shows the number of iterations in the RTD, PTD, TD, PTD, CG, and PCG
methods for different values of p. From Table 5.6 we see that, for the L-shaped domain
problem, TD methods converge faster than CG methods; PTD methods converge faster than
PCG methods with the same preconditioner. Among the above methods we used, the PRTD
method is the fastest convergence iterative method.

Table 5.7 shows the spectral radius of iteration matrices of the RTD, PRTD, TD, and
PTD methods. From Table 5.7, the PRTD method has the smallest spectral radius among the
above-mentioned four iterative methods. Our preconditioner accelerates the convergence of
TD and RTD.

Tables 5.8 and 5.9 show the results of comparison of the execution time of TD, PTD,
RTD, and PRTD for different values of p, using both local communication strategy and global
communication strategy. It shows that PRTD has the best performance. Compared with the
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global communication strategy, local communication strategy saves more than 50% of com-
munication time. L refers to local communication strategy; G refers to global communication
strategy.

Now we apply the above iterative methods on 2i, 1, 2, 3, 4, 5 processors and see
the speedup ratio for each iterative method. Both global communication strategy and local
communication strategy will be discussed. Figure 5.7 shows the speedups achievable for the
RTD method (solid line), the TD method (dashed-dotted line), and the CG method (dashed
line). Figure 5.8 shows the speedups achievable for the PRTD method, the PTD method
(dashed-dotted line), and the PCG method (dashed line). Sly(p) is the speedup ratio we
defined in equation (4.16), and N is the number of processors.

From the numerical results ofmodel problem 2 it is clear that the PRTD method with local
communication strategy has the best performance in both computation and communication.
The preconditioner accelerates the convergence for the CG, TD, and RTD methods. The
PTD method converges faster than the PCG method with the same preconditioner. Local
communication strategy saves almost two-thirds of the communication time required for the
global communication.

6. Conclusions. Based on the numerical results from the two sample problems it is clear
that the PRTD method using local communication strategy has the fastest convergence rate
and best performance among the various iterative methods we discussed. The TD method
converges faster than the CG method both with and without preconditioning. Local communi-
cation strategy saves not only the communication time but also the time required to assemble
the global stiffness matrix and load vector. Superelement structure makes the TD method easy
to map onto parallel computers (as shown here) and achieve high efficiency, i.e., computational
load balance.
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MULTIGRID METHODS FOR SYMMETRIC POSITIVE DEFINITE BLOCK
TOEPLITZ MATRICES WITH NONNEGATIVE GENERATING FUNCTIONS*

GIUSEPPE FIORENTINO AND STEFANO SERRA

Abstract. In this paper we introduce a generalized multigrid method for solving linear systems TN,MX b
where TN,M E ?NMNM is a symmetric block Toeplitz matrix with symmetric Toeplitz blocks. We use a special
choice of the projection operator whose coefficients simply depend on the generating functions associated with
the proposed class of matrices. This choice leads to iterative methods with convergence rates independent of the
Euclidean condition number x2 (TN,M) and of the dimension of the involved matrices. The total arithmetic cost is
O(NM log(NM)) for dense matrices and O(NM) for band matrices with band blocks; in the PRAM model only
O(log(NM)) parallel steps are required. This algorithm is therefore competitive with the preconditioned conjugate
gradient methods proposed by Chan and Jin [SIAM J. Sci. Statist. Comput., 13 (1992), pp. 1218-1235], Ku and Kuo
ISLAM J. Sci. Statist. Comput., 13 (1992), pp. 948-966], Di Benedetto ISLAM J. Sci. Comput., 17 (1996)], and Serra
[BIT, 34 (1994), pp. 579-594] for dense matrices and improves those results for band block Toeplitz matrices with
band Toeplitz blocks.

Key words. Toeplitz matrices, multigrid, iterative methods

AMS subject classification. 65F10

1. Introduction. In this paper we introduce and discuss a generalized multigrid method
[HI, H2] for the solution of linear systems associated with positive definite symmetric block
Toeplitz matrices with symmetric Toeplitz blocks.

We consider the solution of the linear system of the form

(1) TN,MX b,

where
(e)

To T1 TN-1 ai,o ai,1 ai,M-1

TI ". ". ai,1 ". ".

TN,M and Ti
". ". T1 ". ". ai,1

TN-1 T To ai,M-1 ai,1 ai,o

with coefficients aj, related to a continuous nonnegative function a(x, y) as follows:

aj,k - a(x, y)e-i(jx+ky)dxdy, Q [0, Jr] x [0, Jr].

The function a(x, y) is called the generating function of TN,M. All the eigenvalues of
TN,M belong to the range of a(x, y) and, moreover (see [$2]), we have

lim )max(TN,M) maxa(x, y) and lim )min(TN,M) mina(x, y).
N M--- x: Q N M--+ c, Q

Consequently, when the function a (x, y) is nonnegative and vanishes at some point of Q, we
find that TN,M is ill conditioned for any value of N and M. More precisely, the Euclidean
condition number of TN,M, as a function of the dimensions, is unbounded:

lim tc2(TN,M) -t-CX3.
N M-+cx

*Received by the editors July 20, 1994; accepted for publication (in revised form) March 2, 1995.
Dipartimento di Informatica, Universit? of Pisa, Corso Italia 40, 56100 Pisa, Italy (fiorent@di.unipi.it).
Dipartimento di Matematica, Universit of Milano, Via C. Saldini 50, 20133 Milano, Italy.
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Thus, unless some preconditioning is used, all classic iterative methods are very slow.
The state of the art in the most recent literature is the following.
(a) Direct methods:

(1) Fast methods with arithmetic cost of O(NZM3) [Tr],
(2) Superfast methods with arithmetic cost of O(NM logZ(N)) [Mu, Ri].

These methods are not suitable for implementation in a parallel model of computation
since they are intrinsically sequential; this problem is not encountered using iterative methods.

(b) Preconditioned conjugate gradient methods:
(1) Using a preconditioner in the two-level circulant algebra, [Da, KK], and [CJ]

obtain an iterative methodwith an overall arithmetic cost of O(NM(N + M) log(NM)), but
in actual computations the cost is generally O(NM log(NM)), i.e., the cost of a bivariate fast
Fourier transform [BP].

(2) The same result is reported in [DB] where preconditioners have been chosen in
the two-level r algebra [BC].

(3) A cost of O(NMlog(NM)) is proved in [$2] by means of block band Toeplitz
preconditioners with band blocks.

In these cases, a parallel cost of O(log(NM)) is found in practice; for b.3 it is also proved.
In this paper, at first we devise a multigrid algorithm for block-r systems; then we extended

it to the Toeplitz case. The main features are the following:
The overall arithmetic cost is O(NMlog(NM)) in the sequential model and

O(log(NM)) in the parallel case. Moreover, when TN,M is a band block Toeplitz matrix
with band blocks, our algorithm achieves a linear cost of O(NM) arithmetic operations,
while methods b.1, b.2, and b.3 lead to the same arithmetic cost of O(NM log(NM)). This
feature makes our method also profitable as an efficient preconditioner solver for methods like
b.3.

The choice of a projector, the most delicate step in a multigrid scheme, is straightfor-
ward in our method since, in this case, the projector simply depends on some properties of the
generating function a(x, y).

The main idea is to define a projector operator in terms of the bivariate function associated
with the matrix; in fact, we only require the knowledge of the zeros of a(x, y) and their
multiplicity to devise a rapidly convergent method.

The paper is organized as follows: in 2 we introduce the two-grid method; in 3 we
describe the algebra [BC], its connections with Toeplitz matrices, and a special kind of
two-grid method (TGM) for these matrices.

In 4 we perform a structural analysis of the two-grid iteration matrix that, in 5, allows
us to devise a class of projector operators which guarantee a convergence rate independent of
the size of the related linear system.

In 6 we exploit the close spectral similarity of and Toeplitz matrices applying our

multigrid technique to Toeplitz systems. All numerical results reported in 6 confirm the
effectiveness of the method.

2. Overview of a TGM. Given an n x n linear system Ax b, an iterative method for
its solution

(3) Z(i+1) Sz(i) ’t-12 Sc(z(i)),

and a k x n (k < n) matrix p, a general TGM is defined by the following steps [H1, Gr]:

Step 1. xi’ S (x(i),
Step 2. dn Ax(i’v) b,
Step 3. dk pd,,



1070 GIUSEPPE FIORENTINO AND STEFANO SERRA

Step4. A pApr,
Step 5. Solve Ay d,
Step 6. x(i+1) x(i’) pry.
Step 1, the "smoothing iteration" in the literature, consists of cr sweeps of the iterative

method (3). For abroad class ofmethods like (3), after a few iterations the error dn Ax(i’cr) -b
is typically confined in a subspace where the method converges slowly. When this subspace
is known, it is possible to accelerate the convergence by means of a "coarse grid correction"
that computes and subtracts from x(i’) an approximation of the error dn.

Steps 2-6 define this coarse grid correction: the error is first multiplied by the rectangular
k n matrix p to obtain the projected error d pdn; then a "correction" is calculated on a
k-dimensional subspace strongly related to the subspace where (3) is slowly contractive.

The global iteration matrix of a TGM is therefore given by

(4) TGM(S, p) [In pr (pApr)-lpA] S

where the expression within brackets is related to the coarse grid correction while the rightmost
matrix comes from the cr sweeps of (3).

In order to define a fast generalized TGM for block Toeplitz problems, we need to find
a matrix p that better exploits the spectral features of A and $. The objective is to arrive
at a spectral radius of the matrix TGM(S,p) smaller than and independent of the dimen-
sion n.

3. The TGM for "r matrices. In this section we introduce a generalized TGM for block
r matrices, but first we recall some important facts about r matrices and their strong relations
with the Toeplitz class.

The two-level algebra rN,M is generated by the matrices Hn (R) lt and IN (R) Ht, where

0 1 O

oo o

0 0

and (R) denotes the Kronecker product defined by [aij]ij (R) B [aijB]ij.
Since H is diagonalized by

cosxl o
ir

H 2F ".. F, wherex) k 1’+
o cos(x)

andF [fl Ifg] with fi V/2 [sin iJrc ]kj__l, it follows that the eigenvectors of any "gN,M

matrix are given by the columns of FN (R) FM.
There is a strong link between rN,t and the Toeplitz class; namely, given the Toeplitz

matrix

ao al ak-1

ak-1 al

al

ao
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and the Hankel operator

H(T)

ae ak-1 0 0

ak- ak-

0 0 a_l ae
a 75N,M approximation AN,M of T is obtained by the following two steps [DB]"

(1) for each block Ti in (2), define Ai Ti H(Ti) and

Ao A AN-1

AN-1 A1 Ao
(2) define AN,M ’ H(’) in terms of blocks.
The matrix AN,M E "CN,M is closely related to TN,M; in fact its eigenvalues otu,v are

obtained by sampling an approximation of the generating function of TN,M:

(5) Otz,v Trunc(a, N 1, M 1)l(xN,xM
where Trunc(a, p, q) is the bivariate trigonometric polynomial of degree p and q given by
the first terms of the Fourier expansion of a(x, y).

For the solution of the linear system AN,MX b we use the iterative method of the
form

X(i+1) (I- AN,M/OI)X(i) @ b/or, where ot maxa(x, y).
Q

(6)

Since the Fourier transform is a linear operator and the iteration matrix SN,M I AN,M
of (6) is an affine transformation of A.N,M, it follows that the generating function of SN,M
is given by s(x, y) a(x, y)/ot. The value of s(x, y) is therefore close to one when
a(x, y) is close to zero; consequently (6) is slowly convergent on the subspaces generated by
the eigenvectors of AN,M corresponding to eigenvalues close to zero.

We obtain an efficient algorithm introducing a TGM for which a suitable Coarse grid
correction takes care of the slowly convergent subspaces. The search for a fitting projector p
will be solved in functional terms.

First we show how to obtain a projector from a ru, matrix PN,M generated by a generic
function p(x, y) > O. In the next sections we explain how to get a profitable function p(x, y)
to achieve a convergence rate independent of the dimension of the matrices.

Given PN,M, assuming N 2n + and M 2m 4- 1, we set

(7) P-- KN,MPN,M,
where KN,M is the cutting matrix [FS] in two dimensions defined by

0 KM

0 KM 0

0 0 0 KM 0
KN,M KN KM

0

0

[)]mM]nN
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with

0 0

0 0 0 1 0

0 0 1

0

0

E mxM

In this way we easily obtain a two-grid iteration matrix like (4)"

(8) TGM(S, p) [I- pr (An,m)-lpAN,M]SaN,M,

where An,m PAN,Mpr is the reduced problem matrix related to the course grid correction
operator

CGC(p) [I- pr (An,m)-lpAN,M].

4. Spectral properties. Now we introduce some tools that will be useful for analyzing
the convergence of our TGM. A full spectral analysis of the matrices involved in the algorithm
will be given along with a complete block decomposition. For the sake of simplicity, and
without loss of generality, we assume r 1.

Rearranging the columns of FN we define

’ [flfl If/If-i+ll If]

andt analogously. The matrix

1 -1

1

VN-- "oo "oo
--1

0

allows us to relate the cutting matrix and the projector as follows"

(9) KNN FnVN.

The reduced problem matrix An,m PAN,/pr, in view of (7) and (9), can be therefore written
as

(10)

PAN,MP:r (KN (R) KM)PN,MAN,MPN,M(KN (R) KM)T

(KN (R) KM)(’N G) "M)/p/A/.p(’N (R) ’M)(KN (R) KM)T

4(F, (R) Fm)(VN (R) VM)/p/A/p(VN @ VM)T (Fn (R) Fm)

=-- 4(Fn (R) Fm)n,m(Fn (R) Fm),

where
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l_<br_<n L. O AA,/z, ..] /3

with/z’ N -/z / and v’ M v + 1. p is defined in the same way.
A generic block of n,m (VN ) VM)XpXAXp(VN ( VM)T in (10) is consequently

given by

[VM VM]
0 XA 2tz’Ap,, -V4

It follows that n,m diag_<_<n[diagl<v<m[5,v]], where

2 + 2 2,. 2

and p,v Trunc(p, N 1, M 1)l(x(f),xM)) (compare (5)).
The spectral block decomposition of the coarse grid correction operator is obtained in a

similar way:

FN ) FM diag [ diag [C/z,v]]. Fn () FM,CGC(p)
<lz<n Ll<v<m

where

Plz,V

-p.,, __1 [P., Pu,’ P.’, P.’,’]Cz,v 14
Pz’v otu,v
p... v.

X

0

0

Thus, the matrix N (R) "M TGM(p) N (R) "M is diagonalized into nm 4 x 4 blocks and
N+M- 1 scalar zeros; the spectral radius of TGM(S, p) is therefore given by supu, {p (Mu,)
where

Clz,

SlZ,V 0

SIz v

SI’, v
0 Slz,,v,

and s., Trunc(N- M- s)l. ()_(), (compare (5))Xtz ;Xv
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From [Gr], we know that (*) is the inverse of (**) in the linear subspace generated by
/3 [pu,v -pu,v, Pu,, _pu,,,]T and represents the null matrix in the three-dimensional
orthogonal subspace. The product of (*) and (**) is therefore the identity operator in span(/3)
and the null operator in span(/3) +/-.

It follows that the eigenvalues of Cu, are zero with multiplicity one and one with mul-
tiplicity three; as a result, one eigenvalue of Mu,, say .’, is equal to zero, but further
considerations are needed to evaluate the other three: )’, )’, and )’v.

Recalling that both A and S I A/or are positive definite and that they commute
(because S is a polynomial of A), we find that TGM(S, p) is similar to

TGM*(S, p) S1/2A/2TGM(p)A-1/2S-/2

S S1/2A1/2pT (pApT)-lpASA-1/2S-1/2

S S/2A1/2pT (pApT)-lpAm/2s1/2,

which is clearly symmetric; hence, ,k’v 9 for 1, 4.
From the previous equation it also follows that

TGM*(p) S/2(I- A1/epT (pApT)-IpAI/2)S1/2

and, since I- A1/2pr(pApr)-lpA1/2 is an orthogonal projector operator, its eigenvalues
belong to the set {0, 1}; see [Gr]. Therefore, for any x 31NM setting y $1/2x, by means of
the Rayleigh quotient, we obtain

xTTGM.(p)x yT(i_ A/2pT(pApT)-lpA1/e)y yTy xTSx
(11) 0< <

xTx xTx xTx xTx
Finally, from (11), we have

0_<)’_<#(S) < for/-1,...,4.

5. The choice of p. Inequality (11) shows that, for any choice of p, the multigrid method
outlined in the previous section is never slower than the relaxation method (6) alone.

We recall that the spectral decomposition (1 0) holds for matrices; for Toeplitz matrices
it can be proved that (10) is true only in an approximate sense. On the other hand, inequality
(11) is completely general.

In the following, without loss of generality, we assume that 0 <_ a(x, y) <_ 1 and the
existence of a point z0 (x0, y0) [0, zr]2 such that a (x, y) vanishes in z0 and is positive
elsewhere. This zero leads to numerical difficulties in the resolution of (1) for any N and M
since, for any N and M, we may find indexes/z and Vn such that

((N) (m) where x}) izr
lim ,xuu =z0,

N M-++cx " k +
To analyze the convergence of TGM(S, p) as given in (8), we assume for brevity/z /Zn,

v Vm and analyze the behavior in the worst subspace.
From

YN,M mz,v 0

0

0

if we set S I A in (8), we find that
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YN,M CGC(p)(1

oq+,,,
0

(1 ,,)
0 .r 0

o o o
0 0 0

2 p2 2 2Recalling that fi, au,,pu,v +au,,, ,, +a,, p,,,/+a,,v, pu,,,, ifwe choose an arbitrary
function p(x, y) > 0, from limN,M_++ otu,v a(zo) 0, we obtain

lim
N M-++o

r

0 0
0 0

0 0

that is, a TGM(S, p) with a spectral radius close to one.
To improve the contractivity we need a function p(x, y) such that

< nUCx;
N M--+o Oll.z Ollz Oltx

this implies that

(12) lim sup
N M-->+cx Ol lz

2 2 2ot,,+,v P,v’ + tu’,v &+’,v + ot+t,,v, P’,v’
=p<l.

In this case we have IlYN,MII22 (1 Ollx,v)2(XN,M -Jl- /N,M), where

2 2 -Jr- ,v’
2 )2%+,v’P+,v, + oq+,,vp+,,v h+’

XN,M
Ol lz,

and

N,M
2 2 (p2, v, -I’- 2 -ll- 2eu,Pu,v P’,v Pu’,v’)

)2Then, for N,.M --> +cx, we find XN,M "+ 92 < 1, (1 --Oh+, --> 1, and ?’N,M --> 0.
Consequently we obtain ]IYN,MII 92 -< and a TGM(S, p) strongly contractive in the
subspace where S is a slowly convergent iteration matrix.

Condition (12) gives enough information to construct a projector operator that guarantees
a convergence speed independent of the dimensions N and M; it states that whenever a(x, y)
has a minimum in (xo, Yo), we have to choose a projector among those vanishing at the "mirror"
points (zr xo, Yo), (xo, 7r Yo), and (re xo,.rr yo). See Fig. 1.

The trigonometric polynomial

pCx, y) [cos(2x) -cos(2xo) + cos(y) -cos(zr Yo)]
x [cos(x) cos(rr- xo) -t- cos(2y) cos(2yo)],
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o rt/2 rt

FIG. 1. "Mirror" pointsfor zo.

is a convenient choice for the function p(x, y) because, ignoring any constant factor, we may
easily find an associated matrix P in the Toeplitz class; in fact, setting

C]0)

-2cos(0) O

O
1

-2cos(0)

and

the matrix P can be written as

-2 cos(20) 0 O

O 0 -2 cos(20)

P P(xo, yo) C(x52 (R) IM + IN (R) Cr-y)) (Cr-x5 (R) IM + IN (R) Cy5).

Moreover, when we find a(zo) 0 with multiplicity d > 1, i.e.,

a(z)
0 < lim sup < +cxz

z-zo IIz z011 2
we have to choose p(x, y) such that its zeros at the mirror points have multiplicity at least d/2
to obtain a rapidly convergent method. In this case, we may use P P(z0) Fd/21

6. Numerical results. We now present some numerical results obtained by applying
our generalized multigrid method to ill-conditioned block symmetric Toeplitz matrices of
increasing difficulty. All the generating functions associated with these problems are equal to
zero at some point z0. In all cases the knowledge of z0 and its multiplicity has been enough to
devise a convergent algorithm.
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We have to recall that the projector operators are constructed by considering AN,M; there-
fore, much of the convergence analysis performed in the previous sections only concerns r
matrices. In this section, by using the strong spectral similarity between r and Toeplitz ma-
trices, we apply our algorithm to Toeplitz systems like (1). Also in this case we obtain fast
multigrid methods as shown by the numerical tests in the following sections.

6.1. The framework. In the following, we consider linear systems Tx b, where T is a
square 400 400 matrix, i.e.; N M 20. (We have performed numerical experiments with
different values of N and M, but we report only this case since, when the dimension changes,
the number of required iterations remains almost the same.) For all tests, starting from a
randomly chosen vector, we report the 2-norm of the error at each iteration. All numerical
computations have been carried out with double precision arithmetic.

We choose the projectors according to the theoretic considerations of the preceding sec-
tions obtaining spectral radii bounded by constants less than one and independent of the
dimension of the matrices. As validated by the numerical experiments in this section, at each
step the error is reduced by a constant factor that is independent of N and M.

We will use smoothers taken from amongst the relaxed methods of the form

X(i+1) X(i) (Ax- b)/o.

Our numerical experiments have been performed using two smoothers (called pre- and
postsmoother) as proposed in [FS]. More precisely, setting ot Ilall that is asymptotically
close to IIAII2, we define the presmoother iteration matrix as

(13) S1 I A/a,

while the postsmoother is

(14) S2 I 2A/or,

The method is therefore a multi-iterative one [S ], where the presmoother approaches the exact
solution in a fixed subspace then the coarse grid correction approaches it in the complementary
one. The postsmoother $2 accelerates the overall convergence rate reducing the error in a third
intermediate subspace where neither $1 nor the coarse grid correction is highly contractive. In
Tables 1-4 the parameters Pre and Post denote the number of the pre- and postsmoothing
sweeps made at each global iteration.

6.2. The Poisson problem on the unit square. The first example is a classical one, the
Poisson problem on the unit square f2 [0, 1] [0, 1]:

Af(x, y) g(x, y),

f (x, y) O,

(x,y) e,
(x, y) e Of2;

it is discretized by means of the well-known 5-point finite difference formula to obtain the
matrix A IN (R) HN +HN (R) IN. The associated function, given by a(x, y) 4 2 cos(x)
2 cos(y), is nonnegative with a zero of multiplicity two in (0, 0); because of the zero, the
condition number of A grows as N2.

An adequate projector is therefore given by

(15) p (C) (R) I/+ IN (R) Cl) x (C) (R) I, + IN (R) C),
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FIG. 2. Scaled p(x, y) as defined in (15).

TABLE
Two-dimensional Laplacian operator.

Iter.

2

4

6

8

10
12
14

16
18

2O

Pre=2 Post=O Pre=l Post=l
1.717 e+00 1.123 e+00
3.206 e-01 8.150 e-02

8.085 e-02 9.543 e-03
2.242 e-02 1.217 e-03
6.488 e-03 1.600 e-04
1.919 e-03 2.134 e-05-
5.750 e-04 2.871 e-06

1.736 e-04 3.885 e-07
5.275 e-05 5.277 e-08
1.609 e-05 7.188 e-09

where

O 2

and C)

--2 0 1 O

O 1 0 -2

As required, p is such that its generating function p(x, y) vanishes at the mirror points (0, Jr),
(Jr, 0), and (jr, Jr) as shown in Fig. 2.

The smoothers have been constructed as in (13) and (14) using ot 8, i.e., the maximum
of a(x, y) on Q [0, Jr]2.

The results of the first 20 iterations reported in Table 1 show that in both cases the
convergence rate is linear.

Note that, keeping the same computational cost, we achieve a considerable improvement
using both the pre- and postsmoother to reduce the error on complementary subspaces.

6.3. The square function. In order to test the method under the same conditions of
ill conditioning but in a full matrix case, we consider the matrix A generated by the function
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3O

FIG. 3. Scaled p(x, y) as defined in (16).

TABLE 2
The squarefunction.

Iter.

2
4

6

10

12

14
16

2O

Pre:2 Post:O Pre:l Post=l

2.903 e+00 2.108 e+00
1.016 e+00 4.586 e-01

4.314 e-01 1.387 e-01

2.007 e-01 4.635 e-02

9.807 e-02 1.626 e-02

4.933 e-02 5.869 e-03

2.531 e-02 2.155 e-03
1.317 e-02 7.998 e-04

6.926 e-03 2.989 e-04

3.668 e-03 1.123 e-04

a (x, y) x2+y2. The condition number ofthis matrix grows quadratically because a (0, 0)
0 with multiplicity two.

The matrix A can be written as QN () IN + IN (R) QN, where QN is generated by the
trigonometric series for f(x) x2:

x2 --zr2 + 4+ (- 1)i 2cOs(ix)
i=1

This time we use a projector better suited to correct the flat zero in (0, 0):

(16) p [(C) (R) I}t + IN (9 C)) x (C) (9 I + IN (R) C(2))]2.

See Fig. 3.
The smoothers have been constructed from (13) and (14) using a 18, an approximation

of maxQ a(x, y).
The result of 20 iterations, reported Table 2, shows the effectiveness of the method also

in the case of full matrices.

6.4. The absolute value. A more critical case comes from the matrix associated with
the function a(x, y) Ixl + lYl. The matrix AN,M can be constructed as in the previous case
from the series expansion

7r 4 cos((2i + 1)x)
Ixl 2 7r Z__,i=0 (2i -+- 1)2
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Iter.

2
4
6

I0

12
14
16

20

TABLE 3
The absolute value.

Pre=2 Post:O

1.770 e/00
3.249 e-01

7.840 e-02
2.013 e-02
5.292 e-03
1.406 e-03

Pre:l Post:l
1.075 e+00
7.321 e-02
7.058 e-03
7.064 e-04
7.159 e-05
7.294 e6

3.763 e-04 7.452 e-07
1.010 e-04 7.626 e-08
2.719 e-05 7.813 e-09
7.329 e-06 8.012 eLi0

TABLE 4
Comparison ofthe methods.

Preconditioned
Iter. conj grad.

2 5.304 e-01
4 5.162 e-02
6 7.175 e-03
8 8.065 e-04

10 9’608 e-05
12 9.731 e-06

14 9.384 e-07

16 9.152 e-08
18 1.191 e-08

20 1.337 e-09

Multigrid
Pre=2 Post=O Pre=l Post=l

1.933 e+00 1.1.27 e+00
2.900 e-01 1.015 e-02
5.069 e-02 1.189 e-04
9.212 e-03 1.468 e-06
1.699 e-03 1.859 e-08
3.159 e-04 2.399 e-10
5.897 e-05 3.151 e-12

1.103 e-05 4.212 e-14

2.069 e-06 5.731 e-16

3.883 e-07 7.929 e-18

Observe that, for any fixed value of N and M, the corresponding matrix AN,M is generated
by the truncated bivariate trigonometric series of a(x, y). Actually, this polynomial is regular
in its domain, whereas the limit function a(x, y) is not differentiable at (0, 0). Using the full
function as a guideline to construct a projector may seem to be a poor approximation; on the
contrary, using projector (15) again and smoothers obtained with ot 2re, we find again a
convergence rate independent of the dimension. See Table 3.

6.5. Comparison of the methods. As a final example we report a comparison between
the preconditioned conjugated gradient as proposed [$2] and our method on a case treated in
[KK]; the matrix arises from the discretisation of a partial differential equation [CC] by means
of a finite difference scheme and is constructed as follows.

Denoting with BSTN[al ak] the N x N band symmetric Toeplitz matrix with

al ak as the first entries in the first row, we may write the matrix of the problem as

A=I(R)B+H(R)C+K(R)D,

where

B BSTN [1, -0.12, -0.04] C BSTN [-0.12, -0.04, -0.02],
D BSTN [-0.04, -0.02, -0.01], H BSTN[0 1], and K BSTN[0 0 1].

Since a(0, 0) 0 with multiplicity two, we calibrate our multigrid method using projector
(15) and smoothers (13) and (14) with ot 1.25, i.e., an approximation for maxQ a(x, y).

In Table 4 we compare the error reductions of the preconditioned conjugate gradients of
[$2] and our multigrid scheme.
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Note that the preconditioners proposed in [CC, KK] do not apply to this case because
the resulting condition number is O (N). The convergence rate of these methods is sublinear
requiring O (N) steps to reduce the error by a constant factor.
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Abstract. A defect correction scheme with the first-order upwind preconditioner is considered. By Fourier
analysis the preconditioning properties for the second-order upwind scheme, the central scheme, and spectral methods
are examined. Since the eigenvalues of the preconditioned operator are complex the generalized minimal residual
iteration is used for the iterative solution. This procedure is applied to the Boussinesq flow problem in vorticity-
streamfunction formulation. Numerical results are presented for increasing Rayleigh numbers.
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AMS subject classification. 65N35

1. Introduction. Here we consider convection-diffusion problems which can in their
most general form be written as

(1.1) -eAu -+-CUx + duy f in S2 (-1, 1)2,
(1.2) u g on 0f2,

where e > 0 denotes a constant, c, d, f are functions defined in , and g is defined on
0f2. Such problems arise after a linearization of the Navier-Stokes equations (or Boussinesq

The part -Au denotes the diffusive part andflow problem). Here e corresponds to .
CUx + duy denotes the convective part of the above equation. Here we are mainly interested
in convection-dominated flows where < < h. Here h denotes the step size of the finite
difference (FD) scheme. For the FD approximation of convection-diffusion problems one
observes certain phenomena of instability. For small e standard discretizations can lead to
a solution of the discrete problem which has nothing to do with the solution of the original
problem. For instance, the discretization of

-u" 2u’ 0 in [0, ec),

u(0) 1, u() 0

with central differences yields as the discrete solution

U h(ih) (; h )+ h

This is an O (h2) discretization. For h fixed and h_ 0 we obtain

( ],lh)i ( )()2I(Uh u)(ih)[
e e- <C

with C independent of i, h, and . But the solution of the reduced equation is

uo,h(ih) lim u,,h(ih) (--1) i,
--+0

which means that for < < h, the solution of the FD problem has nothing to do with the exact
solution

u(x)--e 2{.

*Received by the editors February 1, 1993; accepted for publication (in revised form) May 2, 1995.
Mathematisches Institut der Heinrich-Heine-Universitit Dtisseldorf, Universititsstral3e 1, D-4000 Dtisseldorf

1, Germany (wheinric @numerik.uni-duesseldorf.de).
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For this special problem we further observe a boundary layer in which the first derivative
behaves as O(-1) for --+ 0. One possibility to avoid the phenomenon of instability is to
use upstream discretization for u’. Clearly, an obvious disadvantage of this scheme lies in the
fact that the method now becomes only first-order accurate. Hence it makes sense to use the
first-order upstream scheme only as a preconditioner for a higher-order scheme We analyze
the preconditioning properties of this method for the following higher-order schemes:

second-order upstream scheme,
central finite difference scheme,
Chebyshev pseudospectral scheme.

In the spectral scheme (see [4]) the solution is approximated by Chebyshev polynomials of
degree < N. This space is denoted by PN. By a Fourier analysis it can be shown that
the eigenvalues of the preconditioned operator are bounded but complex. Hence one has to
employ a nonsymmetric matrix iteration for the solution. Here we recommend the generalized
minimal residual (GMRES) iteration which belongs to the residual minimization methods.

Clearly, for the general convectiop-diffusion problem (1.1), (1.2) the first derivatives Uc
and Uy have to be approximated according to the sign of the coefficients c and d, respectively.
Therefore for the iterative solution werecommend flow directed schemes. Since the Chebyshev
nodes are dense near the boundary, it is necessary to use line Gauss-Seidel relaxation (in an
alternating manner). Finally this iterative solver is applied to the Boussinesq flow problem in
vorticity-streamfunction formulation. We. obtained numerical results for increasing Rayleigh
numbers up to Ra 105.

2. Preconditioning by the upstream scheme. From the one-dimensional model prob-
lem it can be seen that for --+ 0 we first have to find a good preconditioner for the derivative
operator

du

dx

Here we employ the first-order upstream scheme (Llup) for preconditioning, i.e.,

du /.t (Xi+l) -u(xi)
(X if Xi+ < Xidx Xi/l xi

or

du u(xi) u(xi_l)
(Xi) if Xi_ < Xi.
dx xi xi-1

In the spectral discretization we have collocatio,n points X COS Oi, 0 -, SO that Xi+l < Xi,

whereas in the finite difference case we have grid points xi ih, h , so that xi-1 < xi
for N Now we were interested in the preconditioning properties of L forup
the following three higher-order methods:

second-order upstream scheme: L2upU :-- - (1/2u(xi-2) 2u(xi_l) -k- -u(xi)),
second-order central scheme: Lceu := (u(xi+l) u(xi-1)),
Chebyshev pseudospectral scheme: Lsp (see [3], [4], [12], [13]).

Hence we are interested in the eigenvalues of the discrete operators

(Llup)-12 (tlup)-I --1
Lup, tce, (tlup) tsp.

Eigenvalue bounds are obtained by a Fourier analysis. It is well known (see [4]) that the
Fourier analysis also yields a good prediction for the eigenvalues in the Chebyshev case. For
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TABLE
pk for k 4.

k Pk
0.3333

2 0.2425
3 0.2162
4 0.2040

(Lulp) -1 Lup2 the absolute values of the eigenvalues are given by

I)PI= -3cos22N, p=l N-1.

For (L.p)-I Lc they are given by

IUpel=cos2N, p=l N-1.

prrSince cos E [0, 1] we obtain

I)P[ E [1, 2] and [/,p [0, 1].

Because zero is the lower bound for the eigenvalues of the preconditioned central scheme, it is
already clear that this method is not good. For the second-order upstream scheme we observed
that the imaginary parts are small compared to the real parts. Hence a simple Richardson
iteration can be applied. By choosing one relaxation parameter we obtain a convergence
factor of 5" Clearly, the convergence speed can be accelerated by using more parameters
(nonstationary Richardson relaxation 11 ]). As shown in 11 the convergence factor Pk for k
relaxations is here given by

p := IT(3)l-r,

where Tk denotes the kth Chebyshev polynomial. In Table we present p for k 1 4.
We recommend using k 3 since the improvement for increasing k is no more significant.

For the spectral Fourier operator (see [4, 5.2.2]) the eigenvalues of the preconditioned
spectral operator are

XSpp
prc/N -i p’ N N

e -sin(pr/N) P- 2 2’

and hence

This implies that

prc/N N N
I)Pl-- sin(pro/N)’ P 2 2

I)Pl 6 1, [1,1.571.

Therefore in all three cases the eigenvalues are bounded but complex. The iterative solver
must be able to handle complex eigenvalues. Here we recommend the GMRES iteration (see
19]-[21]) which belongs to the residual minimization methods. Consider the general linear
system

By g,
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where B is a large nonsymmetric matrix. If v0 is an initial approximation to the solution and
r0 g B v0, we define the mth Krylov subspace

Km :-- span{r0, Bro, B2ro Bm-lro}.

Then the GMRES approximation Vm with

(2.1) V E V0 --K

is determined such that the mth residual rm fulfills

(2.2) lrm 112 minimum.

An equivalent statement is the orthogonality condition

(2.3) rm _1_ B Km.

The GMRES iteration is a robust implementation of (2.1)-(2.3) by means of an Arnoldi
construction of an orthonormal basis for the Krylov space, which leads to an (m + 1) m
Hessenberg least-squares solution [21 ].

3. Stabilization techniques and iterative solvers. Here we consider convection-diffusion
problems which are in their most general form given by (1.1), (1.2). It is well known that these
problems lead to instabilities for < < h in the FD case (see [7], [8], [10]) and for < < N-2

in the spectral case (see [2], 15]). Canuto [2] has shown that the spectral approximations are
affected by spurious oscillations which deteriorate the spectral accuracy. For instance, for the
one-dimensional model problem

(3.1) -u" + u’ 0 in (-1, 1),
(3.2) u(-1) 0, u(1) 1,

the exact solution is given by

(3.3) u(x)
x+le-- 1

Hence the boundary layer exhibited near x 1 when --+ 0 has a width of order O(e).
The pseudospectral approximation Uu PN of (3.1), (3.2) is now defined by

It--UN(Xi) + UN(Xi) 0 for 1 N 1,

UN(--1) 0, UN(1) 1,

where X COS - denotes the Chebyshev collocation points. In [2] the spectral approximation
is explicitly calculated and finally one obtains

UU - t_ TN for odd N,

Uu - fi0 + fiuTu, Ifi01 fiN O(eN2)-1 for even N

as e --> 0, e < < N-2. Here TN denotes the Nth Chebyshev polynomial.
Therefore in both cases Uu is strongly oscillating but for a given the oscillations created

by the boundary layer are less pronounced if N is chosen to be odd. This shows that attention
should be paid to the parity of the degree of polynomials to be used in a spectral approxi-
mation of boundary layer problems. This example further demonstrates the instability of the
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convection-dominated problem. In particular, for even N we can read from the coefficients
fi0 and fiN that the approximation error is perturbed by an instability rate of O(6N2)-1

The problem of instability is also well known for finite difference (or finite element) dis-
cretizations if central finite differences are used (see, e.g., [9]). Here also spurious oscillations
are introduced by the discretization scheme. This problem is avoided by applying an upstream
scheme where the first derivative is approximated by a one-sided finite difference star. An-
other possibility is to add an artificial diffusion (or viscosity) term of the form -N-1Au to
the convection-diffusion equation. Now these methods are stable and produce nonoscillating
solutions but are only first-order accurate being based on solving a modified problem. Clearly
such techniques are of no interest for spectral approximations since the high spectral accuracy
is completely lost.

Therefore we thought ofother techniques ofstabilization which maintain the high accuracy
of spectral methods. Together with Eisen [8] we obtained a stable scheme by adding one
additional equation of collocation to the original system. Hence we obtain an overdetermined
system of equations and the instability caused by the highest mode is avoided. This is a certain
kind of penalty method. We prove stability independent of e and present the numerically
calculated condition numbers for several types of collocation points (Chebyshev Gauss or
Gauss-Lobatto nodes). A drawback of this approach is that the method is not flow directed
and therefore in our model problem for e -- 0, < < N-z, the spectral solution approximates
the straight line us(x) 0.5(x + 1) (see [8, Fig. 2]) instead of the boundary layer solution
(3.3). Another drawback is that for overdetermined systems no efficient iterative solvers like
multigrid methods are available. For these reasons this method is probably not the best way
to go.

A flow directed method is the streamline diffusion method which was introduced by
Hughes and Brooks [17], [18] for a finite element discretization. This method is stable and no
accuracy is lost. It is a Petrov-Galerkin modification of the standard Galerkin method where
artificial diffusion in the streamline direction is introduced by modifying the test functions
from v to

t nt- (xCIJx nt- (ydvy,

where 3x 3y O (h) and h denotes the step size of thefinite element scheme. Clearly, for the
spectral method with Chebyshev Gauss-Lobatto points one has to choose a point-dependent
viscosity given by x 6x(X), y (y(y), where

3x(Xi) C sin (-) sin (i-) --1 N-l,

ay(yj)=Cysin sin j j=l N-1

with suitable constants Cx, Cy. These formulas result from the finite difference discretization
with central differences (see 11 ]). The constants Cx, Cy can be chosen such that the resulting
finite difference matrix yields an M-matrix (see [9]), i.e., its inverse has only nonnegative
entries. For the practically more efficient pseudospectral method, the stabilization is achieved
by adding the viscosity term to the right-hand side f. Here f is replaced by

f + axCfx + aydfy,

and the corresponding differential operator is modified such that the new problem is equivalent
to the original system (1.1), (1.2). In [15] we investigated this method in connection with a
multidomain approach for the above boundary layer problem. Stability is shown and suitable
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multigrid components for the efficient solution ofthe stabilized problem are presented. Clearly,
a drawback of this approach is that high-order derivatives have to be computed, which makes
it quite expensive.

For preconditioning of the original spectral system we recommend an upwind FD method,
for which each of the first derivatives Ux and uy is differenced according to the sign of the
coefficients c and d, respectively. The Laplace operator is discretized by standard central finite
differences and the first derivatives Ux and uy in (xi, yj), i, j N 1 are approximated
as follows:

C(Xi yj >__. 0 Ux (Xi yj -C(Xi, yj) < 0 Ux(Xi, yj)

d(xi, yj) >_ 0: Uy(Xi, yj)

d(xi, yj) < 0: Uy(Xi, yj) -

U(Xi+I, Yj) U(Xi, Yj)

Xi+l Xi

U(Xi, yj) H(Xi-1, yj)
Xi Xi-

U(Xi, Yj+I) U(Xi, yj)

U(Xi, yj) U(Xi, Yj-1)

For the iterative solution we recommend flow directed schemes. Since the Chebyshev nodes
are dense near the boundary it is necessary to use line Gauss-Seidel relaxation. For smoothing
it is recommended to use alternate iterations of flow directed horizontal iterations (FDHI) and
flow directed vertical iterations (FDVI). In the literature this combination is called FDHVI
(see [7], [10]). The iterative scheme FDHI is a variant of line Gauss-Seidel relaxation. Let
Pi denote the mesh points on the vertical line x xi. We divide Pi into two subsets:

Pi,e := {(i, j) C(Xi, Yj) 0},

Pi,w := {(i, j) C(Xi, yj) < 0}.

The FDHI partitioning and ordering of the unknowns consists of the subsets Pi,E arranged
in order of increasing i, followed by the subsets Pi,w, arranged in order of decreasing i.
The difference equations on each of the subsets Pi,E or Pi,w are a collection of tridiagonal
systems. By considering the mesh points Pj on a horizontal line y yj and dividing Pj into
subsets Pj,N, Pj, s, we may construct the iterative scheme FDVI. Finally one alternates between
FDHI and FDVI, resulting in FDHVI. For a more detailed description including numerical
results, we refer the reader to [7] and [10]. Han et al. [10] describe a procedure based on
directed graphs to partition and order the unknowns of the Gauss-Seidel process. This is
performed by inspection of the coefficient matrix. Nevertheless, this algorithm is expensive
for nonlinear problems, like those coming from the Navier-Stokes or Boussinesq equations,
when the coefficients are solution dependent and require the reconstruction of the directed
graph several times. The penalty for such a choice is proportional to the number of mesh
points. In 4 the FDHVI scheme is applied to the Boussinesq flow problem.

4. Application to the Boussinesq flow problem. The problem specifically considered
here is that of the two-dimensional flow of a Boussinesq fluid of Prandtl number Pr 0.71
(i.e., air) in an upright square cavity (see [1], [6]). The walls are nonslip and impermeable.
The horizontal walls are adiabatic and the vertical sides are at fixed temperatures. In addition
to the Navier-Stokes equations we have one further equation for the temperature T. By Ra
we denote the Rayleigh number. The Boussinesq flow problem in vorticity-streamfunction
formulation reads as follows:
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(4.1) 4A + co 0 in f2 (--1, 1)2,
3 3 3T

(4.2) -2PrAco

(4.3) -2AT + -x(VlT) + -y(V2T) 0 in

As usual (vl, v2) denotes the velocity. The scalar factors 2 in equations (4.2) and (4.3) and 4
in equation (4.1) are due to the fact that we here define the problem in (-1, 1)2 instead of the
original square cavity (0, 1)2. fulfills homogeneous Dirichlet boundary conditions, i.e.,

0 onOf2
Ov

and T fulfills mixed Dirichlet-Neumann boundary conditions, i.e.,

T(-1, y) 1, T(1, y) 0 for y 6 (-1, 1),

aT aT
(x, 1) ----(x, i) 0 for x [-1, 1].

Oy oy

The homogeneous Neumann boundary conditions correspond to the fact that the horizontal
walls are adiabatic.

Now the equations (4.1)-(4.3) are linearized by a quasi-Newton method (see 16]), where
the,velocity from the previous iteration is employed. Hence we have to solve the linear
problem:

(4.4) 4Ak"+1 + co,,+l 0 in ,
O O

infa(4.5) -2PrAcon+! + -x(V’]con+) + -y(Vcon+l) RaPr
3Tn+l
3x

(4.6)
0 0 nTn+-2zSTn+ + -x(vTn+) + yy(V2 0 in f2,

where the index n denotes the nth iterate.
Clearly, the velocity is related to the streamfunction by

01It Ol/tnn n

Oy v2 Ox

The linear system (4.4)-(4.6) is now approximately solved by a spectral multigrid (SMG)
method (see 12], 13]). We first describe the pseudospectral discretization ofthe system (4.4)-
(4.6). The functions 7r"+ and 09"+1 are spectrally approximatedby polynomials UN+2 PN+2,
VN PN. T"+ is approximated by a polynomial WN PN. Here the index n + 1 is omitted.
Hence v, v are approximated by the polynomials V,N, V2,N PN+2, where

O-fiN+2 O’N+2
l)l,N , I)2,N ,Oy Ox

and N+2 PN/2 corresponds to the polynomial UN/2 from the previous iteration. Now the
pseudospectral problem related to (4.4)-(4.6) reads as follows: Find UN/2 PN+2, VN
PN, WN PN such that

(4.7) [4AUN+2 -- VN](Xi, yj) 0
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for i, j 0 N and

(4.8) --2PrAVN -+- X (Vl,NVN) -[" yy (U2,NI)N) (Xi, yj) RaPr
Ox

(xi’ yj)’

(4.9) --2AtON + --x(Vl,NWN) -3F y (I)2NI/)N) (Xi, yj) 0

for i, j N 1. Since u has to fulfill two types of boundary conditions we choose

UN+2 E PN+2, fulfilling the homogeneous Dirichlet boundary conditions. For Vu there are no
boundary conditions. The pseudospectral boundary conditions for Wu PN are given by

(4.10) VVN(--1, yj) 1, tON(l, yj) 0 for j 1 N 1,

Oy
0lION

(xi,-1) --7--(xi, 1) 0 for 0 N.
oy

The system (4.7)-(4.11) completely determines the spectral approximations/’/N+2, ON, lION.
It is clear that the polynomials Uu+2, VN are uniquely determined by the equations (4.7),
(4.8). Furthermore the equation (4.9) together with the boundary conditions (4.10), (4.11)
uniquely determine the polynomial Wu. Hence in the linearized version the systems (4.7), (4.8)
for determining/,/U+2, l)U and (4.9)-(4.11) for determining Wu can be handled separately.
First, one solves the system (4.9)-(4.11) for Wu by an SMG method, then one calculates

Ox (xi, yj), i, j N 1, and finally one solves the system (4.7), (4.8) by the SMG
method introduced in [14]. Here we employed six V-cycles of SMG to get a nearly exact
solution of the linear systems.

Now we turn to a more precise description of the SMG method. We use the same compo-
nents as already introduced in 3. A somewhat different treatment results from the fact that the
diffusive part is now perturbed by the first-order derivatives , y. For an increasing Rayleigh
number the convective part becomes dominant. Hence in the defect correction step one has
to use an FD approximation which remains stable also for an increasing Rayleigh number.
Furthermore the FD problem has to be solved approximately by a suitable iterative method
which also works for convection-dominated flows. Here we employed the FDHVI iteration
for preconditioning of the spectral system resulting from the equations (4.8), (4.9). To handle
the complex eigenvalues of the preconditioned spectral operator we employ nonsymmetric
matrix iterations. Here we choose the GMRES iteration. For a more detailed description of
these components, we refer to 3.

By using these components we numerically calculated for various Rayleigh numbers and
mesh sizes the following quantities:

17 Imid absolute value of the streamfunction at the midpoint of the cavity,
17 [max maximum absolute value of the streamfunction,
Vl,max maximum horizontal velocity on the vertical midplane of the cavity,
l)2,max maximum horizontal velocity on the horizontal midplane of the cavity.
The local heat flux in a horizontal direction at any point in the cavity is given by

Q := vT 2TO.
Ox

Let us further introduce the following Nusselt numbers:
Nu := - fl_ fll Q (x, y)dxdy average Nusselt number throughout the cavity,

Nul Q(O, y)dy average Nusselt number on the vertical midplane,
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TABLE 2
Resultsfor Ra 103.

N I]mid Ilmax Vl,max V2,max Nu Nu Nuo Numax Numin

8 1.1747 1.1747 3.5250 3.6122
16 1.1746 1.1746 3.5690 3.6148
24 1.1746 1.1746 3.6441 3.6759

1.1178 1.1173 1.1174 1.5048 0.6902
1.1178 1.1178 1.1178 1.5060 0.6913
1.1178 1.1178 1.1178 1.5060 0.6913

TABLE 3
Resultsfor Ra 104.

N [lmid laPlmax l)l,max V2,max Nu NUl Nuo Numax Numin

8 5.0713 5.0713 15.8009 18.9305 2.2474 2.1946 2.1870 3.6170 0.5067
16 5.0736 5.0736 15.8352 19.0474 2.2448 2.1946 2.1870 3.5314 0.5853
24 5.0981 5.0980 16.1800 19.5000 2.2340 2.2350 2.2420 3.5450 0.5920

TABLE 4
Resultsfor Ra 105.

N Irlmid Ilmax Vl,max V2,max Nu Nu Nuo Numax Numin

8 14.3409 18.8519 37.8844 40.2643 4.4140 4.7345 4.7590 10.4740 0.3438
16 11.3720 12.3330 36.3420 61.3420 4.5030 4.5061 4.5313 7.9010 0.7551
24 9.1600 9.6530 34.6320 67.9120 4.5100 4.5120 4.5231 7.7700 0.7361

fl Q(, y)dy average Nusselt number on the vertical boundary,Nuo :=
Numax :-- max{IQ(-1, y)l y 6 [-1, 1]} maximum value ofthe Nusselt number,
Numin :-- min{IQ(-1, y)l y 6 [-1, 1]} minimum value of the Nusselt number.

and Nuo are evaluated by the Clenshaw-The above integrals in the definition of Nu, Nu,
Curtis quadrature (see [5, p. 68]). In Tables 2-4 we present the numerical results for different
Rayleigh numbers and N 8, 16, 24. The numerical results are in good accordance with
the results obtained in [6]. However, for a larger Rayleigh number or increasing N the above
SMG method is no more convergent. The reason is that upstream preconditioning is not good
enough. Here one has to find some better ways of preconditioning. We are currently trying
to find improved preconditioners where the finite difference discretization is performed on
staggered grids.
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A MODEL NUMERICAL SCHEME FOR THE PROPAGATION OF PHASE
TRANSITIONS IN SOLIDS*

BERNARDO COCKBURN AND HUIING GAU

Abstract. In this paper, we devise a simple finite difference scheme that produces approximations to the viscosity-
capillarity solutions of the equations that govern the propagation of phase transitions in solids (or to the equations of
van der Waals fluids) for all positive values of the dimensionless parameter that characterizes the viscosity-capillarity
solution. Numerical experiments showing the convergence properties of the method are presented.

Key words, viscosity-capillarity, phase transitions, mixed-type conservation laws
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1. Introduction. In this paper, we devise and validate a method for numerically solving
the initial value problem associated with the equations that govern the propagation of phase
transitions in solids, namely,

(1.1)

t VX,

vt (r(,)),
(o) 0,

v(O) v0,

where v is the velocity, ?’ the strain, and rr the stress. We consider Lipschitz stresses that
are increasing on phase 1 (-1 < ?’ < ?’1,2) and phase 3 (?’2,3 < ?’) of the material and are
decreasing on phase 2 (?’1,2 < ?’ < ?’2,3); see Fig. 1.

This renders (1.1) a system of mixed type, since it is well known that when rr’ > 0 the
system (1.1) is hyperbolic and that when rr’ < 0 the system is elliptic. As pointed out by
James in [6], this fact enric.hes the problem of finding a solution for (1.1) because now the
standd entropy condition for hyperbolic systems is not enough to single out a physically
relevant solution. A way to do so is through the so-called viscosity-capillarity (VC) approach
which consists of obtaining solutions of (1.1) as limits of the solutions of the system

(()) + v Gx z,
(1.2) p (o) o,

(o) vo,

when the parameters v and ) go to zero while the number co 2,v//v is maintained fixed.
The solutions of (1.1) obtained in this way will thus be called the VC solutions of (1.1). In
this paper, we restrict ourselves to the problem of devising a numerical scheme capable of
converging to those solutions.

Truskinovsky 14] and Slemrod 10] proposed independently the notion of VC solutions
for the equations of van der Waals fluids, which are of the form (1.1). In this context, ?’ < ?’1,2
represents the liquid phase and ?’ > ?’2,3 the vapor phase; the phase ?’1,2 < ?’ < ?’2,3 is the
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FIG. 1. Example ofstrain-stress relation.
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Fie. 2. Exact VC solution and its approximationfor co 3.

region in which the system is elliptic. The VC criterion re-incorporates in equations (1.1) the
physics lost in neglecting the second-order and third-order terms of (1.2). In [5], a review of
recent results about the VC solutions of the Riemann problem for (1.1) can be found.

There are very few papers in the available literature concerning numerical methods for
mixed-type systems like (1.1). In [9], Slemrod proposed the idea of using the Lax-Friedrichs
scheme to numerically approximate the VC solution of (1.1) for co 1. This idea was later
successfully numerically tested in the pioneering work of Slemrod and Flaherty [11] who
considered a Lax-Friedrichs-type scheme with which they could handle the case co [0, 1].
In 12], Shu developed a technique that allows the use ofthe essentially nonoscillatory schemes
for numerically solving mixed-type problems. In [7], Jin considered formally second-order
accurate relaxation Lax-Friedrichs-type schemes forVC solutions with co 6 [0, 1]. Our simple
finite difference scheme is the first scheme to work for all nonnegative values of co. Affouf and
Caflish [4] used a second-order finite difference scheme to study the stability of the solutions
of Riemann problems for (1.2); they took the parameters v and ) to be order-one parameters.
Pitman and Ni [8] have also studied mixed systems like (1.1) with a so-called visco-elastic
relaxation law.

To give an idea of the performance of our model scheme, we display in Fig. 2 the exact
VC solution of (1.1) for co 3 and the strain-stress curve ofFig. with the following parameter
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values"

20, ?’ E [-1, ?’1,2),
?’1,2 1, ?’2,3 .2, er’ (?’) 10, ?’ E (t/1,2, ?’2,3),

5, ?’ (?’,3,

Thus, in this case the elliptic region (phase 2) is the region ?’ 6 [. 1, .2]. The initial data is

{ .3, x<0, [ 0, x<0,
?’o(x) .4, x > O, vo(x) -.8, x > O.

The exact VC strain displays two 1-3 phase transitions (or boundaries) near the origin and
two shocks both of which occur within phase 3. Note that the phase boundaries are very well
approximated and that no spurious oscillations or spikes are present.

We stress the fact that in this paper we are mainly concerned with the problem of how
to deal with the presence of the elliptic region. The quality of the approximation outside
the elliptic region can be improved by using several well-known techniques for hyperbolic
conservation laws. This will be done in a forthcoming paper.

There are several other criteria to select a solution for systems like (1.1); see, for example,
the papers by Truskinovsky 15] and Abeyaratne and Knowles 1], and the survey by Truski-
novsky 16]. We consider this paper to be the first step in our effort of devising a numerical
scheme capable of converging to the solutions singled out by general criteria.

The paper is organized as follows. In 2, we. present the heuristics that will guide us in
devising our numerical scheme which we construct in 3. In 4, we study the stability of its
semidiscrete version and obtain information about the effect of the discretization parameters
on the stability of the scheme. In 5, we display our numerical results which indicate that the
scheme converges to the VC solutions of (1.1) for a wide range of values of the dimensionless
parameter co. We end in 6 with some concluding remarks.

2. Heuristics. As in [11], the idea that guides us in devising our numerical scheme is
very simple: the numerical scheme must have a model equation whose solutions behave like
the solutions of (1.2).

We look for numerical schemes whose model equation is of the following form:

(2.1a)
’t x + rovo, (r())x + 0 xx Zo f/xx.

This form of the model equation is very convenient because by changing variables as follows:

(2.2a) ,
(2.2b) f + rovo /x,

we can rewrite system (2.1) as

(2.3a)

(2.3b)

and if we set

(2.4)

fit (r(P))x + v0 (1 + r0) fxx ()vo + ro v) ’xxx,

co 2V/X0 + r0 v02
(1 + r0) v0
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we see that the functions (, 9)) given by (2.2), (2.1a) and satisfying the initial conditions

(. b)
# (0) 0,

(0) v0,

are exactly equal to (, ) for v (1 / ro)vo. Thus, to obtain the scheme we are looking for,
we simply have to discretize (2.1) and (2.2) in a suitable way.

In [11], Slemrod and Flaherty took the viscosity coefficient v0 proportional to (Ax)2/3

and )0 0. The relation (2.4) becomes then

(1 +r0)’
which implies that m must lie in the interval [0, 1 ]. By (2.4), to allow the parameter w to be
bigger than one, i.o must be strictly bigger than zero. In this paper, we explore the following
choices of the discretization parameters:

(2.5a) ro 1,

(2.5b) v0 sup max{0, ff’(y)}}l/2(Ax)t,
y_-I

(2.5c) )0 (co2 1) v0z,
for several values of/3 in (0, ]. Note that (2.5c) follows from (2.5a) and (2.4).

If we pick the very convenient choice/3 1, in order to obtain a numerical scheme with
(2.1a) as a model equation, we simply have to discretize (2.1a) with

(1) .a third-order accurate approximation of the first-order space derivatives,
(2) a second-order accurate approximation of the second-order space derivatives,
(3) a consistent approximation of the third-order derivative,
(4) a third-order accurate time discretization.

In what follows, we construct such a scheme.
Note that only the parameters v (1 + ro)vo and ) )0 -t- r0 v0 have an effect on

the properties of the solution (, ) of (2.1) and (2.2). However, the particular value of the
parameter r0, for example, may have an influence on the properties of the approximate solution
due to the properties of the discretization procedux;e. In 4, we show that this is indeed the
case for the scheme we devise next. We have found, experimentally, that the choice (2.5a)
works well.

3. A finite difference scheme. For the sake of simplicity, we consider uniform partitions
in both space and time and set, as usual, xj j Ax, Xj+l/2 (j + 1/2)Ax, t" nat. We
denote by u] an approximation of u(t, xj) and by u.+1/2 an approximation of u(tn, Xj+l/2).
We assume that n 6 N and that j 6 Z.

3.1. Discretizing equations (2.1a). The following space discretizations satisfy the above
requirements:

(Ux)j (Uj-2 8 Uj-1 -- 8 btj+ uj+2)/12Ax,

(Uxx)j (uj_ 2 uj + Uj+l)/(Ax),
(Uxxx)j (--uj-2 + 2 uj_ 2 uj+ + uj+2)/2(Ax)3.

We can rewrite the resulting space discretization of (2.1) in conservation form as follows:

d 1
(3.1a) d-Uj XX (Fj+l/2- Fj-/2),
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where

(3.1b) (fv)j+l/2)Fj+I/2(U)
(fa)j+l/2

and

(3.1c)

(3.1d)

Finally, we discretize in time by the following third-order accurate TVD-Runge-Kutta time
stepping 13]:

(3.2)

3.2. The initial condition and the definition of the approximate solution. Note that a
discrete version of (2.2) which is consistent with our space discretization (3.1a), (3.1c) is the
following:

(3.3)
Oj+l/2 (fv)j+l/2.

With this way of defining the approximate strain and velocity, the spike that appears in the
approximate velocity at the phase boundaries reported by 11 is totally eliminated; see 5.

To obtain the initial values (#jo. ^ovj), we must take into account (3.3). To do so, we proceed
as follow. First, we discretize the initial condition (2.1b) as usual; namely,

(3.4)

?’o(x)dx,’J AX Xj-l/2

)jO+l/2
1 fx+ vo(x)dx.
AX

Then, we solve the linear system set

(3.5)
^0 -0
,j j,

(_ ^o. 7 j0. 7y+ ^0v,_ + + vj+2)/12__ Sj+I/2,

where

(3.6a) -0 1)0(__/ + j+l)/l,X"Sj+I/2 1)j+l/2 ro -0
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However, to avoid having to invert the matrix equation My b given by (3.5) (which could
render the initial value 0 a highly oscillating function), we consider the matrix equation
M Mx Mtb and we lump the masses of the matrix M M. We thus obtain the following
simple approximate evaluation of the initial condition:

(3.6b)

(3.6c)

^0 -0

,’0 0
vj (_s)_3/2 + 7s)_1/2 + 7s)+1/2 o-sj+3/2)/12.

3.3. Definition of the scheme. We are now ready to define the numerical scheme. Given
any co > 0, we compute an approximation of the corresponding VC solution of (1.1) at time
T as follows:

(1) compute the initial data (0, 90) by using (3.4);
(2) compute (0, 0) by using (3.6);
(3) set At TIN for some N suitably chosen (see 5.1);
(4) for n to N 1, compute (n+l, n+l) by using the scheme (3.2), (31);
(5) compute the wanted approximation (g, U) by using (3.3).

4. Stability analysis of the semidiscrete scheme. We now turn to the question of the
stability of our numerical scheme. Our goal is to prove that the semidiscrete version of the
scheme is stable. To do so, we mimic the procedure for obtaining stability for the solutions
of our model equation which we show next for the sake of completeness.

Multiplying equation (2.3b) by and integrating over x, we get, after integrating by parts,

1 d fe___fecr(,)x_uo(ld_ro)f()x)eq_()oq_rou)f,xxx.2dt

By (2.3a), 3x t, and so we get

where W’ r. Thus,

d
E(fi p) -vo(1 q- ro) (t)2,(4.1a) d--7

where the energy E(O, 9?) is defined as follows:

(4.1b) 12 flR 1 p02) (x)2E(fi, p) + W()) + ()o + ro

or, if the choice (2.4) for )0 is taken,

12 l(l’-r0)2(4.1C) E(, p) + W(p) + vo2 co2 (px)2.

We now follow the above process to try to obtain a similar stability result for the semidiscrete
scheme (3.1). We proceed in several steps.
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4.1. Rewriting the scheme. We start by rewriting the semidiscrete scheme in terms of
and . To facilitate such a rewriting, we introduce the shifting operators Si defined by

Siu u+i. Setting M (-S-1 + 7S0 + 7S1 $2)/12 and D (S_1 So $1 + $2)/2,
we can now rewrite the semidiscrete scheme (3.1) as follows:

d
d-y (-S_ + So)(MOj + rovo(-So + S1)j/Ax)/Ax,

d
d--)j (-S-1 + So)(cr(M,j) + vo(-So + S1)j/Ax .o D’j/(Ax)a)/Ax.

Since, by (3.3), we have

(4.2)
j+l/2 Mf)j + rovo(-So + S1)/j/Ax,

we can write the first equation of the above scheme as follows"

d
(4.3a) d---i lj (- S-1 + So))j+l/2/Ax.

To express the second equation in terms of and , we proceed as follows. By (4.2), we have

d d d
d--Oj+l/2 M-j + rovo(-So + S1)-’j

d
M-f)j + rovo(-So + Sl)(-S-1 + SO))j+I/2/AX,

d j and rearranging terms, we obtainby (4.3a). Inserting the expression for

d
d-f)j+l/2 M(-S_I + So)r(M’j)/Ax

+ Vo(-S-1 + So)(-& + S1)(Mj + ro)j+l/2)/(Ax)2

)o (-S_ + So) M D’j/(Ax)3.

Finally, since by (4.2), Mf)j j+l/2 rovo(-So + S1)’j/Ax, we have

(4.3b)

d
d-)j+l/2 M(-S-1 + So)cr(M/j)/Ax

+ (1 + ro)vo(-So + S1)(-S-1 -+- SO)Oj+I/2/(Ax)2

-rov(-S_l + So)(-So + S1)2j/(Ax)
)0 (-S-1 -]" So) M D/j/(Ax)3

4.2. Multiplying by j+1/2. Following the procedure for the model equation, we multiply
(4.3b) by f)j+l/a Ax and sum over j. We get

4

2 dt
jez jeZ
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Summing by parts, we obtain

by (4.3a). Summing by parts once more, we get

d
(R))+/2j+/2 Ax Z a(M’j) -[Mf/j]Ax

jeZ jeZ

d
W(M,j) Ax,

dr.

since W’ a. For the second term, we have

Z (+1/2j+1/2 AX (1 --t- ro)vo [(-So + S1)(-S_l + So)Oj+l/2] Oj+I/2/(Ax)
jZ j6Z

(1 + ro)vo Z[(-S- + So))j+l/2] [(-So q-- S-1))j+I/2]/(Ax)

-(1 + ro)vo -Y’j (Ax)

by (4.3a). For the third term, after a summation by parts, we get

Z ()+1/23j+1/2 AX --rovg Z[(-S-1 q- So)(-& q- S1)2j] [)j+I/2]/(Ax)2

j6Z j6Z

=-rov) Z[(-S_I-- SO)(--&-- S1))j]
jez

X [(-S0 q- S_I))j+I/2]/(AX)2

d
roP( 2[(-S_ q- SO)(--& q- S1))j]-/j/Ax

j6Z

by (4.3a). Hence, summing by parts once more, we obtain

d
Oj+I/2Vj+I/2 AX rov [(-So + S1)j] -[(----S1 - So)j]/Ax

j6Z j6Z

1 d Z(_ nt- j+I)2/Ax--rovg-
jeg

Finally, for the fourth term, we have

()j+I/2Vj+I/2 AX --)0 [(-S-1 q- So) M Dj] )j+I/2/(Ax)2
j6Z j6Z

--XO Z [i D’j] [(-S + So) )j+I/2]/(Ax)2
jz
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)o E [M D’j] 9?j+1 /(Ax)
jeZ

Lo E[D’j] M-’j /(Ax).
jZ

Since

M’j (-/-1 + 7’j + 7’j+ j+z)/12

(-j-1 -Jr- j -[- j+l )j+2)/12 + ()3j + )j+)/2

-Dj/6 + (So + $1)j/2,

we can write

(j+l/21)j+l/2 AX
jEZ

48

d
----)0Z (fij-1 fij j+l -[" ’j+2)2/(AX) -[-" kll,

where

q )o -gl E D j (So + S1)- /j lax.
jEZ

Since D-- (So- $2)(S_1- So)/2, we have

d
kit )0 Z[(So--’- S2)fij] -’[(S1- So)(So "[- S1)f/j]/Ax

jZ

d

Zo _’[(So &)P] [(-So + &)f]/Xx
jZ

1 d
--)0 jZ(--j-1 nt- /j+l)2/Ax"

Putting together the above equalities, we find that we have the following discrete version of
(4.1)"

(4.4a) d---Eh -vo(1 + ro) . fij Ax,

where the approximate energy Eh is defined by

(4.4b)

Z(j+l/2)2Eh ’ AX + Z W((-fij-1 -- 7fij + 7fij+l fij+2)/12) Ax
jZ jZ

+ -lrov)jEZE(--/J A- /j+I)2/Ax A- )0 (--j-1-4- /j+I)2/Ax

1
+ Zo ’(p_ # #+ + ;,+:)/Ax.

jez
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4.3. The energy Eh for the choice (2.4) of ).0. Next, we find the expression of Eh for
the choice (2.4))o; namely,

)=(’l+r)e2 1)0
2
0)

2 ro Vo2.

Inserting this form of )0 in the expression of Eh (4.4b), we obtain

2Eh (l)j+l/2) AX -l’- W((-j-1 -- 7Pj + 7j+l j+2)/12) Ax
j6Z j6Z

(-f,j_ +

0)2 (j-1 j j+l + j+2)2/Ax -Jc- ro V) Roh/Ax,
jeg

where

Roh -(--j -t- j+l)2 --(j-1 j j+l .qt_ j+2)2 (--j-1 + jq-1

Setting Zj+I/2 --"j -’1- )j+l and pj -zj-1/2 -1-- Zj+t/2, we rewrite Rob as follows:

Rob jez - (ZJ+l/2)2 "(--Zj-1/2 + Zj+3/e):
1- (Zj-1/2 "1- Zj+I/2)2

ljz{24(Zj+l/2):z (--Zj-1/2-I"Zj+3/2)2--6(Zj-1/2-’Zj+I/2)2 }48.

jz {6(-zj-1/2-t-Zj+l/2)2 (-zj-1/2nt-zj+3/2)2 I48.

1 )24-- .ieZ { 6 pj
z

pj + pj+ }
4-- 2(pj + (-pj + pj+)

or

Roh - 2(j-1 2j + ))j+l)2 -- (-j-1 -- 3?j 3j+l -+- j+2)2

As a consequence, we can write that with the choice (2.4) the energy Eh is indeed a
nonnegative quantity given by
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(4.4c)

(j+1/2)2 AX -- W((-j-1 _qt_ 7fij + 7fij+l )j+2)/12) AxEh " eZ j6Z

(--j-1 + /j+l)2/Ax

(l+r)
2

+ 2
1)( 09

2 (j-1 lj /j+l -]- 1j+2)2/Ax
jeg

+ --r0 vg . 2(9)j-1 29)j + j+l)2 -+ (-j-1 + 3pj 3j+l q- ))j+2)2 lax.

We summarize the results obtained thus far in this section in the following result.
PROPOSITION 4.1 (stability of the semidiscrete scheme (3.1)). Let the energy Eh be the

quantity defined by (4.4b) (or (4.4c) when )o satisfies (2.4)). Then, the equality (4.4a) holds
and so, for all > O, we have

fotjz(d )2Eh (t) + Vo(1 + ro) -d7 Ax E (0).

In what follows, we argue that (i) the case co << is more difficult to treat than the case
co >> 1, (ii) it is crucial to maintain the "stability enhancer" parameter r0 strictly positive, and
(iii) the artificial viscosity v0 must be reasonably large.

4.4. On the parameters w, r0, and u0. Notice that it is very important to ensure that the
numerical scheme damps away spurious oscillations in the approximate strains. The presence
of these oscillations might prevent the convergence to the correct VC solution of (1.1) because,
since the stored energy W is nonlinear, even if the approximate strain converges weakly to

?’, the approximate stored energy might not converge (weakly) to W()/). From the above
stability result, it is clear that the .role of the last three terms of the energy Eh is to control
those oscillations.

The effect ofthe size ofw. From the expression (4.4c) ofthe energy and from the stability
result of Proposition 4.1, it is clear that when co << 1 the control on the oscillations of the
approximate strain is relaxed and that if w >> 1 such control is enhanced.

The effect of the size of r0. When o) 0, control on the possible spurious oscillations
in the approximate strain can be exerted only if r0 > 0. Moreover, even when w > 0 it is still
crucial to take r0 strictly positive. Notice that the third and fourth terms of the energy Eh are
equal to zero for (and only for) the highly oscillatory wave

/ 1 forj even,

/ 2 for j odd,

where P and )2 are arbitrary constants. This unfortunate fact is a direct consequence of the
presence of the dispersive term in the second model equation (2.1a). However, if r0 > 0,
the dissipative term introduced in the first model equation (2.1 a) enhances the stability of the
scheme by controlling those unwanted oscillations. Indeed, if r0 > 0, the last term of the
energy is equal to zero if and only if the approximate strain is an affine function. Moreover,
if r0 > 0, the last term of the energy is infinity not only for the above approximate oscillating
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strain but also for approximate strains with highly oscillatory first derivatives

?xl for j even,
-fij-1 + j

x2 for j odd,

and with highly oscillatory second derivatives

j--1- 2j + j+l /
xx2

for j even,

for j odd.

Since the energy must remain bounded, by Proposition 4.1, all three types ofhighly oscillatory
waves in the approximate strain will be controlled, at least partially, even when co 0. It is
thus crucial to take r0 > 0.

The effect of the size of v0. The stability result of Proposition 4.1 and the expression of
the energy (4.4c) suggest that a good control on the variation of the strain and on the variation
of its first and second derivatives can be achieved if we take/ 1/2 in the expression
(2.5b) defining v0; namely, v0 co (Ax). Taking/ bigger than 1/2 does not seem to be
a reasonable strategy, because this would penalize too much the terms of the energy which
control the oscillations of the strain. Taking/3 smaller than 1/2 is certainly desirable, because
then the computational cost, which is proportional to (Ax)-3+/, decreases. However, in doing
so, the control on the variation ofthe strain and on the variation ofits first and second derivatives
is relaxed, and mildly oscillatory waves might appear which can destroy the convergence to
the exact solution.

5. Numerical experiments. In this section we carry out several numerical experiments
devised (i) to verify that the parameter r0 must be taken to be strictly positive and (ii) to
see for what values of the parameter/3 (recall we are taking v0 co (Ax)’) the scheme
converges. These experiments are done for the strain-stress relation of Fig. 1. We also
report a convergence study for a piecewise-cubic strain-stress curve. Before presenting those
numerical experiments, we perform a simple stability analysis that will guide us in the choice
of the Courant-Friedrichs-Lewy (CFL) condition.

5.1. Linear stability analysis. To have an idea of the stability condition for the above
scheme, we study its linear stability. We thus consider linear stresses r (9/) r’ ,, and we
assume that or’ > 0, since otherwise the resulting scheme is unconditionably unstable.

A simple computation gives the following form for the amplification matrix for the nu-
merical scheme (3.1):

1A2A=Id+A+- + A

where

and

( v0 )At ro S-/x b a
A o voAx icr’ a (-Sx) C

2
a sin(0/2)cos(0/2) (3 + 2 sine(0/2)),

3

b -4 sin2 (0/2),

c -8 sin (0/2) cos(0/2)
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for 0 6 (-rr, zr]. The eigenvalues of A are, taking into account (2.4),

At(v0){(l+r0)b +[(l+rO)
2

]+ x 2 2
b2 (R)

where

(9 ro (b2 + ac) + (vo-/-x)2 a2 _ro

1/2},

092 ac.

16 6
Since b <_ O, b + ac .w(sin(0/2)) (1 + 2(sin(0/2))) >_ 0, and ac <_ 0, we have that
(9 >_ 0. Thus, the real part of the eigenvalues +/- is always nonpositive, provided that r0 >_ 0.
Thus, the scheme is always linearly stable under a condition of the form

< (p co, r0,
Ax

We have numerically verified that the function

or’ ) { .44, 09 [0, 1],

09, ro 1,
t/)’vo’AxX2 -< b(09) 1.848/(2.5 + 091.2), 09 6 (1,501,

.8712/o9, 09 6 (50, 1000],

Ocan be used when < 1. In all our computations, we have chosen At as follows:

At sup max{0, ot(,)}} -1/2 (Ax)2-/3 q(09).
F>-I

Note that (9 0 if and only if 0 0 or 0 rr, and r0 0. In this case, we have

A=
Ax 0 -4xx

and so, highly oscillatory waves of the form )j 0 (-1)J will never be damped away,
regardless of the values of At, Ax, and v0. This fact agrees strongly with the analysis of the
energy of the semidiscrete scheme.

5.2. Experiments for a piecewise linear stress-strain curve. Next, we present a study
of the convergence properties of the scheme under consideration to the VC solution of (1.1)
for the strain-stress curve and the initial data used at the introduction and the values 09 =. 15,
09 l, and 09 = 3. Abeyaratne and Knowles [2] solved this Riemann problem. A classification
of all the possible solutions of Riemann problems for the strain-stress relation of Fig. (and
general kinetic and nucleation criteria) was carried out by Abeyaratne and Knowles in [3].
The Riemann problem we have chosen is the most challenging among all the possible types
of solutions since it has both phase boundaries and shocks.

The effect of the size of r0. In Fig. 3, we compare the exact VC solution for 09 15
and the different approximate solutions given by the scheme, with r0 0 and/3 1/2, for
Ax 1/800, 1/1600, 1/3200, 1/6400, and 1/12800. In Fig. 4, we take ro 1. We clearly
see that the highly oscillatory waves that appear in the approximate strain for r0 0 disappear
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FIG. 3. The choice ro 0 (and o9 .15.

completely when ro 1, as expected. The same phenomenon occurs for co 1, as can be
seen in Figs. 5 and 6, and for co 3, as can be seen in Figs. 7 and 8. These results confirm
that we must take ro > 0 and that choice (2.5a), ro 1, is a reasonable one.
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The effect of the size of/3. In Figs. 9 and 10, we compare the exact VC solution for
co .15 and the different approximate solutions given by the scheme, with r0 1 for
Ax 1/800, 1/1600, 1/3200, 1/6400, and 1/12800. This is done for several values of/
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FIG. 5. The choice ro 0 (and 1/2) for o9 1.

to see the effect of the parameter/3 on the convergence properties of the scheme. We clearly
see that the scheme does not converge to the proper VC solution. We also see that as/3
decreases, the approximation properties of the scheme improve around the elliptic region.
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(Although they deteriorate around the hyperbolic region, as is expected, our main concern in
this paper is to assess the quality of the approximation around the elliptic region, since it is
very well known how to improve the quality of the approximation on the hyperbolic region.)
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We have verified that the same phenomenon takes place for co and co 3, but we are only
displaying the results for co 15 because for small co this phenomenon is accentuated. A
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FIG. 8. The choice ro (and fl 1/2)for w 3.

more precise assessment of this phenomenon is shown in Figs. 11, 12, and 13, where the case
Ax 1/25600 has been included.
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In Fig. 11, we show the history of convergence of the scheme on the region Rr. ph. b. which
is a region located at the right of the rightmost phase boundary. The region Rr. ph. b. is defined
as follows:

(.041, .092),

Rr. ph. b. (.064, .092),
(.076, .092),

09 .15,
o9--1,
09---3.

The average of the error on the region Rr. ph. b. is plotted as a function of Ax for different
values of fl and co. Again, we see that the scheme converges well for fl 1/2 but does not
converge for fl 1. Notice how this feature becomes more acute as co decreases. Also note
that the scheme begins to be noticeably nonconvergent when the error is of the order of 10-2

for co .15, 10-3 for co 1, and 10-4 for co 3. Thus, this phenomenon may not be
appreciated on standard pictures.

In Fig. 12, we show the history of convergence of the scheme on the region Rph. b. which
is a small region around one of the rightmost phase boundaries. The region Rph. b. is defined
as follows:

(.001,.041), co .15,

Rph. b. (.024, .064), co 1,

(.036, .076), co 3.

Theoretically, the width of the boundary layer around a phase boundary of the solution
of (1.2) is of the order of the viscosity coefficient v; see [9], [2], and [4]. Since we have
constructed our approximate solution as a good approximation of the solutions (1.2), the
width of the boundary layer around a phase boundary of our approximate solutions should be
of order (1 / r0) v0, which by assumption (2.5b) is of order (Ax)/ as Ax goes to zero. Thus,
if the scheme is converging well around the phase boundary, the estimated rate of convergence
of the average of the error on Rph. b. should be very similar to the parameter/3. We display
the ratios of these numbers in Fig. 13.

We can see very good agreement with the theoretical order of convergence for/3 .5
and co and co 3; for/3 .5 and co --. 15, the width of the boundary layer around the
phase boundary is much smaller than expected. (We conjecture that this is so because one of
the values of the exact strain at the phase boundary is .20017 which is extremely close to
the value y2,3 .2 that separates phases 2 and 3.) For/3 1 and co 3, we see that for Ax
the ratio of the orders of convergence decreases as Ax decreases. This unfortunate situation is
accentuated as the value of co decreases. As/3 varies from 1/2 to 1, the behavior of the ratios
of orders of convergence seems to vary almost monotonically with/. In the case/ .25
the asymptotic regime does not seem to have been achieved most probably because there is
an enormous amount of artificial viscosity.

5.3. A pieeewise-eubie stress-strain curve. Finally, we present a short study of the
convergence properties of the scheme under consideration to the VC solution of (1.1) for the
strain-stress curve

r (y) ( .) (y );

see Fig. 14, co =. 15, co 1, and co 3. The initial data is the following:

1.072649343, x < 0
y0(x)

.15, x > 0
vo(x) =-O.
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FIG. 14. The piecewise-cubic strain-stress relation.

The results are very similar to those of the piecewise linear stress-strain curve; see Figs. 15-
17. Moreover, as Ax goes to zero, the numerical order of convergence gets closer and closer
to the value/3" .5 for all the values of co. We do not observe the unusually thin bound-
ary layer around the phase transition for co 15 observed in the case of the piecewise-
linear stress-strain curve. (This strengthens our conviction that the thinning of the numer-
ical boundary layer is due to the closeness of one of the values of the strain to the elliptic
region.)

6. Conclusion. In this paper, we continue the work initiated by Slemrod and Flaherty
[1 l] and devise and numerically test a simple finite-difference method for approximating
the VC solutions of the Cauchy problem for the mixed-type system governing the propaga-
tion of phase transitions in solids (or in van der Waals fluids). The numerical experiments
show that (i) the scheme produces approximate velocities that do not display the spike at
the phase transitions reported in [11] and (ii) it converges for all positive values of the VC
parameter co when the artificial viscosity is taken to be proportional to (Ax) 1/2 but fails
to converge if it is taken proportional to Ax. This shows that an incorrect discretization
procedure can significantly alter the nature of the solutions to which the scheme is converg-
ing.

The next step in the development ofnumerical methods for (1.1) is to find outhow to use the
heuristics introduced in this paper to devise formally high-order accurate (finite difference,
finite volume, or relaxation) methods that incorporate the various techniques (characteris-
ticwise evaluation of the fluxes, slope limiting, etc.) that work well for purely hyperbolic
systems.

Acknowledgments. The authors thank Rohan Abeyaratne, who sparked the interest ofthe
authors in this topic, Richard James for fruitful discussions about the spikes on the approximate
velocity, Lev Truskinovsky for stimulating input and for providing the exact solution of the
numerical experiment in 5, and Shi Jin for his incisive and constructive remarks. They also
thank John Lowengrub for fruitful conversations.
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A TWO-DIMENSIONAL COMPOSITE GRID NUMERICAL MODEL
BASED ON THE REDUCED SYSTEM FOR OCEANOGRAPHY*

Y. E XIEt, G. L. BROWNINGt, AND G. CHESSHIRE

Abstract. The proper mathematical limit of a hyperbolic system with multiple time scales, the reduced system,
is a system that contains no high-frequency motions and is well posed if suitable boundary conditions are chosen for
the initial-boundary value problem. The composite grid method, a robust and efficient grid-generation technique that
smoothly and accurately treats general irregular boundaries, is used to approximate the two-dimensional version of
the reduced system for oceanography on irregular ocean basins. A change-of-variable technique that substantially
increases the accuracy of the model and a method for efficiently solving the elliptic equation for the geopotential are
discussed. Numerical results are presented for circular and kidney-shaped basins by using a set of analytic solutions
constructed in this paper.

Key words, composite mesh, shallow-water equations, reduced systems, stability, ocean basins

AMS subject classifications. 65C20, 65M50, 76D05

1. Introduction. Kreiss [11] introduced the concept of a smooth solution of a hyper-
bolic system with multiple time scales. The smooth motions are of interest to meteorologists
and oceanographers because they carry the majority of the energy. In the original theory,
the existence of a well-posed limit system, the reduced system, which could be used to ac-
curately describe the smooth solutions, was also proved. The limit procedure removes the
high-frequency motions from the original hyperbolic system. A reduced system for three-
dimensional oceanic flows has recently been introduced (Browning, Holland, and Kreiss
[2]) and numerical solutions of this system in a channel for a single scale of motion, i.e.,
a mesoscale eddy, have been obtained (Browning et al. [3]). In the latter study a uniform
mesh was appropriate; however, in a full ocean basin where the spatial scales vary widely, a
uniform mesh is inappropriate. The composite grid method described in detail by Chesshire
and Henshaw [9] treats an irregular boundary smoothly and accurately, places fine reso-
lution only where it is needed, and is flexible for a multiple mesh configuration because
interpolation is used on the overlapping regions. Therefore, the composite grid method is
an ideal candidate for solving the multiscale oceanic problem in an accurate and efficient
manner.

To implement the reduced system by using the composite grid method for ocean circu-
lation studies, we introduce a change-of-variable technique to overcome the truncation error
imbalance in the system and a method to efficiently and accurately solve the elliptic equation
of the system. The efficiency and accuracy of the reduced system when using the composite
grid method are demonstrated by constructing a set of analytic solutions of the shallow-water
equations with different scales and boundary configurations. In 2 the reduced system for
the shallow-water equations is introduced, and the absence of high-frequency motions is
proved. We construct analytic solutions of the full shallow-water equations on circular and
kidney-shaped domains in 3. On the basis of a truncation error analysis, a change-of-variable
technique is introduced. In 4, we generate overlapping grids for circular and kidney-shaped
domains by using the composite grid method. An efficient method for the direct solution of
the elliptic equation with Neumann boundary conditions for the geopotential is proposed for
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the reduced system. In 5, we present numerical results and discuss a numerical technique to
control the numerical divergence. Finally, our conclusions are presented in 6.

2. The reduced system. The shallow-water equations are frequently used to describe
atmospheric and oceanic motions. In Cartesian coordinates x and y, directed eastward and
northward, respectively, the shallow-water equations are (e.g., [4])

(2.1a)
du

+4)x fv =0,
dt
dv

(2.1b) d---[ -Jr- y + fu O,

(2.1c) tbd__._, -t- ((0 + q)(/’/x "21- Vy) O,
dt

where is time, u and v are the velocity components in the x- and y-directions, 40 is the
mean geopotential, q is the deviation of the geopotential from the mean, and f is the Coriolis
parameter that is assumed to have the constant value f 10-4. The total differential operator
d/dt is defined as

d- 05 at- U-x at- roy
The shallow-water equations contain two classes of motions, i.e., the low-frequency (or
Rossby) motions and the high-frequency (or inertial-gravity) motions (see, e.g., Browning,
Kasahara, and Kreiss [4]). The majority of the energy of atmospheric and oceanographic
flows is contained in the low-frequency motions but the high-frequency motions in the system
adversely affect the Courant-Freidrichs-Lewy (CFL) stability criterion and physical param-
eterizations. Therefore it is desirable to use a system where the high-frequency motions are
not present.

Kreiss 11] showed that the low-frequency motions (the smooth solutions) can be approxi-
matedby using the proper mathematical limit called the reduced system, which is automatically
well posed. The proper limit of the full system (2.1) in the external mode case is

(2.2a)
du

-t- dpx fv --0,
dt

dv
(2.2b) d--- + dpy / fu O,

(2.2c) Ux -- Vy O,

which to first approximation accurately determines the smooth solution of the original system.
To simplify the discussion, we define the Jacobian for any functions (x’, y’) of (x, y) as

Ox
J(x, y; x’, y’) Oy._...

Ox
Oy._
Oy

If (2.2a) and (2.2b) are appropriately differentiated, an elliptic equation can be derived from
(2.2c) to determine b:

(2.3) V2q f( + 2 det[J(x, y; u, v)],

where ( -fly -Jr- Ux is the vertical component of the vorticity.
In addition to being well posed, the reduced system has another important feature, namely,

no high-frequency waves. To see this, assume the solution of the reduced system (2.2) to be
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2rr-periodic in the x- and y-directions and consider the linear constant coefficient system

(2.4a) ut / lUx + )Uy -3-)x fv O,

(2.4b) vt / lVx / OUr / y / fu O,

(2.4c) Ux + Vy O,

where t7 and fi are given constants. Cross differentiating (2.4a) and (2.4b), one determines
by

(2.5) 72 f 0;

i.e., for this linear system, the Jacobian term disappears in the elliptic equation. Fourier
transforming in space yields the system of ordinary differential equations

fit + (tkfi + f) fi + k ff) O,

t + ifftkf) + if)l + il + ffi O,

-(k2 + le) f(-ilt + ik) O,

where k and are the wave numbers corresponding to x and y, respectively. If the last equation
is solved for and substituted into the first two equations, the system can be written in the
vector form

9t i((tk + f)l)l + leA
where ’ (fi, 3) r, I is the identity matrix, and

A
ke kl

Because both of the eigenvalues of A are zero, both of the eigenvalues of the coefficient matrix
of ’" are (ilk / /); i.e., only the slow time scale is contained in this system (compare with
the analysis of the full shallow-water equations in [4]).

For the reduced system, an elliptic solver is needed to determine b, but a much larger time
step can be used because the high-frequency waves are absent. For example, if a second-order
in space and in time finite difference scheme is used, the stability of the linearized reduced
and full systems requires the time steps to be

Ax
At <

2+fAx’
Ax

At <
2 + v/Ax2f2 / 2b0

respectively (assuming Ay Ax). Because b0 gho, where g 10ms-1 is the gravity
acceleration and h0 is the mean depth, b0 - 103 if h0 100 m or b0 104 if h0 km
for the ocean problem. Thus the time step for the full system must be much smaller than
the one for the reduced system. For example, when Ax 104 m and qS0 104, the time
step for the full system must be 100 times smaller. The longer time step for the reduced
system can compensate for the additional expense of the solution of the elliptic equation for
the geopotential if an elliptic equation solver is efficient (the elliptic solver takes only about
two times longer than the hyperbolic part for the test problems presented in 5). Therefore,
the reduced system is chosen for solving the oceanographic problem because it can be solved
very efficiently compared to the full system.
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3. Analytic solutions and change-of-variable technique. To construct an analytic so-
lution on a relatively realistic basin, an analytic solution of the shallow-water equations on a
kidney-shaped region (the East Coast of the United States looks like the west boundary of the
kidney-shaped basin) is constructed to demonstrate the efficiency and accuracy of the reduced
system when using the composite grid method. An analytic steady-state solution on a circular
basin is mapped to a kidney-shaped region. This invertible mapping is used to map the solution
(u, v, p) and the shallow-water equations on the circle onto the kidney-shaped region; i.e.,
the transformed variables are an analytic solution of the transformed shallow-water equations.
Although the transformed streamfunction P looks realistic, the transformed solution is not
a solution of the untransformed shallow-water equations on the kidney-shaped region. By
mapping only the streamfunction q of the circular region onto the kidney-shaped region, one
can form a solution of the untransformed forced shallow-water equations on the kidney-shaped
domain. A similar technique of constructing an analytic solution of a forced system is used
in [1].

By using polar coordinates (i.e., x r cos 0 and y r sin 0), one can obtain a set of
analytic solutions ofthe full shallow-water equations (1) on the circular domain. Let us choose
one particular solution from this set of solutions for the circular basin with radius R 2500
kin:

(3.6a) [(_)2 ely
(3.6b)

2 y 2] X

(3.6c) q5 = -)+() + (_)2 +(_)2
2

Using the solutions, we can derive an analytic solution for the shallow-water equations in
a more realistic ocean basin by constructing an invertible mapping between a circle and a
kidney-shaped region. A modified cardioid mapping

X (0.8 @ 0.5X)2 (0.75y)2,

y’ 2(0.8 -t- 0.5x)(0.75y)

is used to map any function from a circular region to a kidney-shaped region shown in Fig. 1.
The Jacobian of this mapping is bounded away from zero (det[J(x, y; x’, y’)] >_ 0.135)
so the analytic solution (u, v, 4)) on the circle can be mapped to the kidney-shaped region
without a singularity problem. The streamfunction is shown in Fig. and u and v obtained
by differentiating the streamfunction are shown in Fig. 2.

To construct a more realistic solution with small spatial scale and that evolves in time,
we tested a streamfunction tp (x, y, t) tp, + E with q, the steady-state background flow
constructed above and qE a 350-km eddy. The eddy is constructed on the circle first and then
mapped onto the kidney-shaped region by using the modified cardioid mapping. On the unit
circle the eddy has the form

( (X Xo)2 + (Y Yo)2 )(3.7) tPe 0.05exp -0.003(1 + cosZ(0.27rt))
where

x0 -0.1 + 0.7 cos(0.47rt),

Y0 0.7 cos(0.47rt).
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LO= O.13E+O0 HI= 0.63E+06 INC= 0.31E+05

FIG. 1. The streamfunction and the mesh on the kidney-shaped region.

L0= -0.97E+00 HI= 0.97E+00 INC= 0.97E-01 LO= -0.77E+00 HI= 0.33E+01 INC= 0.21E+O0

FIG. 2. The contour plot ofu and v on the kidney-shaped region.

This eddy’s radius is increased as it moves away from the west boundary. The streamfunction

B / qE at 0 is shown in Fig. 3.
From the solution for the circle, it can be seen that the amplitudes of u and v are approx-

imately m/s near the boundary and is about 64 m2/s2 for f 10-4. This is also true for
the transformed solution on the kidney-shaped domain. Thus, in the u and v equations of the
reduced or full system, the truncation errors are not balanced. For example, in the u equation
(2. la), the truncation error of Cx is approximately 64 times larger than the errors in the advec-
tion terms. This phenomenon is not particular to the special solution used here. Through scale
analysis [2], it is known that the pressure gradient term is generally 10-100 times larger than
the advection terms. This imbalance can be overcome in a number of ways. A straightforward
solution is to use a higher-order finite difference scheme for Cx. It is interesting to note that
applying higher-order finite differences to all the terms in the shallow-water equations is not
efficient because the truncation error in Cx is dominant. So an efficient technique would use, for
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LO= 0.13E+00 HI: 0.66E+06 INC= 0.33E+05

FIG. 3. The streamfunction with the 350-km eddy.

example, a fourth-order scheme for 4x and a second-order scheme for the other terms. Treat-
ing fourth-order boundary conditions is another interesting issue in developing a well-posed
system (see Henshaw [10]). In this paper, a change-of-variable approach is proposed for the
two-dimensional reduced system and a similar idea can be applied to the three-dimensional
reduced system. This approach can dramatically increase the accuracy without increasing
either the resolution or the order of the finite difference scheme.

Suppose there is a function b’ satisfying

The amplitude of qS’ is of the same order as u and v because the large part of 4 is contained in
the geostrophic portion fP. Because the solution of the reduced system is nondivergent,

U --I/y, V

the reduced system becomes

ut + UUx + VUy + q’x O,

v + UVx + VVy + 4)’y O,

vZb’- 2det[J(x, y; u, v)] 0.

For this system, the truncation errors of the gradient of 4’ and advective terms are the same
size. This technique is called a change-of-variable method. Even for the two-dimensional
flow, the original system requires a 3-10 times finer resolution for a second-order method in
each direction to reach the same accuracy as the reduced system with a change-of-variable.
In other words, the change-of-variable method is at least nine times more efficient than the
system without the change-of-variable for two-dimensional flows and even more for three-
dimensional ones. The original deviation of the geopotential b can be recovered by solving
the elliptic equation

vZq--- f" + vZ.q
whenever it is needed. In the next section we discuss how to determine a unique solution from
the boundary condition.
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4. Composite grid method and the boundary treatment. The.composite grid method
was introduced over a decade ago [12], [13]. Chesshire and Henshaw [9] describe in consid-
erable detail the implementation of this method for solving partial differential equations. This
method allows multiple overlapping grids to cover an irregular domain of interest. Each grid
is mapped onto a rectangular grid, for example, by a Coons [6] mapping. Then all numerical
schemes can be applied as if on a rectangular grid. On the overlapping regions between grids,
interpolation is used. Like other nested-grid and refinement methods (Ciment [5]), the stabil-
ity of the composite grid method has been analyzed by Starius [12], [13]. Although Starius
13] considered only the Lax-Wendroff difference scheme, the same analysis can also be ap-

plied to other finite difference schemes. The nested-grid and refinement method have some
difficulty dealing with an irregular boundary because it is complicated to make the separate
components of the grid join precisely and smoothly. Usually, a stairwise nested grid is used to
approximate an irregular basin, which reduces the accuracy near the boundary. The flexibility
of the composite grid method for this problem can be seen in the grid construction for the
kidney-shaped region in Fig. 1. For the kidney-shaped region, there are three overlapping
grids: a western boundary, an eastern boundary, and an interior grid. The three overlapping
grids cover the kidney-shaped domain to resolve the solution derived from the streamfunction
shown in Fig. 1. Note that without the interior grid, there is a singularity problem when two
grid lines intersect. Splines are used to fit irregular boundaries in general, and then the com-
posite grid method handles the boundary smoothly and accurately. The boundary grids are
tangential and orthogonal to the physical boundaries, and this makes the boundary conditions
easy to implement. Note that much finer resolution is placed on the western boundary to help
resolve the western boundary current.

To demonstrate the accuracy and efficiency of the composite grid method, the reduced
shallow-water system is tested in the 4000-km wide by 6000-km high, kidney-shaped basin
shown in Fig. using the analytic solutions constructed in the previous section. Because
the composite mesh has a fine resolution where q changes quickly and where the eddy has
a diameter of approximately 350 km before becoming large, and coarse resolution where q
changes slowly and the eddy is larger, it requires very few grid points to obtain a very accurate
solution. This makes it possible to resolve this kind of solution on a workstation.

Solving the reduced system on a solid boundary basin requires explicit specification of
the finite difference scheme and boundary conditions. In this paper, a simple finite different
scheme, i.e., central finite differences in space and time, is used to discretize the reduced
system, and biquadratic interpolation is used on the overlapped region of the composite grid.
Near the boundary, the composite grid method provides a mapping from (x, y) to (r, s) such
that the direction along r is the normal direction and the one along s is the tangential directioni
i.e., (r, s) are orthogonal coordinates. This simplifies the implementation of the boundary
conditions. Because

(4.8) x x(r, s), y y(r, s),

the transformation between the velocity components is

t J(r,s" x y) (x y; r,s)
1) by dr Oy ds 72 72

The mapping (4.8) or its inverse form,

r r(x, y), s s(x, y),

is chosen to be orthogonal; i.e.,

(rx ry)(Sx Sy) r O.
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The Jacobian matrix J (x, y; r, s) is essentially orthogonal; i.e.,

J(x, y; r, s)JT (x, y; r, s) A(x, y),

where A (x, y) is a diagonal matrix determined by the mapping

A (X, y) r2x -t- ry
2 20 sx + Sy

Therefore, the time derivatives of (u, v) can be written as

(ut vt) j-1 (x, y; r, s)(nt -gt) r

and for any function P the spatial derivatives can be written as

(Px py)T jT(x y; r,s)(Pr Ps)T J-l(x, y; r,s)n(x, Y)(Pr Ps) T.

The advective equations in the reduced system can be written as

(4.9) (nt)q-J(x’y;r’s)( nurW-gus)-gtnVr d" -gVs

s + fJ (x, y; r, s)
u

because

Igigx -- Pigy (ig

and, similarly,

l))(igx Uy)T (n r)J-r (x, y; r, s)JT (x, y; r, S)(igr Igs) T nig 2i- -glg

IgVx nt- VVy nVr q- -gVs.

For a solid-wall boundary condition, the normal velocity is zero, and -g can be updated by
the second component of equation (4.9) by using only the function values of (u, v, q) in the
s-direction, i.e., along the boundary.

The first component of equation (4.9) gives a Neumann boundary condition for , i.e.,
the value of br. Thus an elliptic equation with a Neumann boundary condition needs to be
solved at every time step for the reduced shallow-water equations and the three-dimensional
reduced system. That is, in general

V2b gl (x, y, t),
qr g2 (x, y,. t) on the boundary,

where br is the derivative in normal direction and gl,2 are given functions of (x, y, t). In the
following the direct solver ofthis Neumann boundary problem is discussed. How to implement
the direct method for solving the elliptic equation with a Neumann boundary condition has a
significant impact on applying the composite grid method to reduced systems. In addition to
the fact that the direct method is faster than the multigrid method for low resolutions, all other
techniques for solving the elliptic system rely on a proper implementation ofthe direct method.
For example, the multigrid method needs a proper direct solver for its coarsest resolution and
a conjugate gradient solver requires a proper projection of the Neumann boundary problem
to obtain a nonsingular coefficient matrix. Therefore, it is crucial to implement the Neumann
boundary problem accurately and efficiently for a direct solver.
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The finite difference approximation of the continuous equations and the boundary condi-
tion gives a linear system

where O is some enumeration of the grid function describing q5 and b is the discrete right-hand
side. For the Neumann boundary condition problem, it is known that A is rank-one deficient
with a right-hand side null vector r (1, 1 1) r, i.e., Ar 0. Because Null(Ar) @
Range(A) Rn, suppose b b + b2, where b Null(Ar) and b2 Range(A), where
Null(Ar) {xlAVx 0}, the null space of Ar, and Range(A) {xl3y s.t. Ay x},
the range space of A. The component bl may not be zero in general but of the order of
the truncation error of the finite difference scheme and for second-order finite differences,
b O (Ax2). An ideal solution to this problem is to find a minimal norm solution of

(4.10) min IIAq bl12.

The problem is equivalent to solving

(4.11) ( A
?.T 0 0

where and r are the left and right null vectors of A; i.e., rA Ar 0 and usually the
coefficient matrix is called the augmented matrix of A, which is nonsingular. One additional
computation is that of the left null vector because the right one is known. If the direct solver
is used, an LU decomposition is usually computed, for example, by the Yale sparse matrix
solver (YSMP) [8] or the Harwell package (MA28) [7]. (Symmetric sparse decomposers are
not suitable because the matrix is not symmetric if interpolation is used in the composite grid
method.) The null vector can be computed inexpensively. Suppose

(4.12) A PLUPr,

where P and Pr are the pivot matrices (if only the row pivot is considered in the decomposition,
Pr 1), and

0 lnn

where un, is zero theoretically and ofround-offerror size numerically because ofthe singularity
of A. There are two ways to compute 1. One is to solve p-r L-ten, where e
(0, 0 0, 1)r, and the computation of requires only .one backsubstitution. In this paper,
another way, the inverse iteration method, is used to compute because one does not need to
have any knowledge about the data structure ofMA28 or YSMP storing the L and P matrices.
The method is very efficient because one iteration is sufficiently accurate for the numerical
approximation.

Clearly (4.11) contains dense row and column vectors, namely, and r. If an LU de-
composer is applied directly to the augmented matrix, the fill-ins may be significant. The
decomposition of the augmented matrix and the decomposition of A are tested on the circular
basin with the mesh shown in Fig. 4. The former decomposition takes eight times longer than
the latter. One can modify the pivoting such that the last row and column ofthe augmented ma-
trices will not be pivoted until the last row and column of matrix A are reached.. This requires
some knowledge of the data structure of a matrix solver. In this paper, the LU decomposition
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FIG. 4. The composite grid on the circle.

is applied to A. By using the computed l, one can obtain the minimal norm solution of (4.10)
by solving

lrb
(4.13) P1LUPr b-

and setting the last component of PrP to zero, which projects q in the range space of A and
ensures that q has a minimal norm. For simplicity, let Pl Pr I. Because L-Ten the
last component of

L-1 (b lTb

TL-brL-b- en rL-L-ren O.en L-ren 112 en

Thus (4.13) exactly holds. For the solution of (4.10), []Aq bl[ ITb[/[[ll[, i.e., I[Aq bl[
min IIAq b[I. This method is implemented in this paper to test the numerical approximation
of the reduced system.

5. Numerical results. In this section, numerical results are presented. On the circular
domain, results with and without the change-of-variable technique are compared. Following
the numerical tests for the steady-state solution on the circular region, the numerical results
for the untransformed, forced, reduced shallow-water equations on the kidney-shaped region
are presented. Finally, the mesoscale eddy is considered.

The numerical results presented use the/2-norm to calculate the relative errors and all the
numerical errors are plotted in time for two weeks for all resolutions for both the circular and
kidney-shaped regions.

5.1. Steady-state solution on the circular region and divergence damping technique.
In this subsection, numerical results are presented for the circular region because the analytic
solution for the circular region does not require forcing terms.
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TABLE
The relative errors in u on the circular region on day 14for low (357 km), medium (178 km), and high (89 km)

resolutions (%).

Different systems Low Medium High
Original system inf 128.3 44.5

System with damping 9.25 6.76 3.53
System with change-of-variable 0.98 0.25 0.06

Consider the analytic solution given by (3.6). The initial values are obtained using (3.6).
Three resolutions are tested in this subsection and they have 357-km (low), 178-km (medium),
and 89-km (high) minimum grid sizes, respectively. (Figure 4 shows the medium resolution
grid.) Because a second-order finite difference is used in this paper, the relative errors should
be reduced by a factor of four when the resolution is doubled (i.e., the grid size is halved). On
the first time step, the relative errors of the three resolutions in u are 0.75 10-2, 0.21 10-2,
and 0.49 10-3 (sizes are similar in v and b). Although the errors do not reduce exactly by
a factor of four from the low to the medium resolution because the low resolution may not be
in the asymptotic range, the errors reduce properly from the medium to the high resolution.

Table shows the increases with time of the relative errors for the three resolutions. It is
found that the residual of (2.2c) grows quickly; i.e., the divergence ux + Vy grows too fast.
To control the divergence, consider the divergence equation derived from (2.2a) and (2.2b):

(t nt- (2
__
V2q f( 2det[J(x, y; u, v)] 0.

The reduced shallow-water equations solve the elliptic equation (2.3) to obtain q with the
assumption 6 0. However, 3 is not zero numerically but can be forced to be zero at the next
time step in the following manner:

0-- 6n-1
+ V2q f( 2det[J(x, y; u, v)] 0,

2At

where the low-order term 62 has been ignored. The first term is usually called a damping
mechanism. This mechanism is used to test the numerical approximation of the reduced
shallow-water equations, and. the relative errors of u are shown in Table using the same
time step for all three resolutions. When the change-of-variable technique discussed in 3 is
used, the accuracy can be increased dramatically and the damping mechanism is unnecessary
for the circular case. Table shows the increases of the relative errors in time for the three
resolutions with the change-of-variable technique. In a two-month integration, even using the
low resolution, the relative error in u is 4.8%.

The numerical approximation for the reduced system is very efficient. The Sun SS-2
central processing unit time used for a two-week integration for the three resolutions was
as follows: low, 1.4 minutes; medium, 3.2 minutes; and high, 11.8 minutes. Note the time
indicated does not include the preprocessing time (e.g., the time for constructing the grids and
decomposition of the matrices).

5.2. Steady-state solution on the kidney-shaped region. In this subsection we test the
solution for the untransformed, forced, reduced shallow-water system. Two resolutions are
tested. Figure shows the high resolution and the low resolution is obtained by halving the
grid size of the high one. For the test purpose, b is chosen as q5 fq. With the change-
of-variable technique, the relative errors of the low and high resolutions in u are 0.65 10.3

and 0.19 10.3 without the damping mechanism. Table 2 shows the increase of the relative
errors in time. After two months, the low resolution can achieve relative errors under 10%.
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TA3LE 2
Relative errors in u on the Kedney domain on day 14for the low and high resolutions (%).

Different solutions Low High
Steady flow 3.67 0.90
With eddy inf 57.4

Eddy passing overlap 127.5 20.6

5.3. A mesoscale eddy on the kidney-shaped region. It is difficult to resolve the eddy
constructed in 3. Even with the change-of-variable technique, the relative errors are large.
More resolution could be placed on the western boundary to resolve the eddy when no change-
of-variable is made, but then the memory required would exceed the capacity of the SS-2
workstation. Therefore, we present only the numerical results from the change-of-variable
technique and the damping mechanism. The eddy takes five months to travel a circle. Table
2 shows the relative errors in u without the background flow. The eddy starts at the position
shown in Fig. 3 and stops two weeks later. From Table 2, it can be seen that the relative error
can be around 10% if the resolution on the western boundary shown in Fig. 1 is doubled.
Several tests have been made to allow the eddy to pass through the interpolation regions (i.e.,
the test starts near the overlapping areas and the eddy passes the areas in two weeks), and the
relative errors are smaller than the errors shown in Table 2 because the eddy becomes larger
in the overlapping areas than in the center of the western boundary. For example, Table 2
shows the relative errors of u for the two resolutions in two weeks when the eddy passes the
overlapping area between the western and eastern boundaries.

6. Conclusions. The composite grid method has been applied to the reduced system for
the shallow-water equations. From the analyses and numerical experiments in this paper, this
combination of the reduced system with the composite grid method has been shown to be
efficient and accurate, particularly for irregular boundary basins.
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A SPARSE APPROXIMATE INVERSE PRECONDITIONER
FOR THE CONJUGATE GRADIENT METHOD*
MICHELE BENZI, CARL D. MEYER$, AND MIROSLAV TIMA

Abstract. A method for computing a sparse incomplete factorization of the inverse of a

symmetric positive definite matrix A is developed, and the resulting factorized sparse approximate
inverse is used as an explicit preconditioner for conjugate gradient calculations. It is proved that in
exact arithmetic the preconditioner is well defined if A is an H-matrix. The results of numerical
experiments are presented.

Key words, sparse approximate inverses, preconditioned conjugate gradient method, H-
matrices, incomplete factorizations
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1. Introduction. In this paper we develop a method for computing an incom-
plete factorization of the inverse of a symmetric positive definite (SPD) matrix A.
The resulting factorized sparse approximate inverse is used as an explicit precondi-
tioner for the solution of Ax b by the preconditioned conjugate gradient (PCG)
method. Due to the fact that an explicit preconditioning step only requires matrix-
vector products, explicit preconditioners are of considerable interest for use on parallel
computers [7, 9, 17, 19-21]. This is in contrast with more traditional precondition-
ers based on incomplete factorizations of the coefficient matrix A which necessitate
triangular solves (a serial bottleneck) in the preconditioning steps. Sparse incomplete
inverses are also useful in the construction of sparse approximate Schur complements
for use in incomplete block factorization preconditioners [2, 8]. Furthermore, our pre-
conditioner does not require that A be explicitly stored, a feature which is useful for
some problems where A is only implicitly given as an operator.

The paper is organized as follows. In 2 we describe the main idea upon which
the preconditioner is based. Section 3 is devoted to a proof of the existence of the
incomplete inverse factorization for H-matrices, while in 4 and 5 implementation de-
tails and the results of numerical experiments are discussed. Our experiments indicate
that this preconditioning strategy can insure rapid convergence of the PCG iteration
with convergence rates comparable with those of the best serial preconditioners. In
6 we draw some conclusions and we indicate some future research directions.

This paper can be viewed as a natural outgrowth of work on a direct sparse linear
solver based on oblique projections [3, 4, 28].
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2. Computing an incomplete inverse factorization. If Ann is an SPD
matrix, then a factorization of A-1 can readily be obtained from a set of conjugate
directions zl, z2,..., Zn for A. If

is the matrix whose th column is zi, we have

Pl 0 0

ZTAZ=D= P2 0

".
where pi zAzi.

:0 0 Pn

It follows that
A-1 ZD-1ZT,

and a factorization of A-1 is obtained A set of conjugate directions zi may be con-
structed by means of a "conjugate Gram-Schmidt" (or A-orthogonalization) process
applied to any set of linearly independent vectors vl, v2,..., Vn. The choice vi ei

(the th unit vector) is computationally convenient. The resulting Z matrix is unit
upper triangular; indeed,

Z L-T where A LDLT

is the root-free Cholesky factorization of A. Denoting the i th row of A by a/T the
inverse factorization algorithm can be written as follows.

THE INVERSE FACTORIZATION ALGORITHM

(1) Let z)’=ei (l_i_n)

(2) for i=l,2,...,n
for j i, + l, n

(i--1) T (i--1)
pj := a z

end
if i=n go to(3)
for j=i+l,...,n

1) IJjzi) Zi-

(i--1)
P{

end
end

(i-1) for l<i<n.Let zi := z and pi :=pi
0 0
p2 0

Return Z [zl,z,...,zn] and D

0 0 pn

Notice that the matrix A need not be explicitly stored--only the capability of
forming inner products involving the rows of A is required. This is an attractive
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feature for cases where the matrix is only implicitly given as an operator. Once Z
and D are available, the solution of Ax b can be computed as

x* A-lb- ZD-ZTb-

A similar algorithm was first proposed in [14]; see also [13, 18]. Further references
and a few historical notes can be found in [3, 4]. For a dense matrix this method
requires roughly twice as much work as Cholesky. For a sparse matrix the cost can
be substantially reduced, but the method is still impractical because the resulting Z
tends to be dense. The idea of computing a sparse approximation of Z to construct
a preconditioner for the conjugate gradient method was first proposed in [3] (see also
[4, 5]). This paper is devoted to developing and testing this idea.

Sparsity is preserved by reducing the amount of fill-in occurring in the computa-
tion of the z-vectors (that is, above the main diagonal in the unit upper triangular
matrix Z ). This can be achieved either by ignoring all fill outside selected positions
in Z or by discarding fill whose magnitude falls below a preset drop tolerance (see 4
for details). The motivation for this approach is based upon theoretical results and
computer experiments which show that many of the entries in the inverse (or in the
inverse Cholesky factor) of a sparse SPD matrix are small in absolute value [2, 10, 25].
Several authors have exploited this fact to construct explicit preconditioners based on
sparse approximate inverses [2, 20, 21]. However, the approach taken in this paper is
quite different from the previous ones.

If the incomplete inverse factorization process is successfully completed, one ob-
tains a unit upper triangular matrix 2 and a diagonal matrix /) with positive diag-
onal entries such that

M-1 ZD-12T A-1

is a factorized sparse approximate inverse of A. It is shown in the next section
that such an incomplete inverse factorization of A exists (in exact arithmetic) for
arbitrary values of the drop tolerance and for any choice of the sparsity pattern in
Z when A is an H-matrix. For general SPD matrices the process may break down
due to the occurrence of negative or zero pivots Pi. Although numerical experiments
show that this breakdown is not very likely to occur for reasonably well-conditioned
problems, it is necessary to safeguard the computation of the approximate pivots
against breakdown in order to obtain a robust procedure (see 4).

In this paper we limit ourselves to SPD matrices, but it is possible to apply
the inverse factorization algorithm to arbitrary matrices. In exact arithmetic, the
procedure can be carried out provided that all leading principal minors of A are
nonzero [3]. The resulting Z and D matrices satisfy

AZ LD

where L, a unit lower triangular matrix, is not explicitly computed. Hence, Z is the
inverse of U in. the LDU factorization of A. The application of such an inplicit Gaus-
sian elimination method to the solution of sparse linear systems has been investigated
in [3, 4, 28].

3. Existence of the incomplete inverse factorization. The preconditioner
based on the incomplete inverse factorization of A exhibits many analogies with the
classical incomplete LDU factorization of Meijerink and van der Vorst [24]. These
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authors proved that such an incomplete factorization is well defined for arbitrary zero
structures of the incomplete factors if A is an M-matrix. In other words, if A is a
nonsingular M-matrix, then the incomplete factorization can be carried out (in exact
arithmetic) and the computed pivots are strictly positive. Furthermore, the pivots in
the incomplete factorization are no smaller than the pivots in the exact factorization.
In [23], Manteuffel extended the existence of incomplete LDU factorizations to the
class of H-matrices. Recall that A [aij] is an H-matrix if [gij] is an M-matrix
where

[ -lal when - j,
aii when j.

Note that a diagonally dominant matrix is an H-matrix.
This result means that if A is a symmetric H-matrix, then the incomplete

Cholesky factorization always exists and it can be used to construct an SPD precon-
ditioner for the conjugate gradient method. If A is a general (non-H) SPD matrix,
the incomplete factorization nay break down due to the occurrence of zero pivots, or
the corresponding preconditioner may fail to be positive definite due to the presence
of negative pivots.

The same turns out to be true for the incomplete inverse factorization described in
the previous section. Here we prove that in exact arithmetic the inverse factorization
algorithm given in 2 will never break down provided that A is an H-matrix. In
the symmetric case this implies that the approximate inverse Z/)-12T is positive
definite, so it may be used as preconditioner for the conjugate gradient method. This
fact was first proved for M-matrices in [3].

The proof runs as follows. First we show that the incomplete process will never
break down if A is an M-matrix. This is a consequence of the fact that dropping a
nonzero fill-in in the computation of a vector z. at step is equivalent to setting the
corresponding entry of the th row of A to zero. Because the off-diagonal entries of
an M-matrix are nonpositive and the entries of 2 are nonnegative, this shows that
the pivots /5i produced by the inexact scheme are greater than or equal to the exact
pivots Pi. Since these are strictly positive for an M-matrix, no breakdown can occur
during the inexact inverse factorization scheme.

Subsequently we show that when A is an H-matrix, the pi.vots p computed by
the inverse factorization scheme are no smaller than the pivots iSi corresponding to
the associated M-matrix.

When combined, these two results will insure the stability of the incomplete
procedure for H-matrices. For symmetric matrices this will mean that the factorized
approximate inverse is positive definite and can be used as a preconditioner for the
conjugate gradient method. However, symmetry is not required in our proof.

PROPOSITION 3.1. Let A be an M-matrix and let Pi be the pivots produced
by the inverse factorization algorithm. If are the pivots computed by the incorn-
plete inverse factorization algorithm with any preset zero pattern in the strictly upper
triangular part of Z or any value of the drop tolerance, then

p > p > O.

Proof. From the identity AZ- LD and the fact that Z and L are unit trian-
gular matrices it follows that the pivots pi can be expressed in terms of the leading
principal minors Ai of A as

(l<_i_<n; Ao--1).
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Because A is an M-matrix, all its leading principal minors are positive and therefore
Pi > 0 for all i. After i- 1 steps of the inverse factorization scheme, the column

(i-1)vectors j~(-l) (i _< j _< n) are available. Let z(71) denote the k th entry of z
At step of the inverse factorization scheme, the following are computed:

i-1
(-1) (-1) (i < j < n).(3.1) PJ Z azj + aij

l----1

Suppose now that a sparsity pattern is imposed on the z-vectors, or that all fill-in in
the z-vectors whose magnitude falls below a given drop tolerance is to be dropped.

_(i-1)The naodified z-vectors will be denoted by zj and the pivots are now given by

i-1

(3.2) =(i- 1) - _(z
/=1

_(i--1) _(i--1) < 0We show by induction that pi > 0 for 1 < < n. We also show that pj
=(i--1)for + 1 _< j _< n and that zj _> 0 (componentwise) for _< j _< n for all i. For

(i-2)1 the inequalities are obviously true. Now fix > 2 and assume that t-i-1 > 0,
_(-)

j 0 for _< j _< n, and z >_ 0 for i- 1 _< j _< n. It follows that in the
updates

’(-))(-) _(-.) )j Zj .(i--2)
Pi--1

nonpositive quantities are subtracted from nonnegative quantities. Therefore, even
=(i--1) =(i--1)after dropping, no component of zj can become negative. That is, zj _> 0

for _< j _< n. Using this inequalities and the fact that the off-diagonal entries of
an M-matrix are nonpositive, we see from (3.1) that =(i-1) < 0 for + 1 < j < n.Pj

.(i--1) (i--1)Finally, it is clear from (3.2) that p >_ p Thus, the pivots cannot become
smaller because of dropping. Since the exact pivots are positive, this proves that the
incomplete inverse factorization process will not break down. F1

We explicitly observe that when A is an M-matrix, our method is guaranteed to
produce a nonnegative approximate inverse.

Now let A be an H-matrix, and apply the inverse factorization scheme to A as
well as to the associated M-matrix . In the sequel, quantities with hats correspond to
the associated process on . We need to compare pivots and z-vectors for the original
vrocess (on A) n or t ssocited vrocess (on A ). o do ti w so need to
introduce intermediate quntitiesdenoted with tildeswhich are constructed with
entries from nd with pivots from A.

PROPOSITION 3.2. Let A be an H-matrix and let be the associated M-matrix.

If p and denote the pivots computed by the inverse factorization scheme applied to
A and to respectively then p . Furthermore if denote the pivots computed
by the incomplete inverse factorization algorithm applied to A, then .

Consider  unctionsProof.
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dependent on the elements of A and on the pivots Pl,...,pk. Likewise, we can

consider the entries )) as rational functions depending on the entries in the first k

rows of and on the corresponding pivots 151,...,15k. Let

2}f) ()
lj ((11, kn, Pl,..., Pk)

computed in the same way as 2)" using Pl,...,Pk instead of /l,...,kbe In
the following, it helps to think of the pivots pi, Pi as parameters, ignoring their

dependency on the entries of A and , respectively. In this way, the entries of zk),
), and 2) can be regarded as polynomials in the entries of A and , respectively.
We will prove that pi _> 15 using induction on i. We make the following inductive
assumptions for all k _< i- 1.

(3.4)

) has all its terms nonnegative (as a polynomial).

^(1) > 2[) > 0.For 1 we have Pl all (11 1 > 0 and zla
Using (3.1) for 15i we get

i--1 i--1

E il} 1)
_
ii -- E ilZ}--l) + tii"

/=1 /=1

This inequality follows from the inductive assumption 2}-1) _> 2}-1) and from the
fact that the 5it’s are nonpositive (being off-diagonal elements of the associated M-
matrix).

(i--1)Notice that corresponding terms in the expressions of 2{ 1) and zti as poly-
nomials have the same absolute value, so they can differ only by the sign. Using the
defining identities for the H-matrix, i.e., 5ii au and 5ia -lail for k, we
get

i--1 i--1

E-)+ ii Eaiz )+ a- Pi.
l1 l1

-(i-1)All terms in tzt on the left-hand side, when considered as a polynomial in

elements of , are nonpositive. On the right-hand side, some of the terms in the
expression for z 1) cn be positive. But corresponding terms of these polynomials
have the same bsolute value, so they differ only by the sign. Hence the inequality.

Using the updating formulagiven in the inverse factorization lgorithmfor

j we have

() (-1) E atztj + aj 2-1)j j

Since the off-digonal elements of the M-matrix are nonpositive, and since p > 0,
we obtain

z(i) (i--1) E=l ilZlj + aij i--1)_ z(i)
zj zj zj

P
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This follows-from the set of inequalities

#}-) # 2{-)

Assembling everything together we have

--I ^(--I)-/=1 ailZlj + aij #}i-1) >
--I ~(--i)/=1 ailZlj + aij #}i-1)

Pi

This inequality is added to the inequality from the assumption

^(i--I) z(--i)z _>
to arrive at

:(i)In addition, all the terms of j are nonnegative.
Using the inductive assumption and defining identities for the H-matrix it can

also be seen that (3.5) is true for k- i.
Concerning the second statement, it is easily seen that the same inequality for the

pivots holds when the inverse factorization algorithm is applied to A incompletely, as
the same argument for the polynomial terms can be applied even when some elements

--i) are set to zero.of
It follows from Propositions 3.1 and 3.2 that the incomplete inverse factorization

process will never break down (in exact arithmetic) when A is an H-matrix. This
is true for arbitrary zero patterns in the strictly upper triangular part of Z and for
arbitrary choices of the drop tolerance.

The pivots produced by the incomplete inverse factorization of an H-matrix are
no smaller than the pivots produced by the incomplete inverse factorization of the as-
sociated M-matrix. However, they are not necessarily larger than the pivots produced
by the exact inverse factorization of A, contrary to what happens ,in the M-matrix
case. For example, consider the H-matrix

4 -1
-1 4 1- 1 4

If 0 < e < 1/4, the incomplete inverse factorization algorithm with drop tolerance
Tol 1/1.6 returns a pivot /53 which is smaller than the pivot P3 produced by
the exact inverse factorization scheme. This is in perfect analogy with incomplete
Cholesky factorizations (see [23, p. 479]).

If A is not an H-matrix, the incomplete inverse factorization algorithm may break
down. For instance, applying the algorithm with a drop tolerance Tol 0.06 to the
SPD matrix

2.00 0.40 0.10)0.40 1.08 2.00
0.10 2.00 3.96
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results in /a 0 (a breakdown).
In finite precision computations, zero or negative pivots may occur even for H-

matrices, due to round-off errors. Also, trouble can be expected in the presence of
extremely small pivots. Indeed, this is one way for severe ill conditioning to manifest
itself. Furthermore, there are many applications leading to SPD matrices which are
not H-matrices---typically, finite element analysis. It is therefore desirable to incor-
porate some safeguard mechanism in the incomplete algorithm which guarantees that
the computation of the preconditioner will run to completion and that it will always
produce a symmetric positive definite approximate inverse factorization. Similar tech-
niques have been implemented in connection with incomplete Cholesky factorization
preconditioning and with approximate Hessian modifications [23, 16, 27].

4. Notes on implementation. We have implemented the PCG algorithm
with our approximate inverse preconditioner--hereafter referred to as AINV--based
on the inverse factorization algorithm of 2 as well as with a standard incomplete
Cholesky (IC) preconditioner. The purpose of this comparison is to explore some
characteristic algorithmic properties of the explicit preconditioner and to get a feeling
for the convergence rate for the explicit PCG method as compared with one of the
best implicit preconditioners.

We first describe the IC preconditioner used in our comparison. It was computed
by a standard column algorithm with symbolic and numeric phases (see [15, 22]). Dur-
ing the decomposition we removed all the elements of the factor less than a prescribed
drop tolerance Tol. Necessary working space was thus dominated by the size (number
of nonzero entries) of the lower triangular factor of the IC preconditioner.

This decomposition, which could break down for general (non-H) matrices, was
modified by a standard stabilization; see [16]. The algorithm insures that all diagonal
elements of D in the LDLT decomposition are strictly positive and the absolute val-
ues of the elements of L satisfy a uniform upper bound in order to preserve numerical
stability and to prevent excessively large elements in the factors. We refer to [16] for
details.

Computing the AINV preconditioner is a slightly more complicated process. In
the Cholesky case we can use an elimination tree structure to minimize symbolic
integer overhead and working storage. Due to the complicated rules governing fill-in in
the AINV case, it is not clear how to realize an analogous symbolic process. Therefore,
we used a submatrix type of algorithm which updates at each step all the remaining
z-vectors by a rank-one modification. We adopted dynamic data structures similar to
those used in submatrix formulations of sparse unsymmetric Gaussian elimination (see
[11,28,29]). This requires the user to provide an estimate for the number of nonzeros
allowed in the preconditioner. Additionally, some elbow space is needed for the data
structures. In our implementation the elbow space was four times the estimated space
for storing the nonzeros in the preconditioner--similar to the implementation of sparse
Gaussian elimination in the widely used packages MA28 [11] and Y12M [29].

However, there are some differences in the use of such data structures in Gaussian
elimination and in the AINV procedure. For instance, these data structures are used
in AINV for the matrix Z but not for A, now stored in static data structures. During
the AINV process, A is delivered into the cache by rows since we need at each step
only one row of. A. Recall that in some cases it may even be possible to avoid storage
of A altogether--e.g., when a routine is available to compute the action of A on a
vector (we did not take advantage of this option in our implementation).

The amount of fill-in created during the computation of the AINV preconditioner
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in most of the first steps is very small and thus the integer overhead and CPU time
spent in these initial stages is very small. This is in contrast with sparse Gaussian
elimination (as represented, for instance, by MA28), where the proportion of integer
overhead and CPU time is distributed more uniformly over the algorithmic steps.

The sizes of the data structures in the AINV case which are necessary in the
top level of the memory hierarchy (cache and registers) were found to be small, often
much smaller than the size of the preconditioner. This fact can strongly influence
perfornance, especially on workstation equipment. Nevertheless, working storage for
the implementation of AINV is larger than for the implementation of IC.

Sparsity was preserved on the basis of value rather than on the positions of fill-in.
For capturing the relevant entries in the inverse Cholesky factor of A, this is a better
strategy than imposing a preset sparsity pattern on Z. Consistency suggested that
drop tolerances be used with IC as well.

Skipping some z-vector updates in step (2) of the inverse factorization algorithm
(i--1) .,..(i-- 1)when the coefficients pj /i were in some sense "small" produced bad numerical

results, so no skipping was done.
In the AINV case we also implemented an algorithmic modification to avoid

breakdown for general SPD (non-H) matrices. When some computed .diagonal element
pi was too small--in our case, less than where M is the machine precision--we
replaced it by

(4.1) max{VQ-, #G0}

where
# 0.1 (a relaxation parameter),

o- max Pkikn-1

The rule (4.1) was chosen to avoid breakdowns due to very small or negative diagonal
elements /. It also has the effect of constraining the growth of elements in the
z-vectors. This avoids break downs, but, just as in the IC case, there is no guarantee
that we will get a good preconditioner after this regularization.

5. Numerical experiments. The following experiments illustrate some prop-
erties of the two preconditioners when applied within the PCG algorithm to SPD
matrices. Nine test matrices were taken from the Harwell-Boeing collection [12] and
the remaining two were kindly provided by G. Zilli (Padua University).

All experiments were run on a SGI Crimson computer with RISC processor R4000.
Codes were written in Fortran 77 and compiled with the optimization level-04. CPU
time was measured using the standard function dtirne. We also experimented with the
compiling option -MIPS2 which enables double word loads and stores. It is known
that this can substantially enhance the performance of floating point arithmetic of
some codes. This option led to slightly improved timings in only a few cases, mostly
for ICCG. The timings reported in the tables are the best between those obtained
with the two compiling options.

All matrices were rescaled by dividing their elements by their largest nonzero
entry, but no preordering of their elements was used. The right-hand side of each
system was computed using the solution vector composed of ones. The PCG iteration
was terminated when the 2-norm of the unpreconditioned residual had been reduced
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to less than 10-9 The matrices used in the experiments correspond to finite ele-
ment approximations to problems in structural engineering (NOS3, NOS5, PADUA1,
PADUA2), finite difference approximations to elliptic PDEs (NOS6, NOST, GR3030)
and to. modelling of power system networks (BUS matrices).

TABLE 1

Behavior of the unpreconditioned CG algorithm.

test matrix n density

NOS5 468 2,820

NOS6 675 1,965

NOS7 729 2,673

494BUS 494 1,080

662BUS 662 1,568

685BUS 685 1,967

l138BUS 1,138 2,596

GR3030 900 4,322

PADUA1 812 3,135

PADUA2 1,802 13,135

time iterations

1.76 266

0.88 468*

1.66 675*

1.89 729*

0.91 494*

1.30 614

1.44 556

3.83 1,138’

0.28 45

3.06 812"

24.11 1,802"

The listings in Table 1 are for the unpreconditioned CG algorithm. Column 1
is the name of the test matrix; column 2 lists the size (n) of the matrix; column
3 (density) gives the number of nonzeros in the lower triangular part including the
diagonal of the test matrix; column 4 (time) reports the execution time in seconds;
and column 5 (iterations) gives the number of iterations. An asterisk (*) in column 5
indicates that the algorithm failed to converge after n steps using the above mentioned
stopping criterion, and computations were terminated.

From the description of our implementation it can be expected that the CPU
times for computing the two preconditioners IC and AINV will be different because
the IC computation has very smal integer overhead. Of course, this difference may
become negligible if a sequence of linear systems with the same coefficient matrix (or
a slightly modified one) and different right-hand sides has to be solved, since the time
for computing the preconditioners is then only a small fraction of the time required
for the overall computation.

Drop tolerances parameterize IC and AINV in different ways. That is, using the
same Tol value will produce very different results in the two cases. It is preferable to
compare the two preconditioners in terms of amount of fill-in rather than to compare
two preconditioners obtained using the same value of Tol. The key role in the ex-
periments is played by the fill-in allowed in the preconditioners. Allowing more fill-in
results in less PCG iterations, though not always in less overall CPU time. The rela-
tion between preconditioner size (measured by fill-in) and number of PCG iterations
for AINV and IC is one of the objectives of our comparison.

Table 2 lists the results of applying PCG with different sizes (measured by fill-in)
of IC and AINV on the 675 675 Harwell-Boeing test matrix NOS6 which is derived
from Poisson’s equation in an L-shaped region with mixed boundary conditions. The
timings in this table do not include the time required to compute the preconditioner.



A SPARSE PRECONDITIONER FOR CONJUGATE GRADIENT 1145

TABLE 2

Behavior of PCG using IC versus AINV on H-B test matrix NOS6.

IC AINV

fill-in iterations

675 87

897 53

912 51

1,204 38

1,439 32

1,520 28

1,565 24

1,918 8

time

0.33

0.18

0.18

0.14

0.14

0.10

0.10

0.03

fill-in

743

78O

1,135

1,208

1,300

1,502

3,654

17,387

iterations

76

74

54

47

4O

37

22

6

time

0.32

0.32

0.26

0.18

0.21

0.16

0.14

0.09

The results in Table 2 indicate that by using preconditioners of restricted size

(obtained by adjusting the drop tolerances), the iteration counts as well as the timings
for IC and AINV preconditioning are comparable, even in scalar mode allowing slightly
more fill-in for the AINV preconditioner. For preconditioners of comparable size,
slightly more iterations are needed by AINV preconditioning.

If we keep the size of the preconditioners "moderate," we usually decrease overall
CPU time. What moderate means here is strongly problem and architecture (CPU,
memory hierarchy) dependent.

The AINV method tends to generate more fill-in than IC, and for small drop
tolerances the fill-in for AINV can be so high on some structured problems that we
can no longer talk of sparse approximate inverse preconditioning, thus making the
comparison with IC not very meaningful (a preconditioner can be considered sparse
if it contains about the same number of nonzeros as the original matrix or less).
However, as discussed in [3, 4], problems having irregular sparsity patterns seem to
be well suited for the AINV preconditioner because fill-in is often reasonably low.

TABLE 3

Iteration counts and timings for the IC preconditioner in PCG.

Test Fill-
Matrix in

NOS3 2,290

NOS5 744

NOS6 912

NOS7 902

494BUS 532

662BUS 694

685BUS 719

l138BUS 1,183

GR3030 900

PADUA1 1,228

PADUA2 5,3O5

PCG IC PCG Fill- PCG IC
steps time time in steps time

150 0.08 1.45 10,875 32 0.08

76 0.04 0.25 1,967 57 0.05

51 0.04 0.19 1,439 32 0.05

51 0.09 0.21 938 40 0.09

197 0.02 0.51 807 114 0.01

159 0.02 0.58 1,090 103 0.02

184 0.03 0.69 1,554 77 0.04

316 0.07 1.82 2,084 121 0.07

45 0.07 0.28 4,322 26 0.06

104 0.06 0.54 1,644 70 0.06

143 0.23 2.71 7,777 84 0.20

PCG
time

0.38

0.21

0.14

0.14

0.31

0.42

0.31

0.63

0.22

0.45

1.65
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Table 3 shows iteration counts and timings for PCG using the IC preconditioner,
and Table 4 gives the same information for PCG using the AINV preconditioner.
These tables also report the time required to compute each preconditioner. Again,
the timings for PCG refer to the iterative part only. The IC and AINV precondi-
tioners were computed with similar restricted sizes up to about the original number
of nonzeros. Drop tolerances for IC were taken between 0.0001 and 0.01, and drop
tolerances for AINV were in the range 0.1 to 0.6. For each test matrix two sparse
preconditioners were computed--the first being very sparse while the second contains
roughly the same number of nonzeros as the test matrix being used.

TABLE 4

Iteration counts and timings for the AINV preconditioner in PCG.

Test Fill- PC(] AINV PC(] Fill-
Matrix in steps time time in

NOS3 1,946 139 0.27 1.53 6,213

NOS5 889 87 0.09 0.29 2,086

NOS6 743 76 0.11 0.32 1,502

NOS7 903 55 0.07 0.28 2,727

494BUS 683 173 0.07 0.48 899

662BUS 893 147 0.13 0.68 1,008

685BUS 808 178 0.09 0.74 1,836

1138BUS 1,808 205 0.15 1.22 2,013

GR3030 900 45 0.12 0.29 13,541

PADUA1 1,274 63 0.14 0.38 1,459

PADUA2 5,269 159 0.25 3.14 11,095

PCG AINV PCG
steps time time

89 0.27 1.14

67 0.12 0.30

37 0.10 0.17

30 0.13 0.19

110 0.10 0.35

125 0.10 0.56

90 0.11 0.46

156 0.21 0.86

26 0.35 0.37

48 0.14 0.31

80 0.42 1.92

Our results indicate that implicit and explicit sparse preconditioners can have
similar behavior--even in the scalar case. The fact that a somewhat higher fill-in
is required by the AINV preconditioner in order to achieve the same reduction in
the number of PCG iterations as with IC is only natural, since in AINV we are
approximating the inverse Cholesky factor (usually a dense matrix), whereas IC is a
sparse approximation to the Cholesky factor L itself. If L is an incomplete Cholesky
factor of A and Z is an incomplete inverse Cholesky factor, and if the amount of
nonzeros in these two matrices is about the same, then one can expect that -1 will
be substantially denser than Z.

In other words, for the same amount of fill-in in the preconditioners, IC yields a
better approximation to A-1 than AINV. But this comes at a price--namely that
two triangular solves are needed at each PCG iteration. On the other hand, the
price to pay for the explicitness afforded by the AINV preconditioner is the increased
size of the preconditioner, so, on a scalar computer, IC has a slight edge over AINV.
However, the situation could be reversed in a parallel computing environment thanks
to the explicit nature of AINV. This is a point which warrants further research, and no
firm conclusion can be drawn until a parallel version of AINV-PCG has been actually
implemented and compared with recent work on parallel solution of sparse triangular
systems (see, for instance, [1]). In any event, we observe that even in scalar mode
there are problems for which AINV is superior to IC--e.g., PADUA1.
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It should be observed that all test matrices used are M-matrices except for NOS3,
NOS5, PADUA1, and PADUA2, and these are not even H-matrices. In no case was
safeguarding necessary during the computation of the AINV preconditioners, whereas
in a few cases IC shifted positive pivots away from zero by a very small amount. This
did not adversely affect the convergence of PCG.

6. Conclusions and future work. Our study involved a novel approach to ap-
proximate inverse preconditioning for conjugate gradient calculations. One interesting
feature of this technique is the fact that the entries of the coefficient matrix A are
not explicitly needed, which may be useful for problems where A is only implicitly
given as an operator. It was proven that the computation of the preconditioner has
the same robustness as standard IC factorization, and numerical evidence was given
to make the point that the new preconditioner is competitive with IC--even in scalar
mode. The results presented in this paper suggest that our approximate inverse pre-
conditioner can be a useful tool for the solution of large sparse SPD linear systems on
modern high-performance architectures.

Future research will focus on eificient parallel implementations and on the ex-
tension to unsymmetric problems. A sparse approximate inverse preconditioner for
a nonsymmetric matrix A may be obtained by constructing a set of approximate
A-biconjugate directions. This can be achieved by applying the inverse factorization
algorithm to both A and AT together with suitable sparsity-preserving strategies.
The resulting factorized sparse approximate inverse, which is guaranteed to exist when
A is an H-matrix, is an explicit preconditioner which can be used to enhance the con-
vergence of conjugate gradient-like methods for the solution of Ax b.

A different approach, applicable to general sparse matrices, is based on the normal
equations ATAx ATb. The solution of this system by the preconditioned conjugate
gradient method (PCGNR) is an effective strategy for problems which are unsymmet-
ric and strongly indefinite; see [26, 29]. Also, the PCGNR method is attractive for
solving large sparse linear least squares problems. Some of the most effective precon-
ditioners for PCGNR are based on incomplete orthogonal factorizations of A and do
not require explicitly forming the matrix ATA. These procedures compute a sparse
approximation to the upper triangular factor R in the QR decomposition of A. It
is known that this approach is more robust than computing an incomplete Cholesky
factorization of ATA (notice that R is the transpose of the Cholesky factor of ATA ).

A natural idea is to compute .an approximate inverse preconditioner for ATA
based on the inverse factorization scheme of 2. At step of the algorithm the
th row of ATA is computed and used and then discarded. The resulting 2 is

a sparse approximation to R-1. The PCGNR scheme can be carried out free of
triangular solves in the preconditioning steps. This approach was found to be effective
for problems in which ATA enjoys some form of diagonal dominance but in general
was not competitive with more traditional schemes based on variants of the Gram-
Schmidt orthogonalization process. More important, there exist other methods which
can be used to compute R-1 directly from A. A description of some incomplete
orthogonalization methods for approximating R and R-1, together with the results
of numerical experiments on a variety of general sparse matrices (including rectangular
ones), can be found in [6].
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ACCURACY OF THE DISCRETE FOURIER TRANSFORM
AND THE FAST FOURIER TRANSFORM*

JAMES C. SCHATZMAN

Abstract. Fast Fourier transform (FFT)-based computations can be far more accurate than the slow transforms
suggest. Discrete Fourier transforms computed through the FFT are far more accurate than slow transforms, and
convolutions computed via FFT are far more accurate than the direct results. However, these results depend critically
on the accuracy of the FFT software employed, which should generally be considered suspect. Popular recursions
for fast computation of the sine/cosine table (or twiddle factors) are inaccurate due to inherent instability. Some
analyses of these recursions that have appeared heretofore in print, suggesting stability, are incorrect. Even in higher
dimensions, the FFT is remarkably stable.

Key words, fast Fourier transform (FFT), discrete Fourier transform (DFT)

AMS subject classifications. 65T20, 65Y25, 68Q25, 42A65, 42C10

1. Introduction. The Fourier transform is one of the most important fundamental math-
ematical tools in existence today. While the discrete Fourier transform (DFT) and fast Fourier
transform (FFT) are generally considered to be stable algorithms, reported quantifications of
the stability have been inconsistent and confusing. Some analyses neglect the effect of errors
in the coefficients (also called the sine/cosine table or twiddle factors), which turns out to be
potentially the largest source of error.

Gentleman and Sande [4] report an analysis of FFT errors (for the Cooley-Tukey algo-
rithm) in which the root mean square (RMS) relative error is

()
K

ERMS 1.06 2p,i)e,
j=l

where is the machine epsilon and N PlP2...PK. For N 2K, and using the radix-2
algorithm, this becomes

(2) ElCMS 8.48 log2 N.

Their corresponding formula for the slow DFT is

(3) ERts 1.06(2N)e.

The results of Gentleman and Sande are upper bounds. Our own typical results are quite
different, being asymptotically of far better (smaller) order when the twiddle factors are ac-
curate.

Kaneko and Liu [7] give an analysis for the Cooley-Tukey FFT with several types of
input data sequences. Their results are rather complex, but their conclusion that errors in
the twiddle factors have virtually no effect on the results (compare their Figures 4 and 7) is
misleading.

Calvetti [2] gives an involved analysis ,for the Cooley-Tukey algorithm and the slow
transform. She separates the effects of roundoff errors in addition and multiplication. The
results are
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(4)

ERMS v/1og N O’a,

ERMS v/1Og2 N era,

/n-1
ERMS crm

addition errors, FFT;

multiplication errors, FFT;

addition errors, slow DFT;

2.1.1. Numerical errors. Errors in the computation of the DFT are limited to errors in
the approximations of the sine/cosine phase factors and roundoff errors in multiplication and
addition. To aid in characterizing these errors, we define the machine 6 in the usual way
as the smallest positive number such that / 6 is distinguishable from unity in the floating
point representation employed. For tests with 32- and 64-bit IEEE floating point, we use the
corresponding 632 6.10-8 and 664 1.1 10-16.

A useful exact characterization ofexpected error with floating point calculations is difficult
or impossible, particularly in the case of addition, because of the nature of the floating point

(6) co k Aco, 0 < k < N-l,

(7) tn nat, 0 < n < N-I,
2yr

(8) AcoAt
N

where most commonly

ERMS O’m, multiplication errors, slow DFT;
n

where ra, O’m are the standard deviations of the assumed independent random errors in addition
and multiplication. These errors are relative to the maximum norm of the input data. Calvetti
claims, "For very small expected value of the relative error for addition and multiplication,
the traditional [slow] algorithm will produce more accurate results." She further suggests,
"The FFT can be considered more accurate than the TFT [slow DFT] only if the expected
value of the relative error for addition is of the same size or larger than the expected value of
the relative error for multiplication." I do not believe that the analysis for the slow algorithm
is correct, nor is the general sense of Calvetti’s conclusion (that the slow DFT is accurate
compared to the FFT) correct. I do agree with Calvetti’s formulas for FFT errors, in the case
where the twiddle factors are accurate. Calvetti’s paper gives a useful bibliography of earlier
work.

According to Gottlieb and Orszag [5], "Transform methods normally give no appreciable
amplification of roundoff errors. In fact, the evaluation of convolution-like sums using FFTs
often gives results with much smaller roundoff error than would be obtained if the convolution
sums were evaluated directly." See Van Loan [12] for a more recent publication on this
topic.

Our own conclusions concerning accuracy are that the FFT is remarkably stable, when
implemented properly. The FFT is vastly more accurate than the slow DFT. However, the
FFT is very sensitive to accuracy of the internal sine/cosine table (twiddle factors). A popular
technique for calculating the sine/cosine table by recursion is ill-advised for this reason.

2. The DFT.

2.1. Properties of the standard DFT. The square DFT might be written G: or

N-1

() c e--lOktn xn
n--O
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FIG. 1. Relative RMS errors in the computed DFTfor the 32-bit IEEEfloating point slow Fourier transform
using (a) the IBM RS6000 library 32-bit sine and cosine functions and the NCAR FFTPAK table calculation code,
and (b) an accurate sine table. A, El, -F, and x denote lengths that are powers of2, 3, 4, and 5, respectively.
The interpolating errorfunctions (smooth curves) are el (N) 32(N-1) and ez(N) 0.3e32 N@-Z]--1. The horizontal
dashed line represents the constant 632 5.96 10-8.

representation. Error bounds tend to lead to excessively pessimistic error estimates. Roughly,
for data vectors exhibiting a reasonable degree of stationarity, if the errors associated with each
coefficient, multiplication, and addition are uncorrelated (not a very reasonable assumption)
the RMS error of the DFT would be expected to be approximately /N 1 times the error
standard deviation associated with each term. If the errors are correlated, an RMS error
proportional tO N would be expected. Assuming that relative multiplication errors are
uniformly distributed on I-e/2, /2] (a reasonable approximation if full rounding is used),
the corresponding error standard deviation is e/v/]-. Assuming that relative addition errors
are uniformly distributed on [-e, e] (a poor approximation), the corresponding error standard
deviation is

Putting these ideas together, we obtain a rough estimate of the overall RMS error in the
case of uncorrelated individual errors:

(9) V/ (1 1),Z2ERMS (N-l) "i 4- 4- (N-1)crc2

where oc is the error standard deviation of the coefficients. If ac is e//]-, (9) reduces to

ERMS (e/-)/N-1.
Figures 1 and 2 show a comparison of 128-bit floating point DFT results (taken to be

truth) with
(la) IEEE 32-bit DFT computations using the manufacturer’s 32-bit sine/cosine functions,
(lb) IEEE 32-bit DFT computations modified to use an accurate table of phase factors,
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FIG. 2. Relative RMS errors in the computed DFTfor the 64-bit IEEEfloating point slow Fourier transform
using (a) the IBMRS6000 library 64-bit sine and cosinefunctions and the NCAR FFTPAK table calculation code, and
(b) an accurate sine/cosine table. /, +, r-q, and x denote lengths that are powers of2, 3, 4, and 5, respectively. The
interpolating errorfunctions (smooth curves) are el (N) 1.364(N-I) and e2(N) 0.464/- The horizontal
dashed line represents the constant 664 1.11 10-16.

(2a) IEEE 64-bit DFT computations using the manufacturer’s 64-bit sine/cosine

functions,
(2b) IEEE 64-bit DFT computations modified to use an accurate table of phase factors.

The tests were performed on an IBM RS/6000 computer. The input data was a series of
independent, identically distributed Gaussian random sequences (for the real and imaginary
components). The RMS difference between the two computations, scaled by the RMS value
of the "true" result, is displayed as a function of transform length.

As shown in the figures, fits to the measured RMS errors were obtained for the following
error functions:

(la) 32-bit: 32(N-1),
(lb) improved 32-bit: 0.3e32/N-1,
(2a) 64-bit: 1.3564 (N-l),
(2b) improved 64-bit: 0.4e64//N-1.

When accurate phase factors are used (Figures lb and 2b) square root error growth is observed;
results are obtained that are more accurate than predicted by (9) by about a factor oftwo. When
inaccurate phase factors are used (Figures a and 2a), linear growth is observed, suggesting
that individual errors are correlated.

From these results we conclude the following:
(1) Accuracy of the sine/cosine table is critical to overall performance of the numerical

DFT. When the sine/cosine table of the FFT is inaccurate, errors in the DFT may be correlated
and the overall RMS DFT errors are then roughly proportional to the length of the transform.



1154 J.c. SCHATZMAN

(2) The IBM RS/6000 library sine/cosine functions are not very accurate; we do not
recommend their use except for noncritical applications. A similar observation has been
made for the Cray CFT77 library routines. The computation of long slow DFTs with IEEE
32-bit floating point may be expected to be of questionable accuracy unless more accurate
sine/cosine approximations are used. Using the RS/6000 library routines, only about five
significant figures should be expected for about 100 points ranging down to two significant
figures for about 100k points.

(3) When the sine/cosine table is accurate, performance is dramatically superior for both
32- and 64-bit computations, and the RMS DFT errors grow proportionally to the square root
of the length of the transform. In this case, the DFT may be regarded as .a stable process.
However, there still may be significant error for very long transforms; five to six significant
figures of accuracy may be expected for transforms in the 100k+ point range using 32-bit
floating point.

There is obviously some sensitivity of the errors to the data. An extreme example is the
case of data consisting of mostly zeros. The above results should be interpreted as typical
rather than definitive.

3. The FFT.

3.1. Sources of error. It is helpful to list the theoretical sources of error:
(1) instability of the FFT computations associated with the factorization,
(2) instability of the underlying DFT blocks,
(3) errors in the sine/cosine table (twiddle factors),
(4) roundoff error in all of the computations, compounded randomly.

While all errors could be considered roundoff errors, the above breakdown is reasonable. In
particular, the idea of approximatirrg roundoff by an instability effect and a random effect is
a powerful tool. The validity of this model for general numerical computations remains to
be demonstrated; there is good agreement-between theoretical and empirical results in this
analysis.

We will show that sources (1) and (2) may be discounted (the associated computations
are extremely stable). Sources (3) and (4) are the principal sources of error; in a properly
designed code, source (4) will dominate.

3.2. FFT formulation. We formulate the conventional version of the FFT to concretize
the differences between it and the slow DFT. Suppose N is even. We observe

N-1 if-1
Ck-

_
wknxj W2kjx2j -1- wk

_
w2kJx2j+I

j=0 j=0 j=0

N_c + wc 0 <_ <_
(10)

(o) w,() N < k < N-1ck, Ok,,

N e- 2, (0) Nwhere U k -f, w is the length -f DFT of the even terms x0, x2 and
Nis the length - DFT of the odd terms Xl, x This is the well-known result that a DFT of

N The coefficientseven length N can be computed as the combination of two DFTs of length
w and wi’ are called the twiddle factors. In matrix notation (10) may be written

()
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where

(12) ’2q diag(z, Z Z2, Zq-l) Z e-i2q

N identity matrix. Repeating this process for N a power of 2, we obtainand I is the --by--ff

(2)

(2)FN ’N

_
0 0 0
C(2)O O , O O

s2 0 0 s 0
T a-

,-,(2)0 0 0

(13)

2) 0
/9(2,2,2 2)

Oo N,

.,(2)
2

where

(14)
(2)

g

Im -f22

.p;2,2,2 2) bit-reversal ordering permutation matrix.

For more general N, if N Pl P2" PK, where pj are natural numbers, the FFT formula
may be written

,(Pl)FN--N

S(Np2) 0 s(P 0
Pl (Pl P2)

0 s( 0 s%
7"71 (Pl P2

(15)

.(PK)
’PK

.(PK)
’PK

where

(16)

( (Fp)l, 11 (Fp)1,2g27m
1_

(Fp)2,11 (Fp)2,2i

k, (Fp)p,11 (Fp)p 2"27

p-I

p-...
(Fp)2 p’2m7

Fmp) Q(mp).
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Here Fmp) is the m-by-m matrix constructed from the p-by-p DFT matrix Fp by replacing
each element of Fp by the product of the element and the m/p-by-m/p identity matrix. Also,

(17) o(pl =diag Ia f27m f2mm P’ 7’ 7 7

is the diagonal matrix of twiddle factors, and PNpl’p2 P’) is the mixed-radix digit-reversal
ordering permutation matrix, defined as

(18)

PNp’’p P) =6j,, O < j k < N-1j,k

k’ =.k’(k)

dr + pr(d- + pK- (dl-2 +"" + p:zdl)),

k dl -k- Pl (d2 + p2(d3 -!- p3(d4 +""-+- PK-ldK))),

where the mixed-radix digits dl satisfy 0 < dl < Pt- 1. The formula (15) represents the
so-called mixed-radix time-decimation FFT algorithm.

A mathematically equivalent formula that leads to the frequency-decimation algorithm
follows from the observation that

-1

q(Pr
’PK

(19)
s(P31v) *

(Pl P2)

S2)*

Pl

s(p3N) *

(Pl P2)

-1

S(p2) *

Pl

-1

Then

(20) (ppl,p -1 r(Pc,PK-I P)
rN

and

(21) (SmP)*)-’ 1Rp>
P
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where

(22)

I ’( (Fp)l,1I (Fp)l,2I (Fp)l,p

(fp)2 " Pm (fp)2 2’ Pm (fp)2 p" Pm
7 7 7

(Fp)p,1 amp (Fp)p,2amp (Fp)p,pam

Q(mp) Fmp)

so that

/(Pr)
a’pK

(23) Fry p;pr,pr-, Pl) ..
(C) 01

R 0 R 0
(Pl P2) Pl

,(pl)

0 R" 0 R
(PlP2) Pl

These formulas may be simplified by use of the Kronecker matrix product (R) which is
defined so that A (R) B is the LI-by-MJ matrix

(24) A (R) B

AI,IB A1,2B A1,MB
A2,1B A2,2B A2,MB

AL,1B AL,2B AL,MB

for an L-by-M matrix A and an I-by-J matrix B. Then

(25)

Fmp) Fp (R) I,

SmP)= Fmp) Q)
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and

FN N - / (pip2)

(PK) ,P2 PK)(R)

{Iq3 ( [(Fp3 ( Im4) Q(mp3)1 }

(26)
K

H {Iqj [(Fpj Imj+l Q(mP)J)]I P(Npl’p2 PK)

j=l

for the time-decimation algorithm, and

(27)
j=K

for the frequency-decimation algorithm, where mj =-- N/(pl P2P3 Pj- 1) and qj =_pl p2 pj- 1.

A modification of (26) and (27) is possible where the mixed-radix permutation is dis-
tributed through the calculation as a series of two-factor permutations. The result is

(28)

where

(29)

FN H Aj \ qj+, (R) Imj+l \ qj+, (R) Imj+, Bj,
j=l j=K

Aj {Iqj (R) [(Fp (R) Imj+,) Q)]},

More details are given in Schatzman [9]. We note that the permutations in (28) can be
accomplished without an explicit permutation, but by appropriate indexing in each block
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diagonal matrix-vector multiplication step

N-1 N-1

( l (qj pj )(31) E (Aj)k’l "qY+’ Imj+ Zm (aj)k,m’Zm,
l,m

l,m=O m=0

where the index mapping m’(m) is computed according to

m’ do + d2mj+l + dlmj+l pj,
(32)

m do + dm+ + d2mj+lqj,

where the three-radix digits do, d, and d2 satisfy 0 do m+ 1, 0 d qj 1, and
0 d2 pj 1. This constitutes a block two radix reversed-digit mapping with a block size
of mj+. These results e similar to those of Tempeaon 11 ].

Finally, the prime factor algorithm version of the F is nearly identical to the above,
except that inputs and outputs are reordered, generally to effect the elimination of the twiddle
factors (Bus 1]; Schatzman [10]). Although the computations are reordered, and in some
versions the underlying F blocks e modified by raising each element to a fixed integer
power, the arguments above about stability of the stages of the algorithm still apply. The
absence of twiddle factors couldesult in some improvement in accuracy; to this author’s
knowledge no results on this question have been published.

3.3. Stability of the FFT decomposition. If we examine (26)-(28) we see that theD
is accomplished through a series of matrix-vector products. The peutation matrices have

2neigenvalues on the unit circle, with phases equal to multiples of T, where L is the length of
a peutation cycle associated with the matrix.

The matrices A and B are more complex. The matrix Fp Im+l has the same spectm
as Fp, namely eigenvalues andt,but multiplied in multiplicity by the factorm+.
Likewise, the premultiplication lq C only multiplies the multiplicity of the eigenvalues of
an bitr matrix C. Thus, the eigenvalues of Aj and B are modified only ,by the effect of

postmultiplying and premultiplying F Imp+, by Q, respectively. Because the matrices
are unit or scaled unita, the eigenvalues of Aj and B all have magnitude; however,
the phases of the eigenvalues e not the same as F. For example, the eigenvalues of

S2) (F2 Im/2) a)e

(33) Zj= 1-wj(wj-1)2+8wj Oj-l,
where w e-2"/m, which are iegularly distributed ound the circle of radius in the
complex plane. From this element analysis, we see that no complications, such as increased
sensitivity to numerical eor due to increased condition number of the coefficient matrices,
are to be expected from theF in any form. In fact, as we will see below, theF is very
stable in most respects.

3.4. Numerical errors. Like the slow D, eors in the computation of theF con-
sist of eors in the approximations of the sine/cosine phase factors and roundoff eors in
multiplication and addition.

To test these predictions, slow Ds were computed with single and double precision
IEEE floating point. Figures 3 and 4 show a compison of 128-bit floating pointF results
(ten to be truth) with

(3a) IEEE 32-bitFcomputations using the manufacturer’s 32-bit sine/cosine functions
and the PAK recursion (see comments below),

(3b) IEEE 32-bit computations modified to use accurate sine/cosine phase factors,
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FIG. 3. Relative RMS errors in the computed DFTfor the 32-bit IEEE floating point FFT using (a) the IBM
RS6000 library 32-bit sine and cosine functions and the NCAR FFTPAK table calculation code, (b) an accurate
sine table, (c) the Schatzman algorithm [9] with inaccurate tables, and (d) the Schatzman algorithm [9] with
accurate tables. /x, +, [2, and denote lengths thatarepowers of2, 3, 4, and5, respectively; ando denote the results
for the Schatzman algorithm [9] with inaccurate and accurate tables, respectively. The interpolating errorfunctions
(smooth curves) are el (U) 32(N-l)for the conventional FFTwith inaccurate tables, e2 (U) 0.6e3:z41og U
with accurate tables, e3(N) 1/2e32(N-1) for the Schatzman algorithm [9] with inaccurate tables, and e4(N)

0.9e3241og N with accurate tables. The horizontal dashed line represents the constant e32 5.96 10-8.

(4a) IEEE 64-bit FFT computations using the manufacturer’s 32-bit sine/cosine functions
and the FFTPAK recursion (see comments below),

(4b) IEEE 64-bit FFT computations modified to use accurate sine/cosine phase factors.
The NCAR FFTPAK (Version 2, February 1978) FFT code was used as the basis for these
results. However, the package was modified in several ways:

(1) Minor modifications to the code were made to bring it into conformance with the
ANSI Fortran 77 standard.

(2) Power-of-two transforms were evaluated using p 2, not a mix of p 2 and p 4
as in the original code. This change was made so that the performance of the p 2 code
could be measured independently of the p 4 code.

(3) For the accurate table tests, the 32- and 64-bit sine/cosine table computations were
replaced with 64- or 128-bit precision computations, respectively.
Input data and analysis of the results were as above for the slow DFT.

Fits to the measured RMS errors were obtained for the following error functions:
(3a) 032(N-1),
(3b) 0.632v/log2 N,
(4a) 2-[6 64(n-l),
(4b) 0.664v/log2 n.

Also shown as Figures 3c, 3d, 4c, and 4d are results for the new algorithm of Schatzman [9]
for prime lengths. Conclusions from these results follow:
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FIG. 4. RelativeRMSerrors in the computedDFTfor the 64-bitIEEEfloatingpointFFTusing (a) the IBMRS6000
library 64-bit sine and cosine functions and the NCAR FFTPAK table calculation code, (b) an accurate sine
table, (c) the Schatzman algorithm [9] with inaccurate tables, and (d) the Schatzman algorithm [9] with accurate
tables. /, +, [], and denote lengths that arepowers of2, 3, 4, and 5, respectively; and o denote the resultsfor the
Schatzman algorithm [9] with inaccurate and accurate tables, respectively. The interpolating errorfunctions (smooth
curves) are el (N) e64(N-1)for the conventional FFT with inaccurate tables, ez(N) 0.6e64v/log2 N with
accurate tables, and e3(N) 1.5e64(N-l)for the Schatzman algorithm [9] with inaccurate tables. The horizontal
dashed line represents the constant 564 1.11 10-16

(1) Comparing Figures la and 3a, lb and 2b, etc., we conclude that FFTs typicallyproduce
approximate DFTs that are more accurate than the slow algorithm by afactor ofat least 10.

(2) Accuracy of the sine/cosine phase factors are crucial to the overall accuracy of the
DFT. However, in the NCAR FFTPAK code, only part of the table is computed by explicit
sine and cosine evaluations. The remainder of the table is generated recursively. Replacing
the explicit sine/cosine evaluations with extremely accurate calculations (128-bit) made very
little difference. The resulting plots are nearly indistinguishable from Figures 3a and 4a. The
recursive evaluation ofentries ofthe sine table, as implemented in the NCAR FFTP.AK
code, is by far the largest single source of error. The particular recursion used in the NCAR
FFTPAK accentuates the errors of the initial sine/cosine approximations.

(3) When the sine/cosine table of the FFT is inaccurate (as in Figures 3a and 4a) the RMS
DFT errors are roughly proportional to the length of the transform.

(4) When the sine/cosine table is accurate (Figures 3b and 4b) the RMS DFT errors grow
slowly, apparently more slowly than the logarithm of the length of the transform.

(5) The computation of long DFTs with IEEE 32-bit floating point is a process about
which one should be cautious. If accuracy of better than 0.1% is required (three digits) for
transforms in the 10,000+ point range, 64-bit floating point or a very carefully implemented
32-bit FFT should be used.

(6) The Schatzman [9] algorithm is less accurate than the conventional FFT, but only
modestly so.
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FIG. 5. RelativeRMSerrors in the computedconvolutionfor (a) the 32-bitIEEEfloatingpoint direct computation,
(b) the FFT computation with inaccurate sine tables, and (c) with accurate tables. A, +, r3, and denote
lengths that are powers of 2, 3, 4, and 5, respectively. The interpolating error functions (smooth curves) are (a)
e[(N) 0.332 Nv/--Z]-I, (b) e2(N) 0.1532(N-1), and (c) e3(N) 32v/log2 N. The horizontal dashed line

represents the constant 32 5.96.10-8.

4. Numerical errors for convolutions. We now study the computation of a circular
convolution or cross-correlation via Fourier transform. Figures 5 and 6 show results for cross-
correlation ofwhite Gaussian complex sequences using direct computation and the comparable
results using FFTs. We obtain fits to the data with the following functions:

(5a) Direct computation, 32-bit: 0.332/N-1;
(5b) FFT computation, 32-bit: 0.1532(N-1);
(5c) FFT computation, 32-bit with accurate sine/cosine table" 32v/log2 N;
(6a) Direct computation, 64-bit: 0.364/N-1;
(6b) FFT computation, 64-bit: 0.264(N-1);
(6c) FFT computation, 64-bit with accurate sine/cosine table: 64v/10g2 N.

These errors are very similar to the errors for the slow and fast DFT themselves, as reported
above.

We recall the claim of Gottlieb and Orszag [5]: "Transform methods normally give no
appreciable amplification of roundoff errors. In fact, the evaluation of convolution-like sums
using FFTs often gives results with much smaller roundoff error than would be obtained
if the convolution sums were evaluated directly." We have quantitatively confirmed these
observations; the FFT method gives more accurate results for vector lengths of approximately
100 and greater with IEEE 32- and 64-bit floating point. However, this conclusion depends
on having accurate FFT software. For example, the stock NCAR FFTPAK software gives
less accurate results for the convolution than direct computation by arithmetic of the same
precision. Asymptotically for large vector lengths, the RMS error is proportional to the square
root of the logarithm of the vector length for the (accurate) FFT method and proportional to
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the square root of the Vector length for the direct method. The explanation is that the FFT
involves log(N) additions of uncorrelated errors for each component of the result, whereas
the direct computation involves N-1 additions of uncorrelated errors.

5. Error in the twiddle factors. As observed above, the twiddle factors can be the
dominant source of error. In some cases the library software for the sine/cosine is inaccurate.
For example, on the Cray Y/ME it appears that the decision was made to provide speed instead
of accuracy. Accuracy of standard library routines should be tested; high-accuracy routines
should be substituted if the library routines are inaccurate, keeping in mind that speed is
generally irrelevant for this application (initiation of the FFT).

How to design algorithms that produce high-accuracY (one-half machine epsilon)
sine/consine functions given floating point arithmetic of only machine epsilon accuracy is
beyond the scope of this paper. I have found that it is difficult to obtain highly accurate
sine and cosine functions using standard Taylor series or continued fraction expansions with
floating hardware that does not provide double precision intermediary products. For exam-
ple, the IBM RS/6000 processors provide high-accuracy (rounded) products whereas popular
Intel and MIPS processors do not. After considerable experimentation, I offer thefollowing
conclusions and advice:

(1) Empirically, the error, in accurate rounded 32- and 64-bit IEEE twiddle factor values
as required by the FFT is essentially uniformly distributed on [-/2, /2] for all n between
16 and 131,072. In other words, there is nothing peculiar about the twiddle factors that would
upset this standard assumption. Therefore, the standard deviation of error in optimal twiddle
factors is e/-.
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(2) The error obtained by direct library call to sine/cosine functions with the best libraries
I tested is somewhat greater than the optimum--nearly 1.3-1.5 times the optimum. With other
libraries the error can be much greater. Direct implementation of Taylor series leads to errors
(with full.-rounding floating point) of nearly 0.7. Kahan’s summation method (Higham [6])
added to the Taylor series computation reduces the error to the theoretically optimal
or below.

(3) Errors resulting from the use of the recursion (34) are typically all of one sign (more
about this below). The point is that the errors in the sine/consine table when computed this way
are definitely not random (that is, not uniformly distributed over I-e/2, /2]). A consequence
is that overall FFT errors can be much larger than anticipated.

(4) If higher-precision arithmetic is available, by all means I recommend using that higher
precision to compute the twiddle factors, which should then be rounded to the desired precision.
Of course, arbitrary precision software is available (public domain) but the slowness may be
objectionable.

(5) The sine/cosine tables could be pretabulated to high accuracy and recorded in binary
form. Once this is done for a given floating point format, the code is portable to machines using
that format. If implemented intelligently, the amount of disk space required for a complete
tabulation for modestly large N is quite reasonable.

Some standard FFT packages use the following recursion for the sine and cosine functions:

(34)
Cn cos 0 Cn_ sin 0 Sn-
an COS 0 an_ + sin 0 Cn-

for n 1, 2 Co cos 00, and So sin 00. Replacing cos 0 by the approximate value c
and sin 0 by the approximate value s, we obtain

(35) () (Cs -s)()c
The eigenvalues of the coefficient matrix are ) c 4- s, and

(36) N (C2 + S2)- eN tan- .
Applying asymptotic analysis to (36), we see that errors in Cn and Sn grow at first linearly
and later exponentially with the length of the recursion. This is highly undesirable; what is
needed is a self-correcting recursion in which errors do not grow.. While this analysis ignores
roundoff error, actual calculations verify this exponential growth.

Chu [3] analyses the recursion (34), including the effects of roundoff, and concludes that
errors grow linearly. This analysis is erroneous, resulting from ignoring errors in sines in the
analysis ofthe cosines and vice versa. Oliver [8] gives an excellent review ofrecursions known
at that time, but does not include (34). Chu [3] describes (34) and many other algorithms;
some of the results of this paper are in error, however. Also, (34) can easily be improved as
follows:

(37)

cos 0 Cn-1 sin 0 S_1 + sin 0

Bn cos 0 Sn- 4- sin 0 Cn_l,

Cn An
2’/An+Bn

Con Bn
2’/A +Bn
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where ot depends on N and the type of floating point hardware. Thus, we correct both the
phase and amplitude of the sine/cosine pair at each step. This improved method is based on
the empirical observations that the errors in (34) are patterned. However, the results of the
best recursions are still significantly worse than accurate direct calculations.

My recommendation is that the twiddle factors be computed to high accuracy, either with
high-precision arithmetic or Kahan’s summation method (if Kahan’s method works effectively
on the given hardware). Truncated Taylor’s series work very well for this purpose. If speed in
initialization is required, depending on the machine ar.chitecture, either twiddle factors should
be precomputed and stored on disk or faster converging approximations such as rational or
continued fraction approximations should be used. Finally, if a recursive computation must
be used for some reason, (34) should never be used but a more stable recursion (Oliver [8] and
Chu [3]) should be employed.

6. Two and higher dimensions. I have not undertaken a thorough examination of the
two- and higher-dimensional problem to verify that the one-dimensional results extend in a
natural way. However, cursory examination of the problem suggests that higher-dimensional
FFTs are even more remarkably stable, at least if the size of the dimensions is large and the
number of dimensions is small.

For example, 1024-by-1024 transforms were executed with white random data using
IEEE 64-bit floating point arithmetic. Using the manufacturer’s sine/cosine functions and the
usual recursions, RMS relative errors of 200(564 were observed. Using accurate sine/cosine

tables, RMS relative errors of less than 3(564 were observed. These two-dimensional trans-
forms were. done in the usual way through repeated application of one-dimensional transforms
along the rows and columns. Interestingly, the differences between the rows first/columns last
and columns first/rows last results were observed to be approximately 4(564 regardless of the
accuracy of the sine/cosine table. Finally, averaging the row/column and column/row results
for the accurate sine/cosine table gave RMS relative errors of approximately 2(564. This is
very little larger than the error for a one-dimensional transform of length 1024 (1.9(564). It is
remarkable that the transforms along the second dimension do not increase the error more than
this. To lose only one bit of accuracy after thousands of floating point operations dramatizes
the great stability of the FFT, when implemented carefully!

7. Conclusions. When an accurate sine/cosine table is used, the FFT is remarkably sta-
ble. However, the accuracy is greatly impaired by inaccurate sine/cosine tables. Inaccuracy
in the sine/cosine table is common and results from inaccurate underlying software library
functions and ill-advised recursions for table construction.

Acknowledgments. The anonymous reviewers were very helpful in drawing the author’s
attention to relevant literature.
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COMPUTING THE EXTREMAL POSITIVE DEFINITE SOLUTIONS OF A
MATRIX EQUATION*

XINGZHI ZHAN

Abstract. An efficient and numerically stable implementation of a known algorithm is suggested for finding the
extremal positive definite solutions ofthe matrix equation X+A*X- A I, if such solutions exist. The convergence
rate is analyzed. A new algorithm that avoids matrix inversion is presented. Numerical examples are given to illustrate
the effectiveness of the algorithms.

Key words, matrix equation, positive definite solution, iteration
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1. Introduction. The problem of positive definite solutions of the matrix equation X +
A*X-1A , with positive definite, arises in many applications. These areas include
control theory [7, 10, 16, 17], ladder networks 1,4, 18], dynamic programming 14], stochastic
filtering [2, 6], and statistics [6, 13]. Recently this equation has been studied by some authors
[3, 7, 8, 19] and they mainly concentrated on the theoretical properties such as necessary and
sufficient conditions for the existence of a positive definite solution. Obviously the equation
can be reduced to

(1.1) X + A*X-1A I,

where I is the identity matrix. Note that the equation may have non-Hermitian or indefinite
solutions. For example, if A I:, then

X-- 0_1 0

with any real number c = 0, is always a solution. We will not consider this kind of solution in
our applications. Throughout this paper, a solution means a Hermitian positive definite one.
Since the equation is highly nonlinear, designing an efficient algorithm does not seem easy.
We will take one step in this direction.

Let matrices B and C be Hermitian. If B C is positive definite (semidefinite), we write
B > C(B > C). It was proved in [8] that if (1.1) has a solution, then it has a maximal solution
XL and a minimal solution Xs in the sense that for any solution X, Xs < X _< XL. If A is
invertible, then it is easy to verify (see [8, Thm. 3.3]) that Xs is the minimal solution of (1.1)
if and only if Yc I Xs is the maximal solution of Y + AY-1 A* I. Thus any algorithm
for computing X is also one for computing Xs, and in the paper we only discuss how to
compute X.

If A is a normal matrix, we have formulae for both X and Xs, which are conjectured in
[7] and proved in [19]. From the computational point of view, in the case where A is singular
the problem of obtaining the minimal solution Xs is not solved here and remains a topic of
future research. If A is singular, theoretically we can always reduce (1.1) to the nonsingular
case of the same form in lower dimensions [8, 3], but this is not practical. Perhaps there are
some direct methods for computing Xs without this reduction.

In 2 we analyze the convergence rate of a known algorithm and the implementation of
it. A new algorithm that avoids matrix inversion is presented in 3. Numerical examples are
given in 4.

*Received by the editors November 9, 1994; accepted for publication (in revised form) April 28, 1995.
Institute of Mathematics, Fudan University, Shanghai 200433, P.R. China. Current address: Institute of Math-

ematics, Peking University, Beijing 100871, P.R. China. This research was supported by the National Science
Foundation of China.
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2. Implementation of a known algorithm and analysis of its convergence rate. To
solve (1.1) we can use the following natural iterative procedure.

ALGORITHM 2.1.

Xo=I,
(2.1)

Xn+l I A*XIA.
It was proved in [7] that (1.1) has a solution if and only if Xn > AA* for all n, If (1.1) has

a solution, then Xn is a monotone decreasing sequence and converges to the maximal solution

XL [8]. It is said in [8, 4] that whether both solutions XL and Xs are obtained from this
algorithm in a numerically reliable way remains an open question. We will show that it is
indeed so with the implementation here. What we should consider about the implementation
of this algorithm is how to compute A*X- A. In most cases A is real and now we make this
assumption. Suppose that (1.1) has a solution. The computations may be done as follows.

Step 1. Computing the Cholesky factorization of Xn, Xn LLr.
Very effective methods for this factorization are available and they are numerically stable.

See [9, 4.2].
Step 2. Solving the triangular systems

Lbi --ai, 1,2 m,

where ai are the columns of A, A (a am). Set B (b bin).
We may use any algorithms described in [9, 3.1] and it is pointed out that the accuracy

of a computed solution to a triangular system is often surprisingly good. If the order of
the matrices is large enough, we use the block forward substitution algorithm [9, 3.1.4] to
LB A, which is rich in matrix multiplication.

Step 3. Computing BTB and forming Xn+ I BT B.
Note that using the symmetry we need only to compute half of the entries of BT B, say,

the upper triangular part. As to the storage, we should also use the symmetry.
m3 37-m3 flops per iteration. NowIf A ]1mxm then the algorithm costs + m3 -F m3

we examine the convergence rate. In what follows we denote by I1" the spectral norm. Since

Xn is monotone decreasing and converges to XL, 0 <_ Xn+ XL <_. Xn XL, and thus

IlSn+l XLII <_ IIX XLII.
THEOREM 2.2. Suppose that (1.1) has a solution. If IIX All < 1, then Xn converges to

XL with at least the linear convergence rate.

Proof. The convergence of Xn has been proved in [8]. From (2.1) and

we have

Thus

XL I A*X-[ A,

, -1Xn+l XL A (XL X)A
A*XI(Xn XL)XIA.

IlXn+l XLII IIA*X-lll IIXIAII IlXn XLII
IIXAII IIXAII IlXn XLII.

Choose areal number (9 satisfying IIXAII < 0 < 1. Since X ---> XL, there exists a k such
that for any n > k, IIXA _< 0. Hence

IIXn/ XLII < OllXn XLII. [
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COROLLARY 2.3. Let Xn be the sequence in Algorithm 2.1. If IIAII < 1/2, then Xn
converges to XL with at least the linear convergence rate.

Proof It is proved in [7, Thm. 13] that if IIAII < 1/2, then (1.1) has a solution and thus
the maximal solution XL exists. By Theorem 2.2 we need only to show x A < 1. Choose
a number 3 satisfying Ilml] < 6 < 1/2. We prove ]IX-IAII _< for all n by induction. First,

X-A A < . Assume that X-A _< . From (2.1) we have

Using the expansion

and the assumption, we get

Thus

-1Xk+l A (I A*XIA) A.

(I A*X-IA)-1 (A*XIA)p

p=O

I1(I- A*XIA)-III 1/(1- IIA*X;1AII)
< 1/(1 -IIA*II. IIX-IAII)
_< 1/(1 -IIAII6).

-1Xk+All <_ IIAII/(1 -IIAII6) _< .
The last inequality can be easily verified. Notice that (1 -v/1 411AII2)/2 _< IIAII < < 1/2.
Therefore IIX-IA _< 3 for all n. Letting n -- cx yields IIX-IA _< < 1.

Remark 2.4. From [8, Thm. 3.4] we have that XL is the unique solution for which X +.A
is invertible for all I)l < 1. Now, XL + )A XL (I + )X-1A). So I + )X-IA is invertible
for all I1 < 1. From this it follows that the spectral radius p(X-[1A) < 1. So, in view
of Theorem 2.2, whether this property also implies that X-IA _< whenever (1.1) has
a solution remains an open question. Note that using [19, Thm. 2.1] this last question can
be reformulated as follows: Given square matrices W and Z satisfying W*W / Z*Z I,
with the additional properties that W is invertible and p(W-1 Z) <_ 1, does this imply that
IlW-lZll < 17

Remark 2.5. Linear convergence means possibly very slow convergence. It would be of
great interest to get a quadratically convergent iteration.

3. A new algorithm. Golub and Van Loan [9, p. 9] said that the design of matrix al-
gorithms that are rich in high-level linear algebra operations is an area of intensive research.
To pursue a computational simplicity we develop an algorithm for (1.1) that is of level 3.
See [9, p. 9] for the notion of "level." It involves only matrix-matrix multiplication. The
basic idea is to replace computing the inverse X-1 in Algorithm 2.1 by another simultaneous
iteration. This is reasonable since Algorithm 2.1 is itself an iterative procedure. The Schulz
iteration 15] for A-1 has been used to compute the Moore-Penrose generalized inverse [5].
Let 0 < ot < 211All -z,

X0 otA*,

Xk+l Xk(2I AXk).

Then limk._, Xk A+. It is easy to check that Xk is quadratically convergent. Recently this
iteration was also used in [12]. Incorporating the Schulz iteration into Algorithm 2.1 yields
our next algorithm.
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ALGORITHM 3.1.

X0= Y0 I,

Sn+ I A*YnA,

Yn+l Yn(2I XnYn).

If (1.1) has a solution, then Xn is monotone decreasing and converges to XL. In the case
where A is nonsingular, this procedure can also be used to decide whether (1.1) has a solution.

For real numbers p and c with p > 0, we have c2p + p-1 > 2c. The matrix analogue
of this fact is also true. The following result will play a crucial role in the analysis of the
convergence.

LEMMA 3.2. Let C and P be Hermitian matrices ofthe same order and let P > O. Then

(3.2) CPC + p-1 > 2C.

Proof. Let P Q* Q for some nonsingular Q. Rewrite (3.2) as

CQ*QC + Q-1Q-, > 2C

or, equivalently, as

QCQ*QCQ* + I > 2QCQ*.

Since c is Hermitian, the above inequality is equivalent to

(QCQ*- I)*(QCQ* I) > O,

which is obviously true. [3

Now we investigate the properties of Algorithm 3.1. The fact that A > B > 0 implies
that 0 < A-1 < B-1 will be used.

THEOREM 3.3. Let Xn be the iterates in Algorithm 3.1. If (1.1) has a positive definite
solution, then the sequence Xn is monotone decreasing and converges to the maximal solution
XL. Moreover, ifthe matrix A is nonsingular and all Xn > O, then (1.1) has a positive definite
solution.

Proof Suppose that (1.1) has a solution. We first prove by induction that each Xn > X
and the sequence of Yn is monotone increasing. From

(3.3) XL I A*X-1A,

we have Xo I > XL, X1 X2 I A*A >_ XL, and Yo Y1 I <_ I + A*A Y2.
Suppose Xk >_ XL and Yk >_ Yk-1 for all k _< n, n >_ 2. Note that every Xi and Yi is

Hermitian and Yn >_ I. Using Lemma 3.2 with C Yn-1 and P Xn, we have

(3.4)

From (3.1) we get

(3.5)

X 2Yn-1- Yn-lXnYn-1

Xn-1 Xn A*(Yn-1 Yn-:z)A.

But Yn- >- Yn-2, so Xn_ Xn and, therefore,

(3.6) 2Y_1 Yn-lXnYn-1 2Y_ Yn-lXn-1Yn-1 Yn.
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Combining (3.4) with (3.6) yields

(3.7) X >_ Yn or Y- _> Xn.

The assumption Xn >_ XL implies X- _< X. From (3.7) we get

(3.8) Yn <_ X’
Thus Xn+l I A*YnA > I A*X-[1A XL. Rewrite the second formula of (3.1) as

Yn+l Yn = Yn(Y Xn)rn.

From (3.7) and the above expression we obtain Yn+l >_ Yn. This completes the induction.
As Y is monotone increasing, by (3.5) we know that Xn is monotone decreasing. Since Yn
is monotone increasing and bounded from above by X- because of (3.8), limnoo Yn Y
exists and thus from (3.1) limn-o Xn X exists. Taking limits in (3.1). gives Y X- and
X I A*X-A. As each Xn >_ XL, X XL.

Now suppose that A is nonsingular and all Xn > 0. Then the above proof of the mono-
tonicity of Yn remains valid. It follows that Xn is monotone decreasing and bounded from
below by 0, so limn-oo X X >_ 0 exists. Since A is nonsingular, (3.1) implies that
Yn A-*(I- Xn+I)A-1. Therefore limn Yn Y also exists. As Y0 I and Yn is
monotone increasing, Y > I. Taking limits in (3.1) yields

X I A*YA,
Y YXY.

Since Y > I, X y-1 > 0, and thus X I A*X-A. So (1.1) has/ solution.
The implementation of this algorithm is very simple. The symmetry should be exploited.

Ifthe order ofA is m, then 6m3 flops are needed per iteration. The number offlops is larger than
that of Algorithm 2.1 per iteration. By the monotonicity of Xn, 0 < X,+ X < Xn X,
and thus IIX/l XL --< IIX XL II. For computational simplicity, we use the row sum
norm I1" IIo. Note that from (3.1) I XnYn Y-(Yn+l Yn) O, as n oo. Given a
small number > 0, one stopping criterion may be

(3.9) I X,Y I! < .
Checking this criterion adds very little amount of work, since in view of (3.1) the product
X,Y must be computed in the iteration itself. The effect of the criterion can be seen from the
following result.

THEOREM 3.4. Suppose (1.1) has a solution. If after n iterative steps ofAlgorithm 3.1
we have I Xn_ Yn-1 < and I Xn Yn < , then

Proof

IlXn + A*XA- III < 211Al1211Xll.

Xn + A*XIA I Sn Xn+l 21- A*(X Yn)A

A*(Yn rn-l)A + A*(X;- Yn)A

A*[Y_(I Xn_lVn_l) .- xl(l XnVn)]a.

Since 0 < Yn_< XI <_ X- and 0 < X" _< X, we have
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Thus

IlX, + A*X2A Ill IIAII2(IIY,,-IlIIII Xn-aY,,-all + IIX2llllI X,Ynll)

--< 211AII21IX- I1. rq

Note that if (1.1) has a solution, then IIAI[ < 1. If A Cmxm and we have Ill
Xn-aYn-all < and III g,,Ynll < , then IIXn / A*X2IA III -< 211AII211S-a I1,/-.
Usually this is an overestimation since we have used the relation Ilall _< 4NIIGII for
G Cmxm.

According to Theorem 3.3, if we do not know whether (1.1) has a solution and A is
nonsingular, then Algorithm 3.1 can also be used, and after some number of iterative steps,
we begin to check the positive definiteness of Xn. If Xn > 0 we go up to some step n large
enough and we claim numerically that (1.1) has a solution. Otherwise we stop and affirm that
(1.1) has no positive definite solution. The Cholesky factorization is a good approach to test
the positive definiteness. See the discussion in 11, 5].

Analysis of the convergence rate of Algorithm 3.1 seems hard. In particular, the author
does not know whether this algorithm also has a linear convergence rate and he conjectures
that this is the case.

4. Numerical examples. We carry out the following numerical experiments on an IBM-
PC 286 computer with single precision. The machine precision is approximately 5.96 10-8.

Example 1.

(.1000000-.1500000-.2598076)A 1500000 .2125000 -.0649519
.2598076 -.0649519 .1375000

A is a normal matrix chosen at random so that (1.1) has a solution. In the case where A is
normal and (1.1) has a solution (iff IIAII < 1/2, see [7]), it is conjectured in [71 and proved
in [19, Thm. 4.1] that XL -[I + (I 4A*A)1/2]. According to this formula the accurate
maximal solution is

88729835 .00000000
XL .92158407

symm.

After seven iterations of Algorithm 2.1 we get

// .88729840 .00000000
XL .92158410

symm.

.00000000 )-.01979489

.89872694

.00000001 )-.01979488

.89872700

Note that each entry of XL has at least six correct digits. Ten iterations and 13 iterations of
this algorithm give the same result:

{ 88729830 .00000000 .00000001 ’XL .92158410 --.01979491 )symm. .89872690

Each entry of XL has at least seven correct digits. After seven iterations of Algorithm 3.1, we
get

XL .92158500 --.01979354
symm. .89872940
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The entry XL (1, 1) has four correct digits and other entries have at least six correct digits. Ten
iterations of Algorithm 3.1 give

/’ 88729850 .00000000 .00000000 ’XL= .92158410 -.01979486 ).symm. .89872700

The entry Xc (3, 3) has six correct digits and other entries have at least seven correct digits.
Example 2.

2 -1 3 4

17 6 -5 9
A 4--6 4 8 10 6

-3 5 2 8

A is nonnormal. We use the criterion IIXn Xn+lll IlXn + A*XIA lll < tol
for Algorithm 2.1. If tol = 10-4, eight iterations are required. If tol 10-6, 11 iterations
are required. If tol 10-8, 13 iterations are required. Use the criterion I Xn Yn < tol
for Algorithm 3.1. If tol 10-4, 12 iterations are required If tol 10-6, 18 iterations are
required Therefore we affirm numerically that for this A, (1.1) has a solution. One of the
computed results is

-.04486766 -.00670385 -.05718690
.89817360 -.04311119 -.11904720

.90854990 -.03544480
symm. .82728140

Example 3. Modifying a scalar multiple of the matrix in Example 2 we get

2 -1 3 4 t7 6 -5 9
4 8 10 6

-3 5 2 8

When using Algorithm 2.1, at the sixth implementation of the iteration a square root of
negative argument appears, which occurs in the Cholesky factorization. This means that X5
is not positive definite. Therefore we conclude that for this A, (1.1) has no positive definite
solution.

The above examples show that both Algorithms 2.1 and 3.1 are numerically reliable
methods either forjudging the existence ofpositive definite solutions of (1.1) or for computing
the extremal solutions Xc and Xs. Algorithm 2.1 converges slightly faster than Algorithm
3.1 in the sequential computations.

Acknowledgments. The author wishes to thank Erxiong Jiang for his continuous advice
and encouragement and two anonymous referees for their helpful comments which improved
the paper.
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A SCHWARZ ALTERNATING PROCEDURE FOR SINGULAR
PERTURBATION PROBLEMS*

MARC GARBEYt

Abstract. We show that the Schwarz alternating procedure offers a good algorithm for the numerical solution of
singular perturbation problems, provided the domain decomposition is properly designed to resolve the boundary and
transition layers. We give sharp estimates for the optimal position ofthe domain boundaries and study the convergence
rates of the algorithm for various linear second-order singular perturbation problems. We report on implementation
results for a turning-point problem and a combustion problem.

Key words, singular perturbations, boundary layers, domain decomposition
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1. Introduction. The goal of this paper is to show that a properly designed Schwarz
alternating procedure [5] offers an effective algorithm to solve singular perturbation problems.
In particular, we show that a multiple-domain method can be more accurate and more efficient
than a single-domain method--at least in the context of singular perturbation problems where
the domain decomposition can be justified on the basis of physical arguments.

Since the First International Symposium on Domain Decomposition [16], much work
has been done on domain decomposition methods, especially from the perspective of numer-
ical linear algebra. However, few studies have been concerned with domain decomposition
methods that are motivated by the physics of the phenomenon under investigation or by the
properties of the underlying partial differential equations (PDEs); see [29, 7, 17, 31 and the
references cited there.

In multiple-scale problems [24, 21 ], one can clearly take advantage ofthe special structure
of a solution in the design of a domain decomposition method, as was first shown in the work of
Chin [6]. In 19, 20], we began a systematic investigation ofhow to apply results of asymptotic
analysis in the numerical computation of multiple-scale problems. As discussed in [11, 12],
there are basically two approaches: one can start from a known asymptotic expansion and
devise a numerical algorithm to compute the expansion, or one can start from a robust domain
decomposition method and adjust the decomposition on the basis of asymptotic criteria. The
former approach is very interesting but has several drawbacks: the algorithm cannot be a direct
implementation of the method of matched asymptotic expansion [9, 4, 14] and, furthermore,
the implementation in two or three space dimensions is not easy and can be compared to the
difficulties encountered implementing a sophisticated method of front tracking.

In this paper we are concerned with the latter approach. We have chosen to start from
the well-known Schwarz iterative procedure 18, 23, 26, 27, 30, 32] with Dirichlet boundary
conditions for the sake of simplicity. We suppose that we have some knowledge of the position
and thickness of boundary and transition layers 1 and derive accurate representations of the
interface positions, which give the optimal numerical accuracy of the domain decomposition.
We also propose a practical way to implement an adaptive domain decomposition method.
With adaptivity it is not necessary to know accurately in advance the representation of the
layers and the algorithm converges to the optimal interface(s) position(s).

For specific singular perturbation problems, we compute the convergence rate of the
Schwarz alternating procedure as a function of the small perturbation parameter. We show

*Received by the editors October 15, 1993; accepted for publication (in revised form) February 25, 1995. This
research was supported by Region Rhone Alpes-France.

tLAN, Universit6 Claude Bernard Lyon 1, 69622 Villeurbanne cedex, France (garbey@lanl.univ-
lyonl.fr).
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that the Schwarz alternating procedure converges in a few iterations, particularly when the
problem is convection-dominated. This last result is related, for example, to the work of
Kuznetsov [22], who showed that the time step for a parabolic problem can be considered as a
small perturbation parameter. However, Kuznetsov did not consider the singular perturbation
problem.

An advantage of the approach under discussion is that the computation of more realistic
problems is relatively easy to implement, as it .is based on the improvement of an already
existing technique. Also, one may want to solve irregular structures, such as layers, and keep
the discretization grid regular in each subdomain (as opposed to taking an adaptive mesh
without domain decomposition). This advantage is important for parallel computing; one can
still use different numerical schemes in different subdomains.

For problems in two space dimensions, we show that a combination of the alternating
direction iteration (ADI) and the Schwarz alternating procedure offers a good option for the
accurate resolution of an inner layer; ADI is used as a massively parallel algorithm 10] to
solve a problem that is smooth in the outer as well as the inner domain because of the stretching
of the layer. Also, the coupling between the subdomain computations can be weak because
ADI is implicit only in one space direction. We have implemented the Schwarz alternating
procedure for a combustion problem to illustrate the potential of the method.

In this paper, we have not yet taken full advantage of the asymptotic results since the
numerical scheme is basically the same on each subdomain. Most often, the asymptotic results
suggest a heterogeneous domain decomposition [29]. We have recently focused our work in

this direction 13]. Our choice of Dirichlet boundary conditions for the Schwarz alternating
procedure is then useful to efficiently implement the so-called (numerical) matching between
different approximations in the overlapping regions.

The plan of this paper is as follows. In 2 we compute the optimal interface position for
the solution of an ordinary layer and compute the convergence rate of the Schwarz alternating
procedure for different linear elliptic singular perturbation problems in one dimension. In 3
we implement an adaptive Schwarz domain decomposition to solve the inner layer of a turning-
point problem. In 4 we test our technique on a two-dimensional turning-point problem; we
solve the inner layer with a combination of Schwarz domain decomposition and ADI and
illustrate the efficiency of the method. In 5 we solve a combustion problem describing a

cellular flame; this problem is highly nonlinear and difficult to solve [2].

2. Boundary layers in one dimension. In this section we consider linear second-order

singular perturbation problems of the following type:

(2.1) Leop =_ eL + LoOP F on

Here, L (dZ/dx2), Lo =-- t(x, e)(d/dx) + ?’(x, e), and F =_ F(x, e); e is a small positive
parameter, e e (0, e0] for some e0 > 0. The coefficients/3, ,, and the function F are infinitely
differentiable on [0, 1].

Problems of this type exhibit boundary layers and transition layers; cf. [24]. We restrict

ourselves to the case of a single boundary layer in the neighborhood of 0.
The Schwarz alternating procedure for problems of the type (2.1) is described in [5]. First,

the domain f2 is split into two overlapping subdomains, ’2inner [0, a] and ff2outer [b, 1],
with a > b; "2inner covers the boundary layer at O, "2oute represents the domain of validity of
the outer approximation. On each subdomain, the differential expressions are discretized by
means of a finite difference scheme.

We assume that the mesh on each subdomain is regular; h is the mesh size on "2outer, h2
the mesh size on inner. If Lhi and Lh2 are the corresponding discretized operators, then the
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iterative scheme is

(2.2) Lhl P p p p(I)outer(b) 0/1,outer F on flouter, (b), (1)(I)
inner

(I)outer

(2.3) Lh2di)P+1 (I)P+1 (fl’ (I)P+l (,-, P
inner F on "2inner, inner’,’) t0, inner,") (I)outer(a),

for p 0, To start the scheme, one imposes an artificial boundary condition at point b.
The method is readily generalized to an arbitrary number of subdomains ’-2 [bi, ai],

where0 bN < bN-1 < aN < bN-: < aN-1 < < b0 < al < a0 1. For
example, the case ofthree subdomains leads to an iterative scheme with two possibly decoupled
subproblems:

followed by

Lh*g F on a0, *g(b0) *f(b0), *g(1) or1,

Lh2* F on f22, *(0) oto, (a2) *f(a2),

Lh’*f+ F on al, (I)f+1 (bl) *g(bl), .f+l (al) *g(al).

Artificial boundary conditions at the pair (a2, b0) are imposed to start the scheme. To solve
a problem with a boundary layer at 0, one uses S22 as an inner domain and f20 as an outer
domain; the intermediate domain f21 links the inner and outer domains. A priori, we have
ho(e) >- hi(e) >->- h2(e).

We restrict ourselves to use the same finite difference scheme in each subdomain with
Dirichlet boundary conditions. For an arbitrary domain D with a mesh size parametrized by
h, we suppose that the scheme must be such that the estimate

d +p l[r
(2.4) max [7r 7rhl Cqhn max

dxn+p

is satisfied for some set of integers p, q, and n. Here, 7t is the exact solution of the Dirichlet
problem in domain D and Oh its discrete approximation; the constant is a measure of the size
of the domain D and C a generic positive constant or possibly an order function of e, which
does not depend on h. The symbol () denotes strong (weak) asymptotic equivalence;
see [3]. By way of example, a centered second-order finite difference scheme applied to
-u" f gives p q n 2.

2.1. Interface positions. First, we wish to determine the optimal interface positions, ai
and bi, which minimize the error. We assume that the number of mesh points is the same, N,
in each subdomain and consider only the case where the subgrids coincide at their endpoints,
so no interpolation is needed in the iterative Schwarz procedure.

Let us start with a two-subdomains decomposition; we consider in this section the fol-
lowing decoupled subproblems:

(2.5) Lhl hi hi hi(I)oute F on ’2outer, (I)outer(b) (b), (I)outer(1) ,0/1,

(2.6) h2 h2 (I)ihnner(0) 0/0, (I)inner(a) (a),L inner F on inner, h2

where is the exact solution of (2.1). Let (I)oute (resp., (I)inner) the restriction of to "2oute
(resp., "2inner). We define the following errors:

(2.7) eouter max [(I) h(I)outer
f2outer



1178 MARC GARBEY

and

h2(2.8) einner max I- innerl"
2inner

According to the hypothesis on the finite difference discretization, we have

(2.9) eouter Ch max dn+p outer
dxn+p

and

(2.10) einner Caqh max
dn+p inner
dxn/p

Our criteria to define the best interface positions (a, b) is that max(eouter, einner) should be
asymptotically minimum.

Theorems and 2 in 2.2 will show for some specific operators that this criterion is
correct; i.e., we do not need to consider the artificial error introduced at the boundaries in the
Schwarz alternating procedure to properly choose the interface positions.

The optimal position of the interface defined above now depends only on the property of
the solution that we want to approximate. We restrict our analysis to functions that exhibit
boundary layer phenomena as it can be the case. for solutions of (2.1). But the following
estimates on the interface position are independent of the operator. Let 0 be the outer
expansion of. The main hypothesis is that we have some a priori knowledge ofthe qualitative
behavior of the corrector tO(x, e) (x, e) 0(x, e) in the boundary layer. In the case of
two subdomains, we have the following result.

LEMMA 1. Suppose that
(i) the correctorfunction tO is strictly ofo.rder one,
(ii) the inner variable is x/e and all derivatives of(, e) tO(x, e) with respect

to are oforder one,
(iii) the corrector function tO is exponentially decreasing, (, e) C exp(-C0) as

Then the error in each subdomain is minimum when the overlap is minimum. For any fixed
overlap (a b koh ), the accuracy is optimal in both subdomains if

an+q C exp (-(Co/e)(a ko/N)).

Proof The error in the outer domain is

hlE max I outeri Ch max
flouter flouter

Similarly, the error in the inner domain is

dn+p

dxn+p

h2E2 max I innerl Caqh max
flinner f2inner

C exp(-Cob/e)h’e-n+p).

dn+pdp

dxn+p Chaqe-(n+P).

and

E2 Can+qN-ne-(n+p).

E C exp (-(Co/e)(a ko/N)) N-n6-(n+p)

if we impose a fixed overlap, a b koh l, where k0 is an integer of order one (possibly equal
to one), then
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Hence, if e is sufficiently small, then E2 is an increasing function and E a decreasing function
of a. The accuracy is optimal in both subdomains if E2 E l, which is the case if an+q

C exp (-(Co/e)(a ko/N)).
The asymptotic relation above shows that the optimal position of the interface a is an

increasing function of k0. Therefore, the optimal error E2 is an increasing function of k0 as
well as E and the error in both domains is minimum when the overlap is minimum that is

k0= 1. [3

LEMMA 2. Suppose that the conditions ofLemma 1 are satisfied and that, in addition, b
Ca. Then, for anyfixed overlap, the maximum ofthe error in each subdomain is minimum if

b (n + q + o(1))(e/Co) log(Cole)

and, consequently,

a e log(e-I).

Proof. The maximum of the error in both subdomains is minimum when einner eouter,
which is the case if an+q C exp (-Cob/e). If b Ca, we obtain bk C exp(-b/el),
where k n + q and el e/C0.

We look for b of the form b r/(el)el log e-1, where 0 is a positive function of order
one. Then b Ce logk e-1 and exp(-b/el) e. Therefore, the quantity b/exp(-b/el)
is very sensitive to the choice of the function 0(el). We obtain

(k p)E1 log (El-1) < b < kE1 log (El-1)
for all v > 0. More precisely, we look for b of the form b (k 6(el))el log
where 3 -<-< 1. The condition bn+q exp(-Cob/e) is satisfied if and only if (el)
(n + q)log (log (e]-l))/log (e-l). As a b, we conclude that a e log (e-l).

Note that the hypothesis b Ca is satisfied when N >_ 1/(Ce log(e/Co)-).
Remark 1. The estimate of Lemma 2 shows that the size of the inner subdomain ’-2inne

increases with the order of the scheme and with the size of the overlap. It is interesting to note
that the thickness of the layer obtained on the basis of the previous criterion is not simply
but involves logarithmic terms, as in 1].

Remark 2. The estimate on b in Lemma 2 is numerically accurate only for very small
values of e. For moderate values of e, one should use the next higher-order approximation of
b, including the order function (e).

Lemma 2 can be generalized to an arbitrary number of subdomains; the numerical error
in each subdomain f2j [bj, aj] is

Ej C exp( q n -(n+p)-Cobj /e)aj hje
We will show that the quantity maxj=0 N (Ej) is minimum when the sequence of interfaces
(bj) satisfies the set of asymptotic relations Ej Ej+I for j 0 N 1, that is, when
the numerical error in each subdomain is of the same order.

The computation of the sequence of interfaces that satisfies the nonlinear problem Ej
Ej+I for j 0 N can be done numerically for a given e. However, we can obtain
an asymptotic approximation of the bj.

LEMMA 3. Suppose we have N + overlapping subdomains, g2j [bj, aj], where
0 bN < bN-I < aN < bN-2 < aN-1 < < bo < al < ao 1, and that aj bj-1 for
j N. The maximum of the error in each subdomain will be minimum when

bj (n + q + o(1))e 1ogj+ (Cole).

Here, logj standsfor log(log(log...)), j times.
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Proof. Let k n + q and el e/Co. Since aj bj-1, the error in each subdomain
is Ej C exp (-bj/el) b_le-n+P. For any j, Ej is a decreasing function of bj and Ej+I
is an increasing function of bj. Therefore, by induction, maxj=l N(Ej) is minimum when
Ej Ej+I forj =0 N- 1.

For any function bu_, one explicitly gets a set of functions (b)j=0 u-2 which satisfy
the relation Ej Ej+I for j N 1. The corresponding bj, and in particular b0,
are increasing functions of bN-1. Therefore, E0 is a decreasing function of bu_ under the
constraint Ej Ej+I for j 0 N and EN is an increasing function of bN-1. The
existence and uniqueness of bN-1 such that E0 EN then follow from the intermediate
variable theorem.

Next, we will derive an asymptotic estimate for the interface position in the case of three
subdomains. The error in each subdomain balances when

exp (-bole1) Cb exp (-bl/el) Cbl
We look for b0 in the form b0 (k 8(e))el log(e]-), where -<-< 1, As exp(-bo/el)

..1-/k
el
k-a we have bl Ce Therefore, must satisfy the asymptotic relation el

-a

Cekl log (e-1) exp(--e-a/). Using the fact that

log(log (log e-l))
>3>

loge-1 loge-1

log(log (log-v e-1))

for all v > 0, we conclude that bl kel log(log(e-l)). Thus, in the case of three subdo-
mains,

b0 (k + o(1))el log(e-l), bl (k + o(1))el log(log(el-l)).

The proof for an arbitrary number of subdomains proceeds along the same lines. l
Remark 3. All previous results are still valid for nonoverlapping subdomains. When one

solves a boundary layer at 0, the numerical accuracy in each subdomain is dominated by the
error in the neighborhood of its left boundary.

2.2. Damping of artificial boundary errors and convergence. Let [A, B] C [0, 1] be
a given subdomain of f2 used in a Schwarz iterative procedure. The convergence and accuracy
ofthe Schwarz method essentially depend on the way an error introduced at one ofthe artificial
boundary points propagates inside the subdomain.

Following Cai and McCormick [5], we consider the linear problem

(2.11) u" F, u(0) =a0, u(1) a,

with the usual three-point discretization applied to each subdomain [A, B]. Let ei ui u (xi)
be the error on the regular grid {xi A + i(B A)/N 0 N}. Suppose that
e0 0, and let eN be the error at the artificial boundary B. We have ei (i/N)elv for

0 N. In other words, any error at the artificial boundary B decreases linearly inside
the subdomain [A, B]. The situation is analogous for the damping of an error introduced at
the artificial boundary A. This linear convergence is the key reason for the poor efficiency of
the straightforward Schwarz alternating procedure with Dirichlet boundary conditions for the
elliptic operator L[u] -Au demonstrated in [5]. Of course, the situation is different for the
positive operator L[u] -Au + ?’u with , > 0. Also, for regular problems (as opposed to
singular perturbation problems), it is well known that more sophisticated boundary conditions
can lead to a very efficient Schwarz method; see [32], for example. We will show that the
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situation is considerably different for a singular perturbation problem of elliptic-type and
that we may, in fact, have fast convergence with relatively small overlap even if we restrict
ourselves to Dirichlet boundary conditions.

Let [b0, a0] and [bl, al] be the two overlapping subdomains of a domain decomposition,
with bl < b0 < al < ao. We consider the homogeneous discretized problems

(2.12) Lhi [el] 0, el (b0) ot, el (a0) 0,

(2.13) Lh2[e2] 0, ez(bl) 0, ez(al) o/2.

We will say that the real numbers ’__, and ’_ are damping factors if e2(al) < ’e2(bo) and
el (bo) < ’ea (a).

An iteration ofthe Schwarz method on a domain decomposition that includes the previous
results in e (bo) _< ’--, ’+_ef (bo) and 2 {,al)two particular overlapping subdomains p+l

’__, ’+_e (al). The convergence of the scheme follows when the discretized operator satisfies
a maximum principle and the product of the damping factors is less than one.

The damping factors can be computed for various singular perturbation problems and
finite difference schemes.

2.2.1. The ease L[u] eu" + "7(x) u F, "7 > 0. First, we solve a boundary layer at
0 with a two-subdomain Schwarz procedure and the usual three-point discretization. For the
singular perturbation problem -eu" + ,u F on [0, 1], the thickness of the boundary layer
at 0 is e 1/2. The inner variable is x/e l/z, and the layer can be resolved with a corrector
function which satisfies the asymptotic relation (, e) C exp(-Co) as -+ ec.
Furthermore, Co g/2(0). It follows from Lemma 2 that max(eouter, einner) defined by (2.7)
and (2.8) is minimum if

a e 1/2 log C
-1 N > C (e/2 log

LEMMA 4. Let [0, a] and [b, 1] be two overlapping subdomains, with a b kohl and
a b e /21oge-1.

IfN / (e 1/2 log e-1), then

’_ 1og-2k0 e-1 ’+_ eko.

IfN c-l(y(O))/e) 1/2, then

__. R-k, ’_ exp(-k0C),

1C2 C2)1/2"where R 1 + g + C(1 4-
Proof. We compute the damping factor by applying the three-point discretization in each

subdomain to the homogeneous problem

--e(ei+l 2ei 4- ei-1) 4- h2)iei O.

The finite difference equation can be written as

ei+l (2 + ?’ih2/e)ei 4- ei-1 O.

Then

’+-_ (R(h2, e))-khl/h .._+ (R(h, e))-
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where R(h, e) is the larger root of the quadratic polynomial R2 (2 + ?,(O)h2/e)R + 1,

R(h, e) 1 -1- 1/2(hZ/(O)/e) + (h?,(O)l/2/e 1/2) (1 nt- h2?,(O)/(4e)) 1/2

The lemma follows upon substitution of the expression of R. 7
We now prove the convergence of the method using the result of Lemma 3 and show that

the criterion to locate the best interface position defined in 2.1 is correct.
THEOREM 1. Let +_ x _.,, and let cb be the solution ofthe Dirichlet problem

(2.14) L[u] -eu" + ?,(x)u F, u(0) or0, u(1) Oil.

p pLet (I)oute and (I)inne be the solutions ofthe iterative scheme

(2.15) Lhl P P P(I)oute F on 2outer, (I)outer(b) Pinner (b)’ outer (1) t1,

(2.16) Lh2p+I
inner F on "2inner, (I)P+1 t’t (I)P+1 Pouterinnert") 0t0, inner(a) (a)

where

Let

Ui+I 2Ui -+- Ui-1
_qt. )/(Xi)ULhi[u] --e

(I)p [. (I)iPnner on Minne {xi (a/N), 0 N},

I P Moute O, N, Yi E "2outer\’2inner}outer on {Yi b d-

Let eouter and einner be the numerical errors in the solution ofthe Dirichlet subproblems defined
by (2.5), (2.7), (2.6), and (2.8). Let I1 be the maximum norm on the composite grid
Mouter U Minner. Then

I1 4plloo <_ C(( p -- max(eouter, einner)).

Proof Let ()i,j)i=O..U,j=l,2 be the solution to the following linear system:

i+l 2il + i-l, + 9/(Yi)i,1(2.17) -e F(yi) 1 N-
h2

()i+1,2 2i :Z -t- ()i-1,2
-Jr- / X i) 2 F x 1 N 1,(2.18) -e

(ION, 0/1, (I)0,2 0/0,(2.19)

(2.20)
1-b h2 awith h N , Xk b. Let be the exact solution of the Dirichlet problem:

-eu" + ?,(x)u F, u(0) oto, u(1) Oel. Using a discrete maximum principle on the
composite grid minner N mouter, we have the existence and uniqueness of .

Let ei,j di)i,j di)i,j, 0,..., N, j 1, 2, where di)i, is the trace of on the
composite grid moute U minner. We have

ei+l,1 2ei,1 d- ei-l,1 h d3(4 N(2.21) -e
h + )/(yi)ei,1 6-’i,1

ei+l 2 2ei,2 nt- ei-1 2(2.22) -e
2 -+- ’(xi)ei,2 h oh(4 -1 N 1

h2 12 i,2
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(2.23) eN,1 0, e0,2 O,

(2.24) e0,1 e,2, eN,2 el,l,

where (Pi,j-(4) denotes the fourth-order derivative of obtained in the Taylor expansion. If ]ei,1
is not maximal at the boundary 0, we have

max lei, <_ Ch max((4)) eouter,
i--0 N

otherwise, we have

leN,2l lel,ll < le,2l leo, ll;

that is, lei,21 cannot be maximal at the boundary N and

max lei,:l < C-a2h max einner.
=0 N (I)(4)

Consequently, we have

11 l] < C max(eouter, einner).

Let )outer (()i 1)/--0, N (resp., )inner ((/,2)i=0 N) and VouterP (I)outerP )outer
(resp. P P (inner).l)inne (I)inne

We have

Lhi P 0 on "2oute P P PVouter(b (b) route (1) O,router l)inne

I)P+1Lh21)P+I p+l P (a) (0) 0.inner 0 on inner, Vinner(a) l)outer inner

We conclude from Lemma 4 that

p < C" p on Mouterouter II
and

P < C" p on MinneVinner Ilc

and, therefore,

I1 PII Cp -- max(eouter, einner).

According to this estimation p must be chosen such that

"P max(eouter, einner)

and the interfaces a and b such that max(eouter, einner) is asymptotically minimum.
It is interesting to see how the damping factors behave when the number of subdo-

mains increases. First, consider the three-subdomain case with a bo and a2 bl. We
consider the optimal situation described in Lemma 3, for which al e 1/2 log(e-1) and
a2 e 1/2 log(log(e-i)). To minimize the damping factor, we choose the smallest order for
N that is still compatible with our hypothesis on the overlapping

N 11 (e ll2 log(e-i)).
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The damping factors (_0; and (L corresponding to the two overlapping subdomains 20
[b0, a0 1] and f21 [bl, al] are as good as in Lemma 4:(_1 log-2ko B-I, and (1 ek0.
On the other hand, for the subsequent damping factors corresponding to the overlapping
domains "21 and f2a, we obtain (_2 (2 kle 1/2 log2(e-1). Hence, the three-
subdomain Schwarz method may converge very slowly under the previous hypothesis. We
observe that e 1/2 log2(e-1) is less than 1/2 if and only if e < 0.000017. In other words, the
damping factors (_2 and (2 can be practically small for e larger than 10-4.

Under the hypothesis of Lemma 3, one can show that the situation deteriorates when the
number of subdomains increases. For > 0, .i,i-t-1 )) (21’i+2 and 1 (2"d-1 >>
1 ’i21’i+2. In practice, N may be much smaller than e-1/ log-l(e-1). However, we have
observed in our numerical experiments that the convergence deteriorates when the number of
subdomains increases and the relative size of the overlap (ai bi-1)/hi stays fixed.

2.2.2. The case L[u] eu" +/3(x)u’ + "t’(x)u F,/3 > 0. We suppose for simplicity that
the real function/3 is strictly positive on f2, so we do not consider turning-point problems in
this section. Let us first consider a first-order finite difference scheme with the appropriate
one-sided difference approximation of the convective term

Ui+l 2Ui + Ui-1 Ui+l Ui
8 -Jr- [(Xi)-- -Jr- /(Xi)Ui Fi.

ha h

This scheme is monotone when F is a negative function. We know that for the Dirichlet
singular perturbation problem euf’ + flu’ + Fu F on [0, 1], the thickness of the boundary
layer at 0 is e. The inner variable is x/e, and the layer can be resolved with a corrector
function that satisfies the estimate (, e) C exp(-C0) as -- cx. Furthermore,
Co fl/a (0). Let N be such that

N > (C/e)log e-1.

According to Lemma 2, max(eouter, einner) is minimum when

a , e log e-
LEMMA 5. Let [0, a] and [b, 1] be two overlapping subdomains, with a b kohl and

a b eloge-1.
IfN 1 / (e log e-l), then

(_ /3(0)-z log-O (o)
_

(l+k0 eloge
(0)

IfN Ce- 1, then

(o)+ Cko.-e.- ( + q(o)c)0 /(o)

Proof. The proof is analogous to the proof of the previous lemma. The three-point
discretization in any subdomain applied to the homogeneous problem satisfies

e(ei+l 2ei -k- ei-1) + flih(ei+l ei) + h2Fiei O.

The asymptotic behavior of the damping factors follows from a straightforward computa-
tion. ]

When the previous first-order scheme satisfies a maximum principle, we have Theorem 2.
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THEOREM 2. With the same notational convention as in Theorem 1, we have

I1- pllc C( p + max(eouter, einner).

Remark 4. Even if y (0) is positive, the product ’ ff__ is less than one for e sufficiently
small. However, for singular perturbation problems with convection, where/3 (0) 0, the
rate of damping is less advantageous than in the case where/3 0.

The result of Lemma 5 can be extended to the three-subdomain case as before. The
conclusion is the same; namely, the efficiency of the method deteriorates as the number
of subdomains increases. With the notation of the previous section we have in the three-
subdomain case

2 :z kfl(O)e log2(e-1).

Now, let us consider the central finite difference scheme

/,/i+1 2Ui "k- bli-1 b/i+l b/i-1
e

h2 -+-/i
2h

+ Yi/’/i 0.

In general, the scheme is not monotone. However, one can still do the asymptotic analysis of
the damping factor.

LEMMA 6. Let [0, a] and [b, 1] be two overlapping subdomains with a b kohl and
a b , e log e-1 IfU / (e log e-1), then

4k0
(. e log e

/3(0) log e- + ko ?’(0-- -1

IfN Ce- 1, where C - 1/2 (0), then

2C//(0))+2C//3(0)
(0)

(_" +Cko ,,e.

We notice that the Schwarz alternating procedure converges faster with the appropriate
one-sided finite difference scheme than with the centered finite difference scheme.

2.2.3. Time-dependent case, U eUxx + /(X)Ux + "[(X)U. Next, we consider an initial
boundary value problem on f2 [0, T] with Dirichlet conditions

0/,t 02bt
e +(x t) +y(x t)u

at

If we use an implicit Euler scheme for the time marching

n+l n
At 8Uxxn+l -Jr" fln+luxn+l + /n+lun+l

then

__Em,-lblxxn+l /n+l ATunx+l q_ (1 yn+l A T)Un+I bin.

In other words, the time-marching scheme leads to the solution of a singular perturbation
problem at each time step. The small parameter of this singular perturbation problem is even
smaller than e, as the time step is a priori a small number, but the structure of the boundary
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layers is independent of the time step. Also, the implicit scheme is appropriate if the time-
dependent singular perturbation problem exhibits an initial layer.

Again, we distinguish the case where we have convection (fl 7 0) from the case where
convection is absent (fl 0).

For steady problems without convection, we have seen in Lemma 4 that the efficiency of
the alternating Schwarz procedure improves as the perturbation parameter decreases. As e is
multiplied by AT, where AT << 1, we can expect the method to be especially efficient for
the solution of time-dependent singular perturbation problems without convection.

The case/3 0 is trivial, so from now on we consider only nonzero convection.
Consider a Schwarz alternating procedure with two overlapping subdomains to solve the

equation

--eATuxx ATux + (1 y AT)u F.

For the one-sided difference scheme we obtain the following result.
LEMMA 7. Let [0, a] and [b, 1] be two overlapping subdomains, with a b kohl

and a b e log e-1. Let be an order function such that -- 1. Let N be such that
N e--.

If AT >- 6( 2, then

Proof. The proof of this lemma is a straightforward computation. [

From the asymptotic approximation of the damping factors given above we observe that
the efficiency of the method improves compared with the steady case. Also, very few iter-
ations of the Schwarz alternating procedure are required since the initial artificial boundary
condition can be the trace of the solution at the previous time step. The constraint on the
time step is reasonable, as the accuracy of the spatial Schwarz alternating procedure must be
of at least the same order as the accuracy of the temporal Euler scheme. However, one can
use higher-order time differencing schemes and, therefore, a larger time step. For larger time
steps, we are progressively back to the situation ofthe steady problems described by Lemmas 5
and 6.

2.3. Numerical experiments. We consider, first, a linear second-order singular pertur-
bation problem

eu" + flu’ + ?’u f

on the interval f2 [0, 1], with a boundary layer located at the fight end of the interval. To
obtain a good numerical experiment, we choose f such that the outer expansion is nontrivial,
so the reduced problem flu’ + ),u f has a solution that is not constant. Furthermore, to
simplify the numerics, we impose the condition that the grids of the subdomains coincide at
the boundary points. For each experiment we use a known explicit solution, and any numerical
error will be given in the discrete maximum norm on the composite grid, which is the union
of the grids of the subdomains.

To balance the amount of work for each subproblem, we use the same number of points
N for each subgrid. Then there is a finite number of possible sets of n subgrids that coincide
at their end points. For example, in the two-subdomains case, the regular grids {xi h

0 N} of S21 [0, a] and {Yi ih2 + b 0 N} of "2 [b, l], where
hi a/N and h2 (1 b)/N, 0 < b < a < 1, coincide in a and b if and only if there
exist kl, k2 E 1 N 1 }, such that a kl h2 -+- b and b kzh 1. Hence, we have exactly
(N 2)2 possible choices. A similar analysis for three subdomains gives (N 1)4 possible
sets of interface positions.



A SCHWARZ ALTERNATING PROCEDURE TO SOLVE LAYERS 1187

TABLE
Error in the maximum norm and number of iterations with two subdomains for the operator -u + /u.

-eu" + u cos(x), two subdomains with N 12 and 0.001.

right bounda[y of the outer sulxllrt:

.99t1 0.1059 0.1209 0.135! 0.1549 0.1003 0.2J57 0,2683 0.3548 0.5238
,1964 0,2136 0,2340 0.2588 0.2095 0.3284 0.3193 0.4490 O.SSO0 0.7097

0.2920 0.3143 0.1402 0.3708 0.4074 0.4521 0.$077 0.S705 0.6735 0.8049
0.3860 0.4112 0.4400 0.4731 8.5116 0.5870 0,6111 0.6769 0.7586 0.8627
0.4?83 O.S04G O.SJ40 0.5670 0.4044 0.44?1 0.4962 0.7834 0.8209 0.9016

O.|Sll 0.68Z4 0.7064 0.7353 0.7624 0.7918 0.8280 0.8652 0.9059 Q.gSOG
0,7450 0,7653 0.7057 0.8075 0.8302 0.8544 0.8800 0.9072 0.9362 0.9670
0.8]19 0.8463 0.8609 0.07| 0,6919 0.9085 0.9252 0.9429 0.9612 0.9802
0.9167 0.9244 0.9322 0.9402 0.9483 0.gSGS 0,9649 0.9735 0.9921 0.9910

le[t boundary o[ the boundary

0.0090 0.0190 0.0330 0.0494 0.0?04 0.0904 0.13 0.1951 0.290
0.0179 0.030e o.oG]e 0.0941 0.1316 0.1791 0.2414 0.3268 0.4500
0.0265 0.057 0.028 0.1348 0.1052 0.2466 0.3231 0.4211 0.5510
0.035! 0.0740 0.1200 0.1720 0.326 ,0.3038 0.3809 0.4523 0.620
0.0435 0.0917 O.14SG 0.2062 0.2747 0.3529 0.4430 0.$479 0.6716
0.0517 0.1081 O.IGgg 0.2376 0.3125 0.3956 0.4884 0.5926 0.7105
0.0590 0.1239 0.1937 0.2667 0.3465 0.4330 0.5269 0.6292 0.7412
0.0678 0.1391 0.2143 0.2936 0.3774 0.4660 0.5600 0.6598 0.7660
O.O?SE 0.1535 0.2348 0.3106 0.4054 0.4954 0.550 0.6057 0.864
O.Oe3 0.16@1 0.2542 0.3419 0.4310 0.5217 O.GI40 o.oeo 0.e036

0.4762

0.’7317
0.7043
0.$19’1
0.8451
0.8642
0.8791
0.8911
0.9009

error i.n the maxinum norm..

0.0419 0.0419 0.0419 0.0418 0.0416 0.0414 0.0409 0.0397’ O.O]GB 0.0210
0.0419 0.0418 0.0417 0-0414 0.0409 0,0401 0.0.185 0.0353 0.0287 0.0146
0.0419 0.0411 0.0414 0.0409 0.0399 0.0383 0.0355 0.0305 0.0217 0.0094
0.0419 0.0416 0,041L 0.0402 0.0307 0.0363 0.0323 0.0259 0.0165 0.005G
0.0418 0,0415 0.0401 0.0394 0.0374 0,0141 0.0291 0.0220 0.0126 0.0040
0.0410 0.0413 0.0403 0.0306 0.0359 0.0319 0,0262 0.0186 0.0098 0.0047
Q.0417 0,0411 0.0398 0.0376 0.0344 0.0297 0.0235 0.0158 0.0077 0.0090
0.0417 0.0408 0.0392 0.067 0.032 0.0277 0.0211 0.01)5 0.0064 O.OISO
O.Q4[G 0.0406 0.0]97 0.0356 0.0314 0.0257 0.0109 0.0116 0,0129 0.0222
0.0415 0.0403 0.0301 0.0346 0.0299 0.0239 0.0170 0.0191 0.0242 0.0314

best interlace posit ion

For each of the following cases, we numerically tested all possible interface positions
and obtained the position that minimizes the error and the number of iterations to reach this
accuracy. Following are the conclusions of our tests.

1. In the two-subdomain case without convection (/ 0), we obtain the best accuracy
with a minimum overlap, a b h and the ratio h2/h as well as 1 b in
agreement with the asymptotic estimates of Lemmas and 2. The numerical error
of the Schwarz alternating procedure reaches its minimum in a few (two or three)
steps; see Table 1. Also, the numerical error is very sensitive to the position of the
interface; Figure 1 shows the dependence of the error on the interface position when
we assume a minimum overlap; the data are extracted from Table 1.
The efficiency of the Schwarz procedure is impressive, and the method is certainly
more efficient in terms of elapsed time for a given accuracy than a classical compu-
tation with one domain and a regular mesh.
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FIG. 1. Dependence of the error on the interface position. + left interface of the boundary layer subdomain.
right interface ofthe outer subdomain.

2. In the three-subdomain case without convection, one obtains the best accuracy when
the intermediate subdomain almost completely overlaps the inner and outer subdo-
mains. Therefore, the convergence rate of the method is still good; two or three
iterations suffice, but the efficiency of the algorithm is less clear. We did not obtain
an advantage over the previous two-subdomain strategy except that the inner and
outer subdomain computations are decoupled. Numerically, the best position for the
interfaces occurs when the accuracy in each subdomain is of the same order as it
should be.
We observed that one can get very good accuracy in the maximum norm on the
composite grid when there is no representation of the solution in the layer--that is,
when no discretization points are present in the layer. Hence, it is valuable to use

any a priori knowledge of the existing layers given by the asymptotic analysis, and
not only an adaptive scheme.

3. For the convective case (/3 - 0), we tested the Schwarz alternating procedure with
a one-sided first-order difference scheme, as well as a centered second-order finite
difference scheme. The adaptive domain decomposition renders the centered finite
difference scheme very effective. The interface position is in agreement with the
asymptotic analysis; see Tables 2 and 3.
Again, because of the singular perturbation nature of the problem, the Schwarz al-
ternating procedure converges ina few iterations, even with a minimum overlap
(b a ha) in the two-subdomain case, so the Schwarz method is still more ef-
ficient than a straightforward method with one domain and a regular mesh for the
solution of a layer.
Again, we observed numerically that the addition of more subdomains does not result
in an improvement of the method.

3. Adaptive domain decomposition. One can have an accurate representation of the
solution in the inner layer with three overlapping subdomains, two outer subdomains on
each side of the inner layer, and one inner subdomain to solve the layer. For example, let

[-1, be the computational domain and S the location of an inner layer. By applying
the previous asymptotic analysis for boundary layers on each of the subdomains S2 [- 1, S]
and r [S, 1], one obtains the best interface positions to solve the inner layer. In this
section, we consider the following turning-point problem:
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TABLE 2
Error in the maximum norm and number ofiterations with two subdomainsfor the operator -eu +/3u + Vu

and a decentered scheme (backward). -eu" +/3u + Vu f with/3 1, V -0.5, two subdomains with N 12
and e 0.02 (one-sided scheme).

0.1964 0.|1|4 0.2340 0.2588 0.290 0.1204 0.119J 0.4490 0,$500 0.709?
0.2!30 0.31tJ 0.1403 O,J?OJ 0.4074 0.4511 O.SO?? 0.5789 0.6730 0.8049

O.6Sit 0.6tl4 0.7064 0,1102 0.7614 0.191| 0.1210 0.8652 0.9059 0.1506
0.145 0.1652 0.7007 0.007) 0.9303 0.0544 0.0|00 0.9072
0,0119 0,0462 0.1609 0.061 0.0919 0.9003 0.9151 0.!49 0.!6|] 0.9003
0.9101 0.9]44 0.9331 0.9402 0.94|3 0.9565 0.964! 0.9?35 0.9021 0.9910

0.0090 O.Olgg 0.03)0 0.0494 0.0?04 0.0!84 0.1371 0.1951 0.!03 0.413
0.0179 0.0000 0.0630 0.0941 0.1116 0.17!1 0.3414 0.3205 0.4500
0.0$ 0.0571 0.0930 0.1348 0.1053 0.3466 e.3)1 0.4211 0.5510
O.03SL 0.0740 0.1200 0.1130 0.2326 0.3030 0.3009 0.4923 0.6207 0.7841
0.0415 0.0!17 0,1456 0,3062 0.747 0.3529 0.4430 0.5479 @.6716 0.8197
0.0517 0.1081 0.1698 0.1376 0.1130 0.3956 0.4004 0.5936 0.7105 0.0451

0.0670 0.1391 0.g143 0.916 0.3774 0.4660 0.5600 0.90 0.7G0 0.$791
0.0756 0.1530 0.3346 0.1106 9.4054 0.4!54 0.5008 0.6857 0,7064 0.0911
O.Oe)) O.t 0.2542 0.3419 0.4310 0.511 0.6100 o.oeo 0.e016 0.900

0.1411 0.1441 0.1465 0.1494 0.1531 0.1570 0.164 0.1722 0.1833
0.1437 0.1415 0.1510 0.1560 0.111 0.16 0.111 0.1856 0.190
0.1451 0.1S04 0.1562 0.1626 0.1691 0.1771 0.104 0.1891 0.|07 0.1379
0.1t44 0.1539 0.1599 0.173 0.1047 0.1111 O.Ilt 0.1012 0.1717
0.1416 0.1553 0.162 0.100 0.170 0.1014 0.111 0.1821 0.1581 0.0941
0.1407 O.ISTl 0.1655 0.1$5 0.1806 0.1853 0.100 0.1752 0.144 0.0012
0.119 0.1500 0.1676 0.1756 0.1019 0.1051 0.101 0.165 0.135 o.0e48
0.1505 0.1602 0.1693 0.1170 0.1035 0.101! 0.170 0.1595 o.120 o.o!o
0.1512 0.1614 0.1705 0.1700 0.1035 0.100 0.|1 0.1517 0.1119 0.1051
0.1510 0.104 0.1710 0.1705 0.1819 0.11 0.160 0.1447 0.1089 0.1204

de d
e-=u + x u L
dx dx

u(-1)- 1, u(1)-

where ?, is an odd .integer. This turning-point problem has an inner layer at S 0, and we
alternate the computation on the outer domains f2 [-1,-b] and f23 [b, 1] with the
computation on the overlapping subdomain ’22 i--a, a]. The thickness of the transition
layer is e 1/+), and there exists a corrector that vanishes exponentially outside the layer.
Therefore, we must choose b e/(+1) log(e-l). Since the coefficient of the convection
term is small in the overlap area,

/3(x) x e/(+) log(e) on (b, a) and (-a, -b),
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TABLE 3
Error in the maximum norm and number ofiterations with two subdomainsfor the operator -eu" + flu/+ ?’u

and a centered scheme. -eu" + flu/+ gu f with fl 1, ), -0.5, two subdomains with N 12 and e 0.02
(centered scheme).

0.0991 0,1089 0.1209 0.13S8 0,1549 0,180,1 0.2157 0.268) 0,1548 0.5238.
0.1964 0.21,t6 0.2340 0.2588 0.2095 0...1284 0.379 0,4490 0,5500 0.7091
0.2920 0.3143 0.]402 0.)708 0.4074 0.4521 0.501T 0.5789 0.67)5 0.8049
0.)660 0.4112 0.4400 0.4731 O.SllG 0.550 0.6111 0.6769 0.7506 0.827
0.4793 0.5046 0.540 0.5670 0.044 0.6471 0.6902 0.7534 0.8209 0.9010
0.5690 0.5946 0.0226 0.6535 0.6875 0.7253 0.7674 0.8148 0.8684 0.9296
0.6581 0.6814 0.064 0.333 0.7624 0.793 0.8280 0.86S2 0.90S9 0.9506
0.7458 0.76S2 0.657 0.807) 0.g39 0.6544 0.8800 0.9072 0.9362 0.9670
0.8319 0,8462 O.8GO 0.8761 0.8919 0.9083 0,9252 0,9429 0,9611 0.9802

0,0090 0.0198 0.0)30 0.0494 0.0704 0.0984 0.137] 0,1951 0,290)
0.0179 0.0308 O.OG$ 0,0941 0,1316 0.1791 0,2414 0.3265 0,400
0,0265 O,OS?l 0.0928 0.]340 0.1852 0,2466 0-3221 0.4211 0.5510
0,03S1 0.0748 0,1200 0.1720 0,2)26 0.$036 0,3699 9.4923 0.6207
0.0435 0.0917 0.1456 0.2062 0.3747 0.3529 0.4430 0.5479 0.6716
0.0517 0.|081 0.198 0.23 0.3125 0.395 0.488| 0.526 0.7105
0.0S95 0.1239 0.1927 0.2667 O.)4GS 0.4330 0.529 0.6292 0,7412
0.0676 0.191 0.2143 0.29]6 0.3774 0.4GGO 0.5G00 0.6598 0.7660
0.0756 0.1S38 0.3340 0.]186 0.4054 0.4954 0.3885 0.68S7 0.7804
0.063) 0.1681 0.2542 0.3419 0.4310 0.$217 O.G]40 0.7080 0.8036

0.476
0.6452
0.7317
0.704)
0.8197

0.8791
0.0911
0.900

nuner o1[ lt:eration until convergence

error in thexlnorm

0.4154 0.4109 0,4053 0,3982 0,389 0.3767 0,35 0-3314 0.2838 0.1841
0.411 0,4028 0,3920 0,2766 0,3015 0.291 0.30 0.2649 0.1984 0.0941
0.4000 0.3949 0.)?2 0,3600 0.1)2 0.)00 0,26 0.2142 0.14)2
0.4044 0,3872 0,3660 0.3425 0,)1]1 0.276 0.23 0.1752 0.1063
0.4008 0.3796 0.3S$0 0.3261 0.2918 0.2510 0.20 0.1449 0.0810 0.0255
0.2972 0.3723 0.342 0.3105 0.223 0.2281 0.17 0.1210 0.0630 0.0217
0,]937 0,3651 0.3326 0.2959 0.2544 0.2078 0.15 0.1020 0,0494 0.0310
0.3902 0,3560 0.3221 0,281 0,280 0,1897 0,13 0,0@69 0.056 0.0603
0,3060 0.3512 0.3120 0.2692 0,222 0.1736 0,12 0.058 0.0581 0,1212
0.3835 0.3444 0,3027 0.256 0.2095 O.ISOO 0,10 0.0907 0.1780 0.22Y3

the convergence rate of the Schwarz alternating procedure defined below is better than stated
in Lemmas 5 and 6.

We use a one-sided first-order finite difference approximation of xdu/dx, oriented de-
pending on the sign of x. For the interval [0, 1] we obtain the following result. Let -- 1
and N e-/C+)/. Then

(,_ 1, ( (C6 log(e-))-.
A similar result holds for the interval [- 1, 0].
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Our numerical experiments confirm that we get the best numerical accuracy with a mini-
mum overlap, b a h h3, a ratio h l/h2 in agreement with the asymptotic analysis, and
few iterations. In our experiments, we used various values of g to vary the thickness of the
layer.

The main problem with inner layers is that the asymptotic analysis gives only a rough
estimate of their location. We propose an adaptive Schwarz procedure to refine the location
of the layers based on the following procedure.

We start with a given domain decomposition based on a rough localization of the layer.
During the iteration process of the Schwarz procedure, we let the interfaces of the subdomains
evolve according to the equilibrium principle of the numerical error in each subdomain. This
criterion has been shown in Lemmas 1-3 to give the best interface position. We measure the
error in each subdomain based on a numerical approximation of

dn +pl )u for ’-1 [--1, b_]E1 Ch max
dxn,+p,

( dn3+p3 )E3 Ch’ max dxn3+p
u for f2 [b+, 0],

E2 C(a+ a_)qh max dx+p u for [a_, a+],

where Pi, hi, and qi depend on the discretization of the operator in the coesponding subdo-
main. It is convenient to use the fact that the numerical error in the outer domains is dominated
by the eor at the endpoint b.

We have implemented this adaptive procedure on this turning-point problem with g
1. We still restrict ourselves to letting the subgrids coincide at their endpoints and need to
interpolate the solution on the new subgrids for each displacement of the interfaces. We
use a decentered first-order finite difference scheme in the outer domains and a second-order
centered difference scheme in the inner subdomain. Figure 2e shows the evolution of the
interfaces during the adaptivity process. The initial position ofthe interfaces gives the solution
plotted in Figure 2a; then our adaptivity criterion gives the sequence of the solutions plotted in
Figure 2b, 2c, 2d, and, finally, 2c. For the solution plotted in Figure 2c, the numerical eor in
each subdomain balances. We observe that the limit of the interface position is in agreement
with the asymptotic analysis.

Our measure of the eor in each subdomain is relatively rough and a further step in this
research is to use a posteriori local estimates to drive the adaptivity of the interface positions.

Remark 5. Suppose that we use a finite difference scheme that satisfies a maximum
principle inside each subdomain. We observe that the evolution of the interfaces does not
necessarily slow down the speed of convergence of the Schwarz procedure when, for example,
a subdomain i shrinks and when the measure of its overlap with the subdomains i- and

+ stays the same.

4. ADI and domain decomposition for the two-dimensional problem. We consider
the following two-dimensional turning-point problem, P:

L[u] 82AIg --[- a(x, Y)x 0 in f2 (-2, 2) x (-1, 1),

(4.25) u(-2, y) 1, u(2, y) -1, y 6 [-1, 1],
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FIG. 2. Turning-pointproblem in one space dimension.
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where

X
a(x, y)

x y

fory <0,
fory > O.

Let S(y) be the curve parameterized by y, such that

x S(y) a(x, y) O.

An asymptotic analysis shows that u 1 + o(1) (u -1 + o(1)) to the left (right) of a
transition layer centered at S. Also, the thickness of this layer is of the order of e.
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inner

outer

FIG. 3. Turning-point problem in two space dimensions.

We have tested the Schwarz alternating procedure on this turning-point problem in two
space dimensions. The numerical challenge is to solve an inner layer centered on a curve
that is not smooth. Inner layers are characteristic of so-called frontal processes; examples
are combustion fronts, polymerization fronts, and reactive shock layers. These problems are
truly nonlinear, and it is well known that even a linear turning-point problem is numerically
difficult to solve [31 ].

Let f2h be a regular two-dimensional grid ofmesh size h. We first solve P0 approximately
on the grid 2h with e e0, such that >->- e0 >->- h. Our goal is to solve P with e -<-< h.
We then use this solution as an initial guess for the Schwarz alternating procedure.

To discretize the operator, we use a second-order centered finite difference approxi-
mation of the second-order derivatives and a one-sided finite difference approximation of
a(x, y)Ou/Ox that depends on the sign of a(x, y) as usual. We choose a very simple dis-
cretization, as we only want to test the Schwarz alternating procedure. To have an accurate
representation of the transition layer, we introduce the following domain decomposition:

’2uter {M(x, y) f2 Ix S(y)l > (d- 1)h, x S(y) < 0}west

"2uter {M(x, y) f2 Ix S(y)I > (d- 1)h, x S(y) > 0}east

’2inner {M(x, y) S2 Ix S(y)I < dh y > -dh}north

south {M(x, y) f2, Ix S(y)I _< dh, y < -(d- 1)h},

where d is a fixed positive integer. To demonstrate the efficiency of the Schwarz alternating
procedure in the worst possible case, we assume a minimum overlap between the subdomains;
see Figure 3.

A standard asymptotic argument shows that we have a two-dimensional layer in a neigh-
borhood S2* of the corner point (0, 0) of S. One needs to stretch both variables x and. y to solve
this internal layer; x/e and y/e are the inner variables. Outside f2*, the transition
layer is really a one-dimensional phenomenon, and one needs to stretch only the layer in the
direction normal to the front. For example, in oinner the inner variables are (, y)south

Globally, the transition layer is of thickness e in the x-direction for y 6 (- 1, 1), and there
exists a corrector to the transition layer that vanishes exponentially outside the layer, so we
take dh O(e log e-l).

To simplify the implementation, we extended the subdomain that solves the inner layer
oinner with the same stretching for both variables.in the neighborhood of (0, 0) to ""north

The discretization grid for the inner problems are refinements of the global rough grid.
In inner

"south, we use a.regular grid of step he in the x-direction and h in the y-direction. In
north, we use a regular grid of step t he in both directions x and y.
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We are going to use a strip domain decomposition at each stage of the algorithm in
order to keep the same convergence properties as in the one-dimensional case. The numerical
algorithm is the following (we do not repeat the boundary conditions on 02):

While uP/ uP -< tol,
solve the outer problems (eventually in parallel),

west,p+l .o.west
outer 0 in ..outer,

west, p+l p
t/outer t/inner on [’west {(S(y) (d 1)h, y), y [-1, 1]},

reast,p+l .o.eastLlUoute 0 in "’outer,

east,p+l p
t/outer Uinne on ["east {(S(Y) (d l)h, y), y [- 1, 1]};

solve the inner problem (Pinner),

it/p-t- .o!nne .o.innerL inner] 0 in ’inner J"south north,

t/p+l West, p+l ,
inner Uouter on [’west {(S(N) dh, y), y 6 [- 1, 1]},

t/p+l est, p+l
inner Uouter on I-’est (S(N) -t-- dh, y), y 6 [- 1, 1 };

define up+I by

p+l in ’outer\"2inner,
t/p+l t/uter

p+l
t/inner in "2inner.

end while.

To solve the inner problem (Pinner), we use a second Schwarz alternating procedure inside
the previous loop.

While IIU p’q+l P’q
inner Uinnerll -< tol,
solve the south inner problem,

.south,p,q+l .o,innerL[uinne 0 in "’south’

south, p,q+ north, p,q
t/inner --t/inner on F {(x,-(d- 1)h), x [-dh, dh]};

solve the north inner problem,
north p q+l (DinnerL/Uinner’ 0 in .north,

north, p,q-t- south, p,q+
t/inner t/inner on F {(x, -dh), x [-dh, dh]};

define U
p’q+l
inner by

south,p,q+l

t/p,q+l t’tinner
inner north, p,q+

t/inner

in oinner \ oinner
south \ "north

in ()inner
"north"

end while.
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FIG. 4. Domain decomposition. 8 AU F(x, y)Ux O. Solution projected on the rough grid.

Let btinne
p be the result ofthe last computation ofthis second Schwarz alternating procedure.

p-1p,0 is obviously u Therefore, as the first Schwarz alternatingThe initial guess for b/inne inner"

procedure proceeds, the inner loop of the second Schwarz alternating procedure takes fewer
and fewer iterations to converge.

To complete the description of this algorithm, we give the following details. We solved
each subproblem with an ADI method 10]. This method has at least four advantages:

It is a nice way to get an efficient massively parallel algorithm. We really need a
powerful computer, as frontal processes are computationally very intensive.
It induces a weak coupling between the computations in each subdomain because it
is an explicit scheme with respect to one of the space directions.
It is an easy way to solve each subproblem with a nontrivial geometry. This is
important because we need to adapt the shape of the inner domain according to the
location of the layer.
It is an iterative procedure. One can start the ADI iteration with the last-known sub-
domain solution. As the Schwarz iteration progresses, the number of ADI iterations
required decreases. Also, we do not need to solve each subproblem very accurately
at the beginning of the Schwarz iterations.

.We observe that our domain decomposition and stretching in the inner subdomains make
each subproblem nonstiff and suitable for an ADI solver.

Our numerical experiments were obtained with e 10-1, d 2, and h 5 x 10-2.
Thus, the refinement of the grid is t h/10; see Figures 4 and 5. The number of iterations for
the loop that alternates the computation in the north and south inner domains was held fixed at
two. The evolution of up-t- b/p a as p increases shows that, above p 4, uP/ up a is
dominated by the discretization error; see Figure 6. Therefore, this experiment confirms that
the Schwarz alternating procedure converges in a few iterations, as in the one-dimensional
case.

We intend to implement these ideas for arbitrarily shaped curves S and local coordinate
systems that stretch only the normal component of S.

5. Nonlinear combustion problem. So far, we have shown the efficiency ofthe Schwarz
alternating procedure for linear second-order singular perturbation problems whose formal
limit as e --+ 0 is a zero- or first-order operator. Now, we illustrate the domain decomposition
method for a nonlinear singular perturbation problem arising in combustion [2]. The problem
involves two variables-- 0, a scaled temperature, and C, a concentration of reactant, both
functions of the polar coordinates r and p-- and corresponds to a thermodiffusive model for
a one-step Arrhenius reaction [25]. The equations satisfied by 0 and C are

Or
0 Orr nt- -OpO -- (1 g)--r q- Ar (0, C),
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FIG. 5 Solution in the inner

layer.
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iteration

FIG. 6 Convergence history.
log(u(n + 1) u(n)).

1( )()CrC -- C -- --C/ 2r- K -r A O C

where Ar is a nonlinear source term

Ar (0, C) C exp
N(1 or)(0 1)

cr + (1 r)0

The parameters are L, the Lewis number; N, the (scaled) activation energy; and K, a measure
for the strength of the fuel injection; furthermore,/ MZ/2L and M N(1 or). The
parameters K and N are both supposed to be large.

Both 0 and C are periodic functions of . The boundary conditions satisfied by 0 and C
are

0---0, C-- lasr--0; 0-+ 1, C--+0asr---oc.

For the computational domain we take (r, 7t) 6 (ro, rl) x (0, 2zr), where 0 < ro < rl < oc; ro
is sufficiently small and rl is sufficiently large so that the boundary conditions can be replaced
by the Dirichlet conditions

O(ro, ) O, C(ro, 7t) 1; O(rl, ) 1, C(rl, ) O.

When N >> 1, the flame is a thin layer, and the combustion problem is of singular perturbation
type. The asymptotic analysis can be found in [25]. When N -+ oc (infinite activation energy)
and L 1 (equal coefficients for mass and heat diffusion), the basic solution is given by

(5.26) O(r, 7t) (r/K) I( for r < K, O(r, ) for r > K, C(r, ) 1 -O(r, ).

This solution represents a cylindrical combustion front.
For finite activation energies, 0 and C are smooth functions which exhibit a transition layer

of thickness 0(l/N). The transition layer is centered at r K. The nonlinear source term

Ar (0, C) vanishes exponentially outside the layer. When L < 1, the cylindrical combustion
front becomes unstable, and a cellular flame appears [25]. Moreover, the location of the front
is a perturbation of K.
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To compute the combustion front accurately, we use a three-subdomain strategy. We
assume that the combustion front corresponds to the curve r S(p), 6 (0, 2zr), such that
ar(s(), p) maxr(0,l a(r, ).

A Hopf bifurcation occurs when the Lewis number L reaches a critical value L0 < 1.
When L is not too far from L0, the amplitude of the cells of the combustion front is small
compared with the size of the domain, so we assume

max S min S << r r0

and use a strip domain decomposition technique. Let "2uter, ,-inner, and f2uter be the subdo-
mains. We impose a minimum overlap between the outer and inner domains. We notice that
the Schwarz alternating procedure applied to the time-dependent problem converges rather
well for small time steps, but we want to illustrate two other possible advantages of the domain
decomposition to solve the combustion front.

5.1. Large activation energy. Because N >> 1, the source term Ar vanishes exponen-
tially outside the neighborhood of the combustion front. In fact, the location of the transition
layer corresponds to the zone where the source term is strictly of order one. Therefore, the
right boundary P of outer and the left boundary G of ’ruter can be chosen adaptively, based
on the asymptotic criterion

(5.27) max Ar < tol,
l,r

where tol is a very small tolerance number fixed in advance.
We use the following semi-implicit scheme in the left outer domain:

(5.28) t[On+l] O -- At Ar(On Cn) in outer
"left

(5.29) L[C+1] C At Ar(O Cn) in outer
’"left

0n+(r0,p)=0, Cn+(r0,)=l, 6(0,2zr),

0n+ (P, ) oinner(e, l/f), cn+(P, 1/) cinner(p,

Here, L is the operator

L[O] 0 At Orr @ -0, -]- (1 K)--r
and 0"+ and C+ are periodic in . The values 0inner and Cinner are given artificial boundary
conditions.

Since L satisfies a maximum principle, we can estimate the influence ofthe source term A,

II0"/1- 0oll _< Ctllarll, I[Cn+l- Coll Ctllarll,

where (00, Co) is the solution when Ar 0. Hence, if tol in (5.27) is small enough, the
explicit treatment of the nonlinear source terms in the outer domains is justified 15]. In fact,
we may choose not to compute these source terms at every time step, or simply neglect them
altogether in the outer domains. In any case, the equations for the temperature (5.28) and for
the concentration (5.29) can be solved in parallel.

It is well known that the computation of the flame front is very sensitive to the accuracy
of the scheme. Since we have a strong interaction between the diffusion process and the
nonlinear reaction term Ar only in the neighborhood of the combustion front, we need to use
a highly accurate scheme in the transition layer; on the contrary, a less accurate scheme may
be good enough in the outer domains where maxf2/,S2r Ar < to1.
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5.2. Strong fuel injection. As K >> 1, r is large in the neighborhood of the combustion
front. When the combustion front r S(ft) is a smooth curve, we have

(5.30) r-Oe/, -<-< Orr on ,inner.

This asymptotic behavior makes the use of an explicit scheme with respect to the angle de-
pendence very attractive. We therefore consider the following scheme:

lon )(5.31) L[0n+l] On -Jr- At k-F nt- Ar(On, Cn) on "2inner

(5.32) ,[C+ C -- /kt 7-C/ Ar(O Cn) on ,-inner.

The penalty on the time step is moderated by the relation (5.30). Also, equations (5.31)
and (5.32) represent a parallel scheme for the most intensive part of the computation, that
is, in the transition layer. One can map a ring of processors to the set of equations (5.31)
and (5.32) for fte {lr 2rci/n 0 n} [8].

We have implemented the Schwarz alternating procedure with moving interfaces to solve
a steady flame with the parameter Values N 20, cr 0.615, K 14.8. The domain of
computation was (1, 41) x (0, 2zr). The ratio of the space step for the radial direction in the
outer and inner domain was N, equal to the asymptotic thickness of the layer.

Figure 7 shows the solution (0, C, Ar (0, C)) and the convergence history for decreasing
values of the Lewis number L in the one-dimensional case. The combustion front moves
slowly on the !eft as the Lewis number goes from L to L 0.7. We used an iteration
analogous to (5.3.1) and (5.32) to solve each subproblem of the Schwarz alternating procedure
but with a domain-dependent relaxation factor. The nonlinear terms were solved explicitly in
the scheme, but since most of the convergence process occurs in the transition layer, it might
be valuable to use a Newton-like scheme in the inner subdomain to take a larger time step.

The convergence of the Schwarz iteration is very sensitive to the position of the left
boundary of the inner domain and is improving as the left boundary moves on the left; see
Figure 8. This can be explained in the following way: as the left boundary of the inner domain
moves on the left, the convection factor (K 1)/r is getting larger in the overlap zone with
the left outer domain and the operator becomes convection dominant. This is in agreement
with the result of 2.2.1 and can be proved, for example, with the linearized operator for this
domain decomposition. We recall that we keep the overlap to be only one cell of the rough
grid.

Finally, when we cut off the source term Ar (0, C) in the outer domains, this numerical
experiment shows that the error is less than the numerical accuracy of the discretization with
this domain decomposition.

In the two-dimensional case, we simply incorporated the explicit dependence of the
second-order derivative with respect to the angle p in the scheme and used a fourth-order
finite difference scheme for 0 and Cf,O in the transition layer. For convenience and in
order to compute a more interesting case, we have computed a cellular flame for a two step
chemistry. We consider the model of Pelaez and Linan [28]. We have compared our result to
the numerical result using adaptive pseudospectral method for the case where the first Lewis
number is L1 0.37 and the second Lewis number is L2 0.9. The heat release of the first
reaction is 0.85. So the second chemical reaction gives a rather weak front, and the stiff front
is mainly due to the first chemical reaction. For both reactions the activation energy is equal
td 20. Figure 9 shows a representation of this cellular flame. Since the front is stiff mainly in
the radial direction, we used the same number of discretization points, r n },
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for each subdomain with n 64. We have used 20 discretization points in the radial direction
for the rough grid, and the ratio of the space step for the radial direction in the outer and inner
domain is equal to the activation energy.

We found good global agreement between the Schwarz procedure and the pseudospectral
method of [2] but did not compute a very difficult case with L1 < 0.37. More precisely,
we have compared an adaptive domain decomposition with the pseudospectral method using
80 Chebyshev collocation points in the radial directions and 64 Fourier discretization points
in the angular direction with the Schwarz procedure described above. We believe that the
pseudospectral method is more accurate and we observe that the difference between the two
solutions is of order 10-2 on the rough grid in the maximum norm.
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FIG. 9. A cellularflame with two-step Arrhenius kinetics. (a) Temperature (L 0.37; L2 0.90). (b) Con-
centration of the first species (L1 0.37; L2 0.90). (c) Concentration of the second species (L1 0.37;
L2 0.90).

Since the cost of the computation with the Schwarz alternating procedure is very cheap
compared with the cost of computation of the adaptive pseudospectral domain decomposition,
we expect that this new technique may be helpful to compute stationary cellular flame in three
space dimensions. Also, an efficient implementation of this algorithm on a massively parallel
computer is easy.
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AN INVESTIGATION OF INTERIOR-POINT ALGORITHMS
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Abstract. Recently, Resende and Veiga [SIAM J. Optim., 3 (1993), pp. 516-537] proposed an efficient im-
plementation of the dual affine (DA) interior-point algorithm for the solution of linear transportation models with

integer costs and fight-hand-side coefficients. This procedure incorporates a preconditioned conjugate gradient (PCG)
method for solving the linear system that is required in each iteration of the DA algorithm. In this paper, we introduce
an incomplete QR decomposition (IQRD) preconditioning for the PCG algorithm. Computational experience shows
that the IQRD preconditioning is appropriate in this instance and is more efficient than the preconditioning introduced
by Resende and Veiga. We also show that the primal dual (PD) and the predictor corrector (PC) interior-point algo-
rithms can also be implemented by using the same type of technique. A comparison among these three algorithms is
included and indicates that the PD and PC algorithms are more appropriate for the solution of transportation problems
with well-scaled cost and right-hand-side coefficients and assignment problems with poorly scaled cost coefficients.
On the other hand, the DA algorithm seems to be more efficient for assignment problems with well-scaled cost
coefficients and transportation problems whose cost coefficients are badly scaled.

Key words, linear transportation models, interior-point algorithms, preconditioned conjugate gradient methods,
large-scale problems
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1. Introduction. Let O {1 n} and D {1 m} be the sets of origins and
destinations of a product to be shipped. The transportation problem (TP) consists of finding
the quantities Xij that should be shipped from each origin 60 to each destination j 6 D in
such a way that the total transportation cost is minimized. The TP problem is usually stated
as the following linear program:

minEE ijxij
iO jD

(1) subject to Z xij ai O,
jD

Z Xij bj, j D,
io

xij >_0, O, j D,

where cij is the unitary transportation cost from the origin to the destination j and ai, bj
represent the quantities available in origin and required at destination j, respectively. Trans-
portation models have become quite popular during the past several years [32]. Many exten-
sions of the TP problem have been mentioned in the literature. The assignment problem (AP)
should be distinguished in this context, as it can be stated in the form (1) with m n and
ai bj for all and j.
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If we assume without loss of generality that i60 ai Yj6D bj, the formulation (1) of
the dense TP problem contains exactly one redundant constraint. By dropping this constraint
(for instance, the last), we can write the TP problem in the form

min cTx
(2) subject to Ax d,

x>_O,

where d ]xre+n-1 X C ]1mn and A ]t(m+n-1)x(mn) has full row rank.
After the introduction of slack variables, the dual of the TP problem (2) can be stated as

max dy
(3) subject to Ary + s c,

s>_0,

where y 6 n+m- and s 6 mn.
We note for completeness that a primal feasible solution x is called an interior point of

the primal problem if x > 0, and a dual feasible solution (y, s) is called an interior point of
the dual problem if s > 0.

It is well known that the TP problem can be seen as a minimum-cost network flow problem
on a bipartite connected graph [32]. Furthermore, there exists a one-to-one correspondence
between basic solutions of the TP problem (2) and spanning trees of this graph. Based on
these facts, Resende and Veiga [35, 34] developed an efficient implementation of the dual
affine (DA) interior-point algorithm [8] for the solution of large-scale TP problems where
the vectors c and d have integer components. This procedure incorporates a preconditioned
conjugate gradient (PCG) algorithm [9] to find the ascent direction that is required in each
iteration of the DA algorithm.

Resende and Veiga [35, 34] proposed and tested a diagonal and a maximum spanning
tree (MST) preconditioning to the PCG algorithm. Extensive computational experience has
shown that the diagonal preconditioning is recommended in the very first iterations of the
DA algorithm. Then, the MST preconditioning should be used until the end. Because of
this observation, they proposed a switch from one preconditioning to the other in the first
iterations of the DA algorithm. This type of implementation has worked in practice and seems
to be competitive with more traditional techniques that have been designed for the solution of
large-scale TP problems [35].

Despite these benefits, the implementation suffers from two drawbacks. First, both pre-
conditionings lose effectiveness during the intermediate iterations of the DA algorithm. Fur-
thermore, the switching point is not known in advance, hence this change can be made earlier
or later than desirable.

In this paper we propose an incomplete QR decomposition (IQRD) preconditioning with
the objective of overcoming these two drawbacks. Computational experience presented in this
paper shows that this techn’ique is, in general, superior to the procedure introduced by Resende
and Veiga. Furthermore, we also develop an implementation of the same type for the primal
dual (PD) [29, 30, 26] and predictor corrector (PC) [23, 27, 7] interior-point algorithms. A
comparative study ofthese three methods on large-scale TP and AP problems is also presented.
This study indicates that the PD and PC algorithms are more appropriate for the solution ofTP
problems with well-scaled cost and right-hand-side coefficients and assignment problems With
poorly scaled cost coefficients. On the other hand, the DA algorithm seems to be more efficient
for AP problems with well-scaled cost coefficients and transportation problems whose cost
coefficients are badly scaled. The PC algorithm usually takes a smaller number of iterations
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than the remaining techniques. However, the need of solving two linear systems in each
iteration and the use of an iterative method for this purpose renders the PC algorithm, in many
cases, less appropriate than the PD method for TP and AP problems.

The paper is organized as follows. Section 2 contains a short description of the DA, PD,
and PC interior-point algorithms. Implementation issues are discussed in 3. Finally, the
computational experience is described in the last section of the paper.

2. Interior-point algorithms. Since Karmarkar [15] in 1984 presented his polynomial
time algorithm for linear programming, hundreds of papers have been published in the field of
interior-point methods (see [20] for references). Now, it is, in general, accepted that interior-
point methods are strong competitors of the simplex method in solving practical problems
and are, in many cases, more efficient for large-scale problems [6, 21, 22, 24]. It is beyond
the scope of this paper to discuss and classify the literature of interior-point methods. In this
section we restrict ourselves to briefly describing the three interior-point algorithms (the DA
scaling, the PD, and the PC) considered in this paper. We include some additional references
for the interested reader.

2.1. DA-scaling algorithm. The affine-scaling algorithm [8, 5, 36, 37] was the first
interior-point algorithm shown to be competitive 1, 3] with the simplex method for the solution
of large-scale linear programs The dual form of this method was first introduced by Adler
et al. [3], and is the more computationally suitable form of the affine-scaling algorithm. The
DA method finds an optimal solution by solving the linear program in the standard dual
form (3). Having a dual interior starting point, the DA method can be formally presented as
follows.

DA ALGORITHM.

Giveny6{y: AVy <c},6]0,1[,

set k 0.

Repeat

sk c- AVy.
S diag(s,.. Smn).

Ay (AS2A)-d.
As -A’Ay.. mini= mn{-Si/Asi Asi < 0}.

y+ y +
xk/ S-2 As.
k=k+l.

until stopping criterion is verified.

The parameter 6 is used to guarantee that, in each iteration, yk+ is in the interior ofthe dual
feasible region. The DA algorithm is believed not to be polynomial [2] and its convergence
(and the convergence of the primal estimates) depends on the parameter 6. Although it has
been shown that 6 should be chosen smaller than .66 for good theoretical properties [31, 11 ],
we follow the suggestion of many authors 1, 3, 25, 28] to use 6 0.95 at every iteration.

2.2. PD algorithm. The so-called PD interior-point methods currently enjoy the most
popularity [24]. They were first introduced as path-following methods [18, 29], but they have
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been extended to potential reduction and logarithmic barrier approaches [19] that are more
practical. However, depending on the step size, they still have a bound of O(4CffL) and O(nL)
iterations (see, also, [12, 30, 26]).

As their name indicates, the PD algorithms operate simultaneously on the primal (2) and
the dual (3) problems. Having an initial PD interior-point pair, the search direction in these
methods is given as the Newton direction associated with the following asymmetric system of
equations that defines the so-called central path:

Ax-d, x>_O,
ATy+s=c, s >0,

xis # for all i.

The search direction can also be derived as a descent direction for the PD logarithmic barrier
function.

As usual, the practical implementation of the PD algorithm slightly differs from the
theoretical polynomial variant. The main differences between these two versions rely on the
updating of the parameter/z and on the selection of the step sizes (Otp, Otd). If a primal and
dual interior starting point is at hand, the practical version of the PD method may be stated in
the following form.

PD ALGORITHM.

Given (x, y0, s0) E {(x, y, s) ATx d, ATy + s. c, x > 0, s > 0}, 6 E]0, 1[,

set k 0.

Repeat

(cTxk dTyk)/lOmn (xk)Tsk/lOmn.

Xk diag(xk,., k diag(sk,., kXm) and S Smn).

Ay --(ASXkAT)-AS(Xk Ske te).

As -ATAy and Ax sl(XkSke- #e) SXkAs.
(Otp, Otd) (mini>o(Xi oli Axi 0), mini>o(Si ol As 0)).

xk+l x 6otpAx, y+l y 6OtdAy and s+l s 6OtdAs.

k=k+l.

until stopping criterion is verified.

As before, the parameter is introduced to assure that (xk+l, y+l, s+l) 6 {(x, y, s)
ATx d, ATy+s c, x > 0, s > 0}. The value6 0.99995 has been suggested
in the literature [23] and we have followed this recommendation in our experiments. In our
implementation we use different step sizes (Up, Otd) in the primal and dual space, although the
use of such parameters is, theoretically, not fully justified yet.

2.3. PC algorithm. The PC algorithm [23, 27] is a technique that has been designed to
improve the numerical efficiency of the PD algorithm. In each iteration a descent direction is
found by a two-step procedure. In the first step the direction (Ax, Ay, As) is computed as in
the PD algorithm with/z 0 (this direction is the so-called PD affine-scaling direction [30]).
This direction is used to obtain the value of the so-called barrier parameter #. The corrector
direction (Axc, Ayc, AsC) is then computed as a function of this parameter #. The steps of
the PC algorithm are stated below.
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PC ALGORITHM.

Given (x, yO, so) 6 {(x, y, s) ATx d, ATy + s c, x > 0, s > 0}, 8 ]0, 1[,

set k 0.

Repeat

Xk diag(xk k diag(skXmn and S Smn

Ay -(ASIXkAT)-ld.
As -AT Ay and Ax Xe- SIXAs.
(olp, Old) (minci>o(Xi Oli Axi >_ 0), minci>o(Si Oli Asi >_ 0)).

(X (OlpAX)T (S oldAS).

compute

Ay -(ASIXAT)-IASI(xkSe lze -k AxAs).

As -AT Ayc and Axc SI(XSe lze q- AxAs) SIXAsc.
(olp, Old) (minoi>o(Xi oli Axi >_ 0), minci>o(si oli Asi 0)).

xk+l xk 8olpAxc, yk+l y 8oldAyC and sk+l sk 8oldAsc.
k=k+l.

until stopping criterion is verified.

As in the PD algorithm we use 8 0.99995 in the implementation of the PC algorithm.
According to the recommendations stated in [7], the parameter # is chosen in the following
adaptive way:

mn((x)rsk)2 if (xk)rs > (mn)2 if mn > 5000
where (mn)lz

(xk)rs if (x)T(s) < (mn) if mn < 5000.
ap(mn)

The choice of the initial point and the stopping criterion are two important issues in
interior-point techniques that have not been discussed yet. The second topic is addressed in
the next section. By exploiting the special structure of the TP problem, it is easy to see that if
ol min{cij, O, j D}, then

aibj
O, j D and Yi 1 1 n + m- 1Xij

iO ai 2

lead to a primal feasible x > 0 interior solution and a dual feasible s > 0 interior solution.
These. solutions have been used as starting points in our implementations of the algorithms.

3. Implementation issues. In this section we discuss the implementation of the three
algorithms introduced in the previous section for the solution of large-scale transportation
problems. It follows from their descriptions that the main computational effort in each iteration
relies on the solution of the linear system

(4) AGAru t,

where G 1t{(mn)x(mn) and 6 Rn+m-1 are defined below.
G S-2 and d in the algorithm DA.
G S-1X and A S-I (XSe #e) in the algorithm PD.
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G S-X and d in the algorithm PC (predictor phase).
G SIXk and ASI(XkSke #e + AxAs) in the algorithm PC (corrector
phase).

It is easy to see that the explicit computation of AGAT leads to an almost dense matrix.
So the use of a direct method for the solution of the system (4) is not appropriate when m and
n are reasonably large. Since AGAT is a symmetric positive definite matrix, A is sparse and
G is diagonal, the PCG algorithm seems to be a good alternative for the solution of the system.
In fact, this algorithm only requires sums and scalar products of vectors and matrix-by-vector
products. Furthermore, this latter type of operation can be performed without the explicit
computation of the matrix AGAT. The choice of the preconditioning matrix M is the most
important issue in the design of such an algorithm. A PCG algorithm for the solution of the
system AGAT is first discussed in this section. Then, we introduce an IQRD preconditioning
technique that improves the iterative linear system solver.

3.1. The PCG method. This method attains to find the solution of the linear system
M-I(AGAT)u M-it, where M is the so-called preconditioning matrix. This matrix
should be chosen in such a way that the condition number of M-1 (AGAT) is smaller than
that of AGAT. We discuss later how this matrix can be chosen for the particular instance of
the system (4). The steps of the PCG algorithm are presented below.

PCG ALGORITHM.

u0 M-It.
r (AGAr)u.
z0 M-lr0.
p0 z0.
Repeat

qi (AGAT)pi.
Ol (zi)Tri /(pi)Tqi.
/,ti-t-1 ll nt_ Ol p

Fi+l Fi oliq i.
zi+l M-IFi+I.

ii (zi+l)Tri+1/(zi)TFi.
pi+l zi+l nt_ flipi.
i=i+1.

until stopping criterion is verified.

It follows from the description of the PCG algorithm that the main issues of this procedure
are the stopping criterion, the computation of the product (AGAr)ot for a given vector or, and
the choice of the preconditioning matrix M. Next, we discuss these three points.

Stopping criterion. The stopping criterion (crit 1) (zi)rr < e, where e is a small
tolerance, has been commonly recommended in the PCG algorithm [10]. Its dependence on
scaling has suggested more elaborate forms that do not share this drawback. Resende and
Veiga [35] proposed the following criterion:

’tr(AOAr)ui’(5) iltllzll(AaAr)uill < .
This criterion might be expensive since the quantity (AGAr)ui has to be computed. However,
it follows from the steps of the PCG algorithm that AGAru -,r where r is the residual
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given by the PCG algorithm. So (5) can be replaced by

Itr(t-r’)’
<3"(6) 1- iltllzllt_rill

Furthermore, as r tends to lose precision as the algorithm progresses, it is advisable to use
the criterion (5) after (6) is satisfied.

Hence, we propose the following stopping criterion (crit 2):
if condition (6) is verified then

if condition (5) is verified then stop.
else continue.

else continue.
In [4] the following criterion has been proposed:

(7)
IIAGArlIIluilI1 / Iltll

< ’
where r t-(AGAT)u As before, we substitute r by r in order to reduce the computational
effort of this procedure and use the exact residual when the criterion (7) is satisfied with r r

Hence, we propose the following stopping criterion (crit 3):
if condition (7) is verified for r r then

if condition (7) is verified for r (AGAr)u then stop.
else continue.

else continue.
In the last section we discuss the effectiveness of these criteria in the implementation of

the interior-point algorithms that have been introduced in the previous section. In particular,
special attention will be devoted to the value of the tolerance e.

The product ?, AGArot. As suggested in [35], the product F AGArc is computed
by

(i) d AT
(ii) =Gd, and

(iii) F A6.

By doing this, there is no need for computing explicitly the matrix AGAr, and the sparsities
of the matrices A and G are fully exploited in this operation.

Preconditioning. The diagonal preconditioning M diag(AGAr) is simple to construct
and has been recommended by many authors [10, 38, 35, 34]. In the context of interior-
point algorithms for network flows (as well as for general linear programming), the diagonal
preconditioning was first used by Yeh [38]. Computational experience described in [35, 34]
has shown that this type of preconditioning may be useful in the first iterations of the DA
algorithm but tends to lose effectiveness as the DA algorithm progresses.

This numerical evidence has motivated the search for other forms of preconditionings
[35, 34, 13]. It is well known that at least an optimal solution of a linear program is attained at
an extreme point of its feasible set, that is, it is a basic feasible solution. For the TP problem
each basic solution corresponds to a spanning tree of the graph associated with the model (1).
Therefore, we can associate each solution used by the DA algorithm to a partition of the form
A B N ], where B is a basis matrix corresponding to a MST of the graph. In our
experiments we define this MST using the diagonal elements of the current matrix G as edge
weights.

Let B be the basis matrix associated with such a tree. Then, the MST preconditioning
takes the form M BGBy, where G is the diagonal matrix of order n + rn whose
diagonal elements are the edge weights of the tree.
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It is important to notice that at the last stages of the DA algorithm the matrix M is quite
close to AGAr, since the values of the diagonal elements of G that are not in GB are, in
general, quite small. Furthermore, B differs from a triangular matrix by a permutation matrix,
hence the solution of a system with M simply amoUnts to solving two triangular systems and
performing n + m divisions. These two properties explain why the MST preconditioning
is quite suitable for this PCG algorithm.

The matrix M may be quite different from AGA when all the diagonal entries of G
are sufficiently positive. This actually occurs in the first iterations of the DA algorithm. To
overcome this fact, Resende and Veiga [35, 34] have advocated a hybrid scheme in which
diagonal preconditioning is employed in the first iterations of the DA algorithm and MST
preconditioning is used from then on. This procedure has been shown to work well in practice
but has two drawbacks that are presented below.

(i) The switching point is not known in advance.
(ii) The computational effort of the PCG algorithm is usually large in the interme-

diate iterations of the DA algorithm, namely, in the last iterations where the
diagonal preconditioning is used and in the first iterations in which the MST
preconditioning is employed.

In the next subsection we propose a preconditioning technique that overcomes these disad-
vantages.

3.2. An IQRD technique. Suppose that we are at iteration k of the DA algorithm and
let

GN

where GB R(n+m-1)x(n+rn-1) is the submatrix of G containing the edge weights of a MST
of the graph that represents the TP problem. Furthermore, assume that B is the basis matrix
associated with such a tree. If N represents the remaining columns of A, we can write

GN Nr BG NGN GNr

Now, there exist permutation matrices Pc and Pr such that PrGBrPc is a triangular
matrix. Suppose that P Pr l(n+rn-1) without loss of generality. Then, the Cholesky
factorization of the matrix AGAr can be found by simply computing the QR factorization of
the matrix

[ 1(8) fi GB7
GvN

In fact, if R, then AGA’ f R Or OR R R.
The computation of the R factorization is not recommended in this instance, since it

is not cheaper to compute and destroys the sparsity of the matrix A. Instead, we propose
the computation of an incomplete OR decomposition of the matrix e{ given by (8). In this

procedure all the elements of GcNr become null by. using the diagonal elements of the

matrix GB. Furthermore, no fill-in is considered during the entire factorization. It is easy
to see that Givens rotations are particularly attractive in this instance. After the factorization,
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we have M FDFT, where F is a lower triangular matrix with a diagonal of ones and
D is a diagonal matrix with positive diagonal elements. The following example illustrates
how this incomplete QR factorization works. Consider the following matrix G AT and its
associated graph obtained from a TP problem after dropping the flow conservation constraint
corresponding to node 6:

c34

’AT

Furthermore, consider the following maximum spanning tree and its related matrix A:

,24
1/2B TGB

GNT

We start by eliminating the element (6, 1) of the matrix A by using the first diagonal

element of GBT. We note that the element (6, 5) is not transformed and we do not incur
fill-in in the places (1, 5) and (6, 2) in the following matrix 1"

g35/g35 -t- g15 /g35 +g15
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Now, by using the last diagonal element of the upper block matrix we turn to zero the
element (6, 5) in the following matrix 2:

g35/g35 q- g15 /g35+g15

c34

0

@25

@34
/r24

The procedure can be repeated to annihilate the second row of the lower block matrix in
the following matrix 3:

g35x/g35 -Jr- g15 + g25 /g35+g15nt_g25

%/c34 ./34
g24/g24 "-I-" g5 ’/g24+g25

/g16 + g15

After all the rows of GNNr are eliminated we have

PrD1/2FrPc
g35/g35 nt- g15 -+- g25 /g35+gls+g25

x/g34 nt- g36

x/g24 nt- g:z5 + g26

g34

/g34nt-g36
g24

/g24+g25 nt-g26
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Now, if we repermute the rows and columns of this last matrix to the original ordering,
we obtain

//g16 %- g5
g24%//g24 %- g25 + g26 gz4+g25+g26
g344’g34 + g36 /g34+g36

,@14
g35

/g35+g5+g25
,v/g35 + g5 + g25

For this example,

g16 %-
g24 %- g25 %- g26

g34 %- g36

g14

g35 + g15 + g25

and

g24

g35+g5+g5

g24 +ge5 nt-g26
g34

g34q-g36

g35

We notice that matrices D and F are actually obtained without computing D Fr in order
to avoid square root operations. Suppose that the MST is rooted at node r, which is the node
corresponding to the flow conservation equation that has been removed from the formulation.
Furthermore, let 4 denote the subset of arcs belonging to the tree and let pred(i) represent
the predecessor node of node in the tree. Then, the procedure used to compute the nonzero
elements of matrix D and the off-diagonal elements of matrix F can be presented as follows:

for all nodes - r do
j pred(i).
if arc (i, j) E A then dii gij else dii gji.

for all arcs (i, j) (i, j) ’ 4 do
if node : r then dii dii %- gij.
if node j r then djj djj + gij.

for all nodes r do
j pred(i).
if node j r then

if arc (i, j) E 4 then f/j gij/dii else fji gji/dii.
It is important to notice that the PCG algorithm discussed in this section can be incorpo-

rated in all three interior-point algorithms introduced in the previous section.
In the first iterations of the interior-point algorithms, D diag(AGA) and F Im+n-.

In the last iterations of the interior-point algorithms, GN 0 and, consequently, D G
and F B. Thus, we can conclude that the IQRD preconditioning is quite similar to the
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diagonal and MST preconditionings in the initial and terminal phases of the interior-point
methods, respectively. Since the IQRD preconditioning also takes into account the elements

of GN, then it should require fewer conjugate gradient iterations in the intermediate phase
of the interior-point algorithms.

The solution of the system with FDFr requires O(n + m) divisions, O(n + m) multi-
plications, and O (m + n) subtractions, since D is a diagonal matrix and F can be permuted
into a triangular matrix with diagonal elements equal to one. Furthermore, solving a system
with the matrix BGB Br requires O (n + m) divisions and O (n + m) subtractions. So there is
an increase of O (n + m) multiplications in each iteration of the PCG algorithm if the IQRD
preconditioning is used instead of the MST procedure. Furthermore, the IQRD precondition-
ing amounts to an increase of O(n + m) multiplications and O(n / m) subtractions over
the diagonal preconditioning. These gaps are not too meaningful, since each computation of
a product AGAra that is required in each iteration of the PCG algorithm involves O(nm)
multiplications and O (nm) sums. It is also important to add that the construction of the pre-
conditioning matrices F and D is done once in each iteration of the interior-point methods
and requires O (nm) sums and O (n / m) divisions. This is smaller than the computation of
a product AGAro. All these considerations lead to the conclusion that the IQRD precondi-
tioning is recommended provided it reduces the number of PCG iterations by even a small
fraction. This is exactly what occurs in practice in instances from the class considered in our
experiments and is well displayed in the computational results presented in the last section of
this paper.

3.3. Stopping criteria for the interior-point algorithms. Given a basic solution for the
TP problem with a basis matrix B, it is well known that this solution is optimal if it satisfies
the following conditions:

(9) xB B-ld >_ 0,

(10) CN Nr (Br)-lcg > O,

where N is the matrix corresponding to the columns of A associated with the nonbasic vari-
ables. We note that the first criterion is quite cheap to verify, but the second inequality may
lead into a large computational effort. As suggested in [35], a further criterion can be useful
when the data of the transportation problem is integer. This criterion follows from the duality
theory of linear programming and simply states that if x satisfies the condition (9), and a
dual feasible solution y given by any of the interior-point methods satisfies

(11) cx dry < 1,

then x (x, 0) is an optimal solution of the TP problem. This criterion is obviously quite
cheap to compute, since yg is available from the interior-point methods. However, in some
instances the criterion (10) is verified without the satisfaction of the inequality (11). These
observations lead to the following stopping criterion that is used in the three interior-point
methods discussed in the previous section:

Let B be the basis matrix associated with the currentMST andy be the approximation
to y at the iteration k of the interior-point algorithm.
if xB B- d >_ 0 then

if cx dry < then stop.
else

if CN Nr (Br cn _> 0 then stop.
else continue.

else continue.
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It is important to notice that this stopping criterion fails to hold ifthe condition B-ld > 0 is
never satisfied. This situation has never occurred in our computational experiments. However,
when the problem is degenerate and the perturbation schemes fail, it is possible that the
algorithms may never achieve a MST corresponding to a primal optimal feasible solution. We
refer to [33, 34] for a procedure to overcome this difficulty.

4. Computational experience. In this section we first compare the efficiency of the
IQRD preconditioning with the hybrid preconditioning (diagonal and MST) introduced by
Resende and Veiga [35, 34]. These two techniques are incorporated in the PCG algorithm
that is employed in the solution of the linear systems required by the three interior-point
methods. In our second experiment we investigate the three stopping criteria for this method
discussed in the previous section. We come to some conclusions about the value of the
tolerance e used in these criteria. Our third experiment is devoted to investigating the effect
of the scaling in the cost coefficients and right-hand-side elements on the performance of
the interior-point algorithms. Finally, we report a computational comparison between the
interior-point methods and the network simplex code NETFLO of Kennington and Helgason
[16] on problems generated by the standard problem generator NETGEN [17]. In these last
two experiments we use the stopping criterion and the tolerance value that are indicated by our
second experiment as the most recommended to be incorporated in the interior-point methods.

All the experiments were performed on a SUN SPARCstation 10-52 with 64 Mbytes of
RAM. The codes are written in FORTRAN and were compiled with the Sun Fortran Compiler
(f77) using flags -04 -cg89 -libmil -native. All the CPU times reported are excluded from
input and output time and were measured with the internal function etime.

All the test problems described in this paper are dense with a number of arcs equal to
mn. In the first three experiments, the test problems are generated by a technique that first
considers a spanning tree related with a basic optimal solution. Then, the components of the
dual (primal) solution associated with the edges that belong (do not belong) to the tree are
fixed to zero. The remaining primal and dual variables are randomly generated in such a way
that the elements of the right-hand-side and cost vectors are integers belonging to the intervals
1, dmax (1 for the assignment problem) and 1, Cmax ], respectively. If we wish the solution

to be degenerate (as in the assignment problem), then some of these latter variables are also
set equal to zero.

As stated before, we considered test problems with nondegenerate and degenerate optimal
solutions. Our experience has shown that the stopping criterion loses effectiveness in the
second case. In fact, if the dual optimal solution is degenerate, the current maximum spanning
tree may be related with an infeasible primal basic solution when the interior-point algorithms
converge to the optimal primal face. Furthermore, if the optimal primal solution is degenerate
it is also possible to be correctly identified by the current MST without the verification of the
stopping criterion. As suggested in [35], we can use an t-perturbation technique to help to
overcome such difficulties. In this procedure we solve a perturbed TP problem where the cost
coefficient and right-hand-side d vectors are defined by j cj + ci e and dj dj + 6dr e,
where 3c, and 8d are uniformrandom values in the interval [- 1, 1], and e is a small perturbation.
This technique is far from being perfect despite being, as far as we know, the most effective
device in preventing degeneracy effects in practice. If e is too small, then usually the perturbed
problem is still degenerate. If e is too big, then two cases may be possible. If we use the
perturbed data in the termination criterion, the interior-point algorithms may reach a suboptimal
solution. On the other hand, if we use the termination criterion with the original vectors c
and d, the interior-point algorithms may never stop. In order to avoid obtaining suboptimal
solutions, we have set e min(10-3, 10-6(m if- n 1)) and we have used the original data
in the stopping criterion, as suggested in Kaliski and Ye [14]. The implementations of this
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FIG. 1. Performance of the preconditioningsfor transportation problems with n m 1000.

procedure in our codes have provided an optimal solution for all the test problems described
in this paper.

As stated before, we study in our first experiment the efficiency ofthe IQRD, diagonal, and
MST preconditionings for the PCG algorithm that is implemented in the DA method. We have
used stopping criterion crit with e 10-6. The results of this experiment .are illustrated in
Figures 1 and 2 and Table for the solution of assignment and general transportation problems
with m n 1000, Cmax 10, and dmax 10. Figures and 2 report each iteration of
the DA algorithm and Table reports a comparison between the IQRD preconditioning and
the hybrid scheme of Resende and Veiga. In this last experiment we suppose that the optimal
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FIG. 2. Performance ofthe preconditioningsfor an assignment problem with n m 1000.

TABLE
Comparison among the hybrid scheme and the IQRD preconditioningfor TP andAP problems with n m

1000.

Problem
Nondegenerate TP

Degenerate TP
AP

Hybrid scheme
ccpu pcgit"’ pcg-pu optiter
53’39 3447 1676.5 8
73.92 3443 1687.1 8
49 93 171 100 0 16

IQRD preconditioning-- I pcgit-- pcgcpu
80.35 794| 400.4

107.15 982| 496.9
89.51 65/ 49"4

switching iteration for each problem is known in advance, that is, that we know previously
the best iteration in which the hybrid scheme should switch from one preconditioning to the
other. The symbols eepu, pegit, pegepu, and optiter represent the CPU time in seconds to
construct the preconditioners plus the time to compute the MST (this last item is not included
if the diagonal preconditioning is used), the number of PCG iterations, the CPU time in
seconds required by the PCG method, and the optimal switching iteration for each problem,
respectively.

We make the following conclusions:
The diagonal preconditioning is effective during the initial iterations of the DA al-
gorithm, but its efficiency is lost after this stage. On the other hand the opposite
situation occurs with the MST preconditioning. Actually, this confirms the claims
presented in [35] that have led to the hybrid scheme proposed by Resende and Veiga.
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TABLE 2
Number ofPCG iterations required by the interior-point algorithms to solve an APproblemfor different values

ofthe tolerance in the stopping criteriafor the PCG algorithm (n m 1000).

Tolerance
1.0e-
1.0e-3
1.0e-6
1.0e-8

1.0e- 10
1.0e- 12
1.0e- 14
1.0e- 16

Crit Crit 2
DA PD PC DA-- PD PC

1284
1589 365
2046 781 525
2323 1061 810 1105 870 608
2606 1323 1041 1461 1092 935
2877 1491 1261 1766 1312 1170
3139 1653 1267 2063 1474 1183
3406 1816 1511 2334

Crit 3
DA PD PC

1102
1754
2313 888 829
2851 1403 1250
3370 1745 160_____6

TABLE 3
Number ofPCG iterations required by the interior-point algorithms to solve a TP problemfor different values

ofthe tolerance in the stopping criteriafor the PCG algorithm (n m 1000).

Tolerance
1.0e-
1.0e-3
1.0e-6
1.0e-8

1.0e- 10
1.0e- 12
1.0e- 14
1.0e- 16

Cfitl
DA PD PC

1147 574 865
2061 684 981
2815 825 1148
3214 921 1270
3581 1009 1386
3926 1098 1487
4310 1180 1600
4703 1276 1704

DA PC DA PC
Crit 2
PD

587 568
1253 588
1991 482 1024
2613 617 997
3O3O 76O 1121

1290
3420
3816

Crit3
PD

554
788
968
1148

706
1036
1276
1479

The IQRD preconditioning usually requires a smaller number ofPCG iterations than
the diagonal and the MST preconditionings at any stage of the DA algorithm. The
gap is bigger in the intermediate iterations of that algorithm.
The IQRD preconditioning requires a bit more CPU time to construct than the other
two preconditionings. However, the IQRD preconditioning is able to reduce suffi-
ciently the number of PCG iterations that compensate for such an additional compu-
tational effort. In fact, except in the very first and in the very last DA iterations, the
CPU time ccpu+pcgcpu is smaller if the IQRD preconditioning is used than if the
diagonal or MST preconditionings are employed.
For dense TP and AP problems the IQRD preconditioning is preferable to the hybrid
scheme of Resende and Veiga to be incorporated in the interior-point methods, even
if we suppose that it is possible to know previously the optimal switching iteration.
In fact, if we use the IQRD preconditioning instead of the hybrid scheme, we re-
duce by 77.0%, 71.5%, and 62.0% the number of PCG iterations required to solve
the nondegenerate TP problem, the degenerate TP problem, and the AP problem,
respectively. The corresponding decrease in the CPU time ccpu+pcgcpu when those
test problems are solved is 72.8%, 65.8%, and 7.35%.

Based on the results ofthe first experiment, we decided to use the IQRD preconditioning in
the implementation ofthe DA, PD, and PC interior-point algorithms. In our second experiment
we study the performance of these methods under stopping criteria crit 1, crit 2, and crit 3
discussed in the previous section and a set of different values for the tolerance e. The results of
this experiment are illustrated in Tables 2 and 3, which report the performance of interior-point
methods DA, PD, and PC on TP and AP problems with m n 1000. It is important to add
that we chose the test problems for which the interior-point algorithms have the most difficulty
in finding their optimal solutions. The data in Tables 2 and 3 represent the number of iterations
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TABLE 4
Solution of transportation problems with Cmax 1.8e and dmax 1.1 e 1..

m and n

200
4O0
6O0
8O0
1000
total

DA
iter pcgit cp
13 190 5.69
18 306 37.39
23 472 121.70
30 623 294.50
34 813 584.20
118 2404 1043.48

PD
iter pcgit cpu
4 46 1.97
5 63 10.42
8 154 47.54
6 91 57.81
9 214 175.70

32 568 293.44

PC
iter pcgit cpu
4 102 3.49
5 128 18.03
7 225 66.58
7 199 115.20
9 325 265.90

32 979 469.20

TABLE 5
Solution oftransportation problems with Cmax 1.8el and dmax ---2.5e3.

DA
m and n iter pcgit cpu

200 30 550 15.50
400 42 895 96.65
600 51 1472 340.60
800 62 1642 713.60
1000 70 2158 1430.00
total 255 6717 2596.65

PD
iter pcgit cpu
25 415 14.32
32 629 82.82
40 1318 327.20
50 1347 658.10
53 1734 1254.00

200 5443 2336.44

PC
iter pcgit cpu
19 626 18.80
24 914 108.80
24 1551 353.60
28 1427 645.70
30 1803 1230.00
125 6321 2356.90

of the PCG algorithm for different values of the tolerance e when the three stopping criteria
are incorporated in this procedure. If for a certain criterion there is no number for a value of
e 10-p, then either this tolerance value is too big for the interior-point method to reach an
appropriate direction and, consequently, the method cannot converge to the optimal solution,
or it is too small for the PCG algorithm to converge in some iteration of this latter technique.

The results shown in Tables 2 and 3 lead to the following conclusions:
crit 1 allows a large choice for the value of tolerance e. As expected, the total number
ofPCG iterations increases with a decrease of the tolerance value. On the other hand,
the incorporation of the other two criteria requires much care .in the choice of the
value of e. For instance, the DA algorithm can only work with a value of the tolerance
smaller than or equalto 10-4 if crit 3 is used. Hence, we can conclude that crit 1 is
the most robust among the three criteria discussed in the previous section. This does
not mean that crit takes a smaller number of iterations than the other criteria. On
the contrary, crit 2 usually leads to the smallest iteration count; crit 3 is also better
than crit in this respect.
When a TP problem is solved, then a value Of e in the interval [10-6, 10-3] is quite
safe if crit 1 is used in the implementation of the three interior-point algorithms.
The same kind of conclusions can be stated for the solution of AP problems by
the DA algorithm. However, a slightly smaller value for e should be considered
(8 10-8, 10-6]) when AP problems are solved by any of the remaining interior-
point PD and PC algorithms.

Based on these results, we have decided to use in our third experiment criterion crit
for all the interior-point methods. In the DA algorithm we set the value of the tolerance to
be equal to 10-6. The same value of e is employed in the PD and PC algorithms when TP
problems are solved. Furthermore, e 10-8 is used in these last procedures for the solution
of AP problems. As stated before, in the next study we investigate the importance of scaling
of the vectors c and d. We considered assignment and general nondegenerate and degenerate
transportation problems with integer data, rn n 200, 400, 600, 800, 1000 and different
scalings of the vectors d and c. The results of this study are illustrated in Tables 4-9. The
symbols iter, pcgit, and epu represent the number of interior-point iterations, the number of
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TABLE 6
Solution of transportation problems with Cmax 1.0e6 and dmax 1.1el.

m and n

200
400
600
8OO
1000
total

DA
iter pcgit cpu
5 106 2.82
6 181 16.86
6 246 51.30
7 328 125.60
8 317 198.80

32 1178 395.38

PD
iter pcgit cpu
10 192 6.46
11 260 31.36
11 360 89.94
16 542 245.40
15 623 425.10
63 1977 798.26

PC
iter pcgit cpu
14 531 14.88
13 609 66.34
15 782 193.80
16 849 380.60
14 927 617.70
72 3698 1273.32

TABLE 7
Solution oftransportation problems with Cmax 1.0e6 and dmax 2.5e3.

m and n

200
400
600
8OO
1000
total

DA
iter pcgit cpu
9 215 5.61
12 359 35.77
14 517 110.30
15 696 263.90
15 595 380.40
65 2382 795.98

PD
iter pcgit cpu
32 588 19.20
37 797 100.40
43 1515 365.50
48 1416 670.50
49 1723 1370.00
209 6039 2525.60

PC
iter pcgit cpu
22 886 25.06
31 1461 158.20
37 2873 623.40
30 1755 765.20
27 1902 1243.00
147 8877 2814.86

TABLE 8
Solution ofassignment problems with Cmax 1.0el.

m and n

2oo
400
600
800
1000
total

DA
iter pcgit cpu
27. 70 6.28
21 58 22.07
26 59 60.68
24 53 100.30
39 84 259.90
137 324 449.23

PD
iter pcgit cpu
16 230 8.37
21 376 51.33
21 381 120.80
22 369 223.20
27 519 264.80
107 1875 668.50

iter
12
12
11
13
16
64

TABLE 9
Solution ofassignment problems with Cmax 1.0e6.

PC
pcgit
341
365
389
389
589

2073

cpu
10.79
46.66
110.10
215.60
462.30
845.45

DA
m and n iter pcgit cpu

200 28 438 12.58
400 34 662 75.74
600 45 1042 257.00
800 41 936 427.80
1000 40 1041 723.40
total 188 4119 1496.52

PD
iter pcgit’ cpu iter

20 419 12.65 19
25 620 72.54 23
26 980 199.30 27
27 821 383.80 35
28 961 685.50 28
126 3801 1353.79 132

PC
pcgit
717
967
1468
1744
1576
6472

cpu
20.24
108.60
353.90
795.50
1101.00
2379.24

PCG iterations, and the CPU time in seconds, respectively. We only report the results with
nondegenerate TP problems, since we have observed that the relative performance of the three
interior-point algorithms is similar for degenerate and nondegenerate transportation problems.

We have achieved the following conclusions about the scaling of the vectors c and d:
All three interior-point algorithms seem to be sensitive to bad scaling in the right-
hand-side vector d of the transportation problem. However, the PD techniques are
usually more effected than the DA algorithm by an increase in dmax. In fact, when
dmax changes from 1.1 e 1 to 2.5e3, the CPU time increases, on average, 327.0% and
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196.8% for both PD and PC algorithms, respectively, and only 153.4% for the DA
algorithm.
The PD and PC algorithms seem to be less effected by bad scaling in c than by bad
scaling in d. In fact, the computational effort of the PD method grows, on average,
26.4% for TP problems and 102.5% for AP problems when Cmax changes from 1.8e
to 1.0e6. Furthermore, the average CPU time increasing for the PC algorithm is
44.7% for the transportation problem and 181.4% for the assignment problem. It is
interesting to note that the variation of the performance of the DA algorithm with
the scaling in c depends on the class of problem. In the transportation problem we
obtain an average decrease of 67.27% in CPU time when the value of Cma changes
from 1.8e 1 to 1.0e6. On the other hand, for the same change in the scaling of c, that
value increases 233.13% when we solve the assignment problem.

In this last experiment we compare the three interior-point methods with the network
simplex code NETFLO of Kennington and Helgason [16] on problems generated by the
standard problem generatorNETGEN 17]. We have considered assignment and transportation
problems with integer data, m n 200, 400, 600, 800, 1000, number of arcs equal to mn,
cost for the arcs in the interval [1, Cmax] with Cmax 1.0el, 1.0e6, and total supply equal
to 1.0e2n and 1.0e6n (equal to n in the assignment problems). The results of this study are
illustrated in Tables 10-13. The symbols iter and cpu represent the number of iterations and
the CPU time in seconds required by the different algorithms to achieve an optimal solution
for the test problems, respectively.

The results displayed in Tables 10-13 show that the network simplex code NETFLO is
faster than the interior-point methods in all the test problems. However, one should not draw
any final conclusions from these results. First, we have used in the interior-point methods a
tighten robust stopping criterion that is not the best for all the problems. Second, we have
not worried about the initial point, since the main purpose of the paper was to investigate the
efficiency of a new preconditioning and to compare the PD interior-point techniques with the
DA method used by Resende and Veiga [35]. Most importantly, instances are dense and too
small. As in Resende and Veiga [35], competitiveness is achieved in sparse problems only
in instances that are much larger than those considered in this paper. We believe that a more
appropriate initial point and a different stopping criterion in which the values of the tolerance
in the PCG method change during the progress of the interior-point methods may turn these
methods more competitive with the classical algorithms for transportation and assignment
problems.

Despite it being difficult to draw final claims about the most efficient interior-point method,
the results indicate that the PD and the PC algorithms seem to be the most appropriate tech-
niques for the solution of TP problems when the cost coefficients and right-hand-side vectors
c and d are not badly scaled. If c and d are both badly scaled, then the DA algorithm usually
performs better than the PD methods. The efficiencies of the three algorithms seem to be
similar for the TP problems in which only the vector d is badly scaled. Finally, if only vector
c is badly scaled, then, generally, the DA algorithm outperforms the algorithms PD and PC.
In the solution of AP problems, bad scaling in the vector c seems to have an opposite effect
on the performance of the interior-point methods. In fact, the DA algorithm seems to be more
efficient than the PD algorithm when c is well scaled, while the opposite situation occurs in
the presence of badly scaled AP problems. The PC method performs worse than the DA and
PD algorithms in the solution of AP problems.

Currently the use of the PC algorithm for the solution of large-scale linear programs is
well accepted [7]. In fact, this technique usually reduces the overall amount of iterations of
the PD algorithm. Furthermore, as a direct solver is used to process the Newton equations,
then there is an increase of only two triangular systems per iteration of the PD method. The
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TABLE 10
Solution ofNETGEN transportation problems with Cmax 1.0e and total supply equal to 1.0e2n..

m and n

200
400
600
8OO
1000
total

DA
iter cpu
31 11.66
32 62.38
46 206.30
88 560.O0
86 890.16

283 1705.50

PD
iter cpu
28 17.14
26 68.83
32 200.90
37 498.40
37 770.00
160 1555.27

PC
iter cpu
14 15.34
15 65.16
26 286.10
18 379.30
18 590.40
91 1336.30

NETFLO
iter cpu
908 0.78

2016 3.02
2848 8.00
3918 18.17
4671 26.94
14451 56.91

TABLE 11
Solution ofNETGEN transportation problems with Cmax 1.0e and total supply equal to 1.0e6n.

m
DA

nd n iter cpu
200 22 14.51
400 39 107.20
600 42 300.60
800 46 656.20
1000 51 1243.00
total 200 2321.51

PD
iter cpu
22 14.29
27 86.65
35 259.30
38 512.50
45 1071.00
167 1943.74

PC
iter cpu
14 17.09
14 76.48
25 299.40
24 573.80
20 847.50
97 1814.27

NETFLO
iter
959

2053
2590
4272
4735
14609

cpu
0.65
2.82
6.45

12.41
20.95
43.28

TABLE 12
Solution ofNETGEN assignmentproblems with Cma 1.0e 1.

DA
m and n iter cpu

200 22 6.25
400 26 30.49
600 14 42.76
800 15 71.30
1000 19 152.30
total 96 303.10

PD PC
iter cpu iter cpu
16 9.19 11 9.91
19 48.35 10 44.85
23 163.10 11 108.10
25 272.60 11 202.90
23 387.40 13 343.70
106 876.64 56 709.46

NETFLO
iter cpu
281 0.56
485 2.66
732 6.91
1002 10.97
1142 20.48
3642 4,1.58

TABLE 13
Solution ofNETGEN assignment problems with Cma 1.0e6.

DA
m and n iter cpu

200 24 13.37
400 30 74.10
60O 34 256.50
800 38 446.30
1000 41 821.30
total 167 1611.57

PD
iter cpu
21 13.43
24 66.37
26 232.00
29 403.60
27 644.60
127 1360.00

PC
iter cpu
19 20.90
24 113.80
24 320.60
24 586.30
32 1267.00
123 2308.60

NETFLO
iter cpu

2350 0.75
9599 5.68
16409 18.28
30480 37.62
39178 57.36
98016 119.69

results shown in Tables 4-13 seem to confirm the ability of the PC strategy to reduce the total
amount of the interior-point iterations. However, the use of an iterative solver almost doubles
the computational effort of each iteration of the PD algorithm. This explains why the CPU
time is in many cases smaller for the simple PD algorithm. So the PD algorithm may be more
appropriate than the PC method for the solution ofTP and AP problems when these procedures
are implemented in the way described in this paper.

Our final remark is concerned with the competitiveness of the interior-point methods with
the classical techniques (which NETFLO represents in this paper) in solving linear minimum-
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cost network flow problems. Resende and Veiga [35] have already shown that if the parallelism
of the PCG algorithm is exploited, the DA method is expected to outperform NETFLO and
the relaxation code RELAX in the Solution of sufficiently large assignment problems. Later,
the same authors also demonstrated that the DA algorithm is more efficient than the classi-
cal methods in several classes of linear network flow problems, even when implemented in
sequential architectures [34]. In this paper, despite having introduced a new preconditioning
that greatly reduces the computational effort required by the PCG algorithm, the results show
that NETFLO is still more efficient than the interior-point methods in the solution of dense
assignment and transportation problems in sequential architectures. As we stated before,
there is much work to be done for the interior-point algorithms to be competitive with the
classical techniques. We have already mentioned some possible modifications in the algo-
rithms that may help in this instance. This is certainly one of the major topics of our current
research.
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COMPUTATION OF THE NONCENTRAL GAMMA DISTRIBUTION*

L. KNOSEL AND B. BABLOK

Abstract. This paper deals with the computation of upper and lower tail probabilities of the noncentral gamma
distribution and with the computation of the noncentrality parameter given the upper or lower tail probability. The
tail probabilities are computed in an efficient and numerically stable manner with a given relative accuracy even for
small probabilities and for a wide range of parameters where other algorithms found in the statistical literature fail.
The basic ideas in this paper can also be applied to the noncentral chisquare, beta, F, and distributions.

Key words, noncentral distributions, noncentrality parameter

AMS subject classification. 65U05

1. Overview. Noncentral distributions play an important role in statistics, e.g., when we
are interested in the power function of the chisquare, F, or test. In 2 we give the definition
of the central and noncentral gamma and beta distributions and indicate how the (central and
noncentral) chisquare, F, and distributions can be derived from these distributions which
are mathematically and numerically simpler to handle. In 3 we give the basic ideas of the
computation of the central gamma distribution. The algorithms are based upon open forward
and backward recursions as described in Kniisel [5]. Section 4 deals with the computation
of the noncentral gamma distribution and 5 shows how we can compute the noncentrality
parameter given the other parameters and the upper or lower tail probability of the distribution
by using the Newton algorithms for finding zeros of a real function. The essential point is
the fact that the derivative with respect to , of the noncentral gamma distribution can also
be computed in a numerically stable and fast way with a given relative precision using ideas
similar to those in 3 and 4. We want to point out that for many applications the computation
ofthe noncentrality parameter is ofhigher practical relevance than the computation ofquantiles
(e.g., for the computation of the effect size or the necessary sample size at a given power).

We can compute the noncentral beta distribution in a manner analogous to that of the
gamma distribution. So, all three commonly used noncentral distributions (chisquare, F, and
t) can be computed by the methods described in this paper as these distributions can be derived
from the gamma and beta distributions.

2. Relationship between the different distributions. In this section we want to give in
short the definition of the gamma and beta distributions considered and to show the relation-
ship between these distributions and the classical central and noncentral chisquare, F, and
distributions.

Central gamma distribution. Let X denote a random variable with a (central) gamma
distribution with parameter a > 0. The distribution function of X is defined as

F(xla) Pr{X < x}
X1 a-le-tdt for x > O,

r(a)

where

F(a) ta-le-tdt.

*Received by the editors February 23, 1994; accepted for publication (in revised form) May 22, 1995.
Department of Statistics, University of Munich, 80539 Munich, Germany (leo.knuesel @lrz.uni-muenchen.de;

deccpfl9 @ibmmail.com).
The ideas in these two sections are mainly due to Bablok (cf. Bablok 1]).
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The function 1-’(a) is the (complete) gamma function while the integral in the definition of
F(x[a) is called the incomplete gamma function.

Central beta distribution. Let X1 and X2 be independent random variables having gamma
distributions with parameters a and b, respectively, and let X X1/(X1 + X2). Then X has
a beta distribution with parameters a and b and the distribution function of X is given by

F(a+b) ta-l(1--t)b-ldt for 0<x < 1.F(xla, b)- Pr{X < x}--
F’(a)F’(b)

The function r’ (a)1 (b)/r" (a + b) is called the (complete) beta function while the integral in
the definition of F(xia, b) is called the incomplete beta function.

Noncentral gamma distribution. Let X denote a random variable with a noncentral gamma
distribution with parameter a > 0 and with noncentrality parameter ) > 0. The distribution
function of X is defined as

oo e-;,i
F(x[a, ) Pr{X < x} Z px(i)F(xla + i), where pz(i)

i!
i=0

(see Patnaik [7]). So, .the noncentral gamma distribution is a mixture of central gamma
distributions F(x [a + i) with Poisson weights p) (i).

Noncentral beta distribution. Let X1 and X2 be independent random variables: X1 with
a noncentral gamma distribution with parameter a > 0 and noncentrality parameter . > 0,
and X2 with a central gamma distribution with parameter b > 0. Then the random variable
X X1/(X 4- X2) has a noncentral beta distribution with parameters a and b and with
noncentrality parameter ., and the distribution function of X is given by

oo e- )
F(x[a, b, )) Pr{X < x} pz(i)F(xla 4- i, b), where pz(i)

i!
i=0

(see Patnaik [7]). So, the noncentral beta distribution is a mixture of central beta distributions
F(x[a + i, b) with Poisson weights pz(i).

The following results concerning the chisquare, F, and distributions can also be derived
from Patnaik [7] or they can be found in Johnson-Kotz-Balakrishnan [4]. IfX has a noncentral
chisquare distribution with noncentrality parameter ., then the random variable Y X/2 has
a noncentral gamma distribution with parameter a n/2 and with noncentrality parameter
)’ )/2. If X has a noncentral F distribution with (na, n2) degrees of freedom and with
noncentrality parameter ., then the random variable Y n X(n24-n X) has a noncentral beta
distribution with parameters a n/2, b n2/2 and with noncentrality parameter U )/2.
If X has a noncentral distribution with n degrees offreedom and with noncentrality parameter
3, then the random variable Y X2 has a noncentral F distribution with (1, n) degrees of
freedom and with noncentrality parameter . 32. As the noncentral distribution is no longer
symmetric, only probabilities of the form Pr{[X[ < t} or Pr{[X[ > t} can be computed by
means of the F or beta distribution. Probabilities of the form Pr{X < or Pr{X > cannot
be found in this way.

So, all three commonly used central and noncentral distributions (chisquare, F, and t)
can be derived from the central and noncentral gamma and beta distributions.

3. Computation of the (central) gamma distribution. This section is a short summary
of the methods used to compute the upper and lower tail probability of the central gamma
distribution as described in more detail in Kntisel [5]. Let X denote a random variable having
a (central) gamma distribution with parameter a > 0:

Ixta-le-tdt for x >0(1) Pr{X < x}-
I(a) Jo
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where F (a) denotes the gamma function

(2) F(a) ta-le-tdt.

We define the following three basic quantities for a > 0, x > 0:

e-Xxa-1
p(a,x) ,

r(a)

(3) I(a,x) xe-x ta-le-Xtdt,

J (a, x) xe e-Xtdt.

Denoting by F(x [a) and Fc (x [a) the distribution function and the complementary distribution
function of X, respectively, we have

(4)
F(xla) Pr{X < x} p(a,x)I(a,x),

FC(xla) Pr{X > x} p(a,x)J(a,x).

The two probabilities add up to one, and therefore it is sufficient to compute the smaller
of the two terms. As the median of the gamma distribution is about a if a is not too small,
we therefore have, as a rough rule, to compute I (a, x) when x < a and J (a, x) when x > a.
From the definition of Ia I (a, x) and Ja J (a, x), we derive the following properties for
any given x > 0:

(5)

and

la $0 for
X

Ia --(1 4- Ia+l) for a > 0
a

(6)
Ja$O for a$-oe (Jl--1),

(a)Ja+ l +-Ja for a 6 R.
X

Using these properties, we can compute the quantities Ia and Ja with open recursions
without knowing an exact starting value but with the approximate starting value zero. In the
case of Ia, the following open backward recursion can be used:

Set Ia+n 0 for some positive integer n.
Forb a + n 1, a / n 2 a compute

X
(7) Ib (1 +/b+l).

Then Ia is an approximation to Ia I (a, x) with the relative error

0 < <_fac, where fac
la a(a + 1)-.. (a 4-n- 1)

Therefore, we can guarantee a relative error of less than a given e > 0 if we choose n as the
smallest positive integer such thatfac < e. In regard to the computation of Ja, we can use the
following forward recursion:



COMPUTATION OF THE NONCENTRAL GAMMA DISTRIBUTION 1227

(8)

Set Ja-n 0 for some positive integer n _< a.
For b a n, a n + 1 a compute

b]+ +-J.
x

Then ]a is an approximation to Ja J (a, x) with the relative error

Ja Ja (a 1)(a 2)... (a n)
O< < fac, where fac=Ja xn

Note that Ja-n 0 implies ]a-n+ and so the first step in the recursion could be saved.
Thus, we can guarantee a relative error of less than a given e > 0 if we choOse n as the smallest
positive integer such that fac < e. If such an integer does not exist, we have to compute the
exact starting value J for 0 < b < 1 for our recursion.

4. Computation of the noncentral gamma distribution. Now, let X denote a random
variable having a noncentral gamma distribution with parameter a and noncentrality parameter
). The distribution function of X can be written as a mixture of central gamma distributions
with Poisson weights:

(9)

with

F(xla, ,k) Pr{X < x} Z pz(i)F(xla + i),
i=0

F’(xla, )) Pr{X > x} Z P(i)FC(xla + i)
i=0

p(i) Pr{Po()) i},

where Po()) denotes a random variable with a Poisson distribution with parameter (cf.
Patnaik [7]). Note, that p(i) is related to the function p(a,x) defined in (3) by p(i)
p(i / 1, )). We want to show how both probabilities in (9) can be computed with a given
relative error by using techniques similar to those used for the central distributions. First, we
deal with the computation of the lower tail probability F(xla, ) for given x, a, and ). For
the central gamma distribution we have the relations (4) and (5). Furthermore, not only the
component la I (a, x) but also the distribution function F(xla) p(a, x)I (a, x) itself is
monotonous in a:

(10) F(xla) $ 0 for a " .
This follows from the addition theorem of the gamma distribution; the sum of two gamma
variables has again a gamma distribution, the parameter being the sum of the individual
parameters. Now, we decompose the lower tail probability F(x ]a, )) in three terms"

(11)
k k-

F(x[a,) E...-t- E ....qt_ E S1 .qt_ $2_

_
$3"

=0 =kl+ =k2

The number k2 is chosen as the smallest integer such that

(12) Pr{Po()) > k2} < s,
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i.e., k2 is the upper e-quantile of a Poisson distribution with parameter X. Because of the
monotonicity relation (10) we have

(13)
$3 <_ F(xla + k2)Pr{Po(X) > k2} < F(xla + k2)e,

$1 + $2 >_ F(xla + k2)Pr{Po()O < k2} >_ F(xla + k2)(1 e),

and so

(14) < , e, i.e., $3 <_ e(S1 + $2) (approximately).
SI+S2 -1-e

The sum $2 can be written as

(15)
k2

S2-- ri,
i=k+l

where T/ Ti(x,a,X) px(i)F(xla + i) p(i + 1, X)p(a + i,x)I(a + i,x). Using the
obvious relation

X
(16) p(a + 1, x) = -p(a, x),

a

we find

(17) T/ qi Ti+l, where qi
+ la+i (I(a+i,x) )X x I(a +i+ ix)

Starting the summation of $2 at the end k2 and using the backward recursion (5) for

Ia+i I (a + i, x), we can compute each term Ti of this sum with a relative error smaller than
e and thus, all terms being positive, the overall relative error of $2, the computed value of $2,
is also smaller than e. We must now determine the value kl such that $1 < e $2. Using the
backward recursion (5) for Ia+i I (a + i, x) in (17), we obtain

(18) qi-
),. I(a +i + 1, x)

+

and due to the monotonicity property (5) of I I (a, x) it follows that

(19) qi r//r/+l is decreasing for $ O.

This means that the terms Ti (i k2 1, k2 2 0) in the sum $1 + $2 are increasing as
long as qi > and decreasing as soon as qi < and that the partial sum S1 can be estimated
by the geometric series

(20) $1 =T/ <, where q (ifqkl < 1).
i=0

1 q, Tk or-

NOW, if we stop the summation of $2 as soon as

Tkl 82,(21)
q<

then the approximation F(xla, ) $2 has a relative error smaller than 3e (approximately)
as S1 < e $2 due to (20) and (21), $3 _< e $2 due to (14), and because the relative error of $2,
the computed value of $2, is also smaller than e.
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We want to point out that it is crucial for the computation of $2 to start off the summation
at the upper end k2. Many algorithms found in the literature (see, e.g., Frick [3], Lenth [6],
Farebrother [2]) start the summation at the lower e-quantile or even at zero and proceed toward
the upper end using a recursion similar to (7) but in the forward instead of the backward
direction. This summation is instable due to numerical cancellation and the relative error
cannot be kept under control. The paper of Wang and Gray [8] uses approximation methods
without known approximation bounds.

The computation of the upper tail probability FC(x[a, ,k) can be performed in quite an
analogous way. The series (9) is decomposed in three terms"

k k2-1 c

(22) Fc(xla, )v) Z"" + Z +Z S1 .qt_ $2 -]- $3.
=0 =kl + =k2

This time we have to use the recurrence relation (6) for J(a, x) that works in the forward
direction. The number k is chosen as the largest integer such that

(23) Pr{Po()) <_ k} < s.

Because of the monotonicity relation

(24) FC(xla),[.O for aS0 and x >0,

we have estimations completely analogous to those of the lower tail probability and further
computations offer no new problems.

5. Computation of the noneentrality parameter. In this section we want to compute
the noncentrality parameter , of a noncentral gamma distribution given the parameters a and
x and given the lower tail probability p"

(25) For given x, a, and p determine )v such that F(xla, )) p with p _< g.

If the upper tail probability were given we would use the complementary distribution function
F (xla,)v) instead of F (xla,)v) to avoid cancellation. We want to point out that for noncentral
distributions the inversion with respect to the noncentrality parameter is of higher practical
relevance than the computation of classical quantiles in many applications (e.g., for the com-
putation of the effect size or the necessary sample size at a given power). Now we want to show
howto solve the problem (25). For given x anda we have F(xla, ,k) $ 0for )v J’ oo as we shall
see in a moment, and therefore the probability p must be smaller than F(xla, O) F(xla) or
there exists no solution to (25). We propose using the Newton algorithm for finding zeros of
a function f()0:

f (,i
(26) )i+l )i

f’ ()i

In our case we have f()) F(xla, )) p with x > O, a > O, 0 < p < F(xla), and ) >_ 0.
The computation of f()) can be performed using the methods in the previous sections and
all we need is a numerically stable algorithm for the computation of f’ ()) that can guarantee
a given relative precision. Relative precision is crucial as otherwise the recursion becomes
useless if f’()) becomes small, although a moderate relative precision of 10-3 or so would
be sufficient. From the representation (9) we derive

d d
(27) f’0) F(xla, )) y -5-7P(i + 1, ))F(x, a + i),

i=0
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and as

d ] -p(i/l ))/p(i,) for >0,
(28) ,d--Z-P(i / 1 )--

-p(i+l,)) for i=0,

we find

(29) f’()) -F(xla, ) + F(xla + 1, )0.

As f’(.) is the first derivative of F(x la, ) with respect to ), we could also compute derivatives
of higher order by iterative application of (29). Now, the monotonicity property (10) for the
central gamma distribution is also valid for noncentral distributions:

(30) F(xla,))$0 for a]’ec.

This is obvious from the representation (9) of the noncentral distribution. So, we see from
(29) that f’(.) < 0 and this proves the above-mentioned monotonicity property in ). Now,
using the factorization F(xla) p(a, x)I (a, x) given by (4) and the recurrence relations (5)
and (16) for the factors I (a, x) and p(a, x), equation (29) simplifies to

(31) f’()) ti, where
i=0

ti ti(x, a, ) p(i + 1, )p(a + + 1, x).

Again using the recurrence relation (16) for p(a, x), we find

)x
(32) ti citi-1 with Ci for > 0.

i(a + i)

We see that C , 0 for " Cx which means that for increasing the terms ti are increasing as
long as ci > 1 and decreasing as soonas ci < 1. Let k be the smallest integer with ci < 1,
i.e.,

(33) k [v/a2/4 + )x a/2].

Then the term tk is the largest term in the series ti. Now, we decompose this series as
follows:

(34) f’() ti ti + tk + ti -(L + tk + U).
i=0 \ i=0 i=k+

We have

(35)
Uk tk+l / tk+2 /’’"

tk(Ck+l / Ck+lCk+2 /’" ")

tklk,

and from this we see that

(36)
Ik$O for k’cxz,
I_ c(1 + I).

As (36) is equivalent to (5), we can compute the factor Ik with a given relative error e in
exactly the same way as in (7). For the term Lk we use the recurrence relation (32) in the other
direction:

(i + 1)(a +i + 1) 1
(37) ti:diti+l with di= for i>0

)X Ci+
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and now we can write

(38)
L t_l 4- tk-2 4-’’’

t(d_l 4- d-ld-2 +...)

tJ.

From this we see that

(39)
Jk $ O for k,$ O,

J+ d( + J).

Note that this is completely symmetric to (36) up to the direction ofthe recursion, and Jk can be
computed in exactly the same way as the quantity Ik up to the direction of the recursion. Also
notice that J0 0 and so the open recursion with the approximate starting value ]k-n 0
becomes exact if n k; the problem with the exact starting value Jb for 0 < b < 1 in the
recursion (8) does not exist here as k is an integer. If we set/,k Lk + tk and ]k J 4- 1
then we have the recurrence relation ]k+l 4- dk ]k which is equivalent to (6). But as the
number of steps to compute the quantities J and ]k is exactly the same (up to the first trivial
step when computing J), we prefer here the quantity Jk that is completely symmetric to Ik.
So, all terms t, Ik, and Jk can be computed with a given relative precision and this means that

(40) f’()) Z ti -(L + t + U) -t(J + 1 + I)
i=0

can also be computed with a given relative precision.
So, the numerator f ()i) and the denominator f’0i) in the Newton algorithm (26) can

be computed with the methods described in this paper. Further, a useful starting value can
be derived from the facts that the distribution of a standardized noncentral gamma variable is
approximately normal if a is not too small and the expectation and the variance of a noncentral
gamma variable are a 4- ; and a 4- 2;, respectively.

REFERENCES

[1] B. BABLOK, Numerische Berechnung nicht-zentraler statistischer Verteilungen, Diploma thesis, Department
of Statistics, University of Munich, Munich, Germany, 1988.

[2] R.W. FARE3ROTHER, The distribution ofa noncentral chisquare variable with non-negative degrees offreedom,
Appl. Statist., 36 (1987), pp. 402-405.

[3] H. FRII, A remark on algorithm AS 226: Computing non-central beta probabilities, Appl. Statist., 39 (1990),
pp. 311-312.

[4] N. L. JOHNSON, S. KOTZ, AND N. BALAKRISHNAN, Continuous Univariate Distributions, Vol. 2, Second Ed.,
John Wiley, New York, 1995.

[5] L. KNrSEL, Computation of the chisquare and Poisson distribution, SIAM J. Sci. Statist. Comput., 7 (1986),
pp. 1022-1036.

[6] R.V. LNTH, Algorithm AS 226: Computing noncentral beta probabilities, Appl. Statist., 36 (1987), pp. 241-
244.

[7] P. B. PATNAIK, The noncentral chi-square and F-distributions and their applications, Biometrika, 36 (1949),
pp. 202-232.

[8] S. WANG AND H. L. GRAY, Approximating tail probabilities ofnoncentral distributions, Comput. Statist. Data
Anal., 15 (1993), pp. 343-352.



SIAM J. ScI. COMPUT.
Vol. 17, No. 5, pp. 1232-1248, September 1996

() 1996 Society for Industrial and Applied Mathematics
013

LOCATING AND COMPUTING ALL THE SIMPLE ROOTS AND EXTREMA OF A
FUNCTION*

DIMITRIS J. KAVVADIASt* AND MICHAEL N. VRAHATISt

Abstract. This paper describes and analyzes two algorithms for locating and computing with certainty all the
simple roots of a twice continuously differentiable function f: (a, b) C N -- R and all the extrema of a three times
continuously differentiable function in (a, b). The first algorithm locates and computes all the simple roots or all the
extrema, while the second one is more efficient in the case where both simple roots and extrema are required.

This paper also gives analytical estimation of the expected complexity of the algorithms based on the distribution
of the roots in (a, b). Here only the case ofuniform distribution is examined, which is also the approach to be followed
when no statistical data are available for the function at hand.

The algorithms have been implemented and tested. Performance information for a well-known Bessel function
is reported.

Key words, zeros isolation, Kronecker-Picard theory, topological degree, locating simple roots and extrema,
computing simple roots and extrema, combinatorial optimization, zeros identifications, distribution of the roots and
extrema, expected algorithms complexity, Bessel functions

AMS subject classifications. 65H05, 68C25

1. Introduction. It is well known that information concerning all the roots and/or all the
extrema of a function

(1.1) f: (a, b) C --is of major importance in many different fields of science and technology.
An immediate method to accomplish this task suggests scanning the interval (a, b) and

applying some rootfinding method for each consecutive root. The method that is employed
here is heavily based on the knowledge of the total number of roots within (a, b). In order
to obtain this information we use results from topological degree theory and especially from
the theory of the Kronecker-Picard integral [24, 25]. This .theory gives a formula for the
computation of the total number of roots of a system of equations within a given region. With
this tool in hand one can construct a procedure for the localization and isolation of all the roots
by dividing the given region successively and applying the above formula to these subregions
until the final domains contain at most one root. To our knowledge, the first method to this end
was introduced by Hoenders and Slump 10, 11, 28], who recently reconsidered and applied
Kronecker-Picard theory to calculate the total number of simple roots of a system of nonlinear
equations as well as to calculate the total number of multiple roots of a single equation of any
multiplicity.

Other approaches that have been used successfully to find all solutions of systems of
equations as well as the global optimum of a function are based on interval analysis (see, for
example, [1, 7, 8, 9, 15, 16, 17]). The corresponding existence tool of these methods is the
availability of the range of the function in a given interval, which can be implemented very
efficiently using interval arithmetic, though accuracy problems must be resolved. This tool,
however, reports with certainty only the negative case, i.e., when no roots are in the interval.
The positive case proceeds by subdividing the interval into two halves and employing additional
criteria. This case is common when the function has many extrema but few roots in the interval
of interest. In addition, this tool provides the existence of a root and not their exact number,
which means that more sophisticated decisions (than merely subdividing) cannot be made.
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In this paper we implement Kronecker-Picard theory and give a method for locating
and computing all the simple roots of a twice continuously differentiable function and all the
extrema of a three times continuously differentiable function in an interval (a, b). In addition,
we give analytical expressions of the total expected work needed in achieving the isolation and
computation of all the roots of (1.1) under certain assumptions that we present in the sequel.
This may prove to be very useful in real life applications since very early estimations of the
total running time of the algorithm are available, contrary to other methods which are totally
unpredictable. Nevertheless, it is important to notice that our analytical results and techniques
also apply to any method that proceeds by repeated subdivisions, giving the expected depth
of the subdivision under the same assumptions. Moreover, the main computational burden of
our method comes from the need of an integration, a problem that has been studied extensively
and for which numerous methods exist.

The rootfinding portion ofour method employs a modification ofthe well-known bisection
method. Alternatively, any one of the one-dimensional rootfinding methods (see [23, 20, 21,
26, 2]) can be used. We use the bisection method for several reasons which we explain in
2.2, among which is its known behavior concerning the number of iterations required when
we seek the root with a predetermined accuracy.

Here we study the one-dimensional case only. The reason for this restriction is that the
corresponding analysis of our method to n dimensions seems to be quite different.

2. Theoretical aspects. Our algorithms are separated in two phases: (1) the phase of the
localization and the isolation of all the roots, and (2) the rootfinding phase for the computation
of all the roots within a predetermined accuracy.

For the localization phase we use a method of determining the total number of simple
roots of a single equation within a given interval. To this end we briefly exploit degree
theory for determining the exact number of roots of a single equation by computing the value
of topological degree using Kronecker’s integral [19, 3, 29, 22, 13] on Picard’s extension
[24, 25, 10, 28, 11 ].

For the rootfinding phase we have chosen the bisection method for reasons to be explained
later.

2.1. The topological degree for the computation of the total number of roots and
extrema. Let us first define the notion of the topological degree. Suppose that the function

Fn (fl fn): )n C n _._.> ]ln is defined and two times continuously differentiable in a
bounded domain Dn ofIR with boundary b(7)n). Suppose further that the roots ofthe equation
Fn(x i)n (O (0 0) denotes the origin ofR) are not located on b(Dn) and they are
simple; i.e., the Jacobian determinant of F, at these roots is nonzero. Then the topological
degree of Fn at tgn relative to is denoted by deg[Fn, 79n, On] and can be defined by the
following sum:

(2.1) deg[Fn, /)n, tn] E sgn JFn (x),
xF21(On)

where JFn denotes the determinant of the Jacobian matrix and sgn defines the sign function.
The above definition can be generalized when F is only continuous [23]. In this

case, Kronecker’s theorem [3, 23] states that F(x) On has at least one root in Dn if
deg[F, 79,, On 7 0. Furthermore, if 79n 79n U 79n2 where D, and 79 have disjoint interiors
and F(x) (n for all x b(79l) U b(Dn2), then the topological degree is additive.

Several methods for the computation of the topological degree have been proposed in the
past few years [29, 22, 13, 14, 30, 31, 4]. Also, deg[Fn, 79n, On] can be represented by the
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Kronecker integral, which is closely tied with facts used later and is defined as follows"

(2.2)

where Ai is defined by the following determinant:

(2.3) Ai (-1)n(i-1)
OXl OXi-1 OXi+l OXn

Now, since deg[Fn, Dn, On] is equal to the number of simple roots of Fn(x) On which
give positive Jacobian minus the number of simple roots which give negative Jacobian, then
of course the total number.M of simple roots of Fn (x) On can be obtained by the value of
deg[Fn, 7)n, On] if all these roots give the same Jacobian sign. To this end Picard considered
the following extensions of the function Fn and the domain Dn:

(2.4) Fn+l (fl fn, fn+l): n+l C IRn+l IRn+l,

where fn+l Y JF,, IRn+l Xl X2 xn, y, and 79n+l is the direct product of the domain

Dn with an arbitrary interval of the real y-axis containing the point y 0. Then the roots of
the system of equations

(2.5)
j5 (x, x2 x,) 0,
y JF, (xl, x2 xn) 0

n,

are the same simple roots of Fn (x) On provided y 0. On the other hand, it is easily seen

that the Jacobian of (2.5) is equal to (JF, (X)) e, which is always positive. Thus, we conclude
that the total number N"r of roots of Fn (x) On can be given by the following relation:

(2.6) JV"r deg[Fn+l, D,+I, On+l].

We consider now the problem of calculating the total number of simple roots of f(x) 0,
where f" (a, b) C IR --+ R is twice continuously differentiable in a predetermined interval
(a, b), where a and b are arbitrarily chosen such that f(a) f(b) 5 O. According to Picard’s
extension we define the function Fe (fl, fe): 79 C IRe --+ IRe and the corresponding system

(2.7)
f(x, y) f(x) O,
f2(x, y) yf’(x) O,

where the prime denotes differentiation and where 79 is an arbitrarily chosen rectangular
parallelepiped in the (x, y)-plane given by a _< x < b and -, < y < ?, with ?’ a small
positive constant.

Now, since the roots are simple, which means f’(x) 0 for x 6 f-1 (0), it is easily
seen that the roots of (2.7) in the above-defined region are the same roots as (1.1). Also, since

JF2 f,2, the total number of simple zerosr of the function (1.1) in (a, b) can be given by

(2.8) JV"r deg[F2, 79, 02].

Now, for n 2, by applying (2.1) and using the relations dj ah a,
gZx dxl + ax2, where

j 1, 2, we can easily obtain

(2.9) jr
1 b fldf2- f2dfl
2a" () fl 2 -t- f22

1

2-7 f()d arctan (1)"
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Replacing fl and f2 by virtue of (2.7) and performing the integration in (2.9) we finally get

jr llfabf(x)ft’(x)--ft2(x (’f’(b)) (,f’(a) ]]?’
f2

dx + arctan arctan
7r (X) + ’2f’2(X) f (b) f (a) ]

(2.10)
It has been shown by Picard [24, 25] that the relation (2.10) is independent of the value of g.

Of course the total number .M of the extrema of f 6 C3, i.e., x 6 (a, b) such that

f’ (x) 0, can be obtained by setting in (2.9) fl f’ and f2 yf".
Remark 2.1. Using (2.10) it is possible that in many applications N"r can be computed

analytically. If not, one can use numerical integration [26].
The Kronecker-Picard integral can also be applied for the determination of the total

number ofmultiple roots [5, 32]. Along these lines, Hoenders and Slump gave in 11] a method
for the determination of the total number of multiple roots of a single function. According to
their method, if f" (a, b) C R --+ R is a k times continuously differentiable function, then
the total number of zeros A/’, of f (x) 0 with multiplicity m or higher where m _< k can be
obtained by .the value of the topological degree calculated in a parallelepiped 79 by using in
(2.7) as fl and f2

fl f2 + Z(2.11).
/=1

f2 yf;.
2.2. A modified bisection method. Notation 2.1. Throughout this paper the notation

[.] refers to the smallest integer not less than the real number quoted; g(I) indicates the length
of the interval I.

It is well known that a solution of f(x) 0 where the function f is continuous is
guaranteed to exist in some interval [a, b] if the following criterion is fulfilled:

(2.12) f (a) f (b) < O.

This criterion is known as Bolzano’s existence criterion. Instead of Bolzano’s criterion one
may also use the value of the topological degree of f at origin relative to (a, b), which in this
case can be defined as follows:

(2.13) deg[f, (a, b), 0] (sgn f(b) sgn f(a)).

Now, if deg[f, (a, b), 0] is not zero, we know with certainty that there is at least one root in
(a, b). Note that if deg[f, (a, b), 0] is not zero, then Bolzano’s criterion is fulfilled. The value
of deg[f, (a, b), 0] gives additional information concerning the behavior of the solutions of
f(x) 0 in (a, b) relative to the slopes of f [35]. For example, if deg[f, (a, b), 0] 1,
which means that f(b) > 0 and f(a) < 0, then the number of solutions at points where f(x)
has a positive slope exceeds by one the number of solutions at. points at which f(x) has a
negative slope.

Using the value of the topological degree (or, alternatively, Bolzano’s criterion) we are
able to calculate a solution of f(x) 0 by bisecting the interval I0 (a, b). So we subdivide
I0 into two intervals (a, c], [c, b) where c (a + b)/2 is the midpoint of (a, b) and we
keep the subinterval for which the value of the topological degree is not zero relative to itself
by checking the information on the boundaries. In this way we always keep at least one
solution within a smaller interval. We can continue this procedure in order to approximate
a solution until the endpoints of the final subinterval differ from each other by less than a
fixed amount. This method is called the bisection method and can be generalized to higher
.dimensions [33, 34].
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The main idea in order to locate all the solutions rj, where j jr of f(x) 0
in (a, b), is to subdivide the interval (a, b) and find N"r subintervals (aj, bj) for which the
relation (2.12) is fulfilled. Now, for each one subinterval (aj, bj) we can apply any method
to compute the root which is included in (a, bj). Here we shall use the above-mentioned
bisection method which has been modified to the following simplified version described in
[33,34]:

(2.14) Xi+I Xi -Jr- sgnf(x0) sgnf (xi) g(Io)/2i+l, xo a, O,

The sequence (2.14) converges to a root r 6 (a, b) if, for some Xi, sgnf(x0) sgnf(xi) -1.
Also, the number of iterations v, which are required in obtaining an approximate root r* such
that [r r*l _< e for some e 6 (0, 1), is given by

(2.15) v [log2(g(I0)

Instead of the iterative formula (2.14) we can also use

(2.16) Xi-t-1 Xi sgnf(x0) sgnf (xi) g(Io)/2i+l, xo b, O, 1

The bisection method always converges within the given interval (a, b) and it is a global
convergence method. Moreover, it has a great advantage since it is optimal; i.e., it possesses
asymptotically the best possible rate of convergence [27]. Also, using the relation (2.15) it
is easy to have beforehand the number of iterations that are required for the attainment of an
approximate root to a predetermined accuracy. Finally, it requires only the algebraic signs of
the functions values to be computed, as is evident from (2.14) or (2.16); thus, it can be applied
to problems with imprecise function values.

3. The algorithms. The algorithms are a sort of "guided" form of the bisection method.
They use the outcome of relation (2.10) in order to isolate the roots or extrema by dividing the
initial interval (a, b) into smaller intervals. Algorithmfind_roots, described below in "pseudo
Pascal," first determines the number of roots in the interval by applying (2.10) (step 8) and,
if there are more than one, it divides the interval into mn equal-size subintervals (steps 6 and
7) and proceeds recursively to each of the subintervals. We propose mn to be equal to the
number of roots though there are several issues to be considered here. We discuss this subject
later on.

ALGORITHMfind_roots(a, b, S);
{eornrnent: This algorithm locates and computes all the roots or all the extrema of f(x) 0
in (a, b). It exploits (2.10) and (2.14). For (2.10) it requires f, f’, f", and ?, while for (2.14)
it requires f and e}

01. procedure roots(a, b, N’r); {eornrnent: adds to set S the N"r roots of the interval (a, b)
begin

02. if jr then find the single root r using the bisection (2.14), set S S U {r}
else
begin

03. j +---- 1; {comment: this counts the subintervals Ij (a/, bj)}
04. k +-- 0; {comment: this counts the computed roots}
05. while k < jr do

begin
06. aj +--- a + (j 1),-___q_a. {comment: m, is the number of subintervalsmn

in which we choose to divide (a, b)
07. bj +--- a + j b-a.

mn
08. Find A/jr, the number of roots in lj using (2.10);
09. if A;. > 0 then roots(aj., bj., A/r);
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10. k +--- k + JV’jr;
11. j +j+l

end {while}
end

end {roots
begin {find_roots}

12. input a, b; {comment: f(a) f(b) must be nonzero}
13. S <--- 0; {comment: S is the set of roots in (a, b)}
14. Find A/’, the number of roots in (a, b) using (2.10);
15. roots(a, b, N’);
16. output S

end. {find_roots}

Remark 3.1. The case where only the extrema are required can be handled by the same
algorithm by replacing the function f by its first derivative f’.

In the case where both roots and extrema are required, we can certainly apply the above
method twice for f and f’, respectively. But since the extrema lie between consecutive
simple roots which are discovered by the first run offind_roots (for f), we now choose to
divide initially at exactly the points of the roots. We next apply find_roots for f’ for each
subinterval between two consecutive roots. A high-level description of this algorithm follows.

ALGORITHM roots_extrema(a, b, S’);
{comment: This algorithm locates and computes all the roots and all the extrema of f(x)
in (a, b). It uses (2.10) and (2.14). For (2.10) it requires f, f’, f", f’", and y while for
(2.14) it requires f, f’, and e}
begin {roots_extrema}

01. Find .Me, the number of extrema in (a, b) using (2.10);
02. Apply algorithm find_roots; Let S {rl r.A/. be its sorted output.
03. Construct the subintervals lj (aj, bj) (rj-1, rj), j ./r .at_ 1, r0 --a,

rr+l b.
04. E +-- A/"r 1; {comment: E counts the number of verified extrema}
05. if f’(a) f’(rl) < 0 then E +--- E + 1;
06. if f’ (rvr) f’ (b) < 0 then E <--- E + 1;
07. if E je then apply bisection (2.14) (using f’) in all lj. Let S’ the set of the extrema.

else
begin

08. S’ +-- 0;
09. j +-- 1; {comment: this counts the subintervals Ij (aj, bj)}
10. k - 0; {comment: this counts the computed extrema}
11. while k < .Afe E + j 1 do

{comment: when k + E j + .Me, it is assured that
only one extremum exists in each remaining interval}

begin
12. Apply algorithmfind_roots in Ij using f’; Let S be its output;
13. Set S’ +--- S’ U S.j; {comment: S will be the set of the extrema in (aj, bj)}
14. k +--- k + Iajl;
15. j ---j+l

end {while}
16. Apply bisection (2.14) (using f’) in all It for j + .Mr; set S’ S’ U S

end
17. output S’
end. {roots_extrema}
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Returning to algorithmfind_roots and assuming that the number ofroots in a subinterval is

always available (say it is given by an "oracle"), it is clear that the computational complexity of
the algorithm is determined by (1) the total number of calls to the oracle and (2) the iterations

required by the jr bisection calls which will compute the isolated roots.

4. The expected complexity of the algorithm. In this section we study the expected
complexity of algorithmfind_roots. First, we focus our attention on the number of times the
number of roots has to be found in a given interval, i.e., the average number oforacle calls as
this is the most demanding step of the localization phase. The rootfinding phase is dominated
by the average number of iterations of the bisection method.

4.1. Preliminaries, definitions, and notations. The study presented here follows certain
assumptions:

(i) The size of the problem is the total number of roots of f(x) in (a, b).
(ii) We view each root of f(x) as a random variable having a given distribution in

(a, b). All roots are considered as pairwise independent variables having the same
distribution. In this paper we assume that the distribution is uniform; i.e., it is equally
likely for any point in the interval to be a root.

(iii) The study of the expected complexity of the algorithm is over all possible inputs
to the algorithm, that is, over all possible sets of n points in the interval (a, b) and,
consequently, independent of the given function.

Assumption (iii) implies only partial knowledge of the properties of the specific function
(the distribution of its roots), which may vary from complete ignorance as to whether the roots
lie (our case) to full knowledge of the roots if the properties of the function are known. Hence,
the analysis is independent of the specific function which merely serves (through Picard’s
integral) as an "oracle" that reveals the number of roots in a specific interval. This models
real life applications where some physical quantity is of interest whose zeros are statistically
independent with known(or suspected) distribution. It is indeed intermediate cases ofthe form
"the roots are expected around the center of the interval" that are really the most interesting
since this type of knowledge may "tune up" appropriate algorithms that take into account the
additional information and perform better. It is also worthwhile mentioning that the same

analysis applies to any method that isolates the roots by repeated subdivisions of the intervals,
independently ofhow the oracle is implemented (a good example is interval analysis techniques
for which the main result of 4.2 is a lower bound). In this paper we completely ignore possible
properties of f (x) and solve the following combinatorial problem, leaving the more complete
study for future research:

Find the expected number oforacle calls that algorithm find_roots will require in order to

isolate all n points which are randomly and independently chosen with uniform distribution.
In other words, we want to find the expected value (over all possible patterns of appear-

ances of n roots in the interval I0 (a, b)) of a function H which, given a specific pattern
of roots in the interval, returns the number of oracle calls required to isolate each root in a
subinterval (a formal definition follows). Since, however, this function is noncontinuous and
we want to avoid integrating in subintervals, we adopt a simpler approach discretizing the
interval I0 (a, b) and summing instead of integrating.

We begin by giving a list of symbols and definitions that we shall need later.
Notation 4.1. Let [S[ denote the cardinality of the set S. Let [.] denote the integer part of

the number quoted. Notice that [x, y] refers to the closed interval with endpoints x and y.
DEFINITION 4.1. We call resolution ofthe algorithm a small positive real such that ifx

is a root in (a, b), any point in the interval [x , x + ] is considered to be the root x.
This definition means that as far as the algorithm is concerned, any two roots less that

6 apart are considered to be one and, as one, are reported by the oracle in (2.10). We next

consider I0 to be divided into a large number of consecutive subintervals of length 3 which
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we call elementary. Any subdivision of I0 into small intervals (as stated in steps 6 and 7 of
the algorithm, as well as any subdivision thereof) is considered to take place at points that
are integer multiples of 3. Going.one step beyond, we consider (for simplicity reasons) I0
to be rounded to the smallest integer multiple of 3, say #, such that a +/z3 > b. Clearly,
/z 0_]. Consequently, if m roots are reported by the oracle at step 14 of the algorithm,
steps 6 and 7 will divide I0 with length e(I0) into rn intervals Ii, 1 rn such that

,a+3 i=1 2 rn

In the above we adopt the convention that all subintervals be open from the left and closed
from the right, thus avoiding a point belonging in more than one subinterval at each level
of subdivision. Unifying these conventions, we consider the initial interval I0 to be I0
(a, a +/z].

The above discretization suggests amore convenientway ofrepresenting intervals, namely,
as sets of the elementary consecutive subintervals which are included in them. More specif-
ically, consider assigning to each elementary subinterval of I0 an integer from to /z in
increasing order from left to right. This suggests representing I0 by the set of consecutive
integers To {1 6 N: < </z}. The representation of a subinterval li is

Ti- leTo" (i-1).m8 j+l_</< m8

Analogous relations hold for any subinterval of I0. For our study, To is the sample space with
each of its points a candidate of being a root. In the sequel we shall use the term "interval"
both for a standard interval I and its corresponding T set when no confusion arises. Similarly,
extending Notation 2.1, we denote by e(T) the length of the corresponding standard interval
I.

In the analysis that follows we shall denote by X a variable representing a set of integers
(or, for our purposes, a set of roots). If X C T/, X is any set of elementary subintervals, i.e.,
a set of integers in/). In the context described above, the probability of a set X of cardinality
k, denoted by Prob{X}, is the probability of choosing the k elementary subintervals that
correspond to the k roots. For example, if the distribution of the roots is uniform, then the

probability of a specific X set is (11) -1 Using the above, we are now ready to formally define
the function H.

DEFINITION 4.2. Let S be the set of all subsets of To. The function H: X S --+ N
maps X to the number of oracle calls that the algorithm will do in order to isolate the roots
represented by the set X. Similarly, we define the Hfunction relative to an interval T denoted
by HT(X) and which gives the number oforacle calls that the algorithm will do in the specific
interval T; that is, in the latter case we only count oracle calls requiredfor roots inside T.

Remark 4.1. If the interval To is divided in mn subintervals, T/, 1 mn, the number
of oracle calls in To is clearly HTo 1 + im_n_l Hri ’21 Hrs. The "1" comes from
the initial oracle call which returns the number of roots in To and the "-1" from the fact that
no oracle call is required to obtain the number of roots of the last interval since this can be
obtained by subtracting from the total number the sum of the roots in the rest of the rnn 1
subintervals. The same relation holds for the value of the H function of any interval. Note
that here we assume that all mn 1 oracle calls will be required in the while loop of step 5.

4.2. Theoretical results. We now study the expected behavior of our algorithm begin-
ning from the first stage, where the roots are isolated each in an interval by its own. Specifically,
we study the expected number oforacle calls required for this task as a function of the number
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of roots n. Observe that the number of intervals into which we choose to divide can be either
constant or a function of n. By n we denote the total number of roots in the given interval (n is
the .Afd of step 14 of the algorithmfind_roots.) In any case, deciding the value of mn is based
only on n, and this is the reason why we denoted the number of subdivisions subscribed by n.
As stated in Remark 4.1, the approach that follows assumes that all mn 1 calls are required
in an interval which is divided into mn subintervals. This is equivalent to replacing the while
statement of step 5 by the statement while j < mn do. This is done for simplicity reasons and
it is removed after the next theorem is proved.

THEOREM 4.1. Suppose that the algorithmfind_roots divides any interval To with n roots

into mn subintervals Ti, 1 mn. Then the expected number oforacle calls required by
the algorithm to isolate all n roots is given by theformula

(4.1) En(n) mn

or, equivalently,

(4.2) Ei(n) Z kl ... mn-n El4(kl) +’" + EH(kmn)
kl +" "-t-kmn "-"rl

where E/4(0) E/(1) 1.
Proof We shall show first (4.2). Clearly, E4(0) E/4(1) since, when no root or a

single root is in To, then only one oracle call is required. For n >_ 2 let Xi, mn be
the set of roots that lay in interval T/. Clearly, ]Xll 4-... 4- Xmn -.r.n. The distribution of the
corresponding vector of the cardinalities of the Xi’s (IXll IXm, I) is polynomial; that is,

n
(4.3) Prob{IXll kl IXmnl km mn-.

kl! "kmn!

This is immediate since Prob{some specific root lies in T/} mn-1 because of the uniform
distribution of theroots in (a, b).

Let X1 to X2 tO... tO Xmno By Remark 4.1 we have

H(X) HI (X1) 4- Hv (X2) 4-... 4- HTmn (Xmn).

Taking the expectation [6] of both sides of the above we have

(4.4) E{H(’)} E{HTt (Sl) + H2(X2) +... + nm, (Xmn)}

E E{HT, (Xl) 4- HT2(X2) 4-"" 4- nZmn (Xmn) IXal kl IXmn kmn

where the outer expectation is over all sets X tO" .UXm, such that IX11 kl, Xm,
km, with kl 4-’" 4- kmn n. Now, the expectation of Hz (Xi) where Xi runs over all possible
choices of sets in T/with IXi[ ki depends only on the cardinality ki of Xi. We may, therefore,
simplify our notation and denote by En(ki) the expectation E{H (Xi)}. Note that we have
also dropped the subscript T/ since the expectation does not depend on the specific interval
either, as the distribution is uniform. Using linearity in the inner conditional expectation and
the above observation we get

EI4(n) E { EI4(ka) 4- 4- EI(kmn) lxll kl ]Xmnl kmn}
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Using (4.3) we finally obtain

Et4(n)
kl

mn En(k) + + En(km,)
kl +’"-JI-km =n

In order to show (4.1), observe that the above equation may be written as

k=0 k+...+ki_ kl ki-1, ki+l km
+ki+ +’"+kmn =n-k

mn- +... + Et(k),
k=0 mn

where mn fractions are added. Equation (4.1) now follows easily. [3

Remark 4.2. Solving (4.1) with respect to EH (n) results in the following formula which
can be used to obtain numerical values for EH (n)

E(n) (m."-’ -1)- Z (m,- 1)’-’En(k).
k=O

An interesting question is raised as to whether we can remove recursion from (4.1). It
turns out that recurrences of the above form are very difficult to handle. We were unable to do
so in the general case, that is, when m is a function of n, or even in the case m n, which is
particularly interesting. However, when m is constant, we reduced (4.1) to a known recurrence
solved in 18] by the use of binomial transformations. This is done by finding a recurrence
for the sequence E(k) EH(k) 1, k 0, 1 By employing the techniques described
in 18, p. 501 we can show that for n > 2

(4.6)

Observe that m is referred to without a subscript since the above hold when m is a constant.
We conclude the study of the first phase by examining the complexity of the algorithm

find_roots as stated originally, that is, when step 5 includes the condition k < N"r. Then we
may be able to save several oracle calls if all the roots fall into the first few intervals and,
consequently, it is unnecessary to call the oracle for the rest of the intervals. In order to
calculate how much we overestimated the expected complexity in Theorem 4.1, observe that
in (4.4) the expectation is over every possible X with cardinality n. But if X totally falls in
intervals T to T/, algorithmfind_roots will not require oracle calls for the lastm intervals.
sO the expectation was overestimated by (m i) x Prob{J totally falls in intervals T to T/}.
For example, when J is totally included in the first interval, then a term (--1)n (m 1) mustmn
be subtracted. Similarly, an additional (m 2)(()" () must be subtracted when 2
is totally included in the first two intervals. The subtracted --) is the probability of tomn

) (mn 1). Hence, wefall totally in the first interval and was already counted in the term (m-7
must decrease (4.1) by

mi
n i--

(ran i)-
mn mn’= i=1

We, therefore, have the following theorem.
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THEOREM 4.2. The expected number oforacle calls ofalgorithmfind_roots is given by

1-n Z(4.7) EH(n) mn (mn 1)n-lCEH(k)
k=0 i=1

Proof. The proof follows immediately from Theorem 4.1 and the above discussion. [3

We next proceed to the study of the second phase of the algorithm when all the roots have
been isolated, each in its own interval. This second phase consists of a number of bisections
that are applied in those intervals. Our task, therefore, requires the definition of a complexity
function that will capture the actual work of the second phase, like the H function defined
above. A promising approach might be to use the average length of the n intervals that are
searched by bisection. (Note here that we are talking about the average length of the intervals
of a specific run of the algorithm and not over every possible run. Should we accept this
approach, we must next calculate the expected average length of the intervals.) But there is a
subtle point here. The actual average case work of the bisection is logarithmically related to
the length of the interval in which it is applied (see 2). This means that if we want to estimate
the work of the second phase, the average (the arithmetic mean, to be precise) length of the
intervals is not the best measure. In fact, it is not difficult to see that the geometric mean is
a quantity proportional to the total number of iterations required. Seeking for an appropriate
complexity measure we give the fo!lowing definition.

DEFINITION 4.3. Let X be the set.of roots and T any subinterval of To. We denote by
SP[T; J] the set ofsubsets oft into which the algorithm will divide T and that include one
element of X.

In other words, SP[T; J] is the set of subintervals of T produced by the algorithm each
containing a single root and to which bisection must be applied. Observe now that the total
number of iterations IT, involved in phase two, is given by

reSP[To;2l

The above formula has the disadvantage that it involves the absolute length of the intervals
that remains after phase one, which makes it inappropriate for a recursive relation. By a slight
modification we get the following relation which, contrary to the above, involves the relative
(with respect to the initial interval To) lengths of the intervals:

(4.8) IT Z
T6SP[T0;2]

log2 i-0 + nlog2 (e(T0)e ).

Observe that if we manage to estimate the average value of the sum, then finding the expected
number of iterations is a trivial task. Therefore, we focus our attention to this sum which we
call the "characteristic complexity function of phase two" and define it as follows.

DEFINITION 4.4. Let X be a set of roots in a specific instance of the problem. The
"characteristic complexityfunction" ofphase two is defined by

B(J) lg2 [T___[
TSP[To; J] IT01

Similarly, we define the function B relative to an interval T and denote it by Br, to be

Br,(3?) log2
Zl

TeSP[T’;2I IT’I

Our next task will be to calculate the expected value of B.
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THEOREM 4.3. Suppose that the algorithm divides an interval To with n roots into mn
subintervals. Then the expected value ofthe characteristic complexityfunction is given by the

formula

(4.9) EB(n) mn

or, equivalently,

(4.10) EB(n) Z kl
mn-n E(kl) 2(_... _+_ EB(kmn) n log2 mn,

k +.. "’-]-kmn =n

where E(0) E(1) 0.

Proof First observe that E (0) 0 since SP[T; 0] 0. Also, EB (1) 0 since
when only one root is in an interval, the whole interval must be searched by the bisection.
For any n > 2 let, as in Theorem 4.1, Xi, mn be the set of roots in intervals
T/, mn, respectively. Also, let X be the total set of roots in To. Then

B(X) log2
TI log2

TI
TSr’tTo;,1 lTo---- 1-o1 -+-"" q- log2

ITI
ZZp[Zl.Xl ZZp[Zmn.Xmn] IZol

TI km log2 mn,log2 [T11 kl log2 mn -Jr-’"-b Z lg2
IT]

ZuzZp[zl;gl] ZZp[Zmn.Xmn] IZmn

where kl kmn are the numbers of roots in intervals T Tmn, respectively. Conse-
quently, under the above assumptions

(4.11) B(2) BT, (X1) -- BT2 (X2) -Jr-... -- BTmn (Xmn) n log2 mn.

The key observation in (4.11) is, once again, that the expectations of the B functions are
independent of the intervals in which they are applied and depend only on the cardinalities
of the corresponding X set. Moreover, the subtracted term n log2 mn is independent of the. X
sets. Hence, by taking the expectations of both sides of (4.11) we may apply the same line of
thought as in Theorem 4.1 and obtain (4.10). Proving (4.9) is then completely analogous to
proving relation (4.1). [

Remark 4.3. Solving (4.9) with respect to E(n) we get the following formula which
may be used to obtain numerical values for E (n):

(4.12) E(n) ()(mnmnn-1
k=0

1)n-lOEB(k) nmnn-llog2mn.

COROLLARY 4.4. The expected number of iterations required by the algorithm in order
to compute all n roots is given by theformula

(4.13) IT EB(n) + nlog2 (g(T0)e-l).

Proof. The proof follows from (4.8) and Theorem 4.3. E(n) must be computed from
(4.12).
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FIG. 1. Thefunction (5.1)for c 0, a -100, and b 100.

5. An example and numerical applications. We illustrate our method and analysis on
a parametric problem based on a well-known function also studied in [10]"

(5.1) f (x) Jo(x) + J1 (X) -+- C,

where Jo and J1 indicate the zero-order and first-order Bessel functions [26], respectively, and
c a constant, where

oc 2k+n
(5.2) J.(x) (-) (x/2)

n -0,
=0 k!(n + k)!

Function (5.1) was selected as this and related functions attract the attention of several re-
searchers. Moreover, it possesses some nice properties which make it especially suitable for
our purposes. It has a large number of roots which means that arbitrarily large rootfinding
problems may be generated, restricted only by the boundaries of the interval. Also, the roots
of the function are within a small neighborhood almost equally spaced, which, in turn, results
in a performance of the algorithm close to that predicted by the analytical estimations. Finally,
as it is obvious from Figure 1, by varying the constant c we can, in effect, raise or lower the
function relative to the x-axis and, consequently, "move" the roots toward one end of the
interval and study the results in the performance of the algorithm. We applied the algorithm
find_roots for various intervals in order to compute the corresponding roots. The behavior of
the algorithm for the extrema is analogous.

Using the relations

J(x) J1 (X),
(5.3)

J; (x) Jo(x) l_. J1 (x),
x

we are able to find the derivatives used in (2.10) as functions of Jo(x) and J1 (x) which, in
turn, may be computed using, for example, the routines of [26].
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TABLE
Computer runs and behavior of the algorithmfind_rootsfor various instances of the problem.

Function a b ./’r OC IT EOC EIT
Jo(x) -t- Jl(x) -1000 1000 636 636 26712 1027.9 25438.4
Jo(x) + Jl(x) -100 100 63 63 2646 101.1 2521.5
Jo(x) + Jl(x) 0 100 31 31 1302 49.3 1241.9
Jo(x) + Jl(x) -0.125 -100 100 50 67 2194 80.0 2018.0
Jo(x) J1 (x) 0.125 0 100 25 32 1205 39.6 1009.4
Jo(x) + Jl(x) -0.125 0 200 25 40 1611 39.6 1034.4
Jo(x) + Jl(X) 0.125 0 300 25 43 1760 39.6 1049.1
Jo(x) + J(x) -0.15 -100 100 34 50 1522 54.2 1392.4
Jo(x) J1 (x) 0.15 0 100 17 25 933 26.7 696.2
Jo(x) + J (x) 0.15 0 200 17 29 1202 26.7 713.2
Jo(x) -t’- J1 (x) 0.15 0 300 17 31 1302 26.7 723.1

Using bisection for this kind of problem has the advantage that only signs need to be
computed, which can be achieved by considering relatively few terms of (5.2).

The results for locating and computing all the zeros are summarized in Table 1. The
columns labeled a and b indicate the endpoints of the searched interval; the columns labeled
N"r, OC, and IT show the number of computed roots within (a, b), the number of oracle calls,
and the number of iterations required by the algorithmfind_roots, respectively. The two final
columns EOC and EIT indicate the values of (4.7) and (4.13) for the same parameters.

As it is evident from Table 1, the predictions from (4.7) and (4.13) are closer to the actual
performance in the cases where the pattern of the roots has a certain degree of "asymmetry"
that captures the possible variations from uniformity.

6. Discussion and open problems. Let us now focus our attention on the results of 4
and discuss the expected behavior of the algorithm as described by (4.7) and (4.12). The first
equation describes the behavior of phase one of the algorithm as a function of n, the number
of roots. In Figure 2 we plot (4.7) for various values of mn, the number of subintervals in
which we divide. It is clear that the expected number of calls decreases when we decrease the
number of subintervals with a minimum reached for mn 2. An interesting choice seems to
be mn n since the curve for this case remains close to the curve of mn 2.

The reverse holds for the number of iterations of phase two which is plotted in Figure
3. There we plot (4.12) since this is actually the expected number of iterations "saved" by
this method (this is represented by the negative sign of the E, values) compared with n
bisections on the interval To. When the actual number of iterations is desired, then the term
n log2 ((T0)e-1) must be added. It is clear, therefore, that what we save must be compared
with this last term. Figure 3 shows that the saved iterations grow roughly like -10n (for
m 2). The added term depends on the quantity (To)e-1. Assuming a value of 1012
reasonable for this term, i.e., 12 significant digits (this corresponds to 12 decimal digits for
the normalized case (T0) 1), we see that the added term grows like 40n. Hence, we save
about 25% of the iterations. Less demanding accuracy, for example, for (T0)e-1 106,
results in a savings of about 50%. (At this point one may wonder whether the negative part of
(4.13) exceeds, in absolute value, the positive part for suitable (T0) and e. This is not the case
since the analysis above presumes that each subinterval is greater than e, the desired accuracy.
Hence, (4.13) holds for sufficiently small e.)

It is clear, therefore, that the total complexity of the algorithm is a combination of the
complexities of phases one and two. A central issue is the choice of m:. phase one requires
small m, if possible two, but phase two requires large m. A reasonable choice (which is also
the one proposed in the algorithms) seems to be m n.
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FIG. 2. Expected number oforacle calls by virtue of (4.7)for various values ofmn.
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FIG. 3. Expected number ofiterations saved by virtue of (4.12)for various values ofmn.

Every "real life" estimation, however, heavily depends on the way the "oracle" is imple-
mented. The central part of (2.10) is clearly the integral. If the integral can be implemented
in a nontime-consuming way (for example, when the analytical form can be found or an effi-
cient numerical method can be applied), then phase one will be less demanding and we must
concentrate on phase two by increasing the m, value. If, however, this is not the case, then
probably small values of m, would be preferred. In any case, the integral must be computed
with an error of, at most, 0.5 since it is. known that (2.10) returns an integer. This suggests
that relatively few function evaluations will be necessary. And, most importantly, the imple-
mentation of the oracles for the subintervals can take into account the function evaluations
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that have already been computed for the oracle of the divided interval. This last observation
suggests that numerical values should be stored and reused for the oracles of higher levels
of subdivision. Such an approach could dramatically reduce the total number of function
evaluations for the oracles implementation. The full exploitation of this idea and the trade-off
between phases one and two will be presented in a future publication.

Several other open problems remain to be examined in different directions. A first direc-
tion is to apply the method for more general distributions of the roots. This will, first of all,
broaden the class of problems for which the analytical estimations apply. Next, one may apply
the same techniques and derive complexity bounds for other methods on the same problem
along the lines of Theorems 4.1 and 4.3. But we also feel that there are several things to be
examined here in the algorithm itself. For example, if we expect the roots to be concentrated
around the middle of the interval, then clearly more refined subdivisions must take place there,
while close to the boundaries the subdivision can be sparser. That is, we believe that the al-
gorithm itself can be guided if the distribution of the roots is known, in order to improve its
performance. Results on this direction will be reported in [12].

Furthermore, preliminary investigations suggest that the algorithms can be generalized
to higher dimensions to locate and compute with certainty all the simple roots of equations
F(x) (0, 0. 0) where F (fl, f2 fn): (a, b) C Rn --+ IK, as well as all the
extrema of functions f: (a, b) C IR --+ R.

Finally, we would like to point out the possibilities of efficient parallelization of the
algorithm, thus exploiting the tremendous capabilities of modern parallel computers. This
opens a totally new subject where all the discussed problems should be reexamined in the light
of massive parallelism.
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ON WEAK RESIDUAL ERROR ESTIMATION*
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Abstract, A general framework for weak residual error estimators applying to various types of boundary value
problems in connection with finite element and finite volume approximations is developed. Basic ideas commonly
shared by various applications in error estimation and adaptive computation are presented and illustrated. Some
numerical results are given to show the effectiveness and efficiency of the estimators.
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1. Introduction. Adaptivity is a trend in contemporary computational science. The re-
markable advances in adaptive methodology for finite element applications since the pioneer
work by Babuka and Rheinboldt [7] have had a profound impact on practical, large-scale
computations.

There are four types of adaptivity which can be identified by the letters r (relocating
nodes), h (mesh size h refinement), p (spectral order p increment), and hp (both h refinement
and p increment). All adaptive methods require more or less a posteriori information about the
computed solution for optimizing overall computational efforts in the sense that the methods
deliver a given level of accuracy with a minimum of degrees of freedom. In essence, the a
posteriori error estimation can be regarded as the heart of the adaptive mechanism. In the
development of a posteriori error estimators, three main approaches may be distinguished
[22], [29], namely, those based on residual, postprocessing, or interpolation techniques. Our
estimators here follow the first approach.

In the first approach it has become practically standard to specify the interior residuals
in terms of the governing differential equation and to measure the boundary residuals by the
jumps in the normal derivatives on the interfaces between elements; see [3], [4], [6], [7],
[8], 11 ], 19]. The various error estimators then differ essentially in the way the jumps are
handled. In contrast, we consider here error equations (or inequalities) in which the right
side is a residual of the computed solution in weak form. It appears to be natural to call the
resulting error estimates weak residual estimators. A special case,of the estimators seems to
be first proposed by Adjerid and Flaherty in 1]. The weak residual error estimators tend to
be more widely applicable since, in many applications, the governing equation may not be
available in differential form. In recent years, there has been growing evidence, in theory as
well as in application, showing the promise of the use of weak residual estimators; see [1],
[2], [9], [21], [25].

This paper attempts to give an overall view of the weak residual error estimation in con-
nection with the adaptive process, different numerical methods, and various types ofboundary
value problems. The numerical schemes of particular interest belong to two families of widely
used methodsnthe finite element method (FEM) and the finite volume method (FVM). All
estimators presented here can be extracted to two basic components which are weak residuals
and complementary finite element (FE) spaces. Two types of complementary spaces can be
classified. One is the conforming type which together with the original FE space preserves
the continuity across adjacent FEs. This in turn corresponds to an elementwise error esti-
mation using error residuals only interior to elements. The estimators used in [1], [2], [9],

*Received by the editors May 24, 1993; accepted for publication (in revised form) April 24, 1995. This work
was supported in part by NSC grant 82-0208-M-009-060, Taiwan, ROC.

tDepartment of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan (jinnliu@math.
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[25] are of this type. The other is the nonconforming type which instead uses both interior
and boundary residuals for each element. It is shown in [21 that the nonconforming type is
independent of the FE order used for the computed solution, whereas the conforming type
considers more closely the effect of the order of the FEs 1 ], [8]. While this study is not com-
prehensive, we do illustrate the two components in error estimation and the adaptive process
by four model problems; namely, we consider elliptic boundary value problems, parametrized
nonlinear equations, symmetric hyperbolic equations, and variational inequalities.

In 2, the error estimators are derived in a general framework by means of abstract varia-
tional formulations. Definitions, notation, and basic ideas are then introduced along the course
ofthe derivation. Although the estimators are not restricted to any particular type of adaptivity,
we also discuss briefly a standard h-refinement strategy in two space dimensions. In 3, the
four model problems and the two numerical methods are specifically used to demonstrate how
they can be cast into the general framework. Finally, in 4, numerical results are given with
respect to each subsection in 3 to show the effectiveness and efficiency of the estimators.

2. Background and basic ideas. The aim of this paper is to offer, to the extent possible,
a global view of the use of weak residual error estimators. It is instructive to summarize some
fundamental features which constitute various adaptive methods for various model problems
considered herein.

2.1. Abstract variational problems. Let f2 be a bounded region in the plane with a
Lipschitz boundary Of2 Of2z U 0"2N and Hk (f2) and H (1-’), I" C 0, be the usual Sobolev
spaces equipped with the norms II" Ilk and]. Ir, r, respectively. Let H(f2) C Lz(f2) be a
Sobolev space equipped with the norm ]1. ]]. For simplicity, we assume that all functions
in H() satisfy a homogeneous Dirichlet boundary condition on O f2z, if any. Let K be
a closed convex subset of H(f2). Let F H() --+ R be a continuous linear form. Let
B(., .) H(S2) x H(S2) --+ R be a bilinear form such that there exist two positive constants
/3, 6 and a nonnegative constant o for which

(2.1)

(2.2)
B(u, v) < fl]]ul] ]]vll, u, v E H(f2),

(u, u) >_ allull2- llullg, u e

We shall consider a class of very general problems in an abstract variational setting: Find
u E K such that

(2.3) B(u, v) F(v) > B(u,u) F(u) ’v K.

Depending on the definition of the closed convex set K and the properties of the bilinear
form B, the abstract variational problem (2.3) can give various equivalent formulations of
problems which will be exemplified in 3. Discussions of well-posedness of the problem
(2.3), in some selective settings, can be found, e.g., in [13], [18].

2.2. FE spaces. To discretize (2.3), we introduce S a finite-dimensional subspace of
H() characterized by a mesh size h and associated with a regular, but not necessarily quasi-
uniform, triangulation 7- on S2. To approximate K, we construct a closed convex subset Ks
of S. The approximate problem of (2.3) is then to find Us 6 Ks such that

(2.4) B(us,

Our objective is to present various error formulations on which various a posteriori error
estimators assessing the exact error between the solutions u and us of (2.3) and (2.4), respec-
tively, are based. All estimators can be extracted to two basic components--weak residuals
and complementary FE spaces. We first discuss the complementary spaces.
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For the sake ofefficiency, the estimators will be based on local computations. We introduce
some local function spaces that we will require. Associated with T, let S be another larger
FE subspace of H(f2), i.e., S C . Let H(r) denote the restriction of H() to r 6 7-
and HT-(S2) l-IeT- H(r) denote the space of piecewise H(f2) functions. For instance, if
H (S2) H (f2), then HT- (f2) will be the space ofpiecewise H functions. For v, w in HT- (f2),
we define the broken L2 inner product and norm by (v, w) YeT-(v, w), Ilvll (v, v),
analogously, the broken H(f2) norm, Ilvl[ 2 Yv7 Ilvll(. Note that H(f2) C HT-(f2) C

L2() and the above definitions reduce to the usual ones whenever v, w are in H(f2). Let
be split into two subspaces S S, S C) S {0}. Let S denote the restriction of S to
r 6 T and let Sr 1--It,7- s. We shall consider in particular the splitting

(2.5) 7- S S, S fq S- {0}, Sr 7 0.

The spaces S and $7- are spaces of piecewise polynomials locally defined in each element
r in 7-. Note the inclusions C 7 C HT-(f2) and S C Sr. The error estimators given
in 3 will be calculated in the complementary space S-. We assume that the bilinear form
B can define an inner product B(., .) on 7 and with it the energy norm Iwl 2 B(w, w).
All error estimators below are measured in this norm, although, in theory, they are not strictly
restricted to this norm.

2.3. Abstract variational error formulation. Let e u Us denote the exact error of
the approximate solution us. We now derive a general formulation for the exact error in terms
of the approximate solution. Substituting u e + us into problem (2.3), we have

B(e, v) F(v) + B(us, v)

> B(e, e) + B(e, us) + B(us, e) + B(us, Us) F(e) F(us) Vv K.

Note that the bilinear form B can be nonsymmetric. By rearranging terms in the above
inequality, we can rewrite this as

B(e, v Us) [F(v
> B(e, e) [F(e) B(us, e)] Vv6 K.

The left-hand side of the inequality clearly suggests that we can define the following new
closed convex subset by translating the original convex set K with respect to the computed
solution us"

K’-- K- Us C H(f2).

Moreover, by virtue of the boundedness of the bilinear form B and the linear functional F on
H(f2), the Riesz representation theorem shows that there exists a unique linear functional G
on H(f2) defined by

(2.6) G(w) F(w) B(us, w) ’w H(S2).

We call G a weak residual in contrast to the usual formulation in which the residual is in terms
of the governing differential equation used by many authors [8], [11], [19].

The error estimation is then based on the following new variational (error) problem:
Determine e 6 K such that

(2.7) B(e, w) G(w) > B(e, e) G(e)

The reason we use the weak residual form G instead of the governing equation is twofold.
First, since us is itself an approximate solution, its second derivative, for second-order partial
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FIG. 2.1. 1-irregular mesh refinement.

differential equations (PDEs), in the sense of distribution will further incur error. Second,
for many applications, the governing differential equation may not be available, i.e., only
the integral form is available. For such cases, the formulation of error problems like (2.7) is
certainly more general.

2.4. A mesh refinement strategy. There are many refinement strategies proposed in
the literature. The error estimators presented here are not restricted to any particular adaptive
refinement. In fact, it has been shown in [21 that there is no order restriction for the FE spaces
used in the approximate solution or in the error estimation; that is, the error estimators can be
used in connection with any one of the h-, p-, or hp-versions of the FEM. In the numerical
experiments, to test our error estimators (see 4), we use in particular the so-called 1-irregular
mesh refinement strategy first proposed in [7] and later detailed in 14]. Since the refinement
scheme has been extended to include adaptive finite volume computations, we briefly discuss
its basic features.

Recall that a node is called regular if it constitutes a vertex for each of the neighboring
elements; otherwise it is irregular. Figure 2.1 shows a particular 1-irregular mesh where
irregular nodes marked by are all of index-1 irregularity, that is, the maximum number of
irregular nodes on an element side is one. In implementation, no degrees of freedom will be
associated with these irregular nodes. Hence, supports of the shape functions defining a basis
for an FE space change adaptively with mesh refinements; for example, the shaded subdomains
f26, f217, and f2el are the supports of the shape functions corresponding, respectively, to the
regular nodes 6, 17, and 21 in Fig. 2.1. The FE spaces so constructed preserve the conformality
required by the standard FE approximation provided that some special element constraint
methods are used to invoke continuity across interelement boundaries of elements of different
size and with shape functions of differing polynomial degree [14].

For finite volume approximation, control volumes have to adapt accordingly to their
dual elements. Let/ denote the dual mesh for 7-. Note that the FVM requires a control
volume for each regular node where degrees of freedom are defined. Thus, in particular, 23
control volumes in the dual mesh of Fig. 2.1 are constructed and shown, by dotted lines, in
Fig. 2.2. Notice that the pattern of the boundaries of control volumes appearing in elements
may differ element by element. This plays an essential role in the implementation since most
computations, approximations, as well as error estimations, are to be performed elementwise
before the assembling process.

3. Model problems and numerical methods. We now apply the general formulations
and the basic ideas discussed above to four model problems in connection with FEM and
FVM.
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FIG. 2.2. Adaptive control volumes.

Since the a posteriori error estimation is the heart of a complete selfadaptive mechanism,
we stress particularly various error equations or inequalities on which the error estimators are
based. Some rigorous theories of the estimators can be found in [2], [21 ].

We first note that if the closed convex set K in (2.3) is itself the Sobolev space H(f2),
then the inequality (2.3) reduces to a variational equation. In 3.1-3.3, 3.5 we will address
this equality form.

3.1. Elliptic boundary value problems. Consider the boundary value problem

Lu :-- -V. (aCx)VuCx)) + bCx)uCx) fCx) in

(3.1) Ou
u--0 on O’D, a(X)-’--g(x) on O"N.

The associated variational problem is to find u H(2) such that

(3.2) BCu, v) (f, v) + (g, V)Oau ’V’V H(f2),

where

H(fl) {u e HI() u 0 on OD},

B(u, v) "= f(aVuVv + buy)dx,

(f v)"= fa fv dx, {g, V}aau "= f gv ds.
"U

To begin with and to avoid technical details, we always assume the unique solvability of
the variational problems considered here and below. Note that we do not assume the coefficient
function b(x) in (3.1) to be strictly positive in S2, hence the error estimators to be given apply
to indefinite problems as well [21 ].

Corresponding to (2.4) and (2.7), the approximation and error problems for (3.2) are to
determine Us 6 S and e 6 H (f2) such that

(3.3) B(Us, V) Cf, v) + (g, v}OaN ’V’V e S

and

(3.4) BCe, v) -BCus, v) + (f, v) + (g, V}Oau YV HCf2),
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respectively, where the computed FE solution Us can only be assessed a posteriori, i.e., after
its availability.

Since the space H() is still infinite dimensional and the discretization of (3.4) in the
original FE space S only produces trivial estimated errors, (3.4) has to be solved in a larger
space S. However, this would cause the error calculation to be impractically expensive since
(3.4) will result in a larger system of equations than that of (3.3). Hence, the use of the
complementary subspaces appears to be natural. Nevertheless, if the subspace is chosen to
be Sc, the error calculation may involve a global solution to a system of equations. We are
therefore led to consider the complementary subspaces S- C HT-(S’2) and, consequently, to
solve the following reduced problem: Determine 6 S(ri), in each element "gi IT, such
that

(3.5) B(g, v) -B(u,, v) + (f, v) + (g, V)Oau YV Sr(ri).

Note that if S- C H(), a conforming subspace, the unique solvability of (3.5) can be
ensured as that of (3.3) and only the interior residual in each element will be used. On the
other hand, if S- C HT-(S2) but not in H(2), a nonconforming subspace, then (3.5) results
in a nonconforming solution scheme [13] and the estimation will include both interior and
boundary residuals for each element. With some moderate assumptions on the bilinear form
and the complementary spaces (sufficiently large), it is shown in [21 that the unique solvability
for such problems still holds.

As noted already, the error residuals can be expressed in either differential or weak
form. We briefly describe thedifferences between these two approaches. For more detailed
theoretical investigation we refer the reader to 11 ], [21 ].

Let E be the collection of curves which forms an edge of an element r in T. The set of
edges may be decomposed as the union of two disjoint sets E EB U EI, where EB is the set
of edges on O and E1 is the set of edges in the interior of . For each edge e in E, we define
a normal direction n ne. More specifically, n is the usual outward normal when e 6 E
while, for e 6 EI, its choice is arbitrary. Let tin, ’out be two elements sharing an edge e in Ez
and suppose that the normal n is outward from tin. Then, for x on e, the jump and the average
of v on e are defined, respectively, by

1
[V]J(X) )(X)]out- )(X)ll-in and [VJA(X {)(X)l-gou + )(X)lz’in },

Substitute u e + us into (3.1) and multiply by a test function v; then we obtain, in each
element r,

(3.6) (Le, v)r -(Lus, v)r + (f, v)r,

where Lus is defined in the sense of distributions. Now integration by parts of the left term in
(3.6) yields

(3.7) (ge, v)r B(e, v) a-n, v + a--n v
Er Er

and after summing (3.6) over all elements, we find that

(3.8) B(e, v) (f Lus, v) + g -a-n V + a--n v
ON J E1

This is the standard formulation for estimating errors used by many authors [7], [8], 11 ], 19].
On the other hand, if the term (Lus, v) in (3.6) is rewritten as in (3.7), then in each element
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r, we obtain

B(e, v)r a_-SS v -B(u, v)r + (f, v)r.

Hence a summation over all elements leads to

B e, v a -n V
F,

a -n j
[V]A) -B(us, v) + (f, v),

E1

which gives (3.4) with more general test functions v E HT-(f2) if the exact solution u is in
H2(2).

It is necessary to reuse the differential operator L when the estimators are calculated based
on (3.8). In contrast, in terms of (3.4), the same bilinear formulation (3.2) can be used in both
approximation and error estimation. This is certainly preferable, from the user’s viewpoint, in
adaptive implementation. Moreover, the formal approach can only utilize the complementary
spaces S- in a nonconforming setting while the weak residual approach may be used in either
a conforming or a nonconforming setting. Finally, in 11 ], the following saturation condition
is introduced for the spaces used in the error analysis:

(3.9) Ilu ulll + [ Ou-ul I _< p(h)211u ull2,h/2 a
On J

where u is the approximated solution (for analytical purposes only) sought in the larger spaces. It is assumed that limh-0 p 0; that is, has higher order than S. On the other hand, in
weak form, the saturation condition is as follows:

Ilu-ullpllu-u,ll, 05p<l.

Thus the condition (3.10) is somewhat weaker than (3.9) since it allows the FE orders of S
and to be equal (see, e.g., [21] and Example 4.2 below). The introduction of the jumps in
the normal derivative of the computed solutions at interelement boundaries actually forces p
to become larger and hence deteriorates the quality of the error estimator [21]. Almost all
differential-type residual error estimators [3], [4], [7], [8], 11 ], 19] require some compatibility
conditions or auxiliary local problems to overcome this intrinsic difficulty simply because the
distribution andjump terms are included in the residual, i.e., the right-hand side of (3.8). These
conditions or problems are somewhat ad hoc depending strongly on the model problem under
consideration; see the above references. The complementary spaces are essential for both
differential and weak residual approaches. With the weak residual form, one can concentrate
primarily on the construction of the shape functions of Sr, which can still handlejumps across
element boundaries (with a nonconforming setting), if they are dominant errors.

The norm II1111; --: Oi, for each element z’i E ’, is called the error indicator of the
element which assesses the quality of the approximate solution us in this element and indicates
whether the element needs to be refined, derefined, or unchanged. Summing over all elements,
the error estimator for Us can be defined by

II1111 Y]i

The error estimator can serve as one ofthe major stopping criteria for an entire adaptive process.
The quality of a proposed error estimator is usually tested by various model problems to which
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the exact solutions are explicitly known. A computable effectivity index

0=

is usually introduced to quantify the quality of the estimator and, consequently, the quality of
the approximate solution.

3.2. Parametrized nonlinear equations. Stationary problems for many scientific and
engineering problems are modeled by a parameter-dependent equation

(3.11) F(u,)) =0,

where u is a state variable, 2 is a d-dimensional parameter vector, and F denotes some
differential operator on a suitable state space. Typically, the solution set M F-1 (0) turns
out to be a differentiable submanifold M of dimension d of the product X of the state space
and the parameter space. This can be ensured, for instance, when F is a Fredholm map of
index d on X [23].

All standard discretizations of a parametrized boundary value problem (3.11) leave the
parameter vector untouched and hence approximate the equations by some finite-dimensional
system Fs(us, ) 0. Hence, under suitable conditions, we may expect the solution set

Ms F-I (0) to be a d-dimensional submanifold of some discretization space Xs. Frequently,
Xs can be embedded in X and then the discretization error represents some measure of the
distance between M and Ms in X.

Our goal now is to estimate the discretization error. There are two major issues for the error
estimation of Ms. The first issue is efficiency. It is intrinsically more expensive for nonlinear
parametrized problems than it is for linear problems. The second issue is consistency. It is
well known [23] that the parameter dependence causes the discretization error to become a
local concept which depends on the choice of the local coordinate system on the manifold. For
instance, in the continuation method, we must often fix a local coordinate system for calculating
several points on the manifold and then change the coordinate system as needed, and so on.
However, for error estimation, the coordinate system is usually fixed, [23], throughout the
entire manifold and hence is not applicable near any foldpoint with respect to the parameter
space. The main way to resolve these difficulties is to use linearization and a local coordinate
system.

At any x0 (u0,)0) 6 M, we define a local coordinate system that satisfies the following
conditions:

(3.12) X=WT, dimT=d, WkerDF(xo)={O}.

it is shown in [25] that the constrained linearized (infinite-dimensional) problem

(3.13) F(Xs) + DF(Xs)CO O, rc (CO) O,

for (3.11) has a unique solution co x0 Xs 6 W which is the exact error of the approximate
solution xs (Us,)s). Here 7r 6 L(X) is a natural projection of X onto T along W. The FE
approximation of (3.11) is of interest here. We consider, in particular, the following mildly
nonlinear problem: Find (u, .) 6 H (f2) x A such that

(3.14) (F(u,)), v) := j [a(k, )Vu Vv + g(u, ), )v] d 0 Yv 6 H0(fl),

where F X H (S2) x A --+ Y H-1 (f2) and the coefficient functions a and g are given
so that the problem is well posed.
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Apparently, the nonlinear problem (3.14) does not fit into the general variational for-
mulation given in the previous section. However, its weak residual form can be cast in the
framework of the variational error setting.

In weak form (3.13) requires the deterrnination of (w,/x) E Hd x A such that

(3.5)
(3.16)

B(w, v) + C(#, v) -(F(us, ‘ks), v) Yv e H (f2),

rr(w, t) =0,

where

B(w, v) := Ja(.a(‘ks, )Vw Vv + gu(us, ‘ks, )wv) d,

c(.. .) .= .)v., v, + (gz(Us, ,ks, ) #)v) d.

At any computed point (us, ‘ks) e Ms, our a posteriori error estimates thus require the
determination of (t,/2) 6 Sr(ri) x A such that

(3.17) B(t, v) + C@, v) -(F(us, ‘ks), v) Yv S("ci)
(3. 8) zr(, ) =0.

The choice of the local coordinate system at any point x0 on .M is arbitrary as long as it
satisfies the conditions in (3.12). By definition, the local coordinate system (3.12) and hence
the constraint 7r(co,/x) 0 can change from point to point on the solution manifold. We
choose T kerDF(xo) in particular. The constraint (3.18) is then equivalent to (t,/2) 6

Ws Xs C) W which is orthogonal to the d-dimensional subspace T kerDFs(xs) of Xs
corresponding to the tangent space of Ms at the computed point Xs. If A is one dimensional and
a standard continuation process is used, then a normalized tangent vector is usually available
at each computed point. Analogously, in the multiparameter case, if a triangulation of Ms is
computedby the method of [24], then again orthonormal bases ofthe tangent space are available
at the computed points on the manifold. This uniform treatment of the a posteriori error
estimation along the computed manifold Ms avoids aforementioned difficulties. Moreover,
the introduction ofthe linear, local, solution scheme ensures that the method is computationally
relatively inexpensive.

An a posteriori error estimation has been developed for strongly nonlinear equations with
a scalar parameter in [27]. There the asymptotic exactness of a residual estimator was proved
under suitable hypotheses. Tsuchiya’s approach requires one to fix the local coordinate system
in two stages. In the first stage before the turning point, the system is defined by the natural
parameter. In the second stage when the continuation process is near and after the turning
point, the system is then rotated by 90 degrees thus allowing a more elaborate error estimate
near the turning point. In the sense of the definition of the local coordinate system, this is a
special case of our approach. Moreover, Tsuchiya’s approach requires a global solution to the
linearized residual equations for error estimation.

3.3. Symmetric hyperbolic equations. In the theory of PDEs there is a fundamental
distinction between those of elliptic, hyperbolic, and parabolic types. The theory of symmetric
positive differential equations developed by Friedrichs 17] is known for its unified treatment,
analytically as well as numerically, for PDEs that change type within the domain of interest
such as the Tricomi problem and forward-backward heat equations. In the development
of the error estimator for the Friedrichs system, we use in particular the FEM proposed by
Lesaint [20].
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An unknown p-dimensional vector-valued function defined on f2 is given by u
(u l, u2 Up) r. Let f (fl, f2 fp) T be a given p-dimensional vector-valued function
defined on f2. Let the operators L and M be defined by and consider the following systems:

2 Ou
(3.19) Lu(x) :-- E Ai(x)-ff-- + Ao(x)II f(x) for x

i=1

(3.20) Mu(x) := (#(x) (x))u(x) 0 for x

where/3 Y=I ni Ai, the ni’s being the components ofthe outer normal on 0f2. The matrices
Ai, 1, 2, are symmetric, Lipschitz continuous in x (xl, x2) for x f. The coefficients
of the matrix A0 (x) of L (RP) are bounded in f2. The matrix/z(x) of L(Rp) is defined for
x a so that the boundary condition (3.20) is admissible and the operator L is positive in
the sense of Friedrichs 17]; i.e.,

(i) #(x) +/z* (x) is positive semidefinite on 0f2,

(ii) Ker(/z -/3) @ Ker(/z ,+/3) Rp on 0f2, and

(iii) A0 + a -’=l oai >_Co1 Yx6,

where/z* and A are adjoint matrices of/z and A0, respectively, co is a positive constant, and
I is the identity matrix.

The adjoint operators L* and M* of L and M are defined, respectively, by

(3.21)

(3.22)

2 0 ,L*v(x) "= -/.= xi (Ai(x)v(x)) at- Ao(x)v(x) Vx

M*v(x) := (/z*(x) +/3(x))v(x) ’v’x 6

Let (q, g) := fa q(x). g(x) dx and (q, g) "= f0a q" gds, where q.g =1 qigi. One
variational formulation of (3.19) and (3.20) is to find u 6 (H (f2))p such that

1
(3.23) B(u, v) (Lu, v) + (u, L’v) + (/zu, v) (f, v) Vv 6 (HI())p.

For any given approximate solution u, 6 (S)p C (H (f2))p of (3.23), again analogous to
(2.7), the error estimator (3.23) can then be calculated by solving the reduced error problem:
Determine 6 (S-)p such that

(3.24) B(fi, v) (f, v) B(u, v) Vv (Sr)p.

Since the boundary conditions (3.20) and (3.22) for test and trial functions u and v,
respectively, are different, this would make it impossible to show the coercivity in a simple
manner if the adjoint operator L* were not included in (3.23). With the formulation of (3.23)
and Friedrichs’s identities 17], the coercivity is guaranteed in [20] but only in the lower-order
norm, i.e., II0, instead of the general Grding-type inequality (2.2).

3.4. Variational inequalities. In the previous subsections, in terms of abstract settings,
the closed convex set K is the Sobolev H (S2) itself. This in turn leads to variational equations
for the preceding model problems. In this subsection, we deal with variational inequalities
formulated in the general form (2.3) where now the K is indeed a closed convex subset of
H(). As we would in a typical problem, we shall now also consider the abstract minimization
problem: Find u 6 K such that

(3.25) J (u) inf J (v),
vEK
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where the functional J H(f2) --+ R is defined by

1
J(v) - (v, v) F(v),

provided that the bilinear form B(., .) is symmetric and H(f2)-elliptic, i.e., ot 0 in (2.2).
Corresponding to (2.4), (3.25) reduces to the finite-dimensional approximate problem

(3.26) J(us) inf J(vs),
Vs Ks

which, under suitable conditions on the approximate convex set K [16], [18] can be solved
by mathematical programming subject to a finite number of constraints induced by Ks.

Clearly, the variational error problem (2.7) suggests the needed formulation for error
estimation; that is, determine Y 6 K such that

(3.27) B(, w)- G(w) > B(, )- G(,) Vw K.,
where K is a complementary closed convex set of Sr under similar conditions as those of
Ks. Inequality (2.7) also suggests that a new functional can be defined in terms of the weak
residual G, namely,

1
E(W) - B(w, w) a(w).

Consequently, we have the following reduced minimization problem: Determine 6 K such
that

(3.28) E(g) inf E(w).
weKc

3.K The finite vlume element method. There are many variants of FVMs. We con-
sider specifically the finite volume element method (FVEM). As noted in [12], the FVEM
was developed as an attempt to use FE ideas to create a more systematic finite volume (FV)
methodology. The basic idea is to approximate the discrete fluxes needed in FV by replacing
the unknown PDE solution by,an FE approximation. It turns out that the approximate solution
by FVEM is in fact sought in a standard FE trial function space whereas the corresponding
test function space consists of volumewise constant step functions (zero-order polynomials).
In [10], Bank and Rose termed the FVEM the box method and showed that, under reasonable
hypotheses, the solution ub generated by the FVEM is of comparable accuracy to the solution
u generated by the standard Galerkin procedure using piecewise linear FEs. More precisely,
the a priori errors of ub and u are of the same order in the energy norm.

As far as a posteriori error estimation is concerned, there are surprisingly fewer results
available for the FVMs than for their FE counterparts. From the above observations and by
the actual implementation features of the FVEM, we can see that FEMs and FVMs do have
many important similarities in error estimation and the adaptive, process.

First of all, the FVEM solution ub is itself an element ofthe standard FE space S associated
with the regular mesh 7-. Therefore, it is perfectly all right to replace u by u in (2.6) so that
the weak residual G is now in terms of the FV solution ub. Second, since the solution ub was
computed with degrees of freedom defined at the nodal points of elements instead of volumes,
it is quite reasonable to do the error estimation on an element-by-element basis. Third, most
computations in practice are customarily carried out elementwise, including control volumes
which are constructed according to their dual elements; see, e.g., [10], [12]. Finally, it is
interesting to explore how the well-established adaptive features of FE technology can be
utilized in FV computations. In short, it is plausible to develop error estimators for the FVEM
elementwise instead of volumewise.
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We consider again the selfadjoint elliptic boundary value problem (3.1). For the FV
element approximation of (3.1), we follow, the formulation proposed in [10] which is in a
more general setting than that in [12]. The FVEM (or the box method) for (3.1) is defined as
follows: Find ub 6 S such that

(3.29)

where

?(u, ) + (b, ) (L ) w e P0(t),

OUb[1 (Ub, f) Z a f; ds,
biE bi Oil

and P0 (/3) denotes the space of discontinuous piecewise constants with respect to the control
volumes (or boxes), whose elements are zero on 0f2z). Note that to avoid a nondiagonal (and
generally nonsymmetric) matrix, b is used instead of Ub in the second term on the left-hand
side of (3.29); see [10]. Here, the tb is defined as a volumewise constant and has the same
values as Ub at vertices of T.

From the above observation, we see that the error estimator of the FV solution Ub is
proposed by determining Y 6 S-(ri) such that

(3.30) B(Y, v) --B(Ub, v) q- (f, v) + (g, V)Oau ’V 6 (’gi),

where the bilinear form B is defined exactly as in (3.5).
The FV solution Ub is obtained quite differently in the sense of the abstract setting (2.4).

Nevertheless, the error estimation based on (3.30) is still in the unifying theme presented
so far. Note also that there is no direct link between (3.29) and (3.30). It is precisely our
intention to use the weak residual error estimation. Otherwise, if the boundary integrals
/} were used in (3.30), we would then be forced to perform the estimation volumewise.
However, the theoretical investigation of the estimators would certainly involve the a priori
results concerning ub and yet remains open. Equation (3.30) is in exactly the same form as
(3.5). As a result, the error indicators and estimators can be calculated in exactly the same
way as those of the FEM. Further, the remarks made in 3.1 apply here.

4. Numerical examples. The numerical examples presented in this section correspond
with those of the previous subsections. Some examples were also considered in the places
cited. Although we intend to stress the performance (the effectivity index) of the respective
error estimators, some adaptive computational results are also presented.

There are two different types of the complementary spaces. The conforming shape func-
tions of S- vanish on boundaries of elements; consequently, the error indicators ignore in-
terelementjumps in fluxes. The shape functions for the nonconforming case arediscontinuous
across element boundaries and hence the error indicators will include both the interior errors
and the jumps in, of course, weak form.

Although most applications require only the use of conforming shape functions 1], [9],
[25], there are some cases in which this approach would fail (see Example 4.1) if the FE order
of S were not properly considered [1], [8]. We shall illustrate both conforming (Examples
4.2, 4.3) and nonconforming (Examples 4.1, 4.4, 4.5) error calculations. General algorithms
in implementing these error estimators, for equality-type problems, are detailed in [21 ], [25].
We shall present an algorithm for the variational inequalities in Example 4.4.

Example 4.1. Following 15] we consider Laplace’s equation on an L-shaped domain:

Au=0 in f2 (-1,1) x (-1,1)\(0,1) x (-1,0),
(4.1) Ou

u =0 on0f2D, =g on0f2N,
On
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where OD {(X, y) X E [0, 1], y 0}tO {(X, y) X 0, y E [--1, 0]}, O’N O"\O’D
and g is defined so that, in polar coordinates, the exact solution u becomes u r2/3 sin and
hence has a point singularity at the origin.

For our computations, bilinear elements are used to define S. Hence, by the nature of
the problem, the computed solution us is a harmonic function in each element and therefore
satisfies (4.1) on each element. This means that the errors occur purely on the edges of
elements; that is, the complementary space S- has to be nonconforming. For this, we construct
four edge midpoint basis functions defined, on the reference element z* {(, r/) I[ _<
1, Irl _< 1}, by

(4.2)
lilt (, r]) (1 2)(1 r/)/2,

3(, r/) (1 2)(1 -t- r/)/2,

2(, 7) (1 q- )(1 72)/2,
4(, r/) (1 )(1 r/2)/2.

For the p-version FEM, this type of construction for the complementary spaces can be
readily extended to high-order shape functions. For instance, given basis functions defining
S on each element, one can simply add one or more shape functions to the element by higher-
order side mode or internal mode or both (see [26]) for S. In essence, this corresponds to a
hierarchical basis method [2].

Of course, the conforming-type shape functions can still be used for this kind of problem
provided that the original space S is chosen so that the effects of the boundary residuals are
negligible. In [8] it was shown that for linear elliptic problems the discretization error of odd-
order FE solutions is mainly due to the jumps, while that of even-order approximations occurs
principally in the interior of the elements, allowing the jumps across element boundaries to be
neglected. In line with this, eight-node biquadratic FEs were used in for the approximation
while two fifth-degree polynomials were introduced for the error estimation in weak residual
form.

Figure 4.1 is a given initial mesh on the domain. The adaptive computation shown in
Fig. 4.2 is very similar to those using the code FEARS (finite element adaptive research
solver); see, e.g., [6]. Our approach however is much simpler in terms of implementing the
error indicators. Depending on the model problem, the location of singularity, the quantity
of interest (displacement, stress, etc.), and the spectral order of the FE, different extraction
expressions for an auxiliary problem associated with the model problem should be chosen
accordingly for Babugka-Miller indicators; see [6] for more details. Our error indicators are not
confined by the above effects; namely, ours do not depend on singularity and spectral order and
there are no auxiliary problems. In fact, based on the ideas in the present paper, we are able to
develop a very general and robust code which we call AdaptC++. So far, we have successfully
tested our code for linear elasticity problems, mixed-type problems, flows in porous media,
obstacle problems, Navier-Stokes equations, and semiconductor device simulation with FE,
FV, and least-squares FE methods. Among other things, one of its advantageous features is
the simplicity in implementing the error indicators which disregard input model problems and
see only a very general setting of linear and bilinear forms and boundary conditions. From the
user’s viewpoint, use of the code is even simpler partly due to the refinement scheme and the
object-oriented programming language. All numerical data presented in this section except
that in Example 4.2 were produced by AdaptC++.

Tables 4.1 and 4.2 show that adaptive computations are clearly superior to uniform mesh
reductions. For instance, if a tolerance is set to 3% ofthe relative error (r.e. Illelll the uniform
approach requires over 10 times the degrees of freedom (DOF) of the adaptive approach.
Also, the effectivity indices 0 show reliable error estimators for both uniform and adaptive
approximations.
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FIG. 4.1. Initial meshfor Example 4.1.

o.

-o 5

-i -0.5 0.5 1

FIG. 4.2. Adaptive final mesh (FEM)for Example 4.1.

TABLE 4.1
Example 4.1 using uniform meshes (FEM).

DOF Illelll r.e. 0
8 -0.284368 0.210 0.732
21 0.196695 0.145 0.801
65 0.128699 0.095 0.821
225 0.082777 0.061 0.830
833 0.052781 0.039 0.835
3201 0.033493 0.025 0.837

Example 4.2. The discussions in 3.2 are illustrated by the nonlinear boundary value
problem

-Au=leu, u=u(x,y) (x,y) 6 f2=(O, 1) x(O, 1),
(4.3)

u=O on o’3.

The weak formulation of (4.3) is given as

(4.4) (F(u,X), v).= f.(.xux -’-blyl)y -)eUv)dxdy =0 Vv e H(fl)

and we assume that ) e R1, which means that the solutions of (4.4) form a one-dimensional
manifold M.
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TABLE 4.2
Example 4.1 using adaptive meshes (FEM).

DOF
8
21
34
53
78
119
301
469
765
1024
1847

Illelll r.e. 0
0.284368 0.210 0.732
0.196695 0.145 0.801
0.135229 0.100 0.849
0.096849 0.071 0.869
0.072604 0.053 0.877
0.054446 0.040 0.905
0.031254 0.023 0.945
0.024136 0.017 0.957
0.018578 0.013 0.966
0.010675 0.011 0.973
0.011501 0.009 0.980

We use a uniform mesh, T, of 16 biquadratic elements on f2. For the computation of
the one-dimensional solution manifold Ms of the discretized problem, a continuation process
(PITCON [23]) is applied starting from (u, ;s) (0, 0), and our aim is to determine a
posteriori estimates of the error between M and Ms at all computed solutions (Us, ,ks) Ms.

In line with (3.15) and (3.16), the linearized problem at (Us,)s) Ms is to determine
(w,/z) H (f2) x A such that

(4.5) fo [11)x13x -1
I- Wyl)y )seU"wv + eU#v] dx dy

fa(UhxVx + blhyl)y- )seU"v)dxdy Yv 6 Hd(f2),

(4.6) ((w, tz), ts) =0.

As noted, the ts are chosen as normalized tangent vectors on Ms at (us,)s). Such tangent
vectors are available at each step of the continuation process and hence the equation (4.6)
involves little additional computational cost.

For local solutions each one, Z" ]", of the 16 elements of f2 is divided into m
(k + 1)2 biquadratic subelements with k 1, 4. That means that on each subelement, rij,

16, j 1 m, a bubble-shaped function l[rij (X, y) is constructed via the mapping
of the shape function

1/t(, 1]) (1 2)(1 1]
2

defined on the reference element. We thus have S(ri) span{Ttij}jm=l C H(ri) for each

element ri 6 7" and hence S- C Hd (f2) is a conforming FE subspace. The more subelements
are used, the more accurate auxiliary condition (4.6) becomes and a better quality estimator
can be obtained.

The resulting error estimates are shown in.Table 4.3, where IwL denotes the computed
error norms for the two cases of k. The computations are very cost-effectiv since each local
problem involves only a fixed number of degrees of freedom depending on the value of k. The
table also shows that, as expected, the estimated errors vary smoothly along the solution path
Ms and show no sudden increases near the limit point ) 6.804524. As mentioned earlier,
if the natural coordinate system induced by the parameter space A is chosen, then we expect
the resulting error estimates Itbl to become unduly large near the limit point. This is indeed
the case as the last column of Table 4.3 shows. At the same time, it should be noted that the
computational cost of the two approaches is practically identical.
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TABLE 4.3
Example 4.2 using uniform meshes.

9 IIIwl III IIIw4111 II1111
5.907655
6.193552
6.434373
6.620862
6.745397
6.804524
6.800451
6.740221
6.633252
6.489009
6.328924

0.017914
0.018368
0.019144
0.020640
0.023317
0.027539
0.033461
0.041066
0.050283
0.061065
0.072480

0.019054
0.019562
0.020404
0.021986
0.024787
0.029185
0.035345
0.043255
0.052838
0.064041
0.075894

0.022905
0.024439
0.027792
0.041992
0.159595
0.176171
0.086353
0.069906
0.065171
0.065099
0.067672

Example 4.3. For mixed-type PDEs, we consider the forward-backward heat equation

(4.7) xt(x, t) xx(X, t) f(x, t) V(x, t) f2 (-1, 1) x (0, 1.),

b(_+l,t)--0 Yt 6[0,1],
(4.8) 4) (x, 0) 0 Yx 6 [0, 1],

b(x, 1)=0 Yx 6[-1,0].

Note that the equation changes type as x changes sign in f2. There have been a number of
papers addressing this kind of mixed-type heat equation; for further references see [5], [28].

For our computations, the exact solution b is chosen as

q(x, t) (x2 1)tz[(t 1)2 -4x2] Vx > O, [0, 1],

4)(x, t) (x2 1)(t2 -4x2)(t 1)2 ’x < 0, [0, 1].

Denote the boundary Of by 11 U... U 176,

171 {(x, t) x 6 [-1, 0], 0},

172 {(x, t) "x -1, 6 [0, 1]},

173 {(x, t)’x [-1, 0], 1},

174 {(x, t)’x [0, 1], 1},
175={(x,t)’x=l, t6[0,1]},

176 {(X, t) x 6 [0, 1], 0}.

By a change of dependent variables,

II. (Ul)-- ( e-O’lt )bl 2 e-O.ltx
(4.7) can then be expressed in symmetric positive form

(4.9) Lu Alllx q-- Aztlt -t-- A0u f,

with boundary condition

(4.10) Mu "= (/z fl)u 0 (x, t) 6 0f2,
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TABLE 4.4
Example 4.3: Boundary matrices.

F1 0

o)1-’3 0

1"4
X 0

1"6
X 0

(; o)
x 0

-x, 0)0 0

Oot
-x 0)0 0

0 0

0

x 0

TABLE 4.5
Example 4.3 using adaptive meshes.

DOF Illelll r.e. 0
20 1.310 0.804 1.035
72 0.344 0.211 0.985
156 0.155 0.096 0.972
272 0.087 0.054 0.966
420 0.056 0.034 0.963
600 0.039 0.024 0.961
812 0.029 0.017 0.961

where

() ()() (e-O’ltf )-x -1 x Ao= O.Ix x f=A -1 0 A 0 0 1 0

/x,/3, and M are given in Table 4.4. It can be readily shown that the system (4.9), (4.10) is
symmetric positive.

The adjoint operator L* of L is defined by

L*v:=( ))Vx-( )vt+(O’lX+lx O1)v.
Now, the weak formulation corresponding to (3.23) for (4.7), (4.8) is complete.

For FE approximation of (3.23), a uniform mesh is introduced on f2 and bilinear elements
are used. On the other hand, the bubble-shaped functions

(4.11) !/r(:, r/) :(1 :2)(1/4 :Z)r/(1 -/72)(1/4 r]2)

are used to define (Sr)2. The effectivity of error estimates using (3.24) is shown in Table 4.5.
In view of error equations (3.5) and (3.24), the calculation of error indicators for the

present example proceeds in a similar way as that of Example 4.1 except that we now have, in
each element, a 2 x 2 system induced by (3.24) and by the complementary functions (4.11) for
the vector-valued functions. However, by the nature of symmetric positive linear differential
equations, the bilinear form associated with the system is coercive only in the L2 norm instead
of in the usual H norm for elliptic problems. Hence, there is no equivalence of the energy
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TABIF 4.6
Example 4.4 using adaptive meshes.

DoF Illelll e. 0
32 0.0223 ’0.1930 0.890
92 0.0117 0.1015 0.956
345 0.0053 0.0462 0.958
1489 0.0024 0.0211 0.980
5156 0.0012 0.0108 0.986
6833 0.0011 0.0096 0.987

norm found in elliptic problems. Our numerical experience has shown that the quadratic order
of the complementary basis functions used as in Example 4.1 gives rather pessimistic error
estimates. The only remedy to this difficulty seems to be to use higher order (Sr)2, e.g.,
(4.11). Note that this will not cause more computational cost, in fact, the cost is almost the
same as when lower orders are used. Apparently, the a posteriori error analysis for mixed-type
PDEs remains largely to be further investigated.

Example 4.4. Our error estimators for variational inequalities (2.3) are tested by the model
problem given in [4] with the convex set K {v(x, y) H (f2) v(x, y) > 0 and v(x, y)
g(x, y) on 0f2}, where fa (0, 7) x (0, 1) and g is chosen so that we have the exact solution

0, if (X -[- 1)2 ..[_ y2 >_ 2,

u 1 1 1
ln{ (x + 1)2 or 22] otherwise.[(x + 1)2 + y2]

2 2
The bilinear and linear forms are defined by

B(u, v) := f Vu Vv dxdy, F(v) := f v dxdy.

ALGORITHM.
1. Given an initial mesh fah on
2. Construct a convex set Ks with linear shape functions on f2h.
3. Use the Gauss-Seidel-SOR method 18] with the relaxation parameter and the rela-

tive error chosen to be 1.2 and 10-6, respectively, to obtain an approximate solution
us Ks of the minimization problem (3.26).

4. Construct the complementary convex set Kc "= {w S- C HT-(f2)and w >-Us},
where S- is defined via (4.2).

5. In each element ri, use the method in Step 3 to solve the reduced problem (3.28) for
Y 6 Kc’, which involves only four equations with four unknowns, and then calculate
the error indicator ?]i for that element. Calculate the error estimator for Us. If r.e.
> 0.01 then refine all elements with Oi _> 0.1tlmax, t]max max/r]i and go back to
Step 2, otherwise stop.

The numerical results are shown in Table 4.6.
Example 4.5. To compare FV and FE computations, we consider again the L-shaped

problem (4.1).
For any particular (1-irregular) mesh, e.g., Fig. 4.3, on f2, the FV element approximation

of (4.1) is to find ut, 6 S such that

Out,
ds O,

bB b

where the FE space S is defined as in Example 4.1. Note that the test functions defined on the
volumes bi B are equal to one.
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-i -0.5 0 0.5 1

FIG. 4.3. Adaptivefinal mesh (FVEM)for Example 4.5.

TABLE 4.7
Example 4.5 using uniform meshes (FVEM).

DOF Illelll r.e. 0
8 0.293127 0.217 0.748
21 0.199400 0.147 0.795
65 0.130269 0.096 0.817
225 0.083735 0.062 0.827
833 0.053375 0.039 0.832

TABLE 4.8
Example 4.5 using adaptive meshes (FVEM).

DOF Illelll r.e. 0
8 0.293127 0.217 0.748
21 0.199400 0.147 0.795
34 0.136928 0.101 0.852
53 0.098177 0.072 0.874
78 0.073441 0.054 0.884
119 0.055017 0.041 0.910
188 0.041540 0.031 0.930
301 0.031497 0.023 0.947
459 0.024512 0.018 0.960
749 0.018927 0.014 0.965
1188 0.014646 0.011 0.973
1801 0.011699 0.009 0.979

Corresponding to Tables 4.1 and 4.2, the data of the FV computations are shown in Tables
4.7 and 4.8, respectively. The final adaptive mesh is shown in Fig. 4.3.

Acknowledgment. The author would like to express his gratitude to the referees for many
valuable comments on the paper.
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1. Introduction. In recent years the additive Schwarz theory (cf. [12], [17]) has been
successfully used in the construction of multilevel preconditioners. In this paper we show that
it also provides a useful conceptual framework for the preconditioning of complicated finite
elements by simple finite elements on the same level.

It has long been folklore in the finite element community (cf. [2], [8]) that for second-
order problems one can use the conforming 791 element to construct optimal preconditioners
for higher-order elements. We give a transparent explanation of this folklore within the
additive Schwarz framework in our first example. For fourth-order problems, conforming
elements are C elements which are, in general, quite complicated. In our second example
we construct optimal preconditioners for such elements using simple nonconforming finite
elements. Consequently, multigrid and domain decomposition results for nonconforming finite
elements obtained in recent years become relevant even for those who prefer C elements.

For the convenience of the reader, we first give a self-contained treatment of some results
(Lemmas 1-3) from the theory of additive Schwarz preconditioners.

Let (V, (., ")v) and (Wj, (., ")wj), _< j < 2, be three finite-dimensional inner product
spaces. Let A: V ---+ V and Aj Wj Wj (j 1, 2)be linear symmetric positive
definite operators. Assume that there exist linear maps I1 W1 ---+ V and I2:W2 --+ V
such that

(1) V II(W1)+ 12(W2).

We shall denote the transpose of/j by Ij; i.e., (I w, V)v (w, Ijv)wj for all w 6 Wj and
v 6 V. Let B V V be the preconditioner of A defined by

(2) B I1a-11 + Iza11.
LEMMA 1. The operator B is positive definite with respect to (., ")v.
Proof. That B is symmetric positive semidefinite follows immediately from (2). If

(By, v)v 0 for some v 6 V, then (a-llv, I[v)w, + (alIv, Iv)w2 O. It follows that

(3) lv Iv O.

*Received by the editors November 14, 1994; accepted for publication (in revised form) April 1, 1996.
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work was supported in part by NSF grant DMS-94-96275.
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Let 6 V be arbitrary. By (1) we can write I1 wl + I21/)2 for some wl 6 W1, we 6 W2.
Then (3) implies that (v, )v (v, llWl + Izw2)v (Iv, wa)wl + (Iv, wz)w2 O.
Therefore we have v 0, and B is positive definite.

It follows from Lemma that the operator BA is symmetric positive definite with respect
to (A., ")v (or (B-1., ")v), and the eigenvalues of BA are all positive.

LEMMA 2. Thefollowing identity holds:

(4) (B-iv, v)v inf [(AlWl, Wl)WI nt- (A2w2, w2)w2] Vl) g.
v=Ii tOl +I2w2
Wl CWl,wzeW2

Proof. Let v 6 V. Then v I1Wl --12W2 for some wl 6 W1 and w2 6 W2. It follows
from the Cauchy-Schwarz inequality and (2) that

(B-iv, v)v (B-iv, 11Wl)v + (B-iv, I2//)2)V

(I o-ll), Wl)W1 -Jr- (IO-lv, W2)wz
-1/2 tB-1 al/2(A I v, A1/2wl)w1 + (Afl/ZIB-lv, 1 wz)w2

< /(I1A-{II[B-lv, B-lv)v (AlWl, wl)wl

+ /(IzAflIB-Iv, B-lv)v (a2w2, wz)w2

<_ V/(V, B-lv)vv/(alWl, Wl)w1 + (a2w2, W2)w2.

Therefore we have (B-iv, v)v _< inf [(AaWl, wl)Wl + (A2w2, t02)W2]. The opposite
inequality follows from the special decomposition where Wl A-{limB-Iv and w2

AIIB-lv.
Note that Lemma 2 also follows from the so-called fictitious domain lemma (cf. [18],

[13]). The following lemma can be traced back to Lions ([15]; cf. also [17] and [12]).
LEMMA 3. Let C1 and C2 be two positive constants such that

(5) C1 (Av, v)v < inf
V=Il Wl--I2w2
w6WI,w26W2

[(A1 wl, wl)w nt- (A2w2, W2)wz] _< C2(Av, l))v

for all v V. Then we have

)max(BA) < C and )min(BA) > C-1.

Proof We have the following identities"

(Av, V)v (Av, v)v
(6) ,max(BA) max and )min(BA) min

v#o (B -iv, v)v o (B-iv, v)v

The lemma follows immediately from (4), (5), and (6).
In applications we look for Wj, lj, and Aj such that (i) condition (1) holds, (ii) the constants

C1 and C2 in (5) are independent of the mesh size, and (iii) the operators
can be constructed efficiently.

Example 1. Let S2 be a polygonal domain in/1. We consider the Dirichlet problem for
the Laplace equation

(7) -xu=f inf2, u=0 on0.
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Let Th be a quasi-uniform triangulation (cf. [8]) of f2 and Vh be the quadratic finite
element space {v 6 H0() v]r 6 792(T) T 6 Th}. The inner product (., ")vh is defined

h2by (Vl, V2)Vh (Yp Vl (p)v2(p) + Em 1)1 (m)v2(m)), where the summation is over all the
vertices p and midpoints m. The operator A Vh Vh is defined by

(8) (A Vl, V2)Vh := fa VVl. Vv2 dx 1;1, u2 Vh.

Let Wh bethe linear finite element space {w Hd (f2) wit (r) for all T Th} with

the following inner product: (Wl, W2)Wh := Yp h2wl(p)w2(P). The operator z{ Wh
Wh is the analogue of A"

(9) (Awl, W2)Wh VWl. Vw2 dx YWl, W2 Wh.

For v Vh, let v Wh be the nodal interpolant of v. We define the subspace 9h
Of Vh to be{v 6 Vh v 0}. Let 11 Vh ---+ Vh andI2 Wh --- Vh be natural
injections. Clearly we have Vh I1 (h) @ I2(Wh). The preconditioner B of A is defined to
be B "= h2IlI + I2-I.

LEMMA 4. There exist positive constants C1 and C2, independent of h, such that

(10) Cl(AV, v)vh <_ h-2(v vI, v vl)vh -t- (VI, l)I)wh
__

C2(Av, V)Vh.

Proof. From here on we shall adopt the notation < and . The statement F < G means
that F is bounded by G multiplied by a constant which is independent of h and the functions
involved. The statement F G means F < G and G < F.

It is clear from (8) and (9) that

(11) (av, V)Vh --Ivl2 V V Vh and (w, W)Wh -Iwl2 V w WhHi (2) Hi(f2)

By the quasi uniformity of Th and a standard homogeneity (scaling) argument we have

(12) (v v)v Ilvll 2L2(a) ’v Vh.

We also have the following standard inverse estimate (cf. [8], [10])"

(13) IvlH,(a < h-lllvllg=(a Vv e Vh,

Then(ll)-(13)implythat(Av, v)vh IVll(a)< Iv vZlH(a / IvZl,<a < h-211v
v 2 + Iv 112 < h-2(v 1) Y UI)v -- (t) yl)wh Therefore the first inequalityL2(f2) H1(2)
in (10) holds.

By a standard homogeneity argument we find

(14) IIv vlllL2(a) -t- hlvlIn,(a) < hlvlnl(a) Yv Wh.

Wededucefrom(ll),(12) and(14)thath-2(v-v I)--UI)vh"-(I) l)I)wh I1) 12H(2)
(Av, V)Vh. Therefore the second inequality in (10) holds. [3

We conclude from Lemmas 3 and 4 (where V Vh, W1 f/h, W2 Wh, A1 h-2I,
and.A2 A) that the condition number of BA is bounded by a constant independent of h. We
can also define a preconditioner/ by [ "= h-2I11 + 12RI, where R is a positive definite

operator on (Wh, (’,’) Wh) such that (R- w, w)Wh (W, W)Wh ’W Wh. For example, R
can be a symmetric multigrid approximation of -1 (cf. [3]) or a preconditioner of A based on
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domain decompositio_n (cf. [9]). It is clear that (10) holds with different constants (independ_ent
of h) if we replace A by R-1. It follows from Lemma 3 that the condition number of BA
is also bounded by a constant independent of h. Of course, other higher-order CO Lagrange
finite element methods for (7) can likewise be preconditioned by the CO 791 element.

Example 2. Let be a polygonal domain in ]2. We consider the Dirichlet problem for
the biharmonic equation

(15) /k2b/ f in
On

Let Th be a quasi-uniform triangulation of f2 and Vh {v 6 H(F2) VIT 795(T) YT 6 Th
and the second derivatives of v are continuous at the vertices} be the quintic Argyris C element
(cf. [1]). The inner product on Vh is defined by

2

h2 Oa O h4 OVl Or2
(re, VZ)Vh EE h2j E vl (p) re(p) + E -n (m)--n (m)

p j=0 Iotl=j rn

for all Vl, v2 Vh, where the summation is taken over all the vertices p and midpoints m. The
operator A Vh Vh is defined by

2

ff2 O2Vl 02V2
(16) (Avl, V2)V :’-- i,j OXiOXj OXiO-jj dx V Vl, V2 gh.

Let Wh {w 6 L2(f2) WIT 792(T) T 6 Th, w is continuous at the vertices and
vanishes at the vertices along Of2, Ow/On is continuous at the midpoints, and Ow/On vanishes
at the midpoints along 3fa} be the Morley finite element space (c.f. [16]). The inner product
on Wh is defined by

0tO 0//32
(Wl, W2)Wh :--- h2 E tol (p)w2(p) if- h4 E -n (m)-ff--n (m)

p m

VWl, W2 Wh.

The operator A Wh Wh is the following nonconforming analogue of A:

(17) (wl, W2)Wh "= E
TE’Th i,j=l ’OXiOXj OXiOXj

dx VWl, 1102 Wh.

For each v Vh, let 1) Wh be the nodal interpolant of v. We define the subspace 17"h of
Vh to be {v 6 Vh v 0}. Let J f/h ---+ Vh be the natural injection. We define the map
E Wh ---> Vh as follows: (i) (Ew)(p) w(p), (ii) [O(Ew)/On](m) (Ow/On)(m), (iii)
[O(Ew)](p) 0 for Iotl 2, and (iv) [O(Ew)](p) average of the values of (Owlr)(p)
over all T Th which is a subset of the supporting,set of the basis functions at p for ]ol 1.
(Here p and rn are the vertices and midpoints of Th.)

This map E has the following properties (cf. [7]):

(18) Eto to to Wh
(19) IIw EwlI() + h21EWll-12(a) < h21wla2() VW Wh,

where the nonconforming energy norm l" ]H2() on the Morley finite element space is defined
by Iwlnz() (T Itol2(T)) 1/2"



TIMELY COMMUNICATION 1273

It follows from (18) that Vh J(rh) ( E(Wh). The preconditioner B of A is defined to
be B "= h4JJ -Jr- E-IEt.

LEMMA 5. There exist positive constants C1 and Ca, independent ofh, such that

(20) Cl(Av, V)Vh < h-4(v EvI, v- EvI)G + (drI, vl)wh C2(Av, V)Vh

for all v E Vh.
Proof. It is clear from (16) and (17) that

(21) 2 YWEWh(av v)v --II)] 2 v Vh and (tw W)wh Iwl142(7-h)H2(f2)

By the quasi uniformity of Th and a standard homogeneity argument for almost-affine finite
elements (cf. [10]) we have

(22) (v, v)v Ilvll=(a V v gh.

The following inequality is a standard inverse estimate (cf. [8], [10]):

(23)

The proof of the first inequality in (20) proceeds as in the corresponding proof of Lemma 4
using (19) and (21)-(23).

By the standard homogeneity argument for an almost-affine family of finite elements
(cf. 10], [7]) we have

(24) IIv u II=(a> + h21 vI l12(h h21VlH2(a Vv gh.

We deduce, from (1.9), (21), (22), and (24) that

h-4(v EvI, v EVI)vh + (drI, VI)wh
< h-411 v EvI II=(a / vII(
< h-4(llv v1112 2 2

< Ivl 2 --(Av v)H2 (S2) Vh"

Therefore the second inequality in (20) holds, rq

It follows fromLemmas 3 and5 (where V Vh, WI Vh, W2 Wh, 11 J,
I2 E, A1 h-4 I, and A2 ) that the condition number of BA is bounded by a constant
independent of h. We can also replace -l by any symmetric positive definite operator
R Wh ---+ Wh such that (R-lw, W)Wh (w, W)Wh V W Wh. For example, R can be
a symmetric multigrid approximation of -1 (cf. [5], [14]) or a two-level additive Schwarz
preconditioner for A (cf. [6], [7]).

Other C elements can also be preconditioned by simpler nonconforming finite elements;
for example, the Hsieh-Clough-Tocher macro element (cf. 11 ]) can be preconditioned by the
Morley finite element and the Fraeijs de Veubeke-Sander element (cf. [20]) can be precondi-
tioned by the incomplete biquadratic element (cf. [21 ]).

Remark. We assume Th to be quasi uniform in the two examples only for simplicity. If
the mesh size h in the definitions of the inner products and B is replaced by the diameters of
the local triangles, our results would hold under the weaker assumption that Th is regular.

Remark. We note that results similar to ours have also been obtained independently
in the forthcoming papers [4] and [22] and that the opposite approach of preconditioning
nonconforming finite elements by conforming ones was investigated in 19].
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COMPUTING HOPF BIFURCATIONS II:
THREE EXAMPLES FROM NEUROPHYSIOLOGY*
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Abstract. In [Guckenheimer, Myers, and Sturmfels, SIAM J. Numer. Anal., 34 (1997)] we present algorithms for
detecting Hopf bifurcations in two-parameter families of vector fields based on classical algebraic constructions. In
addition to their utility as augmented systems for use with standard Newton-type continuation methods, they are shown
to be particularly well adapted for solution by computer algebra techniques for vector fields of small or moderate
dimension. The present study examines the performance of these methods on test problems selected from models
of current research interest in neurophysiology. Implementation issues are examined and the numerical properties
of the proposed methods are compared with several alternative algorithms for Hopf pathfollowing that appear in the
literature.

Key words. Hopf bifurcation, resultant, bialternate product, neuron model
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1. Introduction. The onset of small amplitude oscillations in dynamical systems occurs
at Hopf bifurcations. The simplest version of the Hopf theorem is the following.

THEOREM 1.1. Let

(1) 2 f (x, IX), f IR x IR --+ IR

be a smooth n-dimensional vectorfield depending upon k parameters with the property that
(xo, Ixo) is an equilibrium point at which the Jacobian matrix Dx f has no zero eigenvalues
and a single, simple pair ofpure imaginary eigenvalues ;, . Assumefurther that ;, cross
the imaginary axis transversely as the parameters tx are varied. Then there is a smooth

submanifold P ofdimension k + containing (xo, Ixo) that is a union ofperiodic orbits and
equilibrium points of f

We are concerned with the numerical detection ofHopfbifurcation points. This constitutes
location of values (x, Ix) at which f (x, Ix) 0 and Df(x, Ix) has a pair of pure imaginary
eigenvalues.. Several methods for computing such points have been proposed and implemented
by various authors (for recent reviews, see [18, 24]).

To motivate the discussion that follows, we begin by considering the following planar
vector field:

(2) 2 ?" (x + y x3/3 + ),
-(x ot + fly)l?’.

This model for the propagation of electrical impulses along a nerve axon was proposed by
Fitzhugh [6] as a tractable simplification of the more complicated Hodgkin-Huxley equations
discussed as the first example in 2. Equilibrium points for (2) are points which satisfy
2 0. Hopf bifurcation points are determined by the Jacobian at the equilibrium. They
occur where the trace/3/?’ ?’(1 x2) is zero and the determinant 1 -/(1 x2) is positive.,
Thus, the determination of Hopf bifurcation points for (2) described above can be written as
the following problem:

*Received by the editors August 6, 1993; accepted for publication (in revised form) May 10, 1995. This research
was partially supported by grants from the National Science Foundation and the Department of Energy.

tMathematics Department and Center for Applied Mathematics, Cornell University, Ithaca, NY 14853
(gucken@cam.cornell.edu).

atCenter for Applied Mathematics, Cornell University, Ithaca, NY 14853 (mrm@utrc.utc.com).
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Problem (P1):

Find: (, ) and (or, 1, 9/, )

Satisfying:
g(x+y-x3/3+)

(x ot + fly)

fl/, ,(1 x2)

Subject To:
fi(1 X2) > 0.

We seek to extend the approach to detecting Hopf bifurcations in this example to vector
fields of higher dimension. We need a nonlinear system of equations comprised of the equi-
librium condition of (1) and the algebraic criteria that determine when the Jacobian matrix
has a single pair of pure imaginary, conjugate eigenvalues in its spectrum. In 11 we discuss
classical algebraic constructions for determining matrices of arbitrary dimension with pure
imaginary eigenvalues. A single equality condition and an inequality in the coefficients of the
characteristic polynomial are formulated in terms of resultants, determinants of special matri-
ces whose elements are functions of the characteristic polynomial coefficients. The equality
condition is also derived directly from the Jacobian as the determinant of a bialternate product
(biproduct) matrix constructed from the Jacobian entries. The biproduct matrix is generally
sparse and block structured. Thus, in arbitrary dimensions the nonlinear rootfinding prob-
lem corresponding to that of (P1) can be expressed in terms of the defining equations for
the vector field and the Jacobian elements alone. We note that there is some overlap in our
approach with work of previous authors. In particular, the program LINLBF by Khibnik and
his coworkers 15] incorporates a method for following curves of Hopf bifurcations based on
the resultant of two polynomials which is similar to that used here. In 11] we extend their
work by examining several variations of the resultant methods which have differing numerical
properties and derive the inequality condition that makes identification of the Hopf points
possible. The biproduct formulation is new as is the formulation of conditions under which
regularity holds.

Here we discuss the implementation ofournew methods, describe their application to three
examples from neurophysiology, and make comparisons with other approaches to computing
Hopf bifurcations. Each of the examples that we describe comes from a neurophysiological
model for the electrical activity of a neuron and each illustrates a different aspect of the
methods. In some other problems of modest size or special structure, computer algebra
programs produce curves of Hopf bifurcations analytically. However, given an arbitrary
nonlinear vector field, solving for the roots of the required system of equations is generally
infeasible in closed form. One can attempt to solve (P1) numerically and to follow curves
of Hopf bifurcation points in two-parameter families of vector fields. In [11] we show that
these augmented systems do, indeed, satisfy the properties required for use in Newton-type
numerical continuation.

Our goal in examining these algorithms has been to develop computational methods that
facilitate the comparison of biologically based neural models with experimental data. In the
first example of 2, we illustrate the application of symbolic methods to the detection of Hopf
bifurcations in the classical Hodgkin-Huxley model for action potentials of a squid giant axon.
We also use the Hodgkin-Huxley example to compare the accuracy of numerical calculations
of derivatives using "automatic differentiation" with finite difference, techniques and analytic
evaluation. The second example shows the performance of the resultant approach on a more
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complex model for the electrical activity of a bursting neuron. This model contains a pointof
double Hopf bifurcation in its parameter space. We make a detailed comparison of our algo-
rithms with other strategies for detecting Hopf bifurcations for this model. The third example
is a still larger and stiffer system of differential equations formulated as a model for electrical
activity of a stomatogastric neuron of the crab Cancer borealis. We examine the problems
caused in the detection of Hopf bifurcations by large eigenvalues in the linearization of this
model.

The paper is organized into two sections. The first section is a review of methods for
detecting Hopf bifurcations, including those discussed in 11]. The second section presents
results obtained for the three examples, beginning with a brief description of the biological
origins of each model. We conclude with a summary ofour experiments and discuss directions
for future work.

2. Review of Hopf bifurcation algorithms.

2.1. Minimally augmented systems. In this section we review strategies for detecting
curves of Hopf bifurcation points in two-parameter families of vector fields. We consider first
methods based on the algebra of polynomial resultants in families of autonomous vector fields
of the form

(3) 2 f (x, or; fl)

where f D C I x I n and fl I C I. For simplicity, we distinguish the second
parameter by considering both x (fl) and ot (fl) to be functions of ft. The Jacobian matrix of
the vector field is given by

ofj j(x, or; ) 7-(x, o;/).
ox

J defines a map from the product space of phase and parameter variables to the space of
n-square matrices, denoted by 54.

Direct methods for computing curves of Hopf bifurcation for (3) involve appending a
determining equation that vanishes when J has pure imaginary eigenvalues to the equilibrium
equations f (x, or;/3) 0. Thus, we seek a C2-smooth function g 1R x IR x IR --+ Itn+l SO

that the augmented system

(4) F(x’ ; fl) ( f (x’ ; fi)
o; fl)

vanishes at a point ofHopfbifurcation. Furthermore, we require that a point ofHopfbifurcation
(x*, o*; fl*) be a regular solution of (4).

If the characteristic polynomial of J is given by

n-1p()) c + c. +... + Cn_ + 1

then p has the nonzero root pair {)v, -:k} if and only if)v is a common root of the two equations
p()v) + P(-)0 and p()v) p(-)v). Making the substitution z and rearranging, we
construct two new polynomials. If n is even, let

(5a)
re(Z) Co -1- C2Z @ C4Z

2
nt- -- Cn-2Z

ro(z) Cl -+- c3z -Jr- c5z2 qt_ @ Cn-lZ
n-2
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while if n is odd, set

(5b)

n-3 n-1

re(Z) Co + CzZ %- C4Z
2 %’’’’ %" Cn-3Z" %" Cn-lZ-’g"

ro(z) cl + c3z + C5Z
2 %’’’’ %" Cn-2Z

Then p has a nonzero root pair {), -)} if there exists a z that satisfies

re(Z) )--0.ro(z)

Two polynomials have a common root if and only if they share a common factor. There are
several equivalent ways of determining whether two univariate polynomials have a common
root. First, the Euclidean algorithm yields a sequence of polynomials of decreasing degree
that are ideally generated by re(z) and ro(z). The last term in this sequence can be expressed
as a determinant constructed from the coefficients of two polynomials. We describe one way
to do so.

The Bezout resultant is a determinant that indicates whether re and ro have a common
root. For n even, consider the two polynomials specified by (5a). We define the brackets

[i, j] det [ c2i c2j ]C2i + C2j +

0. The Bezout matrix/3 corresponding to thewhere 0 < i, j < 7 and we take Cn 1, Cn+
polynomial pair (re, ro) is an -dimensional square, symmetric matrix with entries constructed
as sums of brackets in the coefficients ci as follows" for 1 < < j < 7 set

(6)

(7)

kmin max(0, + j n/2 1),

kma --i- 1,

kmax

(13)ij= [i + j k- l,k] (13)j
k--kmin

The only modification required in this definition for the case of n odd is that c, has the value
prescribed by the characteristic polynomial p and Cn+l is taken to be unity. We also define
the Bezout subresultants 13o and/31 as the determinants of the matrices obtained from/3 by
deleting the first column and the ith row of/3. The following theorem is proved in 11 ].

THEOREM 2.1. Let B be the Bezout matrixfor the polynomials re and ro in (2). Then J
has precisely one pair ofpure imaginary eigenvalues if

det(/3)=0 and det(/30).det(/31) >0.

Ifdet(/3) 0 or det(/30) det(/31) < 0, then p()) has no pure imaginary roots.
Table provides a list of the resultant equality and subresultant inequality conditions, as

functions of the polynomial coefficients, for vector fields of dimensions two to six.
To circumvent possible difficulties in explicitly determining the characteristic polynomial

coefficients of J, we described a method for determining whether a square matrix has a pair
of eigenvalues with zero sum directly from the entries in the Jacobian matrix.

DEFINITION. Let A and B be n n matrices with entries (aij and (bij ), respectively, <
i, j < n. Set m (n 1). Then the bialternate product (or biproduct) ofA and B, denoted
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TABLE
Resultant equality and subresultant inequality conditions required for Hopf bifurcation for vector fields of

dimensions two through six.

n
det(So), det(,S1

CO--ClC2

CoC CLC2C3 C
ClC3

(C2 C3C4)(CLC2 C0C3) qt_ ClC4(ClC4 2C0) + C0

(C2 C3C4)’ (C0 CLC4)

C0C25(C0C5 C2C3)’]- ClC(C C0C4)q" Cl (Cl + 0C3C5)

%’CLC5(C0C3 2C12) q" (C4C5 C3)(0C32 C0ClC5 + C21C4 CLC2C3)

(C13 q-COC --CLC45) (C- 1C5 t_ C2C- C3C4C5)

A E) B, is an m m matrix whose rows are labeledpq (p 2, 3 n; q 1, 2 p 1)
and columns labeled rs (r 2, 3 n; s 1, 2 r 1) with entries

(A Q) B){pq,rs} - apr aps
bqr bqs

bpr bps
aqr aqs

THEOREM 2.2. Let A be an (n n) matrix with eigenvalues (,1 ,n). Then
(i) A(D A has eigenvalues )i’)j and
(ii) 2A( In has eigenvalues i "3

t-j
where In is the n-square identity matrix and 1 <_ j < <_ n.

Substituting In into the definition of the bialternate product and solving for the elements
yields a simple formula for the entries. For the (n 1)-square matrix 2AQ In with rows pq
and columns rs the entries are given by the formula

(8) (2A(R) In){pq,rs}

-(A)ps if r q,

(A)pr if r : p and s q,

(A)pp %- (A)qq if r p and s q,

(A)qs if r p and s - q,

-(A)qr if s p,
0 otherwise.
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From the algebraic theory of symmetric matrix products described above we have a
simple necessary condition for a Hopf point: if the point (x*,)*) is a Hopf bifurcation point
for 5: f (x, or), then the (n + 1)-dimensional system

(9)
f(x*,ot*) )F(x*, ot*)

det (Dx f 63 I.[ )(x,,o,)

vanishes. However, we have not found a condition that distinguishes pure imaginary eigen-
values from real pairs with zero sum directly from the Jacobian and its bialternate products in
analogy to the subresultant criteria described earlier.

Both the determinant of the biproduct and the resultant provide augmentation functions
g that can be used in detecting Hopf bifurcations in one-parameter families of vector fields
or in applying continuation methods for the computation of curves of Hopf bifurcations in
two-parameter families. The regularity theorem of 11 guarantees that the matrix of partial
derivatives of the augmented system F 0 has maximum rank n + at points of simple
Hopf bifurcation. In 2, we discuss several aspects of standard rootfinding and continuation
methods that can be improved by taking into account the nature of the augmenting function g.

2.2. Other methods based on the characteristic polynomial. Kubiek has previously
described two direct methods for computing Hopf bifurcation points which explicitly require
the coefficients of a matrix characteristic polynomial 16, 17]. Both methods result in (n + 2)-
dimensional systems of algebraic equations which may be solved by conventional continuation
techniques. Performance of these algorithms has been evaluated on a variety of testcases, in-
cluding panel flutter and nonadiabatic tubular reactions [24], continuous-stirred tank reactions
13], and parabolic reaction-diffusion equations [23] with favorable results.

The two methods of Kubiek are based on the direct determination of the pure imaginary
eigenvalues, say )’1,2 4-/-i, of the Jacobian characteristic polynomial p. Suppose such an
eigenvalue pair exists. Then there is a polynomial q of degree (n- 2) such that

p()) ()2 + co)q())
n-2

()a + co)

_
b)n-- + A. + B

k=O

where the bi are given recursively by the formula bi Ci cobi-2 for < < n- 2 with

b-1 0. We require the constant and linear coefficients A and B to be zero; that is,

(10) (A(x, ot)) ( Cn-l-cobn-3 )B(x, or) Cn cobn-2
0

where the dependence of A and B on (x, or) has been emphasized. Thus, (10) yields a two-
dimensional augmented system which must vanish at a Hopf bifurcation point

(K1)
f(x, ot)

F(x, or, co) Cn-1 cobn-3
Cn cobn-2

Kubi6ek’s second method depends on the observation that if (x*, or*) is a point of Hopf
bifurcation with imaginary eigenvalues -t-/-i, then the matrix Jz has a real eigenvalue -co
with multiplicity equal to two. Suppose the characteristic polynomial of,12 has r eigenvalues
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distinct from -co; that is, we take the spectrum of j2 to be {-co, 1 r with respective
multiplicities {mo, m mr where (mo + m + mr) n. Then q may be written

(11) q()) () ..+. co)mo H() )k)mk.
k=0

Differentiating with respect to . we obtain

d’- rno() + co)mo-1 H(. )k
m ’t-" ) " 0). m H ) )k

m

k=0 k=0

For -co to be a double real root,

dq
q (-co) 0 (-co),

which leads to the augmented system

(K2) F(x, or, co)

f(x,
q(-co)-(-o

2.3. Other methods not based on the characteristic polynomial. Here we review
methods for computing Hopf bifurcations, which do not require the coefficients of the Ja-
cobian characteristic polynomial. Most of the methods in this category use variants of two
distinct defining equations. Our discussion summarizes the main features of these methods;
for more details see Roose and Hlavacek [22].

Suppose (x*, or*) is a Hopfbifurcation point for (2) with pure imaginary eigenvalues
and associated eigenvector u + vi. Denote E span(u, v), which is two-dimensional if J is
nonsingular. The defining relation

(Dxf col) (u + vi) 0

leads to the augmented system

F1 (x, or, u, v, co)

f (x, ot)

[Ox f] u coy

[Dx f] v at. cou

A/’(u, v)

If the same construction is applied to the matrix j2 [Dx f]2, we obtain the inflation

Fz(x, , u, o) I f(x,o)

[Dx f]2 u -+- co2u

The operator N" X -- ]2, where X is either Rn x ]Rn or Rn, is used to normalize the vectors
u and v and typically requires a fixed vector I. Precisely how is selected is a matter of
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implementation, but it must be chosen so that ’ E. Two choices for A/" have been discussed
extensively in the literature. Griewank and Reddien [9] suggested the use of

.All
(l, v)-

in conjunction with F1 and showed that both Hopf and simple quadratic turning points are
regular, isolated solutions to the system of equations. An alternative proposed by Roose and
Hlavacek [22] is to take

(v, v)

which, for chosen as prescribed above, does not admit turning points as isolated solutions.
Each of the four possible choices available by this construction can be used with standard

continuation techniques to track curves of Hopf bifurcation in two-parameter families. For
example, if we set y (x, or, u, v, co), then the kth Newton step taken to find a local root

F1 (y) 0 will require the solution of the linearized system

Yk+l Yl [DyF1 (y/)]-1 F1 (yk).

While it is possible to ignore the special structure of DyF(yk) and solve for the updated
step with LU decomposition, much faster algorithms may be obtained by exploiting the block
structure ofthe Jacobian for the augmented system. Computer software designed to implement
general-purpose numerical bifurcation techniques must be specially modified to accommodate
these special Newton-step solution methods. Table 2 summarizes the defining equations for
the direct methods described above.

3. Three examples.

3.1. Hodgkin-Huxley equations. The space-clamped Hodgkin-Huxley equations are a
system of four nonlinear ordinary differential equations that describe the electrical response
of the giant nerve axon from the squid Loligo to an externally applied current 14]. The typical
response ofthe axon to a step in the stimulus current I is characterized by an abrupt spike in the
electrical potential difference v between the intracellular fluid and the extracellular medium
called an action potential. In the Hodgkin-Huxley model this depolarization is induced
primarily by an inward flux of sodium (Na+) followed by an outward flow of potassium (K+)
ions. Other ions contribute to a "leak" current across the axon membrane. The sodium and
potassium currents are controlled by three gating variables denoted rn, n, and h, together with
parameters fi,Na, ,K, and l that measure the maximum conductances of the channels. The
resulting vector field is given by

(12)

i) -G(v, m, n, h) I,

rh (T) [(1 m)Otm(V) mflm(V)],

h (T) [(1 n)Otn(V) nfln(V)],

h (T)[(1 h)oth(V) hflh(V)]

where k stands for dx/dt and is given by (T) 3(T-6"3)/10. The other functions involved
are

G(v, m, n, h) nam3h(v Ona) -]" kn4(v f)l) k- I(V 1)
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TABLE 2
Summary of the defining equations for the direct methods discussed in the paperfor use with pathfollowing

numerical codes. Labels are used in the sequel to distinguish the various algorithms.

g. ]ln x]rn x[x] ]l

RS,RB g(x, or;/3) det(/3)(x, o;/3) 0

BP g(x, ot; fl) det ([Dx f] 63 In) 0

( [Dxflv-o)w ’[Dx f] w +JGR g(x, v, w, co, or; )
< v, w > -1

2n + 2n + 2

<l,v>

Dxf]2w-o)2w )RH g(x, w,w, ot" ) < w, w > -1 n + n + 2
<l,w>

Cn ogbn-2
2

q(-co)
2K2 g(x, o, o ) dq (-o)

and the following equations modeling the variation of membrane permeability:

Olm(V kIl((V -J- 25)/10),
tYn(V "OkI-/((V -{- 10)/10),

oeh (v) O.07e’/2,
q(x) x/(ex 1).

/m (U) 4ev/18,
/n(l)) 0.125eV/80,

/3h (V) (1 + e(v+30)/lO) -1

In the following, we use the temperature T 6.3C and parameter values for ion and
ion used by Hodgkin and Huxley 14]"

na-- 120mS/cm2,

na 115mV,
k 36mS/cm2,

fik- 12mV,
1 0.3mS/cm2,

1 10.599mV.

The space-clamped Hodgkin-Huxley equations exhibit periodic solutions that arise
through Hopf bifurcation with varying (v, I) [21]. In general, one does not expect to be
able to find explicit analytic expressions for the solutions to multi-dimensional systems of
equations, but the special structure of the Hopf bifurcation points allows us to do so. All the
Hopf data reported in the discussion which follows was computed using the Maple(C) sym-
bolic algebra package, reproduced using the same approach in Mathematica(R) and verified by
standard numerical continuation using the augmented systems denoted by (JGR) and (RH) in
Table 2 and described in 3.2.
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The Jacobian matrix corresponding to (12), tedious to derive by hand, is found easily in
Maple(R) The corresponding characteristic polynomial

3

p()) 4 .qt_ Z ci(u’ m, n, h; Vk, I) i
i=0

may be formed and the expressions required by Theorem 2.1 follow by inspection:

(13a)
(3b)

det(B) coc CLC2C3 -- c21
det(B0) det(B1) Cl .c3.

The locus of Hopf bifurcation points in the (vk, I) plane will be computed as a curve param-
eterized by v*, the equilibrium values of v. Suppose that, for a prescribed vk and I, the point
(v*, m*, n*, h*) is an equilibrium for (12). Since the equations for rh, h, and/ depend linearly
on m, n, and h,

(14) n*

Olm (V*

Uh (V*) + h (V*)

Observe that (14) is independent of I and v and have nonzero denominators. Therefore, we
obtain equilibrium values of m*, n*, and h* to be used in calculating I and v. TheJacobian
of (12) is independent of I and (13a) depends quadratically on v. Therefore, we can solve
(13a) for values v+(v*) yielding Hopf bifurcation at the equilibrium (v*, m*, n*, h*). Finally,

+(v*) into (12) gives the valuesubstitution of the equilibrium coordinates and the values vk
of I -G at the point of Hopf bifurcation. Algorithm 1 summarizes the steps required to
compute Hopf bifurcation points in the (v, I) parameter plane.

ALGORITHM 1. Procedurefor computing Hopfbifurcation points in Maple(C) given a value
for the external current I.

procedure hh_hopf

3.0 Choose v*.
3.1 Evaluate m*, n*, and h* symbolically.
3.2 Substitute m*, n*, and h* expressions into Hopf

+(v*).determining conditions and simplify to form v
3.3 Check the sign of the subresultant condition.

3.4 Evaluate G+/-(v*) and solve for I -G(v*, m*, n*, h*).

return v, m, n, h
For nominal values of the other system parameters, there is a single, connected curve

of Hopf bifurcation points in the rectangular region [-45,130] mV x [-150, 400] mA of
the (v, I) plane. Table 3 lists the phase and parameter space coordinates of 19 selected
points used for comparison in the discussion that follows. In particular, points 1 and 19
are chosen near Takens-Bogdanov bifurcations which lie at either terminus of the Hopf
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TABLE 3
Phase- andparameter-space coordinatesfor the selectedpoints in the Hopfcurve. Points through 10 lie near

a Takens-Bogdanov point at one end of the Hopfcurve. The last column shows the computed magnitude ofthe pure
imaginary eigenvalue.

-23.072
2 -23.122
3 -23.179
4 -23.257
5 -23.340
6 -23.457
7 -23.499
8 -23.529
9 -23.556
10 -23.573
11 -23.700
12 -23.422
13 -23.042
14 -22.590
15 -19.798
16 -12.032
17 -7.056
18 -6.036
19 -4.225

m n h

0.44955 0.65670 0.06213
0.45089 0.65729 0.06178
0.45239 0.65795 0.06140
0.45445 0.65886 0.06088
0.45666 0.65983 0.06033
0.45977 0.66118 0.05957

Vk I

-30.34 -100.80
-30.42 -101.35
-30.50 -101.88
-30.58 -102.41
-30.61 -102.65
-30.55 -102.15

0.46089 0.66167 0.05929
0.46168 0.66201 0.05910
0.46239 0.66232 0.05893
0.4628 0.6625 0.0588
0.4662 0.6640 0.0580
0.4588 0.6608 0.0598
0.4487 0.6563 0.0623
0.4368 0.6510 0.6550
0.3641 0.6165 0.0894
0.1923 0.5068 0.2124
0.1169 0.4290 0.3494
0.1048 0.4128 0.3829
0.0860 0.3839 0.4453

-30.47 -101.62
-30.40 -101.09
-30.31 -100.48
-30.243 -100.0
-23.112 -50.0
-15.660 0.0
-7.764 50.0
0.6947 100.0
45.629 300.0
119.294 300.0
76.506 100.0
42.543 50.0
-5.1060 0.0

Im()

0.0097
O.0664
0.0985
0.1338
0.1679
0.2153
0.2332
0.2465
0.2589
0.2673
0.5497
0.6974
0.8197
0.9316
1.3894
1.9024
1.3727
1.0091
0.0612

TABLE 4
Og OgValues ofpartial derivatives - and -Ud where g det(2J Q I4). Data is presentedfor partials computed by

automatic differentiation (AD), the adjointformula of2.4 (AF), forward differencing (FD), and central differencing
(CD). Each entry associated with a differenceformula isfollowed by the mantissa ofthe stepsize.

Meth m

AF -54.25064319001_5
CD -54.2506432
FD -54.25063

(-4)
(-6)

-7728.29850144535158
-7728.298501445353
-7728.2985015
-7728.29853

(-6)
(-8)

curve. The curve of Hopf points exhibits a narrow turning point with respect to the stim-
ulus current I near one end. Points through 10 resolve the turning point of the Hopf
curve.

We give a brief comparison of methods for computing the partial derivatives of aug-
menting functions using this example. For what follows, let y (v, m, n, h, Vk) denote the
vector of phase space variables augmented with the parameter vk and g(.) the function for
Hopf detection. We consider here the augmenting function labeled (BP) in Table 2, given
by g(y; I) det (2J (R) In). Recall that the standard Newton-type corrector step requires
the solution of a linear system, the matrix of which contains partial derivatives of the form

Oeeg(y). As in most examples, we cannot determine exactly the values of the relevant partial
rivatives at arbitrary points along the Hopf branch. Our objective here is to compare the

common techniques for computing derivatives as applied to the Hodgkin-Huxley equation
and comment on their distinguishing characteristics. The Hodgkin-Huxley equations are well
suited to this comparison because expressions for the higher-order derivatives of the defining
equations, although lengthy, may be easily formed. For example, values for the partial deriva-
tives (2J ( I4) may be computed using the adjoint formula given in [11 ]. Table 4 shows a
compilation of these partial derivatives, computed for point 14 of Table 3. In our experiments,
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the adjoint matrix was formed in a general fashion, using determinants computed using LU
factorization of appropriate submatrices.

Automatic differentiation provides an alternative to difference formulas for the calcula-
tion of derivative data. Neither symbolic algebra nor numerical differencing derivatives are
computed essentially by algorithmic application of the chain rule to a reduced (optimized)
representation of the operation sequence. Several implementations are available and the ap-
proach has been successfully tested on a variety of problems in engineering and operations
research. Data presented in Table 4 was produced with the package ADOL-C [10] using
double precision (53 significand bits, 15-17 decimal digits). The partial derivative values
computed by automatic differentiation agree with those calculated using the adjoint formula
to 14 decimal digits, as indicated by the underscore beneath the first differing digit. These
results are especially interesting because no formula for second derivative data is required,
merely a slightly modified version of the routine which evaluates the expression for g(.). In
our tests, a 16.4 Kbyte temporary storage buffer was required by the ADOL-C package for the
partial derivative calculation. This appears to be the primary disadvantage to automatic dif-
ferentiation: the storage requirements for the derivative calculations can be quite substantial,
even for relatively simple functions.

A general-purpose package for numerical pathfollowing of equilibria typically contains
a facility for computing the augmented Jacobian using finite differencing. Here the usual
caveats concerning numerical differentiation apply. Finite difference approximation is unre-
liable, especially applied to functions where accumulated roundoff error is large. High-order
formulae require multiple function evaluations. The difference in stepsize must be chosen to
properly balance the effects of roundoff and truncation error. Table 4 shows a compilation

det (2J (3 In) computed using both forwardof the partial derivatives, det (2J (3 In) and b-
(FD) and central (CD) difference formulae for the selected Hopf point. Next to each entry (in
parenthesis) is the exponent of the stepsize h which produces the numerical derivative closest
to that computed by automatic differentiation. The computed error from stepsize choices
substantially larger than h are due to truncation error; stepsizes significantly smaller exhibit
roundoff error and, finally, catastrophic cancellation.

3.2. A model ofa bursting neuron. The second example we study is a dynamical system
used to describe the electrical activity of the anterior burster (AB) neuron in the stomatogastric
ganglion of the lobster Panulirus interruptus. Based on work of Plant [19] and Rinzel and Lee
[20], the model is similar in structure to the Hodgkin-Huxley equations but more complex.
Under certain physiological conditions the AB cell produces complicated, rhythmic patterns
of action potentials. Guckenheimer, Gueron, and Harris-Warrick 12] have shown that some of
this behavior is well described by a six-dimensional system of ordinary differential equations,
referred to in "what follows as the Rinzel-Lee/A-current (RLA) model for the AB neuron.
The model is obtained from that of Rinzel and Lee [20] by a change of time scale and the
incorporation of an additional potassium ion current called the A-current.

Let x (Xl x6) 6 6 denote the vector of independent variables. Components of
this vector correspond to the physical model as follows: xl is the voltage difference across
the cell membrane; x2 is a dimensionless quantity describing the activity of intracellular free
calcium; x3 controls the activation of the delayed-rectifier potassium channel; and x4 controls
the inactivation of the sodium channel; x5 controls the activation of the calcium channel; and
x6 controls the inactivation of the A-current channel. It is convenient to define the model in
terms of exponential functions that we denote by

+ (Xl ;ct, fl) de=f (1 4- e+x,
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TABLE 5
Experimentally derived constants used in the AB cell model equations.

Subscript

-2.8714 -0.12095 -2.9841 -0.06196
2 -0.46154 -0.46154
3 "2.3714 -0.12095 -0.42143 -0.015119
4 -2.6857 -0.060476 -2.3714 -0.12095
5 -7.5 -0.15 10.333 0.16667

gNa 15’0 lzS Vna 30.0 mV
gA 8.0/zS Vk --75.0 mV
kca 0.0078 mV-1 Vca 140.0 mV

gca 0.04/zS
gl 0.0854
v -40.0 mV

The vector field describing the electrical state of the semipermeable membrane is then
given by

(Xl Vca)
JCl --gNaqg (Xl)X4 (Xl Vna) 2gcaX5 gKX (Xl Vk)

(1 -+-- 2X2)
--2gKCaX2

(Xl Vl) ga!lr32 (xl) x6 (xl Vk) gl (Xl Vl)
(1 + 2X2)

1(1-t-2x2)

23 0.8 [(1 x3) (/93 (Xl) x31/r3 (Xl)]

34 0.8 [(1 x4)4 (Xl) x41P4 (Xl)]

-.042553 Ix1 b+ (xl;

6 + (Xl; ’5, 85) --X6

where

1 (Xl) (0/1 "]- fllXl) - (Xl; 0/1, ill),

991 (Xl)
2 (Xl)

(o (x) + 7 (x))

q93 (X1) -0.1 (or3 -t- 3Xl)- (Xl; 0/3, 13),

"lrl (Xl) 4e’’+alx

l/r2 (Xl) + (Xl; Y2,

1/r3 (Xl) O.125e3+a3x,,

4 (Xl) 0.07e4+&x lP4 (Xl) + (Xl; }/4, 84).

The constants which enter these expressions through the functions b+ were matched with
the observed rates of activation and inactivation of ion channels in voltage-clamp experiments
from other biological systems. Table 5 displays the values used in the numerical tests pre-
sented here. In addition, the model contains 11 physiological parameters which describe the
various channel conductances and ion-reversal potentials. For our purposes, all parameters
but (gKca, ga) remain fixed at the nominal values shown in Table 5.

Numerical experiments for the RLA example were performed using a simple predictor-
corrector algorithm implemented in the MATLAB(R) computation environment. Given an
initial point at (or near) a solution, a sequence of points is advanced along the Hopf curve in
a two-phase process: first, an Euler predictor step is taken using tangent data computed at
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5.7

ffA

2

-0.3

-0.25 525

FIG. 1. Curve of Hopf bifurcation points in the two-parameter plane (gKCa, gA) for the RLA neuron model
computed using the Bezout resultant augmentingfunction (RB). Eight selectedpoints corresponding to the entries in
Table 6 are distinguished along the curve. The segment ofthe solution curve shown in the insert has been transformed
by a simple rotation to make the closed loop visible at these scales.

a previous solution. Then a series of Newton corrector steps is used to return the computed
point on the bifurcation set. The length of the step taken between two successive solutions is
determined by an algorithm of Georg [7], which seeks to maintain the initial rate of progress
(contraction of the objective function values) exhibited by the sequence of corrector steps at
a prescribed constant. The program design is very similar to that described by Allgower and
Georg 1 ], suitably adapted for the current problem and MATLAB(R) implementation. To avoid
the problems inherent in following Hopf curves which have turning points, we use pseudo-
arclength continuation throughout. Using the notation introduced in (4), if y (x, gIca, ga)
is the vector of independent variables parameterized by r, y(ri) is the ith Hopf solution point,
h ri+l ri is the desired steplength, and g is one of the defining equations shown in Table
2, then numerical continuation was performed using the augmented system

F(x, gKca, gA; "V)

f(x, gKca, gA)

g(x, gtcca, gA)

V (Z’i)" [y (r) -y(ri)]-h

where v(ri) is the (fixed) unit tangent vector computed at the ith solution.
Figure 1 shows the Hopf bifurcation curve computed using the Bezout resultant g

det(/3) as the augmenting equation. Eight points have been selected and enumerated for com-
parative purposes. The first labeled point is the initial condition used to start the continuation
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TABLE 6
Phase-space coordinate datafor each selected point shown in Figure 1.

-57.51974
2 -56.95448
3 -55.88832
4 -53.51959
5 -35.18183
6 -34.47902
7 -35.15696
8 -34.95203

x2

0.25087
0.26247
0.28476
0.33524
0.57398
0.57615
0.57406
0.57473

0.02357
0.02506
0.02810
0.03610
0.19477
0.20525
0.19513
0.19816

x4

0.93874
0.93262
0.91951
0.88184
0.23292
0.21286
0.23218
0.22620

x5

0.24452
0.26054
0.29251
0.37100
0.90227
0.91118
0.90260
0.90527

x6

0.32154
0.30134
0.26530
0.19570
0.01132
0.01008
0.01128
0.01090

TABLE 7
Parameter space coordinates (gKCa, gA) for each selected point shown in Figure 1. Also shown are the

magnitudes ofthe imaginary partsfor the critical eigenvalues.

2

3

4

5

6

7

8

gKCa gA IRe(;)

<10-13

IIm(,)

-0.114740 5.207732 0.00125

0.154625 3.416376 < 10-13 0.00694

0.373380 1.753603 < 10-14 0.00942

0.468639 0.552728 < 10-14 0.01049

< 10TM 0.01241
0.248306 1.797327

< 10-4 0.06766

0.235546 2.269719 < 10-7 0.02252

0.270302 0.949501 < 10TM 0.10536

0.286695 2.805522 < 10-11 0.12937

algorithm, chosen very near the Takens-Bogdanov point which terminates the branch. Points
4 and 6 are turning points in the Hopf solution curve with respect to the parameter gKca, and
point 5 marks a self-crossing of the Hopf branch that gives rise to a double Hopf bifurca-
tion point. The insert provides .a more detailed plot of the region near this degenerate point.
Table 6 displays the phase-space coordinates of the selected points while Table 7 shows the
parameter space coordinates of each selected point together with the magnitudes of the real
and imaginary components of the critical eigenvalues.

The loop associated with the double point labeled 5 in the computed Hopf curve is a
bit paradoxical. At the double point, there are two pairs of pure imaginary eigenvalues, and
continuation around the loop must transform one of these pairs into the other. The mechanism
for this transformation involves the geometry ofhow eigenvalues and eigenvectors dependupon
matrices. The set of real n x n matrices with simple eigenvalues is not simply connected.
When following a homotopically nontrivial loop in this set, eigenvalues of a matrix may be
permuted. Such an interchange happens in this example. There is a point in the (gKca, ga)
plane inside the loop of the Hopf curve at which the system has a complex pair of double
eigenvalues.

Our numerical experiments using the Bezout augmenting equation with the RLA model
indicate that the numerical computation of the coefficients for the Jacobian characteristic

5polynomial p(;) k=0 cg), using reduction from the Hessenberg to Frobenius form by
simple elimination [26], is reliable and accurate. To explore this observation further, we make
the following ansatz: since the form of the RLA equations permits the explicit symbolic
computation of the coefficients {c}g as functions of the Jacobian entries, we presume that
these expressions, evaluated in extended floating point arithmetic at an equilibrium point,
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T,Bt,E 8
Condition numbers (t2)for the Jacobian (J Dx f), the corresponding companion matrix, and the spectral

condition number sx associated with the pure imaginary eigenvalues.

tr2(Dxf)

1.0 10-2 2.8 10 5.8 10

1.7 x 10-2 2.5 x 10 1".7 x"’i07’’
1.5 10’2 2.1 x 10 8.6 ’i06’’

1.4 x 10-2 l’9x 10

2.0x 10-3 6.4x 10
4.1x10-3

9.0x 10-4 2’9x 10

9’0 10-3 1.6 10

1.210-2 4.8x 10

6.8 10

2.4 10

2.9 10

9.7’ 106.

6.2 106

are exact. Moreover, we assume that the eigenvalues and eigenvectors computed using the
unsymmetric QR algorithm are exact as well. Using these data we may evaluate how well
conditioned the Hopf continuation task is both as an eigenvalue problem and, separately, as
a polynomial rootfinding problem. The condition of the eigenproblem is equivalent to the
sensitivity of the spectrum of the Jacobian to small perturbations of its elements (J + E)
reflected in the spectral condition number

s())
yH "X

Ilyl1211xl12

where y and x are left and right eigenvectors of J, respectively, of the eigenvalue L. We expect
that, for e small, the perturbation of the eigenvalues will be less than 6 IIB112/s (.), and we
consider the eigenproblem well conditioned if s(.) is near one. The first column of Table 8
presents the spectral condition number for the critical eigenvalues of the Jacobian at each
selected point solution. Clearly, the data show that methods based on explicit determination
of the spectrum or their sums directly from the Jacobian entries should be relatively insensitive
to small perturbations to the elements of j.

Table 8 also shows 2-norm condition estimates for the Jacobian matrix and its associated
companion matrix as computedby Algorithm 1 at the selected points; in each case the reduction
results in an inflation of the condition number, but the increase is mild (at most three orders
of magnitude). Thus, the main source of instability in the computation of the characteristic
polynomial coefficients--the use of nonunitary similarity transformations in the reduction of
the Hessenberg form--is well behaved along the branch of Hopf points. We further examine
the classical error estimates of the eigenvalues to the perturbation problem (C + eE) where C
is the companion matrix associated with J and E is the matrix that contains a single nonzero
entry in its nth column (which we take to be one). Now suppose i is a simple root of
the characteristic polynomial charpoly(C) p()) charpoly(J) for < < n. A small
perturbation in the kth coefficient of p

p() + ,k .6 ._ (Ck -I" 6) k
__
Z Ci,

may be related to the resulting perturbed root by the linear estimate
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TABLE 9
Characteristic polynomial coefficients ofmaximal sensitivityfor each selected point shown in Figure 1. Data

is shownfor each ofthree problems: p(X) O, re(z) O, and ro(Z) 0 where z )2.

Pt

2
3
4

5

6
7
8

pO)

k c skO)
2 7.0e--3 8.9--2
2 6.8e--3 5.1e--1
2 6.5e--3 7.2e--
2 5.9e--3 9.0e--1

8.9
2 7.4e--4

43.7
2 2.2e--4 53.6

3.8e--5 676.5
4 1.9e-- 3.3e--

re(Z)

k c s())
2 7.0e-3 2.2e-4
2 6.8e-3 7.1e-3
2 6.5e-3 1.4e-2
2 5.9e-3 1.9e-2

2.2e-
2 7.4e-4

6.8
2 2.2e-4 4.2
4 1.9e- 6.9e-2
4 1.9e-1 1.1e-1

ro(z)

cg s(Z)
1.4e- 2.5e-5
1.3e- 7.3e-4
1.2e- 1.3e-3
1.1e-1 1.6e-3

3.5e-2
6.0e-3

1.0
-3.5e-6 163.6
1.7e-2 1.3

1.2 2.1e-2

Thus, the relative sensitivity of each simple eigenvalue of J (equivalently, each simple root of
p) to small perturbations in the coefficients of the characteristic polynomial are estimated by
the magnitudes of the n factors s given by

Sk ()i)

The first three columns of Table 9 show, for each selected point, the subscript (k), value (c),
and factor (s) for the coefficient of p upon which the critical eigenvalue is most sensitively
dependent. For example, in the case of the last point (8), a perturbation of 1% in the value of
c4 will produce a change of approximately 0.5% in the computed critical eigenvalue. These
data support the conclusion that relatively small errors in the numerically computed values of
the characteristic polynomial coefficients produce only mild perturbations in the roots of p or,
equivalently, the computed eigenvalues of J. Thus, construction of the residual polynomials
in the first method of Kubiek (K1) may be expected to be well behaved.

From 2.1, the resultant methods are based on a specific rootfinding problem, that is, to
find z ,2 which simultaneously satisfies

ro(z) C5Z
2 .qt_ C3Z -+- C1

Thus, sensitivity of the shared root to perturbations in the coefficients of the two separate
polynomials is of interest, and the sensitivity estimates computed above for p may be extended
as well to the polynomial pair (re, ro) associated with p. The last six columns ofTable 9 display,
for each selected point, the values of Sk for the shared root corresponding to the coefficient of
maximal sensitivity.

It is usual, in the discussion of Hopf pathfollowing using direct methods, to assume
that a solution (x*, or*; fl*) on a branch is known and then to proceed to describe how sub-
sequent solutions may be computed beginning with data from this point. However, prac-
tical experience suggests that frequently the task of finding one (or more) initial points is
by far the most time-consuming part of a numerical bifurcation study, especially as the
dimension of the phase and parameter spaces increases. We present a comparison of the
rootfinding convergence regions for the augmented systems based on the Bezout resultant (la-
beled RB in Table 2) and the iterative eigensubspace method (JGR) for the RLA model.
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The Bezout resultant is well defined at any point in the product space ]t6 ]2, and all
the information required to begin a corrector sequence at (x0 0 g0A) may be derivedgKca
from the linearization of the vector field at that point. This is not the case for the (JGR)
system, which requires estimates for a basis {v, w} of the eigenspace associated with the
pure imaginary eigenvalue +coi and a vector not in span {v, w}, The intuitive choice is
to use seed values v0, w0, coo, and based on the complex elements of spec(J) with the
smallest real part. However, this eigenpair may not become critical for nearby values of
(gKca, gA) and an incorrect choice can bias the starting conditions away from the solution
manifold, requiring many Newton steps to compute a solution, if convergence is achieved at
all.

We explore this possibility in a small region of the (gKca, gA) parameter space to the
right of the double Hopf point in Figure 1. Two segments of Hopf bifurcation (referred to as
the upper and lower branches in what follows) intersect at the double Hopf point. The RLA
vector field has a single equilibrium for each choice of (gKca, gA) in this region; moreover,
the spectrum of the Jacobian for each such choice contains at least one complex eigenvalue
pair. Since the rate at which the two pairs of complex eigenvalues cross the imaginary axis
is very different, the intuitive choice is "correct" only in a thin band above the lower Hopf
branch. If a Newton corrector is applied to choices for (gKca, gA) in this parameter region, the
results reflect the underlying structure in the spectrum Of the equilibria, as shown in Figure 2.
The lower plot shows data collected using the augmented system (JGR). A 75 x 75 point
grid was established over the two-parameter regime. For each point in the grid, the unique
equilibrium was found and the complete spectrum was computed. The complex eigenpair
closest to the imaginary axis was used to compute starting values for the augmented variables
and Newton’s method was used to solve the nonlinear systems with g(.) chosen as in the
(JGR) system of Table 2. The convergence criterion used was III)FII < TOL, where D
was a constant diagonal-scaling matrix chosen to equilibrate the disparate magnitudes of the
various components in the objective function. If convergence was not achieved within 30
Newton steps, the trial was considered a failure. Successful trials are labeled with a triangle
if they converged to the upper branch, a circle if to the lower branch. Thus, the plot shows the
ultimate fate of a choice (gKca, gA) given perfect information for the Jacobian at the starting
conditions.

As expected, the set of converged initial conditions divides the parameter grid into roughly
two parts: those which converge to the upper branch and those to the lower branch. Below the
lower branch, the Jacobian has one complex eigenpair and computing the initial augmented
variables based on the spectrum at the gridpoint is usually successful. In between, the dividing
line occurs along the locus of intersection for the real parts of the two eigenpairs. Since
this locus occurs very close to the lower branch, a disproportionate fraction of successful
trials starting near the lower branch leave the neighborhood of the nearest Hopf bifurcations
U. Instead of correcting the errant starting conditions for v0, w0, coo, the Newton sequence
"corrects" the phase and parameter coordinates. In this example, computing v0, w0, coo for
starting conditions very near the lower branch using the "wrong" eigenpair still frequently
results in a converged solution. In the general case, there is no reason why the delusive
eigenpair need cross the imaginary axis at all; indeed, such a situation would typically be
expected to result in convergence failure.

The analogous experiment was performed using the Bezout resultant g det(B); the
results are displayed in the upper plot of Figure 2. Again, the parameter region is divided
by points which converge to the upper and lower Hopf branches. In this case, however,
the distribution is more even. In particular, the lower branch exhibits a robust convergence
neighborhood. Aband ofinitial conditions which do not result in successful Newton sequences
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9A 9A

-0.544 -0.544

O.266 9KCa 0.305 0.266 gKCa 0.305

FIG. 2. Convergence dataforNewton’s method in a neighborhood ofHopfbranches in the (gKCa gA parameter
plane. The left plot shows datafor the Bezout resultant (RB) as the augmentedfunction; the right plot shows datafor
the method ofJepson-Griewank-Reddien (JGR). Triangle symbols show initial conditions which ultimately converge
to the upper Hopfbranch while circles indicate convergence to a lower branch point.

appears between the two Hopf branches, a zone outside the region of local convergence for
Newton’s method for any point in F. Such a failure zone is expected for any choice of
augmenting functions and occurs where the quadratic model for the objective function F
ceases to be sufficient to ensure adequate descent. A natural algorithmic improvement is to
employ globally convergent variants of Newton’s method to improve the behavior far from
the solution set. In this context, a properly constructed quasi-Newton method must involve
two steps: first, the full Newton step must be computed, and appropriate criteria for sufficient
decrease in F evaluated. If the Newton step results in satisfactory progress, the full step is
taken; otherwise, a modified step is computed. A common criterion is to guarantee that the
result of the candidate step be a (sizable) fraction of the predicted improvement based on the
gradient of F at the current point. More precisely, if y is the kth step of a corrector sequence
and 6y is the Newton step, then the algorithm accepts the full step if

(15) F(yk + y) < F(yk) + e[VF(yk)]tSy

for some 0 < < 1. Typically, is chosen quite small, but it is significant that the obvious
selection 0 is insufficient to ensure global convergence; some positive improvement in
the objective function is required.

Figure 3 shows the result of applying the criterion (15) to the convergence experiment
described above. At each step in the corrector sequence, the acceptance criterion was eval-
uated with 0; the point was deemed a failure if the inequality was not satisfied. Points
which survive as successful trials not only converged to a Hopfbifurcation point but also made
monotonic progress toward the solution at each corrector step. Thus, if a steplength adjust-
ment (e.g., line search or dogleg) algorithm were used to improve global convergence behavior
based on the acceptance criteria above (for ot 0), the full Newton step would be accepted
at each step. The results for the augmented function g det(B) indicate that points near
the border of the nonconvergence zone of Figure 2 are characterized by Newton steps which,
early in the corrector sequence, do not strictly improve the objective function. However, apart
from this band, mostinitial conditions are within the local convergence neighborhood. For the
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1.538 1.538

glfCa 0.3050.266 0.266 9ffCa 0.305

FIG. 3. Convergence dataforNewton’s method in a neighborhood ofHopfbranches in the (gKCa, gA parameter
plane including a monotonicity condition on the sequence ofcorrector steps. The left plot shows datafor the Bezout
resultant (RB) as the augmented function; the right plot shows data for the method ofJepson-Griewank-Reddien
(JGR). Triangle symbols show initial conditions which ultimately converge to the left Hopf branch while circles
indicate convergence to a right branch point.

(JGR) augmenting function, nearly 50% of the trials which converge to a Hopf point without
the monotonicity condition are rejected according to step acceptance criteria. This may be
compared with a 23% reduction for the resultant method.

We regard the questions of accuracy and convergence considered above as more impor-
tant than the speed of algorithms that detect Hopf detection in examples of moderate size.
Nonetheless, we present some brief comparative data for our implementations of three al-
gorithms within MATLAB(C). For each of the Bezout resultant, biproduct matrix, and JGR
methods from Table 2 we computed 20 points along a Hopf bifurcation curve shown in Figure

starting at a point along the curve and proceeding with an identical continuation algo-
rithm. The floating point operation counts were comparable for the Bezout (664777 flops)
and JGR methods (701244 flops) while the biproduct calculation was substantially slower
(2786163 flops). Note, however, that the biproduct calculations did not exploit the sparsity
of the biproduct matrix in computing its determinant. The biproduct method seems to of-
fer the best opportunity to exploit the calculation of low-dimensional invariant subspaces in
high-dimensional problems.

3.3. A larger neural model. Based on extensive experimental results, Golowasch [8]
proposed a 14-dimensional system of ordinary differential equations as a model for the LP
neuron in the stomatogastric ganglion of the crab Cancer borealis that incorporates the effects
of eight separate ionic currents. The parameters which govern the activation kinetics for
the associated conductance channels were derived from space-clamped experimental data.
Buchholtz et al. [4] later amended this model; our third example is a 12-dimensional variation
of these equations.

Despite the complexity of this system, analytic Jacobian derivatives were derived using
Maple(C) Using

(u-v)

7(u, v,) e
q (u, v, ) (1 + 7(u, v, c))-
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the model equations for the LP neuron are given by

1 --ClO(gcalX9Xll + gca2XlO)(X2 4(X1)) -1
t- C20(C8 X1),

22 (1 ((gcalX9Xll -}- gca2XlO)(X2 04(X1)) q- gl(X2 el)

-I- gdX(X2 ek) -+- gKCaX5X6(X2 ek) -1- gaX8X(X2 ek)

-Jr- ghXl2(X2 eh) Cll (C2(05(X2, X3) q96(X2, X3)))))/Cll,

23 kh [c6(1 x3)l/r(x2, 44, c27) x3(X2, c50, 33)]

24 C12(X2, 52, t735) ((t(X2, C54, (?37) X4),

25 koa(q97(Xl, x2) x5),

26 21
(5 - x1)

x6

27 16((X2, 6’41, 6’24) -177),

28 C15((X2, 48, C31) X8),

29 Cl7(t(X2, 42, C25) X9),

210 C18((X2, C43, CZ6) XlO),

211 C19(t(X2, 6"49, C32) Xll),
Cl3(t(X2, l)r, C38) X12)

212
(X2, C53, C36)

C7 (X2 C45)
1 (X2)

1/r (x2, c45, c8)’
(/91 (X2)

02 (X2)
q91 (X + 6"81/t (X1, C50, 6"33)’

m3(Xl) log (Xl ]- ]-0-6) 100 100

4(Xl) C56 C57 log [ 3_.. (/94(Xl)2 _].. gl (100x 1) -- 1--]’1
1 (gNax3q932(x2)(ena-x2)(/95(X2, X3) C
C2 Cll

P6 (x2, x3) log (e5 (x2, x3) + e-O5 (x2, x3)),
Xl(/97(Xl, X2) (X2, C46 Cl4Xl, C29)(X2, C47 Cl4Xl, C30).

(c3 + Xl)

Table 10 lists the nominal values and units of the parameters.
The LP equations illustrate a difficulty that arises in using the determinant as an indicator

of matrix singularity for methods based on polynomial resultants or biproducts. Extreme
variations in the magnitude of det(/3) on det(2l (R) J) can adversely affect the behavior of
numerical continuation methods, especially in large application problems. Moreover, since
det(.) is not a true matrix condition indicator, poor scaling behavior in its (implicit) use as
such can result in convergence failures. These remarks pertain not only to the use of det(/3)
or 2J Q I in Hopf pathfollowing but also other applications which use the determinant as an
objective function in rootfinding or optimization (detection of saddle-node bifurcations, for
example). Thus, progress in addressing these issues in the context of Hopf continuation has
implications to other applications, and vice versa.

The bifurcation diagram of the LP equations in the (Iext, gNa) plane has a fold in the
surface of equilibrium points that produces a curve of saddle-node bifurcations. A cusp
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TABLE 10
Valuesfor the experimentally determined constants appearing in the LP model equations.

Cl 60000
c2 6000
c3 2.5

c4 0.7

c5 0.65
c6 0.08
c7 0.11
c8 0.05

c9 15
Cl0 300
Cll 0.0017
C12 180
C13 0.33
C14 0.6
Cl5 20

C16 142.857 C31 6’’ c46 0
C17 50 C32 8 C47 16
C18 10 C33 --5 c48 --70
C19 16 C34 --13: c49 --50
C20 360 C35 --22 c50 --40
C21 35 C36 --13 cs1 -34
C22 166.6 c37 17 c52 10

c23 -12 c38 7 c53 -ll0
C24 --26 C39 15 c54 --25
C25 --7 40 -40 c55 -7
c26 -7 c41 12 c56 115.47

c27 - c42 -11 c57 12.19
C28 --20 C43 22 0
C29 -23 C44 -39 eh -10
c30 --5 c45 --6 ena 50

el --501
gd 0.35

gKCa 3.2
ga 1.7

gCal 0.21
gCa2 0.047
gh 0.037
gNa 2300
gl 0.1
koa
kh 600
Vr 500
ek --80

TABLE 11
Phase-space and parameter coordinates for three selected points along the Hopf curve for the LP equation.

Also shown is the complete spectrumfor each selected point.

gNa

X1

X2

X3

X4

X5

X6

X7
X8

X9

Xl0

Xll

X12

)1

,3
4

,6
,7

)9
)10
-11
,12

--0.2099885 0.089912 5.557706 5.496061
2268.22 1678.89 525.271 3347.40

0.162821
--39.121
0.129938
0.303509

9.383.10-5

0.861198
0.260550
0.005786
0.017684
0.000161
0.204259
0.000167

0.196959
--13.076429

0.003136
0.668495
0.017156
0.826486
0.489651

7.581.10-5

0.426381
0.006621
0.009801

4.05.10-6

0.146623
--42.979
0.270205
0.257771
3.41.10-5

0.878709
0.232991
0.010949
0.010268
9.30.10-5

0.293669
2.90.10-4

0.400147
3.657527
0.000387
0.843663
0.073446
0.666574
0.646162
4.66.10-6

0.890031
0.067840
0.001221
3.71.10-7

-599.58
-375.99
-152.47
-137.87
62.76
-35.09
-20.26
-15.47
-9.95
-2.09

10-4 + 0.01i
10-4 + 0.01i

-598.88
-377.33
-203.60
-141.86
-60.72
-35.23
-20.10
-16.57
-9.95

10-5 + 8.99i
10-5 8.99i

-0.33

-569.96
-369.14

10-9 + 278.76i
10-9 + 278.76i

-143.02
-131.49
-48.64
-32.69
-20.00
-13.73
-11.01
-0.33

10-8 + 936.86i
10-8-936.86i

-586.36
-383.02
-142.86
-90.53
-50.28
-36.86
-20.00
-15.93
-11.13
-0.33

occurs along the fold, dividing the saddle-node bifurcation set into upper- and lower-branch
segments. Along the upper branch, one of the fixed points annihilated in the saddle-node
interaction undergoes a change of stability, producing a curve of Hopf points proximal to
the saddle-node curve. The Hopf branch arises at a Takens-Bogdanov point and leaves the
parameter regime of physiological interest.
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Table 11 shows parameter coordinates for four selected points along the Hopf branch de-
scribed above. Also listed are values for the phase-space variables and the complete spectrum.
Notice that the critical eigenvalues begin with zero magnitude but become the eigenvalues of
largest magnitude at point 4 along the branch of Hopf bifurcations and that there are several
additional eigenvalues of large magnitude.

One difficulty is immediately apparent from these data: if/i )i-t-1 is the critical
eigenpair and the remaining real eigenvalues are arranged in descending order, )j > )j+l for
j i, + 1, then to achieve a prescribed solution tolerance IIF(x*, Ix, gva) I < requires

5
12

Re()i) < U kk-3 (/k2 + I)il)
k=3

k#i,i+l

using the rough estimate that ()i nt-)j) max0i, )j) for eigenvalue pairs that do not approach
zero in a neighborhood of a solution. For large systems, or even small systems with a few large
eigenvalues, this explosion in the magnitude of the biproduct determinant or resultant severely
restricts the size of the neighborhood about the solution manifold where the computed value
contains any significant digits. In the LP equations, the effect is prohibitive.

To apply the algebraic Hopfmethods previously described to problems ofthis type requires
a strategy for eliminating the disabling effects of the unwanted large eigenvalues, so long as
they do not participate in the bifurcation. One possible approach involves substituting an
alternative method for determining when 2J (R) In or det(B) is singular. For example, if a true
condition estimate was substituted for det(.), such as

(16) -1g(x, !ext, gNa) II (2J (R) In)-1 liE

where I1" IF is the Frobenius norm, the required differentiability properties are retained.
Another alternative, suggested by Allgower, Georg, and Miranda [2] in the context of using
multidimensional resultants to compute real polynomial roots, is the function

(17) g(x, Iext, gNa) min II [2J (3 In] ult22,
tlull-1

Notice that this is equivalent to iteratively driving the smallest singular value an to zero and,
thus, uses the square of the 2-norm condition number as the augmenting equation. This
choice is especially attractive since rn is widely considered the most reliable estimate of
matrix condition, and several different methods for its computation might be adapted to the
problem ofHopfpathfollowing. In the continuation framework it may also be possible to make
use of spectral information computed at wide intervals and updated cheaply at intermediate
solution points. For example, suppose that at (or near) a solution (x Ixt, gONa), the full set
of eigenvalues )1, )n and corresponding eigenvectors vl Vn are computed. Then, by
the elementary properties of the biproduct matrix, a vector in the nullspace of J (3 In can be

is used to denoteformed: using the lexicographic ordering scheme introduced in 2.3, if Vp
the th component of the pth eigenvector, we can construct an eigenvector V corresponding
to the eigenvalue/i -+-/j of 2J (3 In according to the formula

(18) {pq} det [ vf
ij} P

where 1 < j, p < n 1 and 2 < i, q < n. This vector may be stored and used to start a
conjugate gradient algorithm (for example), constrained to the unit sphere, as an estimate for
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u in (17) to compute subsequent corrector steps. (See [2] for a discussion of the conjugate
gradient method applicable to this situation.)

An important special case arises when some of the large eigenvalues are associated with
an invariant subspace which evolves slowly as the parameters are varied [25]. More precisely,
suppose at a point (x IOxt 0gNa) near a Hopf bifurcation the range of the (nonsingular) Jaco-
bian matrix J0 may be split into a direct sum of eigenspaces Wc @ Wh with dim(Wc) rn and
dim(Wh) n m such that the following hold:

1. locally, Wh contains the two-dimensional subspace corresponding to the Hopf
bifurcation;

2. Wc contains some of the large eigenvalues in the spectrum of J0; and
3. Wc remains nearly invariant as J is perturbed away from J0.

Then we may eliminate the unwanted effects of Wc altogether by deflating the Jacobian to
form a new matrix that has only the eigenvalues associated with Wh. The literature on matrix
deflation in the context of eigenvalue determination is vast; explicit techniques are central
to iterative methods and implicit use of deflation is integral to various Lanczos schemes. In
our preliminary experiments we used a simple algorithm based on similarity transformations.
Suppose an n rn rectangular matrix U can be obtained with linearly independent columns
so that range(U) Wc. Then applying Gaussian elimination we form the product 12 of
elementary matrices that triangularize U:

QPU /U

where T is upper triangular and reference to the permutation matrix P is made explicit to
emphasize the use of partial pivoting to stabilize the transformation. Applying QP to J
produces a block-structured equation involving the Jacobian:

Jll J12 1J E J22

where Jll is an m m matrix. It follows easily that if U is chosen as above, U commutes with
J if and only if E 0 and, if so, spec (J22) displays the same set of eigenvalues as does J on

Wh (see Wilkinson [27, Chap. 9, 21-24] for a discussion).
Given a candidate splitting Wc ) Wh, the sensitivity of the deflating subspace range(U)

to perturbations in the Jacobian matrix is properly expressed in terms of the separation of the
matrices Jll and J22, measured by

sep (Jll, J22) min
xo IlXll

IIJX- XJ2211

where X ranges over the subspace of p (n p) matrices. The sep(., .) function is difficult
to compute, in general, but bounds exist based on the spectra of the matrix arguments (when
J is diagonalizable):

Sl (Jll, J22)
min Ispec(Jll) spec(J22)l

/2 (Q1)K2 (Q2)

< sep (Jll, J22),
_< min Ispec(Jll) spec(J22)l Su (Jll, J22)
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TABLE 12
Separation function values and bounds for deflations of dimension two to seven for the LP model equations.

Each p-dimensional deflating subspace contains the p-largest real eigenvalues of the Jacobian matrix at the initial
branch point.

2 174 36 2
3 62 3 6.10-2

4 81 7.0 8.10-2

5 26 2.5 2.10-2

6 15 4.10-1 2.10-3.

7 1,1, 4 31-1 4’10-4

where Q1 and Q2 are chosen to diagonalize ,Ill and ,122, respectively. Equality holds on the
right when J is normal, but, in general, the separation of J11 and J22 maybe much less than the
minimum distance between the respective spectra. Procedures for the numerical estimation of
sep(., .) have been proposed [5], similar in form to well-known methods of matrix condition
estimation. Table 12 shows values for st(., .), sep(., .), and s,(., .) for six choices of Wc of
increasing dimension m for the LP model Jacobian. Each case corresponds to a choice for Wc
that contains the m-largest real eigenvalues of J evaluated at the second point of Table 11.

A simple strategy for incorporating deflation of the Jacobian into numerical Hopfpathfol-
lowing is the following: suppose the complete eigenstructure for J is computed at the initial
solution point on the Hopf branch (by any method), m is determined by sepO estimates, and
the columns of U are chosen to be the appropriate eigenvectors of ,I. At each subsequent
corrector step [[EI[F is computed and, if sufficiently large, the columns of U are updated
using a small number of inverse iteration steps. Notice that each column may be adjusted
independently, so if m >> (n m) and n is of moderate size, this step can be performed in
parallel. Numerical continuation was begun at selected point 2 of Table 11 using gNa as the
continuation parameter and proceeded toward the Takens-Bogdanov point at the beginning
of the branch (near point 1). The seven-dimensional deflating subspace of Table 12 was used
and updated at each corrector step. The residual real part of the critical eigenpair is below
10-12 near the beginning of the curve and remains below 10-9 as the solutions approach the
Takens-Bogdanov bifurcation.

4. Concluding remarks. We have examined the application of minimal augmentation
methods for computing Hopf bifurcations to three examples of vector fields that describe the
electrical activity of axons and neurons. There are several conclusions we draw from this
work.

1. The derivation of symbolic expressions for the detection of Hopf bifurcations in
families of vector fields of moderate complexity is feasible. The usefulness of these symbolic
expressions is dependent upon the complexity of expressions for the Jacobian of a vector field
and upon the effectiveness of rootfinding algorithms.

2. Automatic differentiation algorithms work. They give far more accurate values for
derivatives than are obtainable with the simplest finite difference methods ofcomputing deriva-
tives.

3. Continuation applied to minimal augmentation methods for finding Hopf bifurcations
appears to work at the singularities associated with double Hopfbifurcations in two-parameter
families of vector fields. The rootfinding problem has a singularity of corank at these points,
but the method appears to follow the smooth branches of solutions passing through this point
with little difficulty. This success calls for further theoretical justification.
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4. In at least some circumstances, the minimal augmentation methods are preferable
to direct methods that require the computation of eigenvectors. In the example we present,
iterative rootfinding algorithms that start with natural choices for their initial seeds converge
more reliably and have larger regions of convergence for the minimal augmentation methods
than for the direct methods that solve for eigenvectors.

5. In problems that are large or stiff, straightforward implementation of the minimal
augmentation methods leadto rootfinding problems that are poorly conditioned. The difficulty
lies in the determination ofwhen a large matrix with eigenvalues of.large magnitude is singular.
By using the extensive numerical linear algebra theories for calculating the condition number
of a matrix, the algorithms for detecting Hopf bifurcations can be significantly improved.
Implementations based on calculations of the smallest singular value of a matrix appear to be
an attractive target for further work in this area.

6. Despite the growth in the size of the linear algebra problems that are associated with the
definition of the biproduct matrix as a strategy for computing Hopf bifurcations, the impact of
this growth can be ameliorated by the intelligent use of standard algorithms for linear algebra
problems. These increase the sparsity of the biproducts whose condition number must be
calculated or localize these calculations to smaller matrices calculated from the biproduct.

Acknowledgments. Many of the calculations were performed with the software package
DsTool [3] developed at Cornell University.
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EVOLUTION OF CONVEX PLANE CURVES DESCRIBING ANISOTROPIC
MOTIONS OF PHASE INTERFACES*

KAROL MIKULA AND JOZEF KA(UR

Abstract. The numerical approximation schemes for solving the nonlinear initial value problem
Orb(v) (Avx)x + (Bv)x + Dv + G

with periodic boundary conditions are presented. We assume that the function b is increasing, and asymptotically
b (s) 0 and b (s) +cx, so that the model describes in a sense both slow and fast diffusions. The solution also
may blow up in a finite time. This problem arises from the evolving curves theory, which was used in the construction
of models of motion of phase interface in multiphase thermomechanics by Angenent and Gurtin [Arch. Rational
Mech. Anal., 108 (1989), pp. 323-391]. The so-called "curve shortening equation" is included in the model. Our
approximating solutions converge strongly in L2 (I, V) space to the weak solution. We also derive an "error estimate"
for semidiscretization, which implies uniqueness. The numerical experiments in various situations of the "anisotropic
curve shortening" are discussed.

Key words, curve shortening flow, phase interface, nonlinear degenerate parabolic equations, blow up, numerical
solution, L-estimate, error estimate

AMS subject classifications. 35K65, 65N40, 53C80

1. Introduction and the background of the problem. The aim of this paper is to study
from a numerical point of view the following problem. Let v be a smooth function which
satisfies

(1.1)

Otb(v) (Avx)x + (Bv)x + Dv + G,

v(x, t) v(x + 27cv, t),

v(x, O) vo(x)

for x 6 and 6 [0, T), where v 6 ll, v0 is a smooth function, and
(H1) A > q > O, B, Bx, D, G are bounded measurable functions ofindependent variable x,

periodic in interval [0, 27rv];
(H2) b(s) is a C2-function, defined in interval (-, a), a < cxz, satisfying b’(s) > 0,

(H3)
b(s) --+ al and b’(s) 0 for s --+

b(s) -- cx and b’(s) -+ for s --+ a-,

(H4) b(0) 0.
So, the nonlinearity in this model is represented by the increasing function b(s) admitting

asymptotical degeneracy oftwo types expressed by hypothesis (H3). In this sense our model
covers locally both slow and fast diffusions. Due to the special form of the problem, the
solution also may blow up in a finite time. From a numerical point of view, complications also
arise because of the strong convection term in the governed equation.

We suggest two approximation schemes for solving degenerate parabolic problems of the
type (1.1). We numerically solve certain regularization of (1.1), which is identical with the
original problem in a local time interval. Although our results are theoretically guaranteed only
locally, numerical calculations show the agreement with known exact results in time intervals
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with right endpoints very near to the blow-up time. The first of the schemes is simpler;
we use it, besides other things, to establish the relation between original and regularized
problems. The second scheme is more sophisticated; it is based on semidiscretization which
reduces (1.1) to a succession of linear elliptic equations coupled with algebraic corrections
due to nonlinearity. It originates in the works of Magenes, Nochetto, and Verdi [MNV] and
Jiger and Kaur [JK1], [JK2] concerning the porous medium-type equations and elliptic-
parabolic problems. For this scheme we not only prove the convergence but also derive an
error estimate, which implies the uniqueness of the solution. In numerical computation these
schemes yield results of comparable degrees of accuracy while the second one is more precise
near the degeneracy b’(s) +cz. After time semidiscretization, both schemes need to solve
a convection-diffusion equation in each time step. For this purpose we use the so called
"power-law scheme" described in [P], which respects the "up-wind" principle.

Problem (1.1) arises from the curve evolution model describing anisotropic motion of
phase interfaces in multiphase thermomechanics given by Angenent and Gurtin ia [AG1].
Assume that at time a solid occupies a region D(t) C ]2 whose boundary is a smooth curve
r. Let 0 be variable representing the angle of the tangent to the curve with x-axis. By 2 we
denote the range of 0. Let/3, g, F be functions on S2 coming from the constitutive description
of interface and representing the following physical quantities. / (0) is the kinetic coefficient;
from thermodynamical considerations it follows that/3(0) > 0. The function g(O) is given
by g(O) f(O) + f"(O), where f(O) is the interfacial free energy. F const is the energy
of the solid phase minus that of the other phase (see lAG1], [AG2], [G1], [G2], [G3]). By
[AG ], the first equation of the interface motion may be written as

(1.2) (O)V g(O)k- F,

where _= (Q, t)is the normal velocity and k(Q, t) the curvature at a point Q of the curve
r at a time t. The interface motion given by (1.2) is called anisotropic. In the case g,/
const and F =_ 0 the motion is called isotropic. Then we have (after normalizing constants)
the simple relation

(1.3) V k,

which means that the velocity of the curve in the inside normal direction is proportional to its
curvature. The curve evolution governed by (1.3) is also called the "curve shortening flow."
Gage and Hamilton show in [GH] that this problem, which starts from a closed and convex
initial curve, is equivalent to the following initial value problem for a special partial differential
equation (PDE).

Let the initial convex curve r0 be parametrized by 0, ko(O) be its curvature, and
[0, 2zrv], v 6 1. Assume that the function k(O, t)Yt [0, T), 0 6 satisfies the curve

shortening equation, i.e.,

(1.4) Otk k2 (koo + k),

the periodicity, and initial conditions

(1.5) k(0, t) k (0 + 2zr v, t),

(1.6) k(O, O) ko(O).

Then the flow r(0, t) of the curves that solves the problem (1.3) with the initial curve r0 is

given uniquely up to translation by the formula

O ei
(1.7) r(00, t) r(0, t)

t------7dO’k(O,
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The condition of closedness frv eiO(-N,todO 0 is an invariant of the flow. By conservation
of convexity k(O, t) < 0t [0, T). Note that, by the convention introduced in [AG1], the
curvature of strictly convex curves is negative. Papers [GH], [Gr], [ALa], [A1 ], [A2] describe
many interesting properties of isotropic curve shortening; we will illustrate them in the section
containing numerical computations (7).

Equation (1.4) also serves as the model of a magnetic field in plasma physics. (There are
Dirichlet instead of periodic boundary conditions.) The blow up of the solution in this case
was studied from theoretical point of view by Friedman and McLeod in [FM]; numerics were
done in [W], [Z].

Angenent and Gurtin [AG1] found the equation

(1.8)
F k2)oo/ (

for the dynamics ofthe curvature in the anisotropic case. This equation together with conditions
(1.5), (1.6), and with g(O) > 0 describes the anisotropic motion ofthe strictly convex interface.
That flow conserves convexity; the closedness condition is also an invariant (see [AG2]). Up
to condition (H4), problem (1.8) may be transformed into the form (1.1) provided one puts

(1.9) b(v)--1A--D--g B--() G--F (;)
Using the transformation b(s) b(s / Cl) C2, where Cl, ce are constants, one of which is
determined by the other, we can always satisfy (H4). The solutions of (1.1) with transform
functions b and b, respectively, then correspond to each other uniquely. In this sense (1.1) is
a model of the anisotropic motion of strictly convex phase interfaces.

The paper is organized as follows. In 2 we introduce two approximation schemes to
solve (1.1). The convergence of the first approximation scheme is proved in 3. In 4 we
discuss the regularization of the original problem (1.1). The convergence of the second
approximation scheme is proved in 5. The error estimate analysis is presented in 6. In
7 we discuss the numerical results. It is well known that the isoperimetric ratio decreases
to 1 in the isotropic time evolution of curves. We define an isoperimetric ratio generalization
for the anisotropic time evolution. Our numerical experiments confirm decreasing to of that
anisotropic isoperimetric ratio.

2. Approximation schemes--the main theoretical results. Our main goal is to solve
numerically the problem (1.1), especially in the case of anisotropic curve shortening (1.9).
For this purpose we regularize the original problem in the following way. Let us consider the
function be(s) instead of b(s), defined by

b(-R or) / b’(-R cr)(s / R / or), s < -R or,

rl(s), s (-R- or,-R),

be(s) b(s), s [-R, a -}],
r2(s), s 6 (a- , a- / or),

b’b a - + (7 + a - + cr s a + (7 ), s>_a-+(,
(2.1)
where R, cr are real constants, cr < . rl and re are functions from C2 (]t{.) such that the whole
function be 6 Ce(N) and inequalities b(-R or) < bR(s) < b(a - + r) hold Ys
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Now we define the regularizedproblem

(2.2)

OtbR(l)) (Avx)x + (Bv)x + Dv + G,

v(x, t) v(x + 2try, t),

v(x, O) vo(x)

for x 6 , 6 [0, T), vo(x) smooth function, under assumption (H1) and definition (2.1).
Thus bn(s) is a C2-increasing globally Lipschitz continuous function in such that

(2.3) F > bR(S) > F >0, bR(O) =O.

Denote I (0, T), g2 (0, 2try), QT f2 I. Let V {w 6 W(0, 2try) w(0)
w(2zr v) and assume that vo(x) V.

DEFINITION 2.1. The function v L2(I, V) with Otbn(v) L2(I, V*) is called a weak
solution of(2.2) iff v(x, O) vo(x) and the identity

(2.4) (3tbn(v), qg) + (Avx, Px) + (By, qgx) (Dr, 99) (G,

holds p V andfor almost every (a.e.) I. Replacing bn by b we obtain the definition
ofa weak solution ofthe original problem (1.1).

A weak solution of problem (2.2) will be found using Rothe’s method.
TLet n 6 ll, -, ti --ir for --0 n, u0 vo(x). For every/ 1 n, let

u V be the function such that p 6 V

(2.5) (btR(Ui 1) ( ui -ui-1) ),99 -+- (Auix, tpx) + (Bui, 99x) (Dui, qg) (G, 99).

From these functions we construct Rothe’s functions

u(n)(t) Ui_ 2t- (t ti-1)
Ui Ui-1

(2.6)
for ti_l <_ <_ ti, n,

(n)(t) ui for ti-1 < < ti, 1 n, )(0) uo.

THEOREM 2.1. There exists a unique weak solution u of (2.2) such that U (n) --4

u in C(I, L2);-ffn)(t) u(t),un)(t) u(t) in VVt I; Otun Otu in L2(I, L2)forthe
Rothefunctions defined by (2.6). Moreover u C(I, L2) f3 L(I, V) and Otu L2(I, L2).

The next theorem expresses the relation between the solutions of the regularized and the
original problems with the bounded initial condition.

THEOREM 2.2. Let u be a weak solution of (2.2) whose existence is guaranteed by the
previous theorem. Let u(x, O) L(g2) fq V and

1
(2.7) -R+3<u(x,0)<a----3.

R

Then there exists 0 < T1 < o so that
(i) u L(I, V) f) L(QT,), and QT1 (0,
(ii) at the same time, u is a weak solution of(1.1) with initial condition vo(x) u(x, O)

in the time interval (0, TI ).
Remark 2.1. In Theorem 2.2 results concerning problem (2.2) obtained in Theorem 2.1

are transferred so as to obtain local results concerning the original problem (1.1). In this sense,
the process (2.5) defines thefirst approximation scheme for solving problem (1.1).
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The second approximation scheme is based on works [MNV] and [JK1 concerning nu-
merical solution ofthe slow diffusion and Stefan-like problems and mainly on [JK2] describing
the solution of elliptic-parabolic problems. This scheme is based on a nonstandard time dis-
cretization using the relaxation function by means of which we reduce the nonlinear original
problem to an iterative solution of linear elliptic problems.

rLet n 6 N, r 3, ti r for 0 n, v0 vo(x), uo vo. For 1 n we
look for functions ui V and//4 L(f2) such that Yq) 6 V

(2.8) (lZi(Ui 1)i_1) (/9) -" "c(Auix, q)x) d-- 72(Bui, q)x) r(Dui, q)) r(G, go),

satisfying the "convergence condition"

y bR(l)i-1 + Ol(Ui l)i-1)) bR(l)i-1)
(2.9) ot- _< /Z _<

Z li Ui-1

where 0 < ot < 1. If/gi Vi-1 then we replace the difference quotient by otbtR(Vi_l). The
function vi is obtained by the algebraic correction

(2.10) bR(l)i) :-- bR(l)i_l) -1-- tZi(Ui l)i_l).

There are many possibilities to determine Ui, 114 satisfying (2.8) and (2.9). If we choose

IY- _< i --< Old/ then (2.8) and (2.9) are fulfilled. However, it is more interesting (from the
numerical point of view) to choose//4 very close to the difference quotient in (2.9). This can
be done iteratively; see Remark 2.2.

From ui, vi, obtained in each time step of (2.8)-(2.10), the Rothe functions

(2.11) u(n), l)(n), -if(n), -(n)

are constructed (see (2.6)). Then we can prove the following theorem.
THEOREM 2.3. Let {u(n)}, {v(n)}, {-i(n)}, {(n)} be the sequencesfrom (2.11). Then u (n) --+

bl, y(n) U, -i(n) bl,-(n) U in L2(QT), -i(n) U in L2(I, V), where u is a weak
solution of (2.2).

Using techniques developed in [ALu] and [KHK], stronger convergence results can be
proved.

THEOREM 2.4. Let {-i(n)} be the sequence defined in (2.11). Then -i(n) bl in L2(I, V),
where u is a weak solution of (2.2).

Remark 2.2. The question is how to find in a constructive way the couple ui, [i si-
multaneously satisfying (2.8) and (2.9). We use iterations similar to the ones from [JK1],
[JK2]:
(2.8’)

(lZi,k-1 (Ui,k 1)i-1), (/9) + "c(AUi,kx, (Px) nt- "c(BUi,k, q)x) r(DUi,k, ) r(G, o),
bR(Vi-1 -}- Ot(Ui,k Vi-1)) bR(Vi-1)

tZi,k
ui,k Ui_

(2.9’) i,k -i,k for 1 <_ k <_ ko, ]&i,k :-- min{i,k, i,k-1} for k k0 + 1

starting with

(2.9") /i,0 ffR(Vi-1)"

Note that if ui,k Vi_ then we put -’i,k lyb(Vi_l).
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Generally (b(s) is monotone) we are not able to provethe convergence of the sequence
{IXi,} for Ixi, i,. By construction (2.9’) with k0 > 1, {IXi,} is forced to be monotone
and hence convergent. In practical implementations k0 can be chosen in accordance with the
shape of b(s). In our numerical realization (in case (1.9)) we have observed that IXi, i,
are convergent and hence we have used k0 sufficiently large. In practice the iterations very
quickly converge to functions satisfying (2.8) and (2.9), and from theoretical point of view we
have the following

THEOREM 2.5. Let 1 < < n be fixed, r < r0, and Vi-1 E L(f2). If {ixi,k}, {bti,k} are
sequencesfrom (2.8’) and (2.9’) then there exist tx L(g2), w V such that

Ixi,k ---;" ix ixi in Zp(f2) (VP > 1), ui,l --+ w --: ui in C’(-) (’< )
for k -- cxz, where Ixi, ui satisfy (2.8) and (2.9).

The next theorem concerns the "error estimate" for approximation scheme (2.8)-(2.10).
THEOREM 2.6. Let u be a weak solution of(2.2) andg(n) the sequence ofRothe ’sfunctions

obtained by the approximation scheme (2.8)-(2.10). Then thefollowing estimate holds:

2

The function u in the previous theorem is an arbitrary weak solution of the regularized
problem (2.2). Its uniqueness is proved using (2.12). By standard arguments, the original
sequences given in (2.11) and (2.6), respectively, converge to this solution. Combining these
results with Theorem 2.2 we can formulate the next theorem concerning the solution of the
original problem (1.1).

THEOREM 2.7. Let vo L(ff2) fq V satisfy (2.7). Then there exist T < zx andfunction
u C(I, L2) f’) L(I, V) f3 L(Qr) with Otu Le(I, L2), I (0, T1), which is the unique
bounded solution ofthe problem (1.1). For g(n, given by approximation scheme (2.8)-(2.10),
we have -ff(n __+ u, b(g(nl) --+ b(u) in Le(I, V) and (2.12).

3. Convergence of the approximation scheme (2.5).
Remark 3.1. We denote the scalar product in Le(f2) by (., .) and duality between V and

V* by (., .). We use symbols 1.12, I1" II, I1" I1,, I" I, I" Ip for norms in L2(), V, V*, L(f2),
and Lp(), respectively. By --+, ---, we mean strong and weak convergence; the Landau
symbol 0(1) represents a term Cn satisfying Cn --+ 0 for n -- cx. C denotes the generic
positive constant, e small positive number, and C(e) term dependent on e-1. Let us denote
(bl bti--Ui-1 and 8-ff(n) (t) -ff(n)(t)--’ff(n)(t--Z)

LEMMA 3.1. There exists r0 > 0 such that Yn 1 satisfying r r__ < ro we have then
following: for every 1 n there exists unique ui V satisfying (2.5) and thefollowing
a priori estimates hold:

(3.1) Iuilr < C, max Iluil[ _< C, luix bti-lxl < C.
i=1

l<i<n
i=1

Proof. We put q) bl into (2.5) and use the estimates

(3.2)
(Auix Uix) > qluixl 2 z

:z, I(Bui, Uix)l eluixl + C(e)luil2,

I(Dui, ui)l _< Clui[, I(G, ui)l -< elGI 2 -+- C(e)lui 122.
The Lax-Milgram theorem guarantees the existence of the unique/gi V satisfying (2.5).



1308 KAROL MIKULA AND JOZEF KAUR

Let us put q) bt bti_ into (2.5) and sum the equations for 1 j, j < n. Using
(2.3), we obtain the following inequality:

y ]bti[T + (Auix, btix- Ui-lx)- (Bui, l’tix- "i-Ix)

]{a’a i=1 i=1 /=1

J J

i=1 i=1

Using Abel’s summation, Young’s inequality, (H1), and (2.3) we estimate

J
(Auix, Uix ui-x) lUix ui-xl + lU;xle C,

i=1 ’=

(i. .ix i-x) ((.i .i-. ui- x + (.. .;x (.o. .ox
i=1 i=1

J J
.;x + c(.; + c() .i + .i + c,

i=1 i=1

r Dui,
Ui Ui-1

e Iuilr + C(e) luilr,
i=1

r
i=1 i=1

r G, l’ti --li-1 <__ e INuil’c +
i=1

Z"
i=1

In the previous inequalities we used an estimate for luj I. The parabolic term gives us

lujl C + (b(u_) b(u))udx
i=

< ((ui_(ui- ui_ ui- Ui_l + (i(Ui_lUi, ui
2

i=1 t=l

1
(b(ui-1)ui-1 ui 1)= (b(ui-1)(ui-ui-1) ui)

2
i= i=

J
ui + c( .i.

i=1 i=1

c withC >0ands > 1.The regulized function b satisfies the condition Ib (z)l ,
Then there exists K > 0 such that (see [K3, Lem. 3])

(b(ui_) b(ui))udx (ui- ui) b(ui + m(ui_ ui))dmupdx

1 lUil
doluildx < c1g]ui _Ui_llluildx.C1 lui Ui-ll + lui + m(ui-1 ui)l

Estimating the last te fa lui Ui-llluil luilr + C()luilr we obtain

J Ju s c + c( t.it + tuit.
i=1 i=1
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Applying all the previous estimates in (3.3) we deduce (for C sufficiently large)

[uil’c-t-lujxl-t-luix-Ui-lxl<C-t-C-luixl’c-t-C-(lull:)r’i=li=1 i=1 i=1 /=1

Here, we apply Gronwall’s argument and obtain desired a priori estimates.

Proof of Theorem 2.1. For the Rothe functions defined in (2.6), we can rewrite a priori
estimates (3.1) in the following form:

lOtu(n(t)122dt < max < >_ no.C, II(n)(t) C ’v’n
tE[0,T]

Then by standard arguments (see [K1, Lem. 1.3.13]) we obtain u e C(I, Le) Cq L(I, V)
with Otu e Le(I, Le) such that in a sense of subsequences (a subsequence of {n} we denote
again by {n}) u( -+ u in C(I, L2); (n(t) u(t), u((t) u(t) in VYt
Otu in L2(I, L2). Lemma 3.1 implies

C
I-ff( (t) u (n (t)122dt <I()(t)--K(n)(t- r)ldt < -5’

Now taking the limit for n --+ cx in

fj(Otu(n) (t), b(’ff(n (t r))p)dt + (a-(x (t), q)x)dt

where J is a subinterval of I, we obtain that u satisfies (2.4). The uniqueness of a weak solution
will be guaranteed by Theorem 2.6. The convergence of the original sequences {un}, {n}
then follows from the uniqueness argument.

4. Relation between regularized and original problems.
Proofof Theorem 2.2. Let us denote

v(R) =" b’(-R -or), I’(R) b’ a - + o- for R > R0.

First we shall prove part (i). We obtained the solution u from the theorem by solving
identity (2.5) for n. Due to (2.3) and u0 L(2), we have that ui L(2) for

1 n (see [L], [LSU]). Now we shall derive the L-estimate for ui. In what follows
we use similar ideas to those in [K2]. Let us consider uf, where p is odd, as a test function in
the identity (2.5). (Since ui L(S2) we have u/p V.) Using Young’s inequality we obtain

bR(Ui_l)u+l -+- pr Au2ixul-l < ffR(Ui-1)Ui-lU
(4.1)

/ v Bui(u)x / v IDlu+ -k- z’ Gp+I -t- "c p+ u
p+ e (p+ 1)

Using periodicity, Young’s inequality, and (H1) we estimate

10 (nui)xul < Inxlul+l-+ IBIluilPluixl

fo l faAu -lU x+C<_ Inxlul/l + -
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Applying it in (4.1) together with bR(Ui_l) > ,(R) > 0 and (H1) we obtain

ffR(Ui_I)U+’I + p--- "C Au2ixu-I <_ bR(Ui_l)Ui_lU

+rg ffR(Ui_l)U+1 + "C ap+I

p+l

where the constant K depends on IBxl, IDI, IBIs, [AI, R, e. Hence we have

(1- K’c) fs2 bR(Ui-1)u+l <_ fs2bR(Ui-1)Ui-lU -[- "c
6P+l f2 GP+I"
p+l

T 22TThen for r sufficiently small (- r < ) we obtain (for F.n

bR(Ui_l)uf+l < (1 " (K -- 8n)’ [ bR(Ui_I)Ui_lU -- Gp+I

p+l

Using Young’s inequality for the first term on the right-hand side we deduce

(1 + (K + 6n)Z’)p+I f
< Jr2 ,’,,P+l

p + bR(Ui-Ji-1

+p +i b(ui-)uf+ + (1 + (K + p+i

,(R) < F(R)Now, using the estimates c-TR-S bR(Ui-1) < - we obtain the recurrent inequality

f u+I < (1"" (K"n)TJ)P+l (r(R))2 [fg2u+ll +TYP+l fff2Gp+11
and hence

< (1 + (K -4- Sn)’g) (p+l)i ((R)’]
2i

(R)]

Here, we take the (p + 1)th root and let p -- ec. Then (because (1 + X) <_ eix)

(4.2) luil < (1 + (K + en)v)i(lu0l + elGin) < e(g+e")ti(luol + elGin).

Due to Theorem 2.1, the functions u (n) from (2.6) converge to the solution u in C(1, L2).
Taking limit for n --+ ec we derive from (4.2)

(4.3) lu(t)l < eKt(luOl + elGin) Yt I,

where constant K depends on IBxl, IDI, IBIs, IAI., R, e. Assertion (i) of the theorem
follows from (4.3). At the same time we proved that if u(x, 0) satisfies the left inequality in
(2.7) then for e sufficiently small, there exists 0 < T2 < oe such that

(4.4) -R < u(x, t) for a.e. x 6 f2, 6 (0, T2).
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Now, we shall look for the L-estimate for the function bR(u) to obtain the similar result
concerning the right inequality in (2.7). Due to (2.3) a weak solution u satisfies

(4.5) (bR(U)Otu, 99) + (Aux, (Px) + (Bu, Px) (Du, q)) (G, p) p V.

From the previous part of the proof (where we derived that u 6 L(Qr2)), it follows that
b(u) V for 6 (0, T2). Thus we can put p bPR(U), where p is odd, into (4.5) and
integrate the identity over (0, t), < T2. Using integration per partes in the convection term
and considering the periodicity we obtain

(4.6)

[if2 IP+I is2 p+I ] fot f 2bPR-I(u)bR(U)
p + 1

IbR(u(t)) IbR(u(0)) + p aux

f’fo fo’fo fo’fo<_ IBxllullbR(u)l p nt- IBlluxllbR(U)l p if- IDIlulIbR(U)] p

l fo’f + ep+IGIp+ + C(e)
p p+

p+ p + l
l,(u)

The second term on the right-hand side can be estimated (for e sufficiently small)

(4.7)

Because lul < IbR(u)l we have(R)

(4.8) L(IBxl + IDI)lullb(u)l p (IBxI,(R)+ IDI)f0’L bP+a(u)"

Applying (4.7) and (4.8) in (4.6) for p > we obtain

Ibg(u(t))lp+I L(p-k- 1) IbR(u)l p+I -+- T eP+IlGIp/I q- Ibg(u(O))lp+I

where the constant L depends on IBxlo, IDI, IBI, IAIo, R, e. Using Gronwall’s lemma
and taking the (p -t- 1)th root with p -- x we obtain

(4.9) IbR(u(t))loo eLt(IbR(u(O))l + elGin) Yt 6 (0, T2).

Let u(x, 0) satisfy the right inequality in (2.7). Then IbR(u(O))loo < bR(a -1R) 1 for some
61 > 0. For e sufficiently small, it follows from (4.9) that there exists 0 < T3 < xz such that
bR(u(x, t)) < bR(a -fi) for a.e. x 2, (0, T). Because bR is strictly increasing, we
have

(4.10) u(x, t) <_ a for a.e. x 6 S2, 6 (0, T3).

Let us set T1 min{ T2, T3 }. Owing to the fact that the functions b and bR are the same
for arguments satisfying (4.4) and (4.10) simultaneously, we have that solution u of problem
(2.2) is at the same time a solution of the original problem (1.1) in the interval [0, T1).
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5. Convergence of the approximation scheme (2.8)-(2.10).
ProofofTheorem 2.3. First we shall derive a priori estimates for the functions ui, vi. For

this purpose we use the techniques from [JK2]. Let us put p ui into (2.8) for 1 j.
and sum these identities. Using estimates (3.2) we obtain (for C sufficiently large)

(5.1)
J J

E(lZi(ui Ui_l), ui .qt_ Z [uixl"g "< C ..Ji- C lui [1.
i=l i=l i=l

Using (2.10) we can rewrite the first term in (5.1) in the following way:

Jl(bR(vi) bR(Vi-1),(bR(vi)bR(vi-1))1--J- Vi-1

1 (bR(Vi) bR(Vi-1))2 -[- Z(bR(Vi) bR(Vi-1),
i:1 ]Ji /--1

(bR(Vi) bR(Vi-1), Vi Vi-1).
i=1

Let us define Ce(s) f) bn(z)dz, 13n(s) bn(s)s CI, e(s). Because bn is a continuous
increasing function, the following inequality holds" n vi e vi- > be vi- Vi 1)i ).
It can be used to estimate the second summand in (5.2). We obtain

y(bR(Vi) bR(Vi-1), Vi) (bR(Vj), vj) (bR(VO), Vo) -(bR(Vi-1), Vi Vi-1)
i--1 i=1

> (be(vj),vj)-(be(vo),vo)-f@e(vi)-e(Vi_l)=fle(vj)-fle(vo).
i=1

The algebraic correction (2.10) and the convergence condition (2.9) imply

IbR(vi) bR(vi-1)l IP.i(ui vi-1)[ < IbR(Vi-1 q-Ol(Ui Vi-1)) bR(Vi-1)[.

Hence and from strict monotonicity of be we have

Ivi Vi-ll < Iot(ui vi-1)l-" --IbR(vi)- bR(Vi-1)l,

which implies

J

Z(bR(Vi) --bR(Vi-1), Vi Vi-1)
i=1

<__ Ol (bR(Vi) bR(Vi-1))2.
i=1 i

Using it and the estimate 13R(S) bR(s)s fS be(z)dz >_ ys2 C in (5.2) we.obtain

J1 >_ (1--ot)fs2--1 (bR(vi)--bR(Vi-1))2nt-ff2]R(vj)--ff2R(vO)
i--1 ]i

J
--(1 or) ) Ibe(vi) be(vi-1)l + lv;l c.

-F
i=1
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From (2.9) and (2.10) we have

(5.4) luil’c < 2-- IbR(Vi) bR(vi-1)l / 2"r Ivil + C.
i=l i=l i=l

Using (5.3) and (5.4) in (5.1) and applying Gronwall’s argument we obtain a priori estimates

J
max [l)i[22 -at- y [blix[’g / [bR(l)i) bR(Ui_l)[ < C.
l<i<n

i=1 i=1

As a consequence of (5.5), (2.3), and (2.10) we have

(5.6)
lui ui-1 I C, Ivi vi-1 I C,

i=1 i=1

[U U 122 < C, lui ui-1122 < C, lui I < C.
i=l i=l

The estimates (5.5) and (5.6) imply for the Rothe functions defined in (2.1 1) the following
properties (holding uniformly for n > no):

(5.7)

r-r C fI -ixn) 122dt C’I-i(n) (t -31- "g) -if(n)(t)ldt < --, (t)
n

I() (t)122 _< C, I()(t)l _< C Yt I.

Let Yo > 0 be a sufficiently small real number. Let f2* C be an open subinterval of f2, such
that f2* C f2 and x / y f2 Yx e f2* Yy, lYl < yo. Easily we obtain

(-i(n) (t, X / y) -i(n) (t, x))2dx <_ lYl fa (Kx (t, z))2dz,

which together with the second inequality in (5.7) implies (for lYl < Y0)

(5.8) f L* (-i(n)(t’X / y) ---i(n)(t’x))2dxdt < lYl f Ix(t)122 -< ClYl.

Then from the first inequality in (5.7) and (5.8) we have

(5.9)
r-z

fa (-ff(n)(t + Z,X + y) -i(n)(t,x))2dxdt < C(z + lYl),

which holds uniformly due to n and 0 < z < z0, lYl < y0. It follows from the third
inequality in (5.7) and (5.9) that the sequence {-i(n)(x, t)},% is compact in L2(Qr). Thus
there exists a subsequence of {-i },,=1 which converges in L2(Qr) to a function u. (We denote
this subsequence again by -i().) Using (5.5) and (5.6) we obtain the following convergence
results (in the sense of subsequences):

u (’) -+ u, v (") -+ u, -i(") --+ u, g(") -+ u in L2(QT), -i(n) u in L2(I, V),

bR(u ()) -+ bl(U), bl(V(n)) -+ bl(U), b(-i()) -+ bl(U), bR(-(n)) -+ bl(U) in L2(Qr).
(5.10)
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Due to (2.8), (2.10), and (HI) we have

sup
IIoll_.<l
o6V

bR(Vi) --bR(Vi-1)
Cllui II,

which implies 1l3bg(vi)]l, Cllui II. Owing to a priori estimates (5.5) and (5.6) we obtain

ll6b*e ((n) ll2 fLZ(I,V*) ][(bR(-(n))[[2,dt [[(bR(l)i)[[ 2, <_ C [[ui [[2z" _< C,
i=1 i=1

and reflexivity of L2(I, V*) implies (bR(-(n)) X in L2(I, V*). Hence and from the ninth
convergence result stated in (5.10) we obtain X Otbe(u). Integrating the identity (2.8) over
a subinterval J C I we have Yq) 6 V

j(abR(

(n) (t)), @)at -[- fj (Ag(xn) (t), ox)dt + f(B-i(n) (t), (19x)dt

fj (O-i‘n> (,), q))dt fj (a, )dt.
Here taking limit for n -+ oo we conclude

(OtbR(u), (p) -1- (Aux, qgx) + (Bu, rpx) (Du, q)) (G, q)) ’p V a.e. 6 I,

so u is a weak solution ofproblem (2.2) in the sense of Definition 2.1. The convergence of the
original sequences {u(n)}, {v(n)}, {-i(n)}, {(n)} follows from the uniqueness argument. [3

Proof of Theorem 2.4. Let us put q) -i(n) u and estimate the terms in (5.11) for
J (0, t). Due to (5.3), (5.10), and Fatou’s lemma we obtain

fo ff2lim (abe(-g(n)), -i(n))ds > 13g(u(t))dx Ble(u(O))dx

for a.e. I. We have

fo fo ff2(abl(-()), u)ds --+ {Otbl(U), u) Bl(U(t))dx Bl(u(O))dx,

where the last equality holds due to [ALu, Lem. 1.5]. Using the previous two estimates we
have

lim (abR(-(n)), -i(n) u)ds >_ O.

We estimate the second term in (5.11) in the following way:

f0t(A-i(xn) (-i(n) U)x)ds (A(-i(n) U)x, (-i(n) U)x)ds

+ fg (Aux, (-i(n) U)x)ds > q fd ]((n) U)x] o(1),

since -i(n) u in L2(I, V). In the third term we use integration per partes and obtain

(-i(n) U)x)ds -i(n) u)ds =o(1)
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because -i(n) U in L2(QT). It is for the same reason that the other terms in (5.11) are also
of type o(1). Thus we have the required result. [3

Proof of Theorem 2.5. The monotonicity of the sequence {Izi,k} from (2.9’) for k > k0
implies/zi, --+/z pointwise in ft. Since ot- < lZi,k _< F we have IZi,k lz in Lp(S2)Yp > 1.
On the other hand, if vi-1 E L(f2), then the sequence {Ui,k} is bounded in the norm of V

loand hence bounded in C
,

(S2) with 6 7, see [KJF].
If we subtract (2.8’) for k r, s and use the test function q0 ui, Ui, we obtain

2otlUi,r Ui,sl2 + "cql(Ui,r Ui,s)xl IIi,r-1 Ii,s-lllui,r Ui,sllUi,s Vi_lldX

+ vefl(Ui,r Ui,s)xl -" 75C(e)lUi,r Ui,sl.

Then for e sufficiently small and r _< r0, from generalized H61der inequality and from the
imbedding of V to Lq()(’q > 1), we have

lUi,r Ui,sl Clui,r Ui,sl2lli,r-1 tZi,s-ll4(lUi,sl4 -i-

Since the imbedding of V to L4() is continuous, {Ui,s} is bounded in L4(). Thus

lUi,r Ui,sl2 5 Cllzi,r-1 Ii,s-ll4.

Boundedness of {Ui,k} in V C C’a (S2) implies ui,k w in C’() where 0 < 6 < 6 and
to E V N C’(). Hence ui, to in V, and we conclude//4 , Ui to satisfy (2.8).
Moreover taking the limit k --+ cxz in (2.9’) we have

bR(l)i-1 + Ol(Ui t)i-1)) bR(l)i-1)

Ui l)i-1

which implies (2.9). Thus the proof is complete. [3

Remark 5.1. The smoothness b 6 C2 has been used in the convergence of the scheme
(2.5). For the convergence of the approximation scheme (2.8)-(2.10) it is sufficient to assume
bGC1.

6. Error estimate of the approximation scheme (2.8)-(2.10).
Proofof Theorem 2.6. Let u be a weak solution of problem (2.2) and -i(n) be a sequence

defined in (2.11). We use the ideas from [MNV] to obtain the estimate of the rate of the
convergence of-i(n) to u. Letus integrate the identities (2.4) and (2.8) over (0, t), tj <_ < tj+l
where j is fixed and subtract them. We obtain

(fo’ (fo’+ A (-in (s) u(S))xds, qgx + B -i" (s) u(s)ds, Px

D -i(n)(s) u(s)ds, o O.
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Let us consider q0 -(n) (t) u(t) and integrate it over (0, t). We obtain

bR(g(n)(s)) + bn (s r)) 1 bn(u(s)),’ff(n)(s) u(.s) ds

+ A (() (z) u(z))xdz, (K(n)(s) u(S))x ds + () (z) u(z)dz,

((n> (S) u(s)) ds D (n> (z) u(z)dz, (n>(s) U(S) ds O.

(6.)
Let us write it in the form I + I + I3 I4 0 and estimate the terms. Using Young’s
inequality, (2.3), (5.5), and (5.6) we have

(62) f0I1 >_ IK(n)(s) u(s)lds Cr.

I(A fd H(s)ds fd H(s)ds) with H(s)We use the relation fd (A fo H(z)dz, H(s))ds
(-ff(n) (s) u(S))x to estimate the second term

q
(6.3) /2 > t(ff) (s) u(S))xds

Using integration per partes in the x variable together with periodicity we obtain

(6.4)

(6.5)

/3 I’(n)(s) u(s)12ds + C(e)

+ C(e) (-ff(’O(z) u(Z))xdz

/4 < c [fi’(n)(s) u(s)lds /

os
-(n) (Z) u(z)dz

2

ds.
2

-ff(,O (z) u(z)dz

2

2

Using (6.2)-(6.5) in (6.1) we obtain

fo fo 2

+c fo fo .(z dz ds + C .(Z  xdZ
2

2

Now using Gronwall’s lemma we conclude the proof.
Remark 6.1. Similar convergence results and error estimates (as in 5 and 6) can be

obtained also for the full discretization scheme corresponding to (2.8)-(2.10). In the full
discretization, the corresponding elliptic equation is projected on a finite-dimensional subspace
Vz C V; i.e., we look for u/ Vz such that (2.8) is satisfied Yrp Vz. We have u in the place
of u() now, with ot (r, .) and Vx --+ V for ), --+ 0 (in canonical sense). We can proceed in
the same way as in [JK1], [JK2], [Ha], and the error estimate

[U--UIL2(I,L2) < C "C -+-lU U0l + lu W=l2 + Ilu w=ll 2 Yw L2(I, V>,)

can be obtained, provided u 6 Vx, u --+ uo in L2(f2).
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FIG. 1. Shrinking circle. FIG. 2. Shrinking ofthe ellipse to the round point.

7. Discussion on numerical computations. This section is devoted to the presentation of
numerical results obtained by approximation schemes (2.5) and (2.8)-(2.10) solving problem
(1.1) in the case of anisotropic curve shortening (1.9). All results (graphically documented
below) were computed by the semidiscretization (2.8)-(2.10). In each time step we used a
few iterations (2.8’)-(2.9’) to find a couple ui, #i satisfying the convergence condition (2.9).
The linear convection-diffusion equation in (2.8’) is solved numerically using the so-called
"power-law scheme" given in [P]. Then the results were checked using the approximation
scheme (2.5); in both procedures we obtained approximately the same degree of accuracy.
Some first numerical results computed by approximation scheme (2.8)-(2.10) were presented
in [KMi]. We refer to [D] for some other successful numerical method solving (isotropic)
curve shortening flow.

First we give a comparison between the known exact results and those obtained numeri-
cally; their agreement indicates the usefulness of the method also in cases in which not even
qualitative behavior is known.

Simple closed curves. In the isotropic case (1.3) of the curve shortening, a special
solution is the circle shrinking in selfsimilar form to the center. Its radius R(t) is then given by
R(t) /2(T t), where T is the duration of the shrinking. T is also the blow-up time of the
corresponding curvature function k(O, t) 1//2(T t), which solves the curve shortening
equation (1.4) and blows up in the whole interval 2 [0, 27r ]. Figure 1 shows the evolution
of the circle with R(0) 2 computed by our approximation scheme. The precise blow-up
time is 2.0 while the numerically calculated one (i.e., the time when the numerical curvature
function is of order 106) is 2.02 for r 0.01 and 2.007 time units for r 0.001. The
numerical solution is plotted each 0.2 time units up to time 1.8. In this scale, the exact and
numerical solutions are precisely the same. The point in the center represents the solution in
time 2.007 and it is a circle with radius about 10-6.

Gage and Hamilton [GH] proved that in the isotropic case, any initial plane convex curve
asymptotically behaves as a shrinking circle. Figure 2 illustrates this phenomenon. The initial
ellipse gradually reaches a circular shape and finally shrinks to its center. Initially it has axes
a 2, b 1 so the initial area S(0) 2zr. Because of the relation St -27r (see [GH])
we have T s(0__2 So in our experiment T Numerical blow up is obtained at 1.06 for2rr
r 0.01 and at 1.005 for r = 0.001, respectively.

The conservation of closedness of the evolving curves is another important criterion
for the approximation scheme precision. In plotting time instants, the curves have been
constructed from the computed curvature function k(O, t) by (1.7); the integral in (1.7). is
evaluated numerically. Because the curves are only given by (1.7) uniquely up to a translation,
for determining the real evolution we need to know the motion of at least one point of the
curve. For this purpose we use (1.2). Our numerical function k(O, t) satisfies the closedness
condition very precisely. Thus, on no figure the curve is split. The closedness conservation
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FIG. 3. (a) Shrinking circle. (b) Convergence to the "oval triangle." (c) Coefficient A(x). (d) Convergence to
the "oval triangle." (e) Rescaled dynamics.

is an intrinsic property of the schemes, so we don’t have to use any supplementary means to
achieve it.

Now, let us consider the anisotropic case. Owing to the data f,/, g, F describing con-
ditions on the free boundary, evolution is more variable. Figure 3a shows the anisotropic
shrinking of the circle. In this case f (0) + g cos 30, g(0) 1 cos 30,/3 (0) 1, and
F 0. The coefficients of the general model (1.1) A, B, D, G are obtained from (1.9). Our
numerical solution indicates that a certain "oval triangle" takes over the role of the shrink-
ing circle as the asymptotical shape. In Figure 3c the function A(x) in the interval [0, 2re]
is plotted. In the model, A(x) represents the diffusion and shrinking terms. The evolu-
tion equation (1.2) indicates why the moving of the curve is much slower in the points with
0 equal to 0, 2__ 4n- where A is small, in contrast to the situation in points with 0 equal3’ 3’

to , Jr, . Figures 3b and 3d show other initial curves’s convergence to the "oval trian-
gle" under the same data f,/3, g, F. The asymptotic behavior of the shrinking curves in the
anisotropic curve shortening problem has been investigated theoretically now [M]. If F 0
in the anisotropic case, we have for the blow-up time the relation T S(O)/f g(O) dO (see
[AG2]). For experiments from Figures 3a, 3b, and 3d the exact T is equal to 0.5, 1.0, 0.75,
respectively. By approximation scheme with : 0.001 we obtained numerical solutions
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0.5

-i

-i -2 -i

(a) (b)

FIG. 4. (a) Shrinking circle. (b) Convergence to the "oval pentagon."

0.5

-0.5

-i

-i -0.5 0.5

FIG. 5. General situation ofthe anisotropic c.s.f

with numerical blow-up times 0.508, 1.007, 0.7485, respectively. For another set of data
5f,/3, g, F, when A(x) cos5x, B(x) A’(x), D(x) A(x), G 0 the numerical

evolution of the initial circle and ellipse is plotted in Figures 4a and 4b, respectively. The
numerical calculations indicate that "oval pentagon" is the asymptotical shape for these coef-
ficients. In Figure 5, the coefficients are chosen so as to illustrate the general situation of the
anisotropic curve shortening flow; f(O) + 0.32cos 20, g(O) 0.96cos 20, fl(O)
1 + 0.5 cos(0 -f) + 0.45 cos(20 -), F -0.1. This evolution seems to be a very realistic
approximation of the motion of the phase interface.

Let us return to the question of the existence of the asymptotical shape for anisotropically
evolving curves. Consider the special case (F 0), when the reference phase cannot increase
in time. (For the outer evolution the asymptotical behavior is known; see [AG1], [AG2].)
A circle, which is the asymptotical shape for the inner isotropic evolution, minimizes the
so-called isoperimetric ratio Iso L2/4r S, where L is the length of the closed curve and S
is the enclosed area. For all closed plain curves we have Iso > and equality holds only for
a circle. For a function z z(O), periodic in [0, 2rr ], we define

:rr 1
dO(7.1) L(Z) z(O)k(O"’

f
2 ( sin(O fo CS(

d(7.2) S(z) - z(O)k(O) z()k(’---
cos(0) [o sin()
z(O)(o) Jo z()()

and call these numbers the length of the curve and the area it encompasses with respect to the

function z, respectively. All of our numerical experiments indicate that the isoperimetric ratio
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with respect to the function z or the "anisotropic isoperimetric ratio"

(7.3) Iso(z)
/2(z)
4n’S(z)

g(O) decreases during curve evolution and converges to (due to numericswhere z(O) (o,
approximately). The following numbers concern the same numerical experiment as plotted in
Figure 3a. In this case the blow-up time T 0.5. Here we give numerical values of Iso(z)
for z(O) g cos 30 in several time moments given as subscript:

Iso0(z) 1.114, ISO0.02(Z) 1.093, ISO0.04(Z) 1.070, ISO0.06(Z) 1.047, Iso0.08(z)
1.028, Iso0.10(z) 1.014, Isoo.12(z) 1.0071, Iso0.14(z) 1.0031, Iso0.16(z) 1.0011,
Iso0.36 (z) 1.0009, Iso0.40(z)= 1.0009, Iso0.44(z)--- 1.0009, Iso0.48 (z) 1.0009.

The ratio Iso(z) decreases and, from a certain time on, there is practically no change. This
indicates that the shape is shrinking to a point in a selfsimilar fashion. The question arises as
to whether the "oval triangle" minimizes the functional Iso(z) the way the circle minimizes
Iso(1).

Let us look at the problem of the asymptotical behavior from another point of view. We
consider the special case of g /, in whichf g(O dO is equal to 27r and F 0. Comparing
the relations for blow-up time we see that the asymptotics of the shape are different from
those in the isotropic case but the growth of the maximal curvature kmax(t) Ik(’, t)lo has
to be the same. So, kmax may not grow faster than 1/V/2(T t). Let the function k(O, t) be
the solution of (1.8). Transform the time axis by r - log (-) and define the rescaled

curvature K(O r) k(O t)v/2(T t). Denote z(O) g(O Since

Kr Ot Or /2T 2t

2(T t) -2T 2---- K + 2T 2t(kZ(zk)oo + kZ(zk))

K + (K2(zg)oo + K2(zK))2(T t) -2T 2------ 2T 2t

the function K (0, 7:) is the solution of the transformed equation

(7.4) 0 (zK)oo + zK- --.
If there exists an asymptotical shape of inner evolution with the speed 1//2(T t) for the
given z, then the rescaled curvature of this shape is an equilibrium of equation (7.4). The
following numerical experiment illustrates the previous considerations. The initial unit circle
from Figure 3a remains the same after rescaling its curvature; now starting the numerical
solution of the transformed equation with the same z(O) 1 cos 30 we obtain the results
plotted in Figure 3e. The initial circle changes to "oval triangle" form, where the changes are
slower and slower so that we have finally an accentuated steady-state shape whose curvature is
the equilibrium of (7.4). The agreement ofthis steady-state "oval triangle" and the asymptotical
shape from Figure 3a may be seen from the evolution of numerical Iso(z) in the rescaled
dynamics:

Iso0(z) 1.114, Iso0.04(z) 1.072, Iso0.08(z) 1.033, Iso0.12(z) 1.011, Isoo.16(z)
1.003, Iso0.2o(z) 1.0008, Isoo.50(z) 1.0008, Iso0.60(z) 1.0009, Iso0.70(z) 1.0009,
Iso0.80(z) 1.0010, Iso0.90(z)= 1.0010, Isol.0(z)= 1.0010.
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Initial r=cos(2t) time 0.040

time 0.080 time 0.0862

(a)

Initial curve r=cos(7/gt) time 0.160

time 0.320 time 0.4235

(b)

FIG. 6.

Initial time 0.010

time 0.01957 time 0.01965

FIG. 7.



1322 KAROL MIKULA AND JOZEF KA(UR

Initial curve time 0.0125

time 0.0250 time 0.03625

(a)

Initial time 0.00625

time 0. 0250 time 0. 03125

(b)

FIG. 8.

Closed plain immersed curves. If the index v of the initial curve is greater than 1 then
qualitatively new types of behavior are possible. First we consider the isotropic case. If
the initial curve has self-intersections, then the corresponding solution can become singular
without shrinking to a point. Figure 6a illustrates the case in which the initial "loops" contract
faster than the whole curve and become a so-calledformation ofthe singularities in the curve
shortening flow. This behavior was studied mainly by Angenent in [A ]. Figure 6b represents
this process for another immersed curve with greater inside curvature until the time when the
singular curve is formed. The singularities in the form of "hairs" correspond to a blow up of
the curvature function k(O, t) in several subintervals of f2. (Every one of these intervals has
measure greater than r.) In Figures 6a and b and also in Figures 7-9, we have plotted the
initial curve, three states of evolution reconstructed from the numerical solution, the last of
which is very near to a blow-up time. As may be seen from previous figures, the ratio of the
maximal and minimal curvatures is large and growing quickly in time. In spite of this, our
approximation schemes lead to precise results, as can be checked by conservation of curve
closedness also very near to the blow up.
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Initial time 0,02

time 0.03 time 0.03825

(c)

Initial curve time 0.02

time O. 03 time O. 03825

(d)

FIG. 8. (cont.)

Also, in the case in which v > 1, behavior similar to a shrinking ofthe simple closed curves
into a point is possible. It can happen only in cases in which the maximal curvature does not
grow faster than 1//2(T t). The special initial curve with v 2 from Figure 7 gradually
winds itself about the circle with index 2 before shrinking to a point. The corresponding
curvature function has the blow up in the whole of .

A part of the boundary between the previous two dynamics is formed by the curves which
shrink to a point in a selfsimilar manner. This behavior was studied in [ALa] and [EW]. For
initial curve r, denote by n e N the number of periods of its curvature function k(O) in
For curves from Figures 6a-8d it means number of loops. Abresch and Langer [ALa] have
shown that, for every integer couple v, n satisfying 1/2 < v/n < ,//2, there exists one
curve which is the homothetic solution of the isotropic curve shortening flow problem. If we
add to them the circles with all indexes v e N we obtain all the so-called Abresch-Langer
functions. They are steady states of the rescaled equation (7.4) with z 1. Dynamics of



1324 KAROL MIKULA AND JOZEF KAIUR

Initial r=cos(2t) time 0.040

time O. 082 time O. 0864

(a)

Initial curve time 0.005

time 0.018 time 0.022

(b)

FI6.9.

several "almost homothetic solutions" computed by our approximation scheme are plotted in
Figures 8a-d.

Figures 9a-c concern the anisotropic curve shortening ofimmersed curves. In Figures 9a-
b the evolution is governed by the set of data known from Figures 3a-e, when the asymptotical
behavior was the "oval triangle." The curves of Figures 9a-b exhibit a similar tendency. In
the first experiment from Figure 9a, the curve becomes singular and one "hair" singularity is
eventually formed. The second initial curve from Figure 9b gradually winds itself about this
"oval triangle" with index 2 and then shrinks to a point. Winding about the "oval pentagon"
with index 3 is shown in Figure 9c. (The coefficients ofthe model are the same as in experiments
documented in Figures 4a and b.) Equilibriums of equation (7.4) with z 1 constitute certain
generalizations of the Abresch-Langer functions.

Shrinking with supplementary convection term. Let us consider problem (1.1) in
the case of (1.9) with one exception, namely B(x) (g/)x + Bl(x) for Bl(X) bounded
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Initial curve time 0.001

time 0.004 time 0.0053

FIG. 9. (cont.)

(a)

0.25

0.25

-0.5

0.75

-i

-0.75 -0.5 -0.25 0 0.25 0.5 0.75

(b)

FIG. 10. Shrinking circle.
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measurable function periodic in interval [0, 2r v]. Then equation (1.1) can be written in the
form (writing k instead of v)

(7.5)
xx

)+(Bk)x.
Equation (7.5) is a certain generalization of the anisotropic curve shortening where we have
a supplementary convection term. Our theoretical results guarantee the local existence of a
solution and also convergence of approximations. So, such problems can be handled numer-
ically. A question arises whether the found solution satisfies the closedness condition and
hence whether it could represent in a sense the evolving phase interface. Several curves which
do not split during such "shrinking and whirling around the curve" are presented in Figures
10a and b. As seen in these last figures, if B1 (x) is a positive constant then the curve rotates
counterclockwise.
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OSCILLATION ABSORPTION FINITE ELEMENT METHODS FOR
CONVECTION-DIFFUSION PROBLEMS*

w. LAYTONt AND B. POLMAN

Abstract. This paper proposes a new approach to eliminating overshoots and undershoots when using finite
element methods (FEM) for convection-dominated convection-diffusion problems. The first scheme involves an
additional nonlinear "absorption" term which frequently improves the solution quality of both the usual Galerkin
FEM and the streamline diffusion FEM. Mathematical support for the method is given in the form of global estimates
for the overshoot, undershoot, and the basic error in the approximate solution. Although nonlinear, the additional term
is in fact monotone. Another approach is to strongly impose zero overshoot and undershoot via a variational inequality
formulation. Finally we consider the possibility of variational inequality postprocessing to remove overshoots and
undershoots.

Key words, convection-diffusion, nonlinear absorption, monotone operators

AMS subject classifications. 65N12, 65N30

1. Introduction. This paper considers the finite element approximation of convection-
diffusion problems, such as

I --.Au + alUx + a2Uy + gu f(x, y) for (x, y)
(1.1) / u(x, y) or(x, y) for (x, y)

In (1.1) (al, a2) represents a known convection field transporting a substance whose con-
centration is given by u(x, y), is a (small) diffusion coefficient, and g(x, y) is a linear absorp-
tion term. The method studied involves adding to a standard Galerkin finite element method
(FEM) or streamline diffusion FEM an additional nonlinear absorption term (A (uh), v). This
term has the effect of eliminating overshoots and undershoots in the concentration u(x, y).
These overshoots and undershoots are well known to cause difficulties when (1.1) is coupled
with, for example, chemical reaction terms.

There exist well-known flux-splitting finite difference methods for 1-dimensional con-
servation laws which do not introduce nonphysical maxima. These are typically extended to
2-dimensions via operator splitting along coordinate directions and applying the 1-dimensional
methods in each coordinate direction; see, e.g., [4, 17] for representative examples. Finite
element research has taken a slightly different tack, focusing on arbitrary order methods ap-
plicable to complex geometries and unstructured meshes. This approach has given rise to
the streamline diffusion method of [8]. The success of both approaches for problems closely
related has inspired attempts at obtaining a synthesis of the best features of both, e.g., [9,
15]. One possible synthesis of the two methods is to solve the linear system iteratively (or,
equivalently, by imbedding it in an evolutionary problem) and, at each step, eliminating out-
of-range answers as they occur. This is exactly equivalent to solving a variational inequality
approximation by a projective iterative method; see 3.

To present the new method, and a first example, let FIh (f2) be an edge-to-edge triangulation
of 2 with maximum triangle diameter h. xh(f2) will denote a typical Lagrange-type finite
element space associated with 1Ih (f2). In our examples we shall take conforming C-piecewise
linears for I-Ih(), any degree being possible in principle. The combinations of nonlinear
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absorption plus both the usual Galerkin and the streamline diffusion FEMs are studied herein,
as well as two related ideas. For example, the usual Galerkin FEM plus artificial absorption
computes uh xh(f2) via the following: for all v xh() A Hi(f2),

(6Vuh, Vv) -- ( uh + guh, v) + (A(uh), v) (f, v),
(1.2)

uh(Nj) ot(Nj) for all nodes Nj on

The term (A (uh), v), given by (1.5) below, incorporates into (1.2) the fact that global bounds
of the form Umin < U(X, y) < Umax are known for the true solution, and the approximate
solution should satisfy these bounds as well. Consider the following first (favorable) example.

Example 1.1. The following problem was solved on a uniform rectilinear mesh, each
square divided into two triangles, using conforming linears with (a) standard Galerkin FEM
and (b) standard Galerkin FEM with the oscillation absorption term added, method (1.2).
The parameter values were h , 10-3, f2 (0, 1) (0, 1), aa (x, y) c(1 cx),
a2(x, y) s(1 sy), where c cos0, s sin0, and 0 210 (this is the test problem
in [2]). Consider -Au -k- al(x, y)Ux + a2(x, y)Uy 0 for (x, y)
(1.3)

u(x, y) o(x, y) for (x, y) 6 0S2,

where or(x, y) 1, if 12y 5x > .3, or(x, y) 0 otherwise. The maximum principle imme-
diately gives 0 < u(x, y) < for the true solution to (1.3). This information is incorporated
into the absorption term via

a(u)(x, y) p-a [min{u(x, y), 0} + max{u(x, y) 1, 0}],

where p was chosen (see 2 and 4) to be p h2.
The-difference between Figures a and lb is enormous. In 4 a comparison is also given

with the streamline diffusion FEM and the streamline diffusion FEM with the (A (uh), v) term
added.

The basic principle of (1.2) is that L-information from.the continuous problem can be
incorporated in a consistent, highly accurate manner into (1.2) via the additional (A (uh), v)
term. Suppose, for example, that the maximum principle for (1.1) gives the bounds

(1.4) Umin _< u(x, y) <_ Umax, (X, y)

for the true solution to (1.1). Then A(u) is given by

(1.5) A(u)(x, y) :-- p-1 [min{u(x, y) Umin, 0} nt- max{u(x, y) Umax, 0}],

where p is a "small" parameter. There are many applications where bounds ofthe form (1.4) are
immediate, for example natural convection, see [3], possibly including convection-diffusion
of a pollutant as well.

Note that A (u) is a penalty-type term. In 2 mathematical support for the addition of the
(A(u), v) term to both the usual Galerkin and the streamline diffusion formulations of (1.1)
is given. Note that (1.5) is the usual penalty term employed in approximating variational
inequality problems. Thus, associated with (1.2) is another method based upon imposing the
constraint (1.4) strongly via a variational inequality formulation. Based upon the fact that
the true solution lies in the relevant constraint set, optimal order estimates are given for the
variational ineq,uality approach in 3.

Additionally, there are at least two attractive generalizations of (1.2), (1.4), (1.5) involving
further subdivisions of, respectively, the range of u and the domain . These two will now be
briefly described. A more detailed treatment is beyond the scope of this report.
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1 6

1 4

1 2

1.0 0.0

0.2 0.8 "{

FIG. la. Usual Galerkin FEM approximation to problem (1.3).

0 6

0 4

0 2

FIG. lb. Oscillation absorption FEM approximation (1.2) to problem (1.3).

Generalization 1: Range decompositions. Consider the problem with no internal
sources: seek u(x, y) satisfying

-Au + aux + buy 0 in , u g on Of2,

where, for compactness, 0 < g(x, y) < (and hence 0 < u(x, y) < 1) in f]. For a positive
integer J decompose the range of u by 0 U0 < U1 < < Uj 1. This induces an
additive decomposition of the boundary data
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J

g(x, y) Z gj(x, y)
j=l

and Uo < gj(x, y) < (Uj U-I) by

u_

Uj-1 + gj(x, y) g(x, y)

with gj CO (OS2)

if g(x, y) <_ Uj-1,
if Uj-1 <_ g(x, y) <_ Uj,
if g(x, y) >_ Uj.

A corresponding additive decomposition of the solution is induced, u(x, y) =YJ=iuj(x, y),
where u (x, y) satisfies

(1.6) 6.Auj .-3
I- aUj,x + buj,y 0 in Q, uj gj on 0f2,

so that

(1.7) 0 <_ uj(x, y) <_ (Uj

The J uncoupled problems (1.6) can now be solved subject to the constraint (1.7), either
h Thereupon the global approximatestrongly or weakly imposed as in 2 and 3 to give uj.

solution is reassembled as uh Z=I u.h In this way, oscillations around certain critical
solution values (the Uj’s) can be eliminated.

Generalization 2: Further division of f2. If 2j denotes possibly overlapping subdo-
mains of f2, S2 j=l,J S2j, the term A(u) could be modified.to read

A(u)(x, y) := p-l[ min{u(x, y) min{u(x, y) (x, y) Of2j}, 0}
+ max{u(x, y) max{u(x, y) (x, y) 0f2j}, 0}] for (x, y)

(1.8)
In the limiting case where for each node Nj, f2j f2 (Nj) is the union of the triangles
containing Nj, (1.8) resembles a "flux limiter," well known in finite difference theory.

The analysis herein is, however, restricted to the problems f2j f2 (2) and f2j Q and
p - 0 (3).

Numerical experiments are given in 4. Provided one has estimates of Umax and Umin,

improvement in solution quality is consistently seen. Sometimes the improvement is quite
dramatic and sometimes it is only moderate. In all cases, overshoots and undershoots are
eliminated. In some cases, however, oscillations between the correct maximum and mini-
mum values persist when using the usual (centered) Galerkin FEM. In these first experiments,
damped Newton methods were used to solve the nonlinear penalized problem (without spec-
tacular efficiency for the Galerkin FEM). Since the nonlinear term makes the system "more"
monotone, there are other attractive and highly parallel solution procedures which are to be
recommended; see 12, 13].

2. Mathematical support for the nonlinear absorption term. For brevity in the pre-
sentation, consider the problem with homogeneous, boundary conditions:

Lu -6. Au + Vu + gu f in f2 (polygonal domain in a),
(2.1) u 0 on

g- 1/2div() > gmin > 0 in

We suppose i priori bounds on the true solution to (2.1) are known and given by (1.4):

(2.2) (-cxz <)Umin < u(x, y) < Umax(< +O), (X, y) 6 .
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Let X H0(f2) and Xh denote a conforming finite element space, then Xh C X, where
h represents a typical maximum element diameter. The method is now given as follows.
Suppose that the true solution of (2.1) satisfies, for all v X,

(2.3) B(u, v) F(v),

where B(u, .) is linear on X and F(.) is a bounded linear functional on X.
Choose a small parameter p > 0 and define, for w 6 X,

(2.4) a(w)(x__) /9
-1 [(W(X__) Umin)- / (W(X) Umax)+]

where we use the notation v_ min{v, 0} and v+ max{v, 0}. We consider an approximation
of the following form. For Bh (., .) X x X - ] and Fh(.) X - continuous bilinear
and linear, respectively,

seek uh Xh satisfying
(2.5)

Bh(uh, v) / (A(uh), t)) Fh (v) v Xh.

We shall suppose that there are norms Ila,II ]l on X equivalent to the H-norm, such that

Bh (W, tO) >_ C1 w 2 Vw X,a(2.6)
Bh (w, v) <_ C2 w I1 v I1 v, w X,

where C1, C2 are constants which as we shall see later can be chosen independent of h and e
in our applications. The question of existence of a solution to the nonlinear problem (2.5) is
resolved in the following proposition.

PROPOSITION 2.1. Assume (2.6) holds. Let Th Xh - Xh be defined by

(2.7) (Th(w), v) :-- Bh(w, v) + (A(w), v) Yv Xh.

Then Th is well defined and strictly monotonefor all v, w Xh,

(Th(v) Th(to), V W) > Callv- wlla L(2),p

where f2 := {x_ 6 f2 [v(x_) < Umin and w(x_) < Umin] or Iv(x_) > Umax and w(x_) > Umax]}.
Similarly, we can let T X - X be defined by

(T(w), v) := Bh (w, v) + (A(w), v) v X.

If (2.2) holds, thenfor all v X,

(T(v) T(u), v u) > Cllp ull2 / {ll min{v Umin, 0}112 / max{v t/max, 0}ll}.

Proof First note that as (2.7) is linear and continuous in v, Th is well defined by the Riesz
representation theorem. Further the A(.) term in (2.7) satisfies

1
(A(v) A(w) v w) > -lip wll 2 Yv w xL(f2)P

(note that a simple calculation shows that we only get the L2-norm over 21) and for all v 6 X
(note that A(u) 0),

(A(v) A(u), v u) > {11 min{v -/min, 0}[[ 2 / max{v Umax, 0}112].
P
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Combining these two inequalities with coercivity of Bh (., .) demonstrates the claimed mono-
tonicity. [3

COROLLARY 2.1. Supposing (2.6) holds, uh Xh, the solution of (2.5), exists uniquely.
Proof. This proof follows immediately from monotonicity of Th and classical results of

Minty 14]. F]

Since the operator T is monotone, standard techniques can be used to obtain an error
bound. Adapting these appropriately yields the next theorem.

THEOREM 2.1. Suppose (2.6) and (2.2) hold. Then there exists a constant C independent
ofp and h such that

(2.8)

2+]]U gh ]12a _}_ uh gmin)-11 [[(gh Umax)+

< C inf Ilu x Ila + Ilu X I1 + --I1 X
xX 10

sup
W G_.X /

+ C { sup ltF" } =
ox Ilwhll

Proof. Lete uh u and for X e Xh, x u and b uh X. Then from
Proposition 2.1,

2+1Clllell 2 + -II(uh Umin) -II(uh Umax)+ll 2

(2.9) < (r (uh) T (u), uh u)

(T(uh) T(u), uh X) + (T(uh) T(u), X u).

Consider the first term of the right-hand side (RHS) as A(u) =_ 0 and uh satisfies (2.5)"

(T(uh) T(u), b) Bh(e, qb) + (A(uh),

nh(uh, 1#) nh(u, )) Jr. Fh(qb) nh(uh, ) 2f_ In(u, () F(u)]

[B Bh](u, qb) + IFh F](b)

( [Bh--B](u’wh)) (sup [Fh--F](wh))_< sup limb [la + J i2 I1 [[a
\ohXh Ilwhlla \whexh

<_ [CB "+" CF] (llu x Ila + Ilella),
(2.10)

[Bh-BI(u,wh) [Fh-F](wh)where Ca "VwhsXh ilwhlla and Cg :--" SUPwhgh ilwhlla
Now consider the second term on the RHS of (2.9):

(T(uh) T(u), X-u) Bh(e, 11) + (A(uh),
<_ C2llellallOIIb + IIA(uh)llllrlll

1( )<_ C2llell.llrll + II(uh-umin)-II + II(uh-Umax)+ll II0ll
P
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C211ellallllb + - II(uh--Umin)-II + II(uh--Umax)+ll + --11711ap
’(C21lellal]Ollb + - II(uh-umin)-II 2 + II(uh-umax)/]] 2 + -llTll2-p

(2.11)
Inserting (2.10) and (2.11) into (2.9) yields

1
Clllella2 / - (ll(uh- Umin)-112/ I[(uh- Umax)+ll 2)

1
<_ C211ellallOll / [C / CF](llrllla / Ilella) / -Iloll,

P

Hiding the Ilella termsin the left-hand side (LHS) and taking the infimum over X 6 xh yields
(2.8). rq

As an application of Theorem 2.1, we give the error estimates which (2.8) yields when
applied to the usual Galerkin method and the streamline diffusion method by using Co con-
forming linear elements.

COROLLARY2.2. Suppose Bh(v, W) B(v, w) f :VvVw/(tVv+gv)wdxgmin > O,
and Fh(w) F(w) fs2 fwdx. Then u uh satisfies

(2.12)

1 1
llV(u uh)ll 2 / Ilu uhll 2 / -II(uh Umin)- 2 / -II(uh Umax)+ll 2

p p

< C inf {2llV(u x)ll 2 / (2 + -1 + p-)llu xl12}.
xEX

Proof. Set Ilwlla2 :-- llVwll 2 + Ilwll 2 and Ilwll :- llVwll 2 + (1 + -)llwll 2, Then
(2.6) is fulfilled with C1 and Ca independent of e and h and the result follows directly from
Theorem 2.1. [3

For the streamline diffusion method a weighting parameter 6 O (h) is selected. For a
detailed discussion of streamline diffusion methods, see [2, 8, 10]. The presentation of this
method is a bit simpler when using for Xh the space of CO conforming piecewise linears. The
main idea is to embed (2.1) into

(2.13) 6V. (gtLu) + Lu -6V. (tf) + f

which is consistent with the original problem if u is sufficiently smooth (u 6 H2() AH(f2)).
This leads to the following variational formulation:

B (u, v) F (v) Vv H(2), for u

where

(2.14a) Ba(u, v) := fa VuVv .6(Au)t Vv + (t Vu + gu)(v + 6gt Vv)dx,

(2.14b) F (v) "= fa f(v + 6t Vv)dx.

Using linear basisfunctions this results in

(,,, F2 (,,) Xh,
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where

(2.15a)

and

Bh (Wh’ vh) := fa SVllohvl)h 4- (l Vll)h 4- gwh)(vh 4- 3 7vh)dx,

2.5b Fh(vh) := F(vh).

Note that in Bh we have dropped the term 3(Au). Vv. This is due to the fact that if we write
the integral over f2 as a sum of integrals over the elements, then in each element Av 0,
where v is a linear basisfunction.

COROLLARY 2.3. Let Xh be the space ofCO conforming piecewise linear basisfunctions
and 3 O(h), where h is the maximum triangle diameter Let B, Bh, Fa, and Fh as in
(2.14), (2.15). Then

B(u, v) Bh (u, v) --e3 f.(Au)a. Vvdx

and the error in method (2.5) satisfies
1 1

llV(u uh)ll 2 4- 11" V(u uh)ll 2 4- Ilu uhll 2 4- -II(uh Umin)- 2 4- -II(uh Umax)/ 2

P P
< C inf {2llV(u ))ll 2 4- 2alia V(u ))ll 2 4- (2 + 3-1 + p-)llu )ll2}.

xEX
(2.16)

Proof Set

IlWlla2 :--IlVwll 2 + all" Vwll 2 + Ilwll z,
IIwlI :-- IlVwll 2 + all" Vwll 2 + (1 4- a-1)llwll 2.

Again (2.6) is fulfilled and the result follows by Theorem 2.1. [3

Formally balancing terms on the RHS of (2.12) and (2.16) suggests the following scaling
for the penalty parameter p.

Usual Galerkin FEM 4- penalty term.
e 0(1) = p O(h2),
e O(h) =: p O(h),
: _< O(h2) =: p-- O(e).
Streamline diffusion FEM 4- penalty term.

p 0(3)= O(h).
In our first experiments, however, solution quality did not seem very sensitive to the actual

choice of p, unlike the convergence ofthe damped Newton solution procedure employed (only
in the case of the usual Galerkin method).

3. The variational inequality approach. For compactness of exposition, assume that
the boundary conditions are homogeneous and that one knows i priori a closed, convex set IK
in H(f2) in which the true solution lies. Therefore, consider

] -Au+t.Vu+gu=f(x,y) inf2CRa,
(3.1) / u =0 on Of2.

Assume g 1/2div() > gmin > 0 in and that, i priori, the true solution of (3.1) satisfies

u E N, IN C H(S2) a closed, convex set.
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LEMMA 3.1. Suppose the true solution u of(3.1), (3.2) satisfies thefollowing variational
equality: for X a Hilbert space, u X,

(3.3) B(u, v) F(v) --0 Yv X,

where B(u, v) is a continuous and coercive bilinearform,

(3.4) IB(u, o)1 _< C2()llullxllollx, IB(w, w)l >_ Ca()llwll Vv, w X,

and F(v) is a bounded linearfunctional on X. IfIN C X is a closed convex set in X, then the
variational inequality

seek fi IN satisfying
(3.5)

B(Fc, v F) F(v () > O Yv K

has a unique solution ft. If u K, then fi u.

Proof Existence and uniqueness of fi in (3.5) follows from (3.4) and standard results in
variational inequalities; see Kinderlehrer and Stampacchia 11, Chap. 2, Thm. 2.1 ]. Likewise,
existence and uniqueness for (3.3) follows by the Lax-Milgram lemma. As (3.3) and u 6 K
imply that u satisfies (3.5), necessarily u tT. [3

Next, consider the error in approximating the solution of the variational inequality (3.5).
Since we wish to include both streamline diffusion and usual Galerkin FEMs, the classic error
analysis ofFalk [6] and Mosco and Strang 16] must be enlarged a bit to include perturbations of
the bilinear forms, nonsymmetric problems, and the dependence upon e in the final estimates.
To this end, suppose the true solution u 6 X to the problem satisfies the following variational
equality:

(3.6) B(u, v) F(v) Yv X,

where B(u, .) X -> ]R is linear and F X -> N is a linear functional. Likewise, let Xh C X
be a closed subspace and define

(3.7) INh :-- Xh IK, IN a closed, convex set in X.

We assume ]Kh 0 and u 6 IN. The approximate solution we consider is calculated via the
following variational inequality:

find uh ]Kh satisfying
(3.8)

Bh (uh, oh uh) Fh (oh uh) >_ 0 vvh h,

where Bh Xh x Xh - N, Fh Xh t-> R are, respectively, bilinear and linear functionals
approximating B(., .) and F(.). Bh(.. .) is assumed to satisfy the following.

Assumption 3.1. There are norms Ila, I1 on X such that for positive constants C,2,
independent of h and e,

Bh (w, to) >_ Cl w IIa Vw X,

Bh(v, W) <_ C211VllalIWlI YV, W X.

THEOREM 3.1. Suppose Assumption 3.1 holds. Then, uh INh satisfying (3.8) exists and
is unique. Further, if u IN, then the error u uh satisfies

Ilu uhlla C2C inf Ilu lib -+- 2C-1 sup
X]h whX

[Bh B](u, wh)
+2C-1 sup

wXh Ilwhlla

[F- Fh](wh)
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Proof. Letting X l[h be arbitrary, expand the error inequality as follows"

C1 Ilu uh Ila2 Bh (u uh, u uh)
Bh(u Uh, U X) Bh(uh, X uh) + Bh(u, X bth)

<_ Bh(u Uh, U X) -]- F(X -uh) Fh(x -uh) -i- [Bh B](u, X uh)

using (3.8), (3.6)

IF- Yh](1/)h)
_< C211u uhllallU xIl / sup

whEx Ilwhlla

-Jr- sup
[Bh B](u, wh)

I1 uhlla
mx Wh Ila

IIx uh Ila

Now insert I1 uhlla Ilu uhlla -t- Ilu Xlla and divide by Ilu uhlla in the resulting
inequality. Taking the infimum over X yields

ClllU uhlla C2 inf Ilu xll + 2 sup
X EKh to EX

[Bh B](tt, wh)
+ 2 sup

ll)hEx Ilwhlla

[F- Fh](wh)

which is the claimed error estimate. E]

Remark 3.1. The conditions in Assumption 3.1 can be relaxed somewhat. For example,
essentially the same result holds if X is replaced by Xh in Assumption 3.1. On the other hand,
if coercivity is weakened to the inf-sup condition, a similar error estimate can be given but
existence of the approximate solution (to (3.8)) is then an open question.

As applications of Theorem 3.1, consider the bilinear forms Bh(., .) based upon (1) the
usual Galerkin FEM and (2) the streamline diffusion FEM by using linear elements.

Example 3.1. The usual Galerkin FEM. In the usual Galerkin FEM with exact integration
nh(., .) n(., .), Fh(.) F(.), Ilwll 2a :- llVwll 2 / Ilwll 2, and Ilwll llVwlt 2 / (1 /
-l)llwll2, The constants C1,2 are O(1) constants provided gmin > 0.

COROLLARY 3.1. Suppose gmin > 0, then the error in (3.8) when using the usual Galerkin

formulation satisfies

[ellV(u uh)ll 2 + Ilu uhll2] _< C inf [ellV(u x)ll 2 + (1 -+- -l)llu xllZ]
XKh

Example 3.2. The streamline diffusion FEM. For u 6 H2() f-) H(f2), the solution of the
continuous problem satisfies the following: for 6 > 0, a parameter

Ba(u,, v) F(v) Yv H(2), for u H2 ["1H01(’2),
with B and Fa as defined in (2.14). The streamline diffusion formulation of (3.8) with linear
elements is defined as follows: seek uh Kh satisfying

(3.9) Bh (uh, vh uh) > Fh (vh uh) Yvh Kh

with Bh and Fh as defined in (2.15). With

Ilwll llVwll 2 / 11" Vwll 2 -t- Ilwll 2,

Ilwll :- llVwll 2 / 11" Vwll 2 / (1 + -l)llwll 2
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as the choice ofnorms, Bh satisfies Assumption 3.1 provided gmin > 0. Note that [F-Fh 0
and [B Bg](u, wh) - fa Au( vwh)dx which we can bound by the following:

I[n nff](u, wh)l llAullll" Vwhll 1/2llmullllwhlla.
Using these estimates in Theorem 3.1, we state our next corollary.

COROLLARY 3.2. Suppose grffln > O. Then, method (3.9) satisfies

[llV(u uh)ll2-+ 11" V(u uh)ll 2 -+-llu uhll2]
_< C inf [llV(u ))ll 2 -t-&ll" V(u ))ll z

/(1 / -a)llu 11] / C1/2 II/Xull.

Remark 3.2. Concerning the interpolation error in Kh. The above global estimates involve
terms of the form infvhNh Ilu vh I1, It seems to be an open question to give an asymptotic
estimate of this for elements where the usual nodal basisfunctions are not nonnegative. For
conforming linears, for example, if u 6 K then Ih (u), the usual nodal interpolant of u, lies
in IKh so the infimum over Kh will yield the same asymptotic error estimates as the infimum
over Xh. For more general elements, the estimates that are known, see, e.g., Wong 18], can
be summarized in the following lemma.

LEMMA 3.2. Suppose X is a separable Hilbert space, IK C X is a closed, nonempty,
convex subset ofX. Let Xh, 0 < h < 1, be a nested 1-parameterfamily offinite-dimensional
subspaces which become dense in X as h -+ O. If the interior of ]K is nonempty, then for
h < ho, Kh :-- ] N Xh is nonempty. If additionally, u Int(K), then there is an hi, such
thatfor h < h (< ho),

inf Ilu vh IIx C(1 + Ilu IIx) inf Ilu wh IIx.
V ]h llohX

Proof. This is proven in Wong [18]. [3

Unfortunately, the application of this lemma is highly restricted due to the assumption
that Int(K) is nonempty. We state the following well-known fact for completeness.

LEMMA 3.3. Let f2 be a domain with smooth boundary and K {v H (f2) 0 <_ v <
1 }. Then, if f2 C R, Int(N) is nonempty. If f2 C ]Re, d > 1, Int(N) is empty.

Proof. The first claim follows from the Sobolev embedding theorem. The second follows
since there are functions in H(f2) for d > with IIlla yet is unbounded. Thus, if
u K, (u + e) ’ K for any > 0 and Int(K) is empty.

4. Numerical experiments. We present a few numerical examples which illustrate the
approaches of the previous sections. The elimination of the overshoots and undershoots is
illustrated as well as improvement in the approximate solution between its maximum and
minimum values. The test problem considered is the problem in Example 1.1"

nt- al(x, y)Ux -+- a2(x, y)Uy 0 for (x, y) 2 [0, 1]2
(4.1)

u(x, y) (x, y) for (x, y) 0f2,

where al(x, y) c(1 cx), a2(x, y) s(1 sy), where c cos0, s sin0 (note that
V. 8 -1 so that the associated bilinear form is coercive). On the boundary we have
or(x, y) 1 if 12y 5x > .3, or(x, y) 0 otherwise.

The problem is discretized using the standard Galerkin FEM and the streamline diffusion
FEM by using the standard linear nodal basisfunctions {/h }Ui=1 on a uniform mesh of isosceles
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right-angled triangles. This leads to a nonsymmetric linear system of equations (for more
details on the actual implementation, see [2])

(4.2) Khxh fh
which we solve by a generalized conjugate gradient method with either a point incomplete (for
the Galerkin method) or a block incomplete (for the streamline diffusion method) factorization
as preconditioner (see 1] and [2]). To implement our new method, we only have to add the
nonlinear absorption term to the system (4.2). To simplify the practical implementation, we
replace the terms

(4.3) Sj (A (i=l x/hb/h),)d
which are close to Mh(x__h), where Mh is the finite element mass matrix, (Mh)i,j (ih, tj.h),
and IRN w- IRN is defined by

1
[min{x/h 0} + max{x/h 0}], 2, N,(4.4) (xh)i

P

by just h2(x__h) (the h2 term stems from the scaling of Mh).
It is easy to verify that this corresponds with a monotone operator so the theory of 2

remains applicable. Adding the term h2(xh) to (4.2) yields the following nonlinear non-
symmetric system of equations to be solved:

(4.5) Khxh + h2(xh) fh.

Equivalently, seek a zero of the functional " It{N IN defined by

(4.6) 5r(xh) Khxh + he(x_h) fh.
In these preliminary tests we solved this by a damped Newton method. For a detailed analysis
of this type of method see, for instance, [5]. We like to remark here that we have not tried to
find an optimal solution method for this system since our main interest here lies in the actual
solution; on the other hand, in most cases the solution procedure was in fact very efficient.
The damped Newton method employed takes the following form:

Choose x(), k 0

DO

Solve for dk) Kh -Jr- Dh (x(k)) d(k) -f’(x__(k))
p

X_.(k+l) X_(k) + Skd(k)

k=k+l
WHILE (II’(x()l12 > 10-4 ),

where Dh (X) is a diagonal matrix defined by

1
(Dh(X))i’i 0

ifxi < 0orxi > 1,
otherwise.
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TABLE
Number ofiterations and L2- and L-norms ofovershoots and undershootsforproblem (4.1) using 0 60,

Galerkin FEM.

e\n

10E-

10E- 3

32

p 0.977E 2
o

o
itN --0 itcG 18

p 0.977E 2

0757708E01 0.8984E-2
0.6Zl21e-1 0,16470E-3
itN 3 itcG 152

,0.16225E-1[ 0.11982E-3

0.15514E-21 0.51860E-5

64

p 0.244E 2

itN =0 itcG =31

p 0.244E 2

0.31662E01 0.37947E-3

(.2207E-i 0.10091E-4
itN 3 itcG 106
0.79626E-2 0.13623E-4

0.23519E-6

128

p =0.61E-3

itN 0 itcG 59

p 0.61E 3

0.20,413E01, 0.99588E-5

0.17670e-21 0.49091E-6

itN 2 itcG 90
0.39860E-2 0.83568E-8

0.31456E-4 0.90988E-10

TABLE 2
Number ofiterations and L2" and L-norms ofovershoots and undershootsforproblem (4.1) using 0 210,

Galerkin FEM.

IOE-

10E-3

32

’p 0.977E 2
o

o
itN --0 itcG 19

p 0.977E 2
0.84353E-1 0.78402E0

0.47284E-21 0.42018E-1

itN 7 itca 15
0.66463E-2 0.50833E-1

0123096E-31 0.2i857E-2

64

p 0.244E 2

itN 0 itca 36

p 01244E 2

0.SZ135E-11 0.64231E0
0.95222E-3 0.18--i
itN 6 itcG 11
0.28948E-2 0.24699E-

0.46280E-4 0.63066E-3

128

p 0.61E 3
o o
-fro

itu O itcG 70

p 0.’61E 3

0.13318E-11 0.47868E0

0.12832E-31 0.87815E-2

itN 3 itcG 10
0.49450E-3 0.10868E-1

0.40775E-5 0.19063E-3

The damping parameter rk is determined by a line search with the objective of decreasing
II’(x_)l12, One can easily verify that the computed Newton direction’ is a descent direction
for IlY’(x__)ll2 at x(k) so that there exist r > 0 for which II(x_.(k/l))ll2 < II’(x(>)l12, In all
cases z 1 (i.e., a full Newton step) is tried first. If this gives a decrease in II’(x)112, it is
accepted; otherwise, a backtrack algorithm is used based on quadratic and, if necessary, cubic
interpolation.

In the following tables we display the infinity norm and the discrete L2-norm of the
undershoots and overshoots of the solutions of (4.1) and (4.5). Furthermore we give the
number of Newton iterations (itN) and the average number of conjugate gradient iterations
per Newton step (itcG). Tables and 2 correspond to the Galerkin FEM formulation with
0 60 and 0 210 and Tables 3 and 4 correspond to the streamline diffusion formulation.
In these tables we have chosen the parameter p in accordance with the remark at the end of
2. That is, p O(h) for the streamline diffusion formulation, and p O(h2) if e > h,
p O (e) otherwise for the Galerkin formulation.

In each of these tables; we display

xh)- xh /

first for the solution of (4.1) and below we give the number of iterations for the solution of
(4.5).
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TABLE 3
Number ofiterations and L2-and L-norms ofovershoots and undershootsforproblem (4.1) using 0 60,

streamline diffusion FEM.

10E-

10E- 3

10E- 5

32

p 0.3125E-
o o

itN =0 itcG =8

p 0.3125E
0.14148E0 0.15803E-2

0.13469E- 0.68486E-4

itu itcG 3

0.15197E-11 0.40508E-3

0.14937E-21 0.13539E-4

p 0.3125E

0.81119E01 0.10192E0

0.48997E-11 0.80981E-2

itN 5 itcG 6

0.39651E-11 0.50531E-2

0.36094E-2[ 0.26599E-3

64

p 0.15625E

itN =O itcG =14

p 0.15625E
0.25029E-1 0.95503E-4

0.41447E-3] 0.94978E-5

itN itcG =4
0.47302E-2 0.81507E-5

"’0.73919E-4 0.14106E-6

p 0.15625E
0.83080E0 0.73586E-1

0.34587E- 0.50323E-2

itN 4 itcG 4
0.36436E-1 0.26733E-2

0.23221E-2 0.10797E-3

128

p 0.61E- 3
0

itN =O itcG =25

p 0.78125E 2
0.14215E-2 0.97640E-4

0.11428E’4 0.14359E-4

itN =O itcG 5

0.14215E-21 0.97640E-4

0.11428E-4 0.14359E-4

p 0.78125E 2

0,82927E01 0.44233E-

0.24176E-1 0’24589E-2
itu 7 itcG =3

0.36447E- 11 0.30074E-2

0.15800E-21 0.42053E’4

TABLE 4
Number ofiterations and L2- and L-norms ofovershoots and undershootsforproblem (4.1) using 0 210,

streamline diffusion FEM.

IOE-

10E- 3

10E-5

32

p 0.3125E

itN =0 itcG =8

p 0.3125E
0.38320E-1 0.55808E-1

0.42470E-2 0.54222E-2

itN 3 itc6 4
0.21302E-1 0.21994E-1

0.93083E-3 0.11901E-2

p 0.3125E
0.54452E- 0.72917E-1

0.99571E-2 0.10813E-1

itN =3 itcG =5
0.27646E-1 0.27797E-1

0.12642E-2 0.15436E-2

64

p 0.15625E

itN =O itCG 15

p 0.15625E
0.27544E- 0.40526E-

0.11408e-2 0.16390E-2

itN 3 itcG --4

,,0.15263E-1 0.16281E-1

0.33379E-3 0.43761E-3

p 0.15625E

0.53142E-11 0.71934E-1

itN 4 itcG 6

0.27198E-1! 0.27237E-1

0.63356E-3 0.77070E-3

128

p 0.61E 3
o o
o

itN =O itcG =30

p 0.78125E 2
0.84764E-2 0.15242E-1

0.11971E-3 0.28427E-3

itN itcG 3
0.48255E-2 0.63733E-2

0.53039E-4 0.87614E-4

p 0.78125E 2
0.51869E-1 0.71394E-1

0.55305E-2 0.57897E-2

itN 4 itCG 9
0.26845E-1 0.26921E-1

0.31716E-3 0.38528E-3

Note that when itN O, itca is precisely the number ofiterations needed to solve problem
(4.1). In those cases the diffusion is large enough to avoid overshoots and undershoots. In
Tables 1 and 2 we have not included the results for e 10-5 since in that case the solution
of problem (4.1), that is, the standard Galerkin formulation, is extremely oscillatory and the
Newton process for the solution ofproblem (4.5) starting with this initial guess converges very
slowly. Furthermore, the preconditioner used for this problem behaves very poorly so every
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TABLE 5
Number ofiterations and L2- and Lo-norms ofovershoots and undershootsforproblem (4.1) using 0 210,

0.001, streamline diffusion FEM.

p itN itcG

0 4

10E- 5

10E- 2 3 5

10E- 3 3 4

10E -4 3 4

10E-5 3 4

II(xh)-II

0.27544E

0.23641E

0.12397E-

0.22140E 2

0.24107E- 3

0.24324E -4

(x_.h)/ Ilc

0.40526E-

0.32760E-

0.12823E-

0.22259E 2

0.24215E 3

0.24433E 4

(xh)- IIZ2

0.11408E 2

0.69396E- 3

0.25829E 3

0.40784E 4

0.43606E 5

0.43912E 6

(x_.h)+ IlL2

0.16390E 2

0.99995E 3

0.32700E- 3

0.46861E 4

0.49368E 5

0.49617E 6

iteration in the Newton process becomes very costly. Further investigations for this specific
case are needed; here our main interest is in showing the feasibility of our approach.

Finally, in Table 5 we show the norms of overshoots and undershoots for varying p for
the streamline diffusion FEM for the same model problem with 0 210, n 64, and

1E-3. From this table we clearly see the linear dependence on p.
To conclude this section we show in Figures 2a and 2b the typical qualitative improvement

when adding the nonlinear absorption term to problem (4.1) in the case ofa streamline diffusion
approximation. In 2 we already saw an example for the Galerkin FEM approximation.

To show the local nature of the absorption term added, we show in Figure 2c the overshoot
and undershoot and in Figure 2d we show the final nonlinear absorption term in the Newton
process.

5. Overshoot and undershoot elimination by postprocessing. At this stage it is diffi-
cult to attribute the large number of iterations in the case of the Galerkin FEM formulation to
anything except the lack of computational experience with highly nonsymmetric variational
inequalities. It is possible that the solution of highly nonsymmetric variational inequalities
can be circumvented if the basic, linear method produces a moderately accurate approximate
solution. In this case the overshoots and undershoots can likely be eliminated by postprocess-
ing via a symmetric variational inequality. Suppose that an approximation uh Xh (f2) C X
is calculated by

(5.1) B(uh, v) F(v), v Xh.

Here (5.1) is a nonsymmetric linear system. Now consider postprocessing uh to produce an
approximate solution FIuh IKh. The simplest method to program is simply to cut uh off
at Umax and Umin when uh > Umax and uh < Umin, respectively. Perhaps this is acceptable;
however, we study a different postprocessor for which mathematical support can be giyen and
which does not require significantly more programmer time and computational effort than the
simple clipping procedure.

Let a (., .) denote a symmetric coercive and continuous bilinear form on X. Then Flh will
denote the projection of Xh onto INh.

DEFINITION 5.1. Given wh Xh, l"[hwh xh is the unique element ofI[h satisfying

wh Ihwh
A inf wh

X A,
X 1K

where IIW[[A a(v, 1)) 1/2 is the induced norm.
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FIG. 2a. Streamline diffusion FEM approximation to problem (4.1).

FIG. 2b. Oscillation absorption FEM approximation to problem (4.5).

A typical choice of a(., .) will be the symmetric part of Bh(., .),

Bh Bha(u, v) -( (u, v) + (v, u)),

or the L2()_inner product.
LEMMA 5.1. Let Kh be closed and convex in Xh. Then IIhwh exists and is unique.
Proof This follows immediately from the fact that a closed convex set in a Hilbert space

has a unique element of minimal norm.
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FIG. 2c. Overshoot and undershoot in 2a. FIG. 2d. Final nonlinear absorption term.

l"Ihwh is characterized by the following variational inequality: given Wh U_. Xh seek
I[hwh E Nh satisfying

(5.2) a(wh l-[hwh l-lhwh v) >_ 0 t) Ih

Since a(., .) is symmetric, this variational inequality can be solved quite efficiently by a pro-
jected iterative method; see, e.g., Glowinski, Lions, Tr6molires [7]. We propose computing
the projection of uh on ]Kh by means of a truncated projective iterative method. First note that
rlhuh, defined by (5.2), has an error optimality property.

PROPOSITION 5.1. Let uh Xh C X be an approximation to u IN C X. Suppose IN is
a closed, convex set and ]Kh := Xh N IN is nonempty. Then,

Ilu I-Ihblh IIA 2llu uh I[A + inf Ilu X IIA.
X

Proof

Ilu l[huh IIA Ilu uh IIA + [luh [Ihuh

u uh A -- uh A

for any

Ilu uh IIA + uh U IIA + Ilu x IIA. ["]

Remark 5.1. In the generality of the previous proposition, neither Ilu b/h Ila nor infxeKh
Ilu x IIa may be omitted from the RHS of the inequality. This can be seen quite easily in
planar examples where Xh is a line and Kh is an ellipse.

However, there are quite a few special situations in which the infimum over Kh may
be replaced by an infimum over Xh. This is clear, e.g., for conforming linear finite element
spaces; see Mosco and Strang 16]. For more general finite element spaces Xh, we refer to
Lemma 3.2.

Concerning the calculation of l-Ihbth note that since a(., .) is symmetric and positive
definite, ["Ihlgh can be calculated using a projected iterative method. Letting {4i be a basis
for Xh and Ai,j a($i, dpj), suppose the constraint for wh Zq_._I Cjj(X) to be in INh is
equivalent to the coefficient bounds

This holds for the standard nodal basis for conforming linears with otj Umin and flj Umax,

since in that case ckj(x) satisfies 0 < bj (x) < 1. With the pointwise projection PN RN +
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(1--IjN__I [otj,/3j 1) defined by

xj ifoj.<xj<,Sj,
PNX)j Olj if Xj < Oj

13j if xj > flj,

the iterative method (projected successive overrelaxation) where/,/h 2 djd/)j and f A
now reads as follows: Given o) (0, 2), (c, c C0N)t satisfying otj < c <_ /3j define

n+l n=0,1 by

(5.3)

n+1/2 [i-1 n+g y= ]C -’1- fia., j=l ai,jcj i+1 ai,jc

C7+1 PN (1 o9)c’ + O)C

This is very cheap and produces an approximation in INh which is close to/,/h even when
a few (O(1)) iterations .are performed. Therefore we propose postprocessing uh to get an
approximate IIhuh by applying O(1) iterations of (5.3) to (52). We will report on this later.

6. Conclusions. We have considered a special purpose numerical technique which is
adapted to convective transport problems. Adding a nonlinear absorption term to the vari-
ational formulation of a convective transport problem effectively eliminates overshoots and
undershoots in the approximate solution. With the streamline diffusion method as a basic dis-
cretization, the introduced nonlinearity causes very little increase in computational complexity.
With the usual (centered) Galerkin discretization, the greatest computational challenge is sim-
ply finding a good preconditioner for the linearized problem. The usefulness of the variational
inequality approach is currently limited by the lack of good iterative methods for highly non-
symmetric variational inequalities. One possible way around this difficulty is to postprocess
the approximate solution using by symmetric variational inequalities. The latter are easily
solvable using projective iterative methods.
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QUASI-LAGUERRE ITERATION IN SOLVING SYMMETRIC TRIDIAGONAL
EIGENVALUE PROBLEMS*
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Abstract. In this article, the quasi-Laguerre iteration is established in the spirit of Laguerre’s iteration for solving
polynomial f with all real zeros. The new algorithm, which maintains the monotonicity and global convergence of
the Laguerre iteration, no longer needs to evaluate f". The ultimate convergence rate is + 1. When applied to
approximate the eigenvalues of a symmetric tridiagonal matrix, the algorithm substantially improves the speed of
Laguerre’s iteration.

Key words, eigenvalue, quasi-Laguerre iteration, symmetric tridiagonal matrix
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1. Introduction. The globally and monotonically convergent Laguerre iteration
n

(1) L+(x) x +

f--(/ (n- 1) (n- I) f(x) ]
n
\ f(x) ]

has been successfully used to find the eigenvalues of an n x n symmetric tridiagonal matrix
T with nonzero subdiagonal entries by approximating the zeros, always real and simple, of
its characteristic polynomial

(2) f() det[T ,kI].

Remarkable numerical results, in terms of both speed and accuracy, on a substantial variety
of matrices have been obtained 10]. The algorithm employs the split-merge process, similar
to Cuppen’s divide-and-conquer strategy, which provides an excellent set of starting values
that make the algorithm naturally parallel. Impressive speedups of the parallel version of the
algorithm were reported in 15]. For 2, 000 2, 000 random matrices, the algorithm can reach
a speedup of 52 on an N-cube with 64 nodes.

Laguerre’s iteration, or modified Laguerre’s iteration when clusters occur, converges ul-
timately with a very fast cubic convergence rate. Nonetheless, the most important advantage
of Laguerre’s iteration in solving (2), in contrast to Newton’s iteration, is its monotone con-
vergence. However, compared with Newton’s iteration, a major disadvantage of Laguerre’s
iteration is the evaluation of f", which is relatively time consuming. The purpose of this
paper is to design a new algorithm in the spirit of Laguerre’s iteration for finding zeros of
(2). The algorithm, without the requirement of evaluating f", maintains the monotonicity of
Laguerre’s iteration and converges globally with ultimate convergence rate / 1 in finding
zeros of any polynomial with all real zeros.

The formula (1) of Laguerre’s iteration can be derived in diverse ways. The best one
seems to be to answer the following question [9].

Question 1. Among all polynomials p(x) of degree n with n real zeros and with
p(xo) f(xo) O, p’(xo) f’(xo), and p"(xo) f"(xo) at a specified real x0, which
one has a zero closest to x0 and where?
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In general, L+ (x0) in (1) gives the closest zero from the right of all those polynomials
and L_ (x0) gives the closest one from the left.

To avoid the evaluation of f", we revise the above optimization problem as follows.
Question 2. Given two specified reals a < b, among all polynomials p(x) of degree n

with n real zeros, none of which lie in [a, b], and with

p’ (a) f’ (a) p’ (b) f’ (b)(3) and
p(a) f(a) p(b) f(b)

which one has a zero closest to a from the right or from the left and where?
The optimization problem for this class of polynomials can be easily solved and the

solution has a closed form. To convert the solution of this optimization problem to an iterative
scheme, which we call the quasi-Laguerre iteration, with the assumption that x (k-l) and x (k)

are available, we may
(i) let a x (k-l), b x(), and X(k+l) be the closest zero to x() from the right when

x-1 < x and a zero of f is bigger than xk),
(ii) let a xk, b x-, and xk+l) be the closest zero to xk from the left when

x-) > xk) and a zero of f is less than x.
It is clear that the sequence so generated will converge to a zero of f monotonically.

The optimization problem in Question 2 is formulated in a more general form in 2 to
account for multiple zeros. The ultimate rate of convergence of our algorithm so obtained is
/ + 1.

Our main goal here is to use the newly derived quasi-Laguerre iteration to approximate
eigenvalues of symmetric tridiagonal matrices. To shorten our presentation, we only outline
the derivation of our algorithm in this article and skip most of the theoretical details, including
the tedious proofof its convergence properties. They are regrouped in [3] for interested readers.

The implementation details of our algorithm are described in 4 and 5, and compre-
hensive numerical results on diverse types of matrices will be shown in 6. In general, our
algorithm considerably improves the speed of Laguerre’s iteration. Like Laguerre’s iteration,
our algorithm is inherently parallel and has a great capacity for vectorization. An intensive
experiment in this regard will be reported in a future article.

During the writing of this paper, we became aware of an earlier unpublished work of
Foster [5] in which a class of globally convergent iterations, including our quasi-Laguerre
iteration for the case of simple roots, was studied. Our work here is based on a different
approach and achieves much more general results.

2. Derivation of the quasi-Laguerre iteration. Let f be a polynomial of degree n with
all of its zeros being real. For a < b with f(a)f (b) = 0, let " be the class of polynomials
p(x) of degree n that satisfy the following conditions"

(i) all zeros of p(x) are real,
(ii) none of the zeros of p(x) are in [a, b],
(iii) p(a)p(b) 7 0 and

p’ (a) f’ (a) p’ (b) f’ (b)(4) P() f(a)
: q(a),

p(b) f(b)
q(b).

We pose here a more general optimization problem.
Question 3. For p .T’, consider its mth (m < n) zero to the right (or to the left) of a.

Which polynomial in " has the closest one to a from the right (or from the left) and where?
To answer this question, let zl, z2, Zn be all the real zeros of a given polynomial p(x)

in .T" such that

(5) z < z2 < < z < a < b < z+ < <__ Zn.
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It follows from (4) that

p’(a) " p’(b)=. =q(a) and(6)
p(a) "7"{’= a zi p(b)

_1
i=1

b-
q(b).

Zi

For 1 _< < n, let

b-zi b-a
Xi.. =1

a Zi a Zi

Then, X > 0 for all since no Zi falls between a and b. Moreover,

(7)
(b-a)Xi 1 t_ d--Zi n + (b a)q(a) r(a, b),

i=1 i=1

1 (a-b)Xi + b-i n + (a b)q(b) r(b, a),
i=l i=1

and from (5),

(8) Xk >" Xk-1 >"" Xl > 1 > Xn Xn-1 >_. Xk+l > O.

For convenience, we rewrite (8) as

(9) W1 W2 Wk > 1 > Wk+l Wn
with

Xk+l_ for _< k,
(10) Wl

Xn+k+l-1 for > k.

From (5), the mth zero of p(x) to the left of a is Zk-m+l which, from (10), corresponds to

Wm in (9), and minimizing (a Z-m+l) becomes maximizing Wm. Similarly, the mth zero
of p(x) to the right of a is Z+m and minimizing (Z+m -a) becomes minimizing Wn-m+. As
a convention, ifm > k then the mth zero of p to the left of a will be taken as the (n m + 1)st
zero to the right ofa and ifm > n k then the mth zero of p to the right ofa is the (n m + 1)st
zero to the left of a.

The optimization problem in Question 3 can now be converted to the following optimiza-
tions:

(P1) Max Wm
n

to Z Wi r(a, b),subject
i=1

(11)

i=1

r(b, a),

Wl >_ W >_ >_ w, > o,
(P2) Min Wn-m+

subject to Wi r (a, b),
i=1

r(b, a),
1

i=1 Wi

Wl W2 Wn > O.
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The solution of (P1) gives the mth closest zero to a from the left while the solution of
(P2) gives the mth closest zero to a from the right.

For any W (W1 Wn) satisfying (11), it can be shown [3] that Wm satisfies

(12) mr(b, a)Wm [r(a, b)r(b, a) n + 2mn] Wm+ mr(a, b) <_ O,

and the equality holds iff Wj Wm for all j < m and WI Wn for all > m.
Similarly, Wn-m+l satisfies the same inequality, that is,

(13) mr(b, a) W_m+ [r(a, b)r(b, a) n2 + 2mn] Wn-m+l -1- mr(a, b) _< O,

andtheequalityholdsiffWj Wn_m+ forallj > n-m+l and WI WI foralll < n-m+
[3].

Now, taking equalities in (12) and (13) yields the quadratic equation

mr(b, a)Y2 [r(a, b)r(b, a) n2
nt- 2ran] Y + mr(a, b) O.

Its solutions

Ym+/-
r(a, b)r(b, a) n:z + 2ran 4- v/[r(a, b)r(b, a) -/,/2] [r(a, b)r(b, a) (n 2m)2]

2mr(b,a)

are both positive [3]. On the other hand, it follows from (12) and (13) that

(14) Ym- <_ Wm <_ Ym+

and

(15) Ym <_ Wn m+ <- Ym+

Accordingly, W (Wl Wn) with W Wm Yrn+ and Wm+ Wn is
the solution of the maximization problem (P1) and, from (11),

mYm+ + (n m)Wn r(a, b),

m n-m
=r(b,a).

Ym+ Wn

Solving for Wn, one can easily see that Wn is actually Y(n-m)-. So,

{ Ym+, j<m,
(16) Wj

Y(n-m)-, j > m.

Similarly, the solution of the minimization problem (P2) is IV (_W __Wn) with

(17) Wj { Y(n-m)+ j < n rn + 1,

Ym-, j>n-m+l.

Recall that Wj’s are defined by

b-a
Wj=I+, j=l n,

a uj
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where uj’s are zeros of a certain polynomial in $2 Thus any polynomial whose zeros satisfy
(16) must be in the form

(18) _)m (X 1)1)n-mPl (x) C (x b/m

where C is a constant and

(19)

and

Ym+ or, equivalently, Urn- a

It
b-a

a 1)1
Y(n-m)- or, equivalently, vl a

bMa

Y(n-m)-- 1

Further, any polynomial whose zeros satisfy (17) must be in the form

(20) )m (X 1)2)n-mp2(X) C(x b/m-I-

where C is a constant and

(21) t
a b/m+

Ym- or, equivalently, b/m+ a
ba

1

and

It
b-a

a 1)2

bua
Y(n-m)+ or, equivalently, v2 a

Y(n-m)+- 1

From (19) and (21),

b b/m- b b/m+=Ym+>O and =Ym->O,
a b/m- a b/m+

so both b/m+ and b/m_ are outside the interval (a, b). Similarly, both vl and v2 are outside the
interval (a, b) since Y(n-m)+ > 0. Consequently, both pl (x) and p2(x) are in U.

Moreover, from (19) and (21)

b/m-I- ---. a

.--a

ba

2mr(b,a)(b-a)

=at

(22)
where

r(a, b)r(b, a)-n2t2mn-2mr(b, a)7: q/[r(a, b)r(b, a)-n2][r(a, b)r(b, a)-(n-2m)2]

2m[n (b a)q(b)]

-(b a)R 2mq(b) 4- v/R[(b a)2R t 4m(n m)]’

f’(a) f’(b)
q(a) q(b)

f(a) f(b)
and R n (q(a) q(b) )b a

q (a)q (b).

The solutions ofthe optimization problems in Question 3 can now be described as follows:
(i) If f has at least m (counting multiplicities) zeros to the left of a, then the zero Um- in

(22) of the polynomial

pl(X) C(x b/m_)m(x 1)1)n-m
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in (18) is the closest mth zero to the left of a among all polynomials in U. It is also clear
that

(23) Zm- <. him- 1,t2- "< lg l- < a < b,

where Zm- is the mth zero of f to the left of a.

(ii) If f has at least m (counting multiplicities) zeros to the right of b, then the zero
in (22) of the polynomial

p2(x) C(x Um+)m(x V2)n-m

in (20) is the closest mth zero to the right of b among all polynomials in U. It is also clear
that

(24) a < b < ul+ < u:z+ < <Um+ Zm+,

where Zm+ is the mth zero of f to the right of b.

3. The quasi-Laguerre iteration and its rate of convergence. Let f be a polynomial
of degree n with all its zeros being real. Let zM be a zero of f with multiplicity M > 1. To
approximate zt from its left, we shall use Um+ in (22) with m < M to generate a monotonically
increasing sequence tx (km+ which converges to z4 as k -+ cxz. Similarly, to approximate zt
from its right, a monotonically decreasing sequence xkm-} converging to z, as k --+ oo, can
be generated by using urn- in (22).

To be more precise, supposez is on the right-hand side oftwo starting points- 0 xl-Xm+ < -m+
and none of the zeros of f lie between 0 and z/ Then, for k > 1 we may let"m+

x(k+l)m+ x(k-1)m+ --(25) 2m [n rxk (k-l)(m+)]m+ Xm+ )q x(

’x () x(-))R 2mq (k)- V/ Ix() x(k-))2R + 4m(n m)]-,, m+ m+ txm+) + R m+ m+

where

f’(x(k-1)m+ f’(x(mk)+)
(X (k- 1) (k)q, m+ )-- q(Xm+)--

(xk- .x:f m+ f’, m+,

and

R=n(q(x(k-1)"-)
m+

q (x+))m+ (x(k-1) (k)
: x-l

q, m+ )q(Xm+)"
"m+

In other words, we replace a, b, and Um+ in (22) by y(mk_ 1), "m+"(k) and x(k+)m+ respectively.
Remark. Interchanging x_ and x(m+, (25) can also be written as

(26)

x(k+l) x(k)m+ m+ "qt-

2m In (k-l) (k) ,,x(k-1)’]{,Xm+ Xm+)qt m+ )J
t’x(k-1)--x(k) (X (k-l) F((k-l) -k)2R+4m(n m)]--’, m+ m+)R 2mq m+ + R k...m+ Xm+
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From what has been derived in the last section, it is easy to see that

X(k) r(k+1)
m+ < --m+ ZM

(k)and no zeros of f fall between (k+l) and zM. So the sequence iXm+ satisfies-m+

X(0) (1) x(k)m+ < "m+ < < m+ < ZM.

(o)Similarly, when two starting points x(1)m- < Xm- are available on the right-hand side
of z/with no zeros of f lying in (zt, Xm-),"

o, then for k > 1, let a -m-,"k b X(mkSl, and

urn- xk+l in (22). Namely, letm-

x(k+l) (k)
m- -a’m- -I-

(27) 2m In- X(k-l/m- "m-"(/0)q (X(m--1) ])

where

and

Again it is clear that

-(X{m_-1)- x)__)R 2mq(x{m51)) v/R [(x{mk:1)- X{mk_)2R + 4m(n m)]

f’ x (/0 f’(x-))(k). (m-)
q m-ql,Xm_ ( (k-l).’tXm_) JtXm_

(k) (x(k-) )qtXm-) q, m- (k) (x(k-1)R n
x(k_ x_ qtXm-)q, )"
m--

ZM < X
(k+l) (k)
m- < m-

and none of the zeros of f lie between z and (+1 Moreover, the sequence ixm_ satisfiesXm

(k) (1) X(0)ZM <_ < m- < < Xm- < m-"

(kWe shall call the sequences {Xm} defined by (25) (or (26)) and (27) the quasi.Laguerre
iterations. The convergence propey of both sequences {x} is given in the following
theorem.

THEOREM 3.1. Both sequences {x converge to z monotonically. Furthermore,
(i) when m < M, the convergence is linear and the convergence ratio

(k+l)
lim m

-Z
k (k)
m ZM

is the only real solution of
n M mx3 x2 x +n-M

in (0, 1).

M-m
M

=0

(ii) when m M, the convergence is superlinear with convergence rate Vc + 1.

Proof. See [3] for a complete proof of Theorem 3.1. [3
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4. Solving symmetric tridiagonal eigenvalue problems. In this section, we shall use
the quasi-Laguerre iteration derived in previous sections to approximate all eigenvalues of
symmetric tridiagonal matrices.

4.1. Evaluation of the logarithmic derivative f’/f of the determinant. Let T be a
symmetric tridiagonal matrix of the form

/1

(28) T [/i-1, Oi, /i]

fll
Or2 f12

0 /n-2 O/n-1 /n-1

We may assume, without loss of generality, that T is unreduced; that is, flj 0, j
n 1. For an unreduced T, the characteristic polynomial

(29) f()v)

has only real and simple zeros 16, p. 300]. To use our quasi-Laguerre iteration developed in
previous sections for finding zeros of f ()), or the eigenvalues of T, it is necessary to evaluate

f and f’ efficiently with satisfactory accuracy in the first place.
It is well known that the characteristic polynomial f ()) and its derivative with respect to

) can be evaluated by three-term recurrences [16, p. 423]:

(30)

(31)

po 1, Pl

Pi (Oli ))Pi-1 f12i-lPi-2,
p =o, p’,
/9f f12(Oti ’)P[-1 Pi-1 i-lPi-2’

=2,3 n,

=2,3; n,

and

f(.) Pn, f!()) Pn"

However, these recurrences may suffer from a severe underflow-overflow problem and require
constant testing and scaling. The following modified recurrence equation [10] is the result
of careful investigation of the problem and is more stable than the code presented in 12]. It
computes the logarithmic derivative q()) f’ ()O/f (), required in the formulae (25)-(27).
Let

(32)

(33)

i-2,3 n,

00 0, rl

r]i (IY --)rI/_ + 1- v.,,-_ 2, 3, n,
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and

f’())

To prevent the algorithm from breaking down when i 0 for some _< < n, an extra
check is provided:

If 1 0 (i.e., 0/1 )v), set 1 fls2;
e/L182Ifi=0, > 1, set,i= i-1

where s is the machine precision. A determinant evaluation subroutine DETEVL has been
implemented [10] according to the recurrences (32) and (33). When i, 1 n are
known, the Sturm sequence is available [13, p. 47]. Thus, as a by-product, DETEVL also
evaluates the number of eigenvalues of T which are less than

Let )vl < )2 < < )Vn be the zeros of f()) and .1 < .2 < < .n be the zeros of the
numerical approximation j(.). It was shown in [10] that

(34) Ifl(i) )i] < mjax{]/j I-- ]3j+ll} -IXi[ E.

4.2. The split-merge process. Let

1 < 2 < < n
be the zeros of f in (29). To use the quasi-Laguerre iteration to approximate any i,
1, 2 n, it is essential to provide a pair of starting points x () and x (1), being either x () <
x (1) < )i or ,ki < x (1) < x(), with no other )j’s lying between x(), x(), and i. For this
purpose, we split the matrix T into

where

0/1 /1 0k+1 /k /k+l

(36) To-- fll "’" "’" TI-- [3k+l "’. "’.

"" "" /k-1 "" "" 3n-1
/k-1 O/k /k /n--1 O/n

Obviously, the eigenvalues of 2? consist ofeigenvalues of To and T1. Without loss of generality,
we may assume/i > 0 for all 1, 2 n 1, since in (30)-(33), fig’S always appear in
their square form. The following interlacing property for this rank-one tearing is important to
our algorithm.

THEOREM 4.1. Let )1 < )2 < < )n and 1 < 2 < <_ n be eigenvalues of T
and , respectively. Then

with the convention .n+ + 2fl.
Proof See [6, Thm. 8.6.2, p. 462] for a complete proof of Theorem 4.1. [3

The eigenvalues of i? will be used critically to approximate the eigenvalues of T by our
quasi-Laguerre iteration. We shall call this procedure, splitting T into To and T1 of T and
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Split

T

T T

Too To To Tll

T

Merge

Too Tol Wol Tlo To T1o T

FIG. 1. Split-merge processes.

using eigenvalues of , consisting of eigenvalues of To and T1, to approximate eigenvalues of
T, the split-merge process, similar to Cuppen’s divide-and-conquer strategy [2, 4, 8].

To evaluate certain eigenvalues ;i, 1, 2 n, of T, both i and .i+1 are suitable
candidates for the first starting point of our algorithm, since by Theorem 4.1,

For the second starting point, let

i "q- i+1
C’-"

2
f’(c) by the subroutine DETEVL 10]. As mentioned before, the Sturm sequenceand evaluate f-

at c, which decides the position of c relative to lq, is a by-product of this evaluation. When
c > )i, we let x(- 2i+, x(_ c and when c < i, we let x 2i and x c. Then

i < x < x(_ or x(+ < x < i. Respectively, equations (26) and (27) with m 1
are used to generate x+ for k 1, namely,

2 [- (X-1) --X))q(x-l))]
+

Moreover sequences {x)}kl are obtained which converge monotonically to L with ultimate

convergence rate + 1 by Theorem 3.1..
The eigenvalues of 7 in (35) consist ofeigenvalues of To and T1 in (36). To find eigenvalues

of To and T1, the split-merge process described above may be applied again. Indeed, the
splitting process can be applied to T recursively (See Figure 1) until 2 2 and matrices
are reached.

After T is well split into a tree structure as shown in Figure 1, the merging process in the
reverse direction from 2 2 and matrices can be started. More specifically, let To be

( 0 ) in ascending order.split into Too and To1. Let f, be eigenvalues of r0 r
Then the quasi-Laguerre iteration is applied to the polynomial equation

f (.) det[T .I] 0

’() to obtain the corresponding eigenvalue ) 1 2, m by thefrom either .Ia) or "i+1
merging process described above. This process continues until To and T are merged into T.
That is, in the final step all the eigenvalues of T are obtained by applying the quasi-Laguerre
iteration to f(L) det(T LI) from eigenvalues of To and T.
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x(+) x+
II

i i+l i+l i+r

FIG. 2. Converging to relatively closer eigenvalues.

4.3. Cluster and deflation. By.Theorem 4.1, i E (2i, 2i.t_1) for each 1 n with
the convention ,n+l .n / 2/3k. If,ki+l 2i is less than the error tolerance, then either 2 or

i+1 can e accepted as )i. In general, if 7 has a cluster of r + very close eigenvalues, for
instance, j+r ,j is less than the error tolerance for certain 1 < j < n r, then r eigenvalues
,j, j+l i,j+r_ of T can be obtained free of computations. They can be set to any one
of j 2j+

Since the matrix T in (28) is unreduced, its eigenvalues are all simple. Therefore using
m in the quasi-Laguerre iterations given in (26) or (27) seems appropriate in all cases
to obtain ultimate superlinear convergence with convergence rate + 1. However, in some
cases, there may exist a group of r > 1 eigenvalues of T, say,

,i+1 < )i+2 < < ,i+r

which are relatively close to each other, compared to the distance from the two starting points,
say x()

X
(1)

+ < + < )i/1, as shown in Figure 2. Some of them may even be numerically
indistinguishable.

Numerical evidence shows that to reach )i+1 from- (o) (1)
,+ (’-" /+1) and t+ it may take many

steps of the quasi-Laguerre iteration with m 1 before showing super-linear convergence.
In this situation, the quasi-Laguerre iteration with m r in (26) may be used to speed up the

(k)convergence. Exhibited in (24), the sequences/Xm/} in (26) with different m’s satisfy

+k- (k) (k) (k)
X

1) < XI+ <.x2+ < < Xr+ < i+r.

Accordingly, x (k) is relatively closer to )i+1 Therefore if the number r of those relativelyr+
(k) (k)closer zeros can be estimated, then instead of using m 1 as usual, we may let x+ tr+.

To estimate r in our algorithm, we put )j in the same group with i/l if

12j 2i+21 < 0.0112i/2 2i+11.

It might happen that i/1 < X(+k), which can be revealed by the information of the Sturm
sequence given at x(+k; in this case, the number r may be reduced. Therefore an overestimate
of the number r causes essentially no harm because our algorithm can dynamically reduce r,
while an underestimate may result in slow convergence.

4.4. Partial spectrum. From the strong interlacing property given in Theorem 4.1 one
can easily obtain the following.

PROPOSITION 4.2. If[a, b] contains k eigenvalues of, then [a, b] contains at least k 1
and at most k + 1 eigenvalues ofT. More precisely, let to(x) be the number ofeigenvalues of
T which are less than x ]R and .s+l )s+ be all the eigenvalues of T in [a, b]. Then
s-1 < c(a) <sands+k-1 < tc(b) < s + k.

in our algorithm, either 2 or 2i/ of is used as the first starting point of our quasi-
Laguerre iteration to approximate i of T. To find egenvalues of T in a given interval
[a, b], the eigenvalues of T in [a, b] are known, say )s+l )s+. By evaluating x(a)
and to(b), the actual number of eigenvalues of T in [a, b] is r x(b) x(a). Hence
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tc(a)+l ,x(a)q-cr are the eigenvalues of T in [a, b]. By Proposition 4.2, s 1 < x(a) < s
and s + k 1 < tc(b) < s + k, so tr can either be k 1, k, or k / 1. Thus, at most k / 2
values are needed to be considered as the. first starting points to evaluate these cr eigenvalues
of T. Let

Ls=a, )s+l =s+l, s+2"’s+2 ,s+k--s+k, s+k+l =b.

Then cr values among them can serve as the first starting points which will lead to all tr

eigenvalues of T in [a, b].
In some instances, the eigenvalues of T of interest are identified in magnitude, say the

largest 20%, then they can be evaluated by using the largest 20% eigenvalues of T as starting
points without computing the other 80% eigenvalues of T and T.

4.5. Stopping criteria. Thefollowing stopping criterion was suggested by Kahan [9]:

(37) Ix (k+l) x(k)12 (Ix (k) x(k-1) IX (k+l) x(k)l) r,

where r is the error tolerance, This criterion is based on the following observation. Let.

X(k+l) X (k)

x(k) x(k-1)

Then as {x(k)}kCXZ:l converges to ) when k -- cz, q is normally decreasing. Thus

I x(k+l)[ (X
(k+2+i) x(k+l+i))

i=0
<-- Z Ix(k+2+i) x(k+l+i)l

i=0

i=1

Ix(k+ 1) x(k)[ 2

IX (k) x(k-1)[ IX(+I) X()[

From (34), an obvious error tolerance at/,i can be chosen as

5
r m.ax{I/jl + I+1} + Ix(+ll.

5. Practical considerations in implementation.

5.1. Initial points for the quasi-Laguerre iteration. At every stage of the merging
process, we evaluate the eigenvalues )1 < < m of an rn x m submatrix, given rn initial
values ,1 < _< m and an upper bound m+l that interlace those rn eigenvalues:

Jl _< /’1 < 2 < 2 < < m --< /,m < m+l
(see Theorem 4.1). To evaluate an eigenvalue ,i by the quasi-Laguerre iteration, two initial
points, say x( and x<1, are required on the same side of/,i without any other eigenvalues
between them and x1 is chosen to be closer to ,i than x<. As we described in 4.2, either

Ji or i+1 can be used as the first initial point x) because of the interlacing property:

for m,

i’31-i+l is chosen as the second initial point X (1)and bisection point c 2
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critical point

f’/f<0
f(x)

-f’/f>*0-

critical point

critical point

-f’/f>0 _x
-f’/f<0

f(x)

critical point

FIG. 3. The two initial points should be between one ofthe nearby critical points off and the zero. This can be

identified by the sign pattern of-ft/f.

While this approach of obtaining initial points is the simplest one, it may not be the most
efficient. Several improvements are made in our practical implementation. First, since f’/f
is evaluated at every initial value j (j 1 m), one step of Newton’s iteration can be
performed without extra cost and the result can be considered as a candidate, besides c, for x (1).
Second and more importantly, from our computing experience, the high-order convergence
of the quasi-Laguerre iteration occurs only when there is no critical point of f (i.e., zero of
f’) between x () and i (see Figure 3). In other words, if x t) is to the left (resp., right) of
i, then it is desirablefor-f’(xt))/f(x) to be positive (resp., negative). If there is at least
one critical point in [.i, i+1], then bisection or one-step Newton iteration is used repeatedly
until the above requirement at x () is satisfied. Based on these observations, our procedure
for determining a pair of initial points among different choices to achieve the best possible
efficiency is summarized in the algorithm INIPTS in Figure 4.

5.2. An alternative approach for clusters of eigenvalues. The multiplicity estimation
and the quasi-Laguerre iterations (26) and (27) with rn > can successfully overcome the
slow convergence when a cluster of eigenvalues occurs. An alternative approach without
multiplicity estimation as well as dynamical adjustments of the multiplicities can also work
very efficiently in practice.

By Theorem 3.1, when the quasi-Laguerre iteration for simple zero (m 1) is used to
approximate an M-fold zero x*, or a cluster ofM simple zeros, of a polynomial f()) of degree
n, it converges linearly with a ratio qn,M which is the only solution of

n-M-1 M-1
x x2 x + 0

n-M M

in (0, 1). Let x (1), x2 x be the monotone sequence of the quasi-Laguerre iterates.
It can be shown [3] that q. q3,2, the zero of x2 / x 0.5 0 in (0, 1), is the smallest linear
ratio for multiple zeros. That is, qn,t > q3,2 when n >_ 3 and M > 2. When {x converges
superlinearly, then

Ix(k+1) x(k)
m0 as k --- cx,

so q, should be smaller than q. when k is sufficiently large. Therefore, when qk > q., linear
convergence seems apparent. In this case, for sufficiently large k,

Ix (k+l) x*[ , qn,M or Ix (k+l) x*[ qlx (k) x’l, where q =_ q,M,Ix( x*l
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Input" subscript i, initial end points ii,2i+
Output" starting iterates x (0) x (I) and K(x()) K(X (1)) --f’,(x()) f’(x(1))

f(x(O)) f(xO))
Begin INIPTS

(a, b) (2 2i+1) Evaluate f’(a) if(b)
f(a)’ K(a), --f(b----Y’ tc(b) by DETEVL;

f,# # I f (a) < 0 and f’(b)
f(a) --f > 0 then

c a+__&. Evaluate if(c) K(c) by DETEVL2 f(c)’
(c, b), if C < )i i.e. K(c) < i)a Goto (##)

| (a, c), if C > ,k i.e. to(c) _> i)
if(a) if(b)else if --f(a) <0 and -f-- <0 then

a+b fc max b- f(b)’ Evaluate -f-TJ’ x(c) y DETEVL;

If c>li then (x(),x(1)):(b,c) Goto (#)
else (a, b) (c, b) Goto (##)

f’(a) > 0 and > 0 thenelse if

c min f’(a) a+b
--f(a)’---- Evaluate--f’(c--2)

f(c) K (C) by DETEVL

If (C <li) then (x(0),x (I)) (a,c); Goto (#)
else (a,b)-- (a,c); Goto (##)

else

{" {{--f’a> a’ /max

if[if(a) < f’(b)
mln a f(a) 2 f--

C
if(b) a+b otherwiseb-- f(b)

f’(c)Evaluate f(c) to(c) by DETEVL

(a, c), if c <set (x (0), x (I)) (b, c), if c > )i
End if

(#) End INIPTS

FIG. 4. Algorithm INIPTS.

and

Ix (+l) x()l Ix (k) x*l- !x (+1) x*l (1 q)lx (g) x*l
qk Ix(k) x(-l)l Ix (k-l) x*l- Ix() x*l (1 q)lx(-l) x*l

In practice, q’s can be very close to q after several iterations. If qj q for j k, then

Ix (+1) x*l qlx u) x*l for j k

and

x(k) - (x(k+l)
1-q

So, at the kth iterate x (k), if linear convergence is revealed, namely qk > q,, then instead of
performing the regular quasi-Laguerre iteration

x(k+l) x(k) nu k,

where 8k is the correction x(k+l) x (k) from x(k) calculated by the quasi-Laguerre iteration
with m 1, one can accelerate the iteration by setting
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Input" subscript i, starting iterates x(), x (I) with K(x()),
f’(x()) /’(x0))K(X (I)) f(x(o) and evaluated by INIPTSf(x(1))

output" the i-th eigenvalue %i of T.
Define q,--q3,2- the positive solution of x2+x-0.5=0

(the smallest linear ratio for multiple zeros);
Begin AccQ-LAG

For k i, 2,...
u+, if x(k)< %ic= (u+ are from quasi-Lag.formulae);
u_, if x (k) > %i

[maxj(I/jl-4-I/j/al)] / Ix()lc x() q= --7 tol 2.5s

< tol Goto #If (lkl < tol) or (k > 2 and lk-,l-ll
If (q > q,) then

f’(c)
c x (k) + evaluate f(c) and x(c) by DETEVL;

If (C is on the same side of %i as xqO,x(k-1)) then
Goto (##);

else, For 8, 4, 2, I,

c x () + (1--q/)
1----"---’-evaluate the Sturm sequence (c)

If (c is on the same side of %i as x(k),x (I-I))
Goto (##);

End for
End if
X (k+l) C

End for
End AccQ-LAG

FIG. 5. Algorithm AccQ-LAG.

The fundamental features of the acceleration process described in this section are sum-
marized in the algorithm AccQ-LAG (Figure 5). Table 1 gives the comparison between the
original quasi-Laguerre iteration and the accelerated quasi-Laguerre iteration. The Wilkinson
matrix W9 is used here with the starting points x () 11.5 and x (1) L_(x()) 11.27
targeting %23 11.0 + 5 x 10-15 of W9-, while %22 11.0- 5 x 10-15. Also note in
the third column of Table that the q’s are identical up to six digits with q q99,2
0.402522.

6. Numerical tests. Our algorithm was implemented and tested on SPARC stations with
IEEE floating point standard. The machine precision was s 2.2 10-16.

6.1. Testing matrices. There are 12 types of matrices used in testing our algorithm. In
the following description of these matrix types, oti, 1 n, denote the diagonal entries
and fig, n 1, are the subdiagonal entries.

6.1.1. Matrices with known eigenvalues.
krType 1. Toeplitz matrices [b, a, hi. Exact eigenvalues: {a + 2bcos -}l<<n [7, Ex. 7.4,

p. 37].
Type2. or1 =a-b, oti =a for 2 n- 1, Otn =a+b. flj =b,j 1 n-1.

(2k-1)rExact eigenvalues" {a + 2b cos 2n }l<<n [7, Ex. 7.6, p. 138].
a for oddi,

Type 3. 0{,
b for even i, /i 1. Exact eigenvalues



1362 QIANG DU, MING JIN, T. Y. LI, AND Z. ZENG

TABLE
Acceleration of the quasi-Laguerre iteration for W9. For each number in the table, the digits before a space

are correct.

k xk (original) qk ix(k)_x(k-1)l
11 .500000000000000

2 11 .270700712327294
3 11 .149428542073966 0. 706618
4 11.0 63735435125402 0.4 37604
5 11.0 26235830973979 0.4 17533
6 11.0 10578521008206 0.40 3427
7 11.00 4261938886133 0.40 3112
8 11.00 1715645778917 0.4025 55
9 11.000 690622605815 0.4025 56
10 11.000 277993423158 0.40252 7
11 11.000 111899071095 0.40252 5
12 11.0000 45041905516 0.40252 3
13 11.0000 18130368451 0.402522
14 11.00000 7297872838 0.402522
15 11.00000 2937554150 0.402522
16 11.00000 1182429996 0.402522
17 11.000000 475954003 0.402522
18 11.000000 191581922 0.402522
19 11.0000000 77115924 0.402522
20 11.0000000 31040850 0.402522
21 11.0000000 12494622 0.402522
22 11.00000000 5029360 0.402522
23 11.00000000 2024429 0.402522
24 11.000000000 814877 0.402522
25 11.000000000 328006 0.402522
26 11.000000000 132029 0.402520
27 11.0000000000 53145 0.40252
28 11.0000000000 21393 0.40252 6
29 11.00000000000 8612 0.40252
30 11.00000000000 3467 0.402 477
31 11.00000000000 1396 0.40 1680
32 11.000000000000 565 0. 399604
33 11.000000000000 233 0. 381937
34 11.000000000000 107 0. 305425

x (accelerated)

11. 500000000000000
11. 270700712327294
11.0 13287361699255
11.000 124299930121
11.0000 61856842477
11.000000 198368395
11.0000000 99023529
11.0000000000 12077
11.00000000000 6040
11.00000000000 2304
11.000000000000 156
11.0000000000000 64

a + b 4- v/(a b)2 + 16cos2
(add {aI when is odd)n

2
l<k<n/2

[7, Ex. 7.8 and 7.9, p. 139].
Type 4. Ol 0, /i /i (n i). Exact eigenvalues: {-n + 2k 1}l_<k_<n [7, Ex. 7.10,

p. 140].
Type 5. Ol -[(2i 1)(n 1) 2(i 1)2], i i(n i). Exact eigenvalues:

{-k(k- 1)}l<k<n [7, Ex. 7.11, p. 141].

6.1.2. Wilkinson and random matrices.
Type 6. Wilkinson matrices Wn+. /i 1,

n/2- + for even n and 1 < < n/2,
n/2 for even n and n/2 < < n,

i (n 1)/2- + for odd n and 1 < < (n + 1)/2,
i-(n+1)/2 for oddnand(n+l)/2<i <n,
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16, pp. 308-309]. Most of the eigenvalues are in pairs, consisting of two numerically indis-
tinguishable eigenvalues.

Type 7. Random matrices. The oti’s and/i ’S are random numbers in [0, 1].

6.1.3. LAPACK testing matrices. (These are generated by the LAPACK test matrix
generator 1 ].)

Type 8. Matrices with eigenvalues evenly distributed between their smallest and largest
eigenvalues.

Type 9. Matrices with geometrically distributed eigenvalues. Namely, eigenvalues can
be written as {qk}l<k<n for some q (0, 1).

Type 10. Matrices with an eigenvalue 1 and the remaining eigenvalues in (-e, e).
Type 11. Matrices with eigenvalues evenly distributed in the interval (0, 1] except one

eigenvalue with very small magnitude.
Type 12. Matrices with an eigenvalue 1 and the rest of the eigenvalues are evenly dis-

tributed in a small interval [10-12 e, 10-12 + e].

6.2. Speed test in evaluating eigenvalues without computing eigenvectors. We com-
pare the performance of the following codes for evaluating eigenvalues of an n n matrix:

(1) Q-LAG, our split-merge algorithm using the quasi-Laguerre iteration. Storage re-
quirement, 9n;

(2) LAG, split-merge algorithm using Laguerre’s iteration developed by Li and Zeng
10]. Storage requirement, 9n;

(3) B/M, bisection/multisection subroutine DSTEBZ in LAPACK. Storage requirement,
12n;

(4) RFQR, root-free QR routine DSTERF in LAPACK, as recommended in LAPACK
for evaluating eigenvalues only. Storage requirement, 2n.

The results of this test are given in Figure 6. Matrices of Types 9-12 involve tiny eigen-
values or clusters and are used more in stability tests (See 6.4). The speed comparison in
this category may not be relevant. In particular, matrices of Types 10 and 12 have big dense
clusters, and intensive deflations make Q-LAG as well as LAG outscore RFQR in speed by a
wide margin.

For all other matrices (Types 1-8), Q-LAG is much faster than LAG (especially for
Types 1, 4, and 5) and LAG is much faster than B/M. RFQR is apparently the fastest code in
almost all cases, except for matrices of Types 6 and 7 where Q-LAG is about 70% and 40%
(n 500) faster, respectively. Overall, Q-LAG performs very similarly to RFQR and is much
more competitive than B/M. Taking into account Q-LAG’s flexibility in evaluating the partial
spectrum and the potential in parallel computing, Q-LAG is by far the most efficient algorithm
among all the algorithms being tested here.

6.3. Speed test in evaluating eigenpairs. We compare the performance of the following
codes for evaluating the eigenpairs of an n n matrix:

(1) Q-LAG, our split-merge algorithm using the quasi-Laguerre iteration plus the inverse
iteration subroutine DSTEIN in LAPACK. Storage requirement, n2 + O(n);

(2) B/M, DSTEBZ plus DSTEIN. Storage requirement, n2 + O(n);
(3) INV, DSTEIN with eigenvalues computed by Q-LAG (for analysis purposes);
(4) D&C, divide-and-conquer subroutine DSTEDC in LAPACK. Storage requirement,

3n2 + O(n);
(5) QR, QR routine DSTEQR in LAPACK, as recommended in LAPACK for evaluating

eigenpairs only. Storage requirement, n2 + O(n).
The storage requirement for D&C is relatively higher than those which use the inverse

iteration code. The results of evaluations of all eigenpairs and one-third of the largest eigen-
values with corresponding eigenvectors are listed in columns A and B, respectively, in Table 2.
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(a) For matrices of Type
B/M

LAG

Q.LAG

FQR

Matrix size

(b) For matrices of Type 2

Q-LAG

O

Matrix size

Go

(d) For matrices of Type 4

L.....AG

Q-LAG

Matrix size

(e) For matrices of Type 5

Q-LAG

RFQI

Matrixsize

(g) For matrices of Type 7

[

1: "’:" 1"’"

’20 io
Q-L

O

Matrix size

(h) For matrices of Type 8

Q-LAG

RFQr

Matrix size

(j) For matrices of Type 10

Q.LAG

(k) For matrices of Type 11

LAG

(c) For matrices of Type 3

LAG

"’-"-- Q.LAG

RFQII

Matdxsize

(f) For matrices of Type 6

Matrix size

(i) For matrices of Type 9

Q-LAG
RFQI

Matrix size

(1) For matrices of Type 12

l Q-LAG

Matrix size Matrix size Matrix size

FIG. 6. Relative execution time for evaluating all eigenvalues without computing eigenvectors. B/M, DSTEBZ;
LAG, Laguerre’s iteration; Q-LAG, the quasi-Laguerre iteration; RFQR, DSTERE
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TABLE 2
Speed test on all matrices (for Types 1-3, we choose a 2, b 1). The execution time in seconds for

evaluating all eigenpairs is listed in column A. The execution time in seconds for evaluating only one-third of the
largest eigenpairs is listed in column B (only Q-LAG and B/M have thisfeature).

Type

10

11

12

n 100 n 200 n 300
A B A B A B

Q-LAG 1.15 0.42 4.31 1.49 9.95 3.42
B/M 1.69 0.60 6.84 2.42 14.9 5.17
INV 0.90 0.32 3.49 1.16 8.14 2.76
D&C 0.54 3.18 9.36
QR 1.89 13.8 44.0
Q-LAG 1.18 0.43 4.44 1.57 10.3 3.60
B/M 1.73 0.60 6.50 2.36 14.9 5.22
INV 0.92 0.31 3.50 1.22 8.17 2.84
D&C 0.76 4.62 14.0
QR 1.85 13.9 45.0
Q-LAG 1.26 0.42 4.74 1.61 10.7 3.67
B/M 1.67 0.62 6.60 2.34 15.1 5.14
INV 0.93 0.31 3.56 1.21 8.21 2.81
D&C 0.77 4.92 14.8
QR 1.83 13.1 40.8
Q-LAG 1.13 0.41 4.29 1.60 9.57 3.20
B/M 1.69 0.62 6.69 2.33 14.7 5.15
INV 0.92 0.32 3.54 1.20 7.83 2.63
D&C 0.51 3.18 9.32
QR 1.78 13.9 45.2
Q-LAG 1.16 0.43 4.57 1.67 10.8 4.35
B/M 1.67 0.58 6.56 2.38 15.6 5.93
INV 0.90 0.32 3.66 1.31 8.89 3.60
D&C 0.55 3.23 9.31
QR 1.74 13.7 44.3
Q-LAG 1.10 0.37 4.02 1.33 8.73
B/M 1.48 0.50 5.23 1.77 11.7
INV 0.93 0.32 3.59 1.21 7.87
D&C 0.29 0.79 1.37
QR 1.73 12.5 41.8
Q-LAG 1.14 0.39 4.33 1.49 9.43 3.25
B/M 1.70 0.67 6.68 2.34 14.9 5.20
INV 0.91 0.31 3.66 1.25 8.15 2.78
D&C 0.70 2.13 4.09
QR 2.01 16.3 53.7
Q-LAG 1.24 0.44 4.79 1.69 10.6 3.58
B/M 1.71 0.66 6.67 2.41 14.9 5.14
INV 0.91 0.31 3.60 1.25 8.08 2.71
D&C 0.83 4.95 14.7
QR 1.86 14.4 45.0
Q-LAG 2.21 0.5 14.0 2.40 41.5
B/M 2.48 0.65 14.9 3.01 43.6
INV 2.00 0.44 13.2 2.13 40.1
D&C 0.36 1.69 4.19
QR 1.49 11.2 35.3
Q-LAG 2.71 0.51 0.24 0.12 2.82
B/M 2.57 0.52 16.8 2.76 52.4
INV 2.68 0.48 0.22 0.09 2.55
D&C 0.55 0.49 0.75
QR 1.56 11.8 37.0
Q-LAG 1.24 0.42 4.78 1.66 10.6
B/M 1.72 0.65 6.60 2.32 14.8
INV 0.92 0.31 3.63 1.25 8.12
D&C 0.81 4.90 14.5
QR 1.85 14.7 45.4
Q-LAG 0.13 0.13 0.07 0.07 1.06
B/M 2.51 0.54 16.9 2.74 53.0
INV 0.12 0.11 0.07 0.04 1.04
D&C 0.23 0.52 0.79
QR 1.38 9.36 31.1

n 400 n 500
A B A B

18.1 6.49 31.1 11.2
27.7 9.57 43.9 15.8
15.2 5.44 26.4 9.60
21.0 40.4
102. 196.
19.0 6.55 31.9 11.6
27.4 9.60 44.1 16.1
15.6 5.31 26.4 9.58
31.3 59.6
104. 198.
19.8 6.79 33.0 11.8
27.0 0.68 44.8 16.1
15.8 5.47 26.8 9.78
33.6 63.6
93.4 179.
16.9 5.69 26.5 8.95
26.0 9.14 40.4 14.1
14.0 4.77 21.9 7.34
21.6 39.8
105. 203.
21.5 10.2 40.2 22.1
29.8 13.2 52.7 26.6
18.1 8.93 35.0 20.2
21.2 39.1
103. 197.

2.86 15.2 5.07 23.5 7.76
4.11 20.4 6.93 31.9 10.8
2.63 14.0 4.71 22.0 7.31

2.05 2.77
98.8 183.
16.6 5.63 25.8 8.67
26.1 9.19 40.9 14.2
14.5 4.90 22.9 7.65
7.29 10.5
123. 234.
18.8 6.36 29.1 9.85
26.0 9.08 40.5 14.1
14.4 4.87 22.3 7.62
32.8 59.6
104. 200.

6.34 92.5 12.7 181. 24.3
7.51 96.4 15.0 187. 27.7
5.77 90.0 11.8 177. 22.7

8.95 15.3
79.1 157.

1.16 132. 18.4 28.4 8.68
7.83 120. 17.3 229. 30.6
0.98 131. 18.1 27.7 8.38

1.38 1.69
87.4 172.

3.59 18.5 6.36 28.8 9.72
5.09 26.0 9.05 40.2 14.1
2.74 14.2 5.86 22.4 7.52

32.6 59.5
105. 205.

0.98 7.45 6.81 0.18 0.17
8.07 120. 17.2 229. 31.1
0.93 7.42 6.75 0.17 0.10

1.51 1.75
67.9 138.
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TABLE 3
Accuracy, relative to machine precision e, on all matrices (for Types 1-3, we choose a 2, b 1). Note that

only thefirstfive types ofmatrices have valid direct error 79.

Type n 100 n 200 n 300 n 400 n 500
7 O 79 7 O 79 7 O 79 7 O 79 P,, O

Q-LAG 0.84 76.1 0.50 1.27 189. 1.00 1.41 152. 1.00 1.89 186. 1.00 2.16 158.
B/M 0.84 75.7 1.00 1.27 154. 1.00 1.49 143. 1.00 1.85 145. 1.00 1.96 173.
D&C 3.60 11.5 1.50 3.52 13.9 2.00 3.12 16.6 2.00 3.53 21:6 2.00 3.38 20.3

RFQR 2.97 35.4 2.50 3.72 140. 4.00 2.97 121. 3.00 3.39 161. 3.00 6.27 146.
QR 6.01 17.4 2.00 8.05 24.5 2.75 10.2 29.6 4.25 11.2 35.0 5.50 12.8 38.7
Q-LAG 0’.71 66.7 1.00 1.20 156. 1.00 1.50 144. 1.00 1.61 191. 1.00 2.08 168.
B/M 0.85 130. 1.00 1.16 166. 1.00 1.49 161. 1.50. 1.76 189. 1.00 2.27 171.
D&C 3.60 10.7 1.50 3.71 14.0 1.50 3.38 17.3 2.00 3.81 19.7 2.00 3.42 22.9
RFQR 2.35 62.5 2.50 3.52 157. 3.50 3.27 177. 3.00 3.01 80.5 3.00 3.71 149.
QR 6.15 19.0 2.25 8.46 25.6 3.00 10.3 28.4 4.06 12.0 37.9 3.69 13.0 47.1

Q-LAG 0.70 72.5 0.50 1.02 72.1 0.50 1.27 112. 0.50 1.50 137. 0.50 1.78 111.
B/M 1.13 77.9 1.00 1.13 76.3 1.00 1.16 77.1 1.00 1.39 109. 1.00 1.69 160.
D&C 3.67 12.1 1.00 3.80 14.8 1.50 3.50 18.5 1.13 3.99 20.9 2.00 3.93 24.2
RFQR 2.21 64.5 2.00 2.65 99.3 2.50 3.29 64.7 3.00 2.79 90.4 2.50 4.23 108.

QR 6.57 20.1 2.00 9.06 26.9 2.63 10.7 26.5 3.75 12.7 36.0 3.19 13.9 38.2
Q-LAG 0.71 11.3 0.16 0.83 14.4 0.08 1.81 51.2 0.85 1.44 47.7 0.09 1.13 48.0
B/M 0.92 12.1 0.64 1.60 45.0 1.28 1.81 72.3 0.85 1.44 56.3 1.28 2.14 121.
D&C 5.22 11.4 2.56 6.33 12.8 2.56 6.61 15.6 1.71 7.64 16.2 3.20 8.81 19.6
RFQR 11.0 13.1 10.9 18.0 21.5 17.9 26.9 63.1 27.3 20.6 49.5 20.5 23.1 60.4
QR 14.9 19.1 10.2 23.9 31.6 17.9 27.0 35.0 8.53 30.7 37.5 14.1 32.2 46.4

Q-LAG 0.48 21.1 0.10 0.53 19.1 0.05 0.66 23.9 0.52 0.68 18.8 0.52 0.97 32.5
B/M 0.89 24.5 0.82 0.89 54.2 0.82 0.84 68.3 1.05 0.9l 40.4 1.05 1.08 56.5
D&C 4.05 12.2 1.64 3.78 16.9 1.64 2.98 13.6 3.15 3.94 17.5 3.15 3.22 16.1
RFQR 2.91 28.1 2.87 4.94 29.0 4.92 6.61 38.8 5.76 11.5 42.0 5.76 5.76 44.8

QR 9.06 24.7 5.74 11.1 25.8 6.55 10.8 29.6 6.29 14.4 35.9 6.29 14.6 47.3

Q-LAG 0.31 3.54 0.28 5.57 0.38 4.03 0.28 5.55 1.02 4.53
B/M 1.06 4.05 0.92 5.57 0.85 4.53 1.36 5.56 1.02 4.55
D&C 2.29 16.7 3.22 19.6 3.06 15.9 2.07 20.2 3.01 10.2
RFQR 6.56 7.01 13.3 6.02 18.7 4.54 30.6 5.54 19.9 4.05
QR 12.5 74.5 9.06 224. 16.3 360. 14.3 486. 12.1 632.
Q-LAG 0.77 4.85 0.92 10.8 1.56 30.0 1.49 30.8 1.43 18.7
B/M 1.13 14.8 0.85 51.6 0.99 30.0 1.16 30.9 1.07 18.4
D&C 7.29 26.2 6.23 26.7 5.70 13.2 10.0 22.3 7.58 13.4

RFQR 10.6 5.33 12.3 23.8 24.3 14.4 31.1 66.6 24.3 23.4
QR 12.0 84.4 20.1 180. 25.3 249. 31.0 253. 31.7 343.
Q-LAG 0.84 20.8 0.92 37.9 1.17 78.9 1.45 112. 1.39 127.
B/M 0.92 14.6 0.96 37.1 1.36 88.1 1.61 104. 1.19 109.
D&C 8.11 13.7 6.60 16.2 7.90 21.1 7.79 20.0 8.30 23.5
RFQR 4.66 13.5 6.56 40.4 7.30’ 57.3 6.20 82.2 28.9 55.8
QR 12.0 24.1 16.4 27.6 20.9 42.1 22.3 36.9 37.3 71.3

Q-LAG 1.29 9.98 7.44 26.9 24.5 5.75 5.44 15.4 97.4 45.8
B/M 0.69 4.18 1.25 5.28 2.15 5.64 10.7 47.6 20.5 15.6
D&C 4.26 18.2 6.76 30.1 3.94 32.3 5.61 28.1 4.74 18.0
RFQR 4.46 3.56 4.97 7.10 7.13 11.2 9.17 9.94 8.10 10.9
QR 4.72 42.3 4.82 80.6 8.41 123. 10.7 157. 10.6 206.

Q-LAG 1.50 213. 0.91 3.14 2.11 39.2 2.99 9607 3.33 628.
B/M 0.58 257. 1.40 45.4 1.28 1800 2.01 484. 2.88 5683

10 D&C 1.14 19.4 1.31 16.2 1.36 13.5 1.41 18.0 1.49 15.3
RFQR 0.01 4.91 0.22 9.09 0.08 10.7 0.17 11.4 0.02 13.4
QR 0.03 42.3 0.41 67.0 0.58 95.5 0.17 194. 0.49 210.
Q-LAG’ 0.45 9.57 0.98 28.9 0.60 42.5 0.69 83.4 0.83 61.8
B/M 0.81 9.64 1.02 40.6 0.98 40.0 1.00 68.7 0.91 71.3

11 D&C 4.06 13.8 3.62 16.5 10.9 23.0 3.29 18.1 4.48 24.8
RFQR 8.48 11.7 3.09 25.8 10.9 23.0 14.1 54.9 16.7 35.0
QR 8.63 19.7 9.44 29.7 14.5 47.6 18.0 53.8 18.0 81.7
Q-LAG 1.74 4.73 1.75 2.17 1.11 13.7 1.75 135. 3.16 3.38
B/M 1.23 102. 6.48 3496 1.48 18.5 0.70 92.6 0.80 43.0

12 D&C 0.37 17.2 0.28 17.4 0.52 14.0 1.01 20.0 1.53 11.9

RFQR 0.23 5.25 0.28 10.2 0.48 12.3 0.02 16.1 0.06 14.8
QR 0.45 38.6 0.64 80.8 0.49 148. 0.04 228. 0.64 358.

1.00
1.00
2.00
6.50
3.00

1.00
1.50
2.00
4.00
6.13

0.50
1.00
1.00
2.50
4.00

0.51
1.02
2.05
13.3
14.8

0.52
1.05
3.15
5.76
6.29

In comparing the execution time in evaluating all eigenpairs, our algorithm leads QR substan-
tially. For matrices of Types 6, 9, and 10, where a number of clusters exist, our algorithm is
slower than D&C due to drastic deflations of clusters. But this sort of matrix scarcely occurs
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in practice; it is often used for testing the robustness of an algorithm. For all other types of
matrices, our algorithm leads D&C for large matrices (n > 300), while for small matrices,
D&C is faster since it takes much longer for INV to compute eigenvectors in our algorithm.

Only Q-LAG, LAG, and B/M can be applied efficiently to evaluate one-third of the
largest eigenvalues .and their corresponding eigenvectors. D&C and QR must evaluate all
the eigenpairs to obtain the largest one-third. This makes our algorithm more flexible and
efficient. Compared with B/M in this category, our algorithm leads clearly for all types of
matrices.

6.4. Accuracy test. For those matrices with known eigenvalues (Types 1-5), the accu-
racy of a method can be determined by

direct error: 79 max
IlZll

where .i is the approximation of the exact eigenvalue i of T and I1 is the/1-norm. For
matrices of other types, the exact eigenvalues are unavailable; the accuracy of a method is thus
determined by the residual error and the orthogonality error in the computed solution. For
T QDQr with computed solution /)0r, these errors are computed by

residual error: max
]]max

(Z 0 Off))ei I1

orthogonality error: (.9 max (0T 0 I)ei I1=.

If the residual and orthogonality error are small, then the error matrix T /0r is small
[1].

The results are listed in Table 3. It appears that our algorithm Q-LAG achieves the smallest
direct error on all matrices of the first five types. The direct error of our algorithm as well as
B/M is independent of the matrix size, whereas RFQR and QR seem to have larger direct error
when the matrix size becomes larger. For nearly all matrices, the eigenvectors generated by
D&C suffer the least loss of orthogonality, whereas our algorithm and B/M enjoy the smallest
residual errors, except on those occasions where clusters of eigenvalues exist and the inverse
iteration fails to compute orthogonal vectors.
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PRECONDITIONED ITERATIVE METHODS FOR UNSTEADY
NON-NEWTONIAN FLOW BETWEEN ECCENTRICALLY ROTATING
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Abstract. The flow of a non-Newtonian lubricant between eccentrically rotating cylinders is considered. The
fluid model includes a viscosity law which is shear thinning and pressure thickening. The governing equations are
discretized in space using spectral elements and in time by a time-splitting scheme. The system of linear equations
generated at each time step is solved using the conjugate gradient method. Particular emphasis is given to the choice
of efficient preconditioners for both constant and variable viscosity problems. Eigenvalue spectra are presented for
the preconditioned systems for a range of realistic choices of the material and geometrical parameters.

Key words, non-Newtonian fluid, spectral element method, preconditioned conjugate gradient method, eccen-
trically rotating cylinders
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1. Introduction. The journal bearing is an essential part of all internal combustion
engines as a means of transferring energy from the piston connecting rods to the rotating
crankshaft (Figure 1). The big-end journal bearing consists essentially of an inner cylinder
(the journal), which is part of the crankshaft, and an outer cylinder (the bearing), which is at
the end of the connecting rod. A lubricating film of oil separates the three-dimensional region
between the cylinders which are, in general, eccentrically positioned. The big-end bearing is
driven by a time-dependent load, whilst the journal’s motion is approximately circular about
O, the centre of the main bearing. The main journal bearing again consists of a journal being
part of the crankshaft, whilst the outer cylinder is fixed to the engine casing. If O was fixed in
time then the journal within the main bearing would rotate about its own axis. Both the main
and the big-end bearings are subject to elastic deformation.

The modelling of the behaviour of the lubricant has many important and complicated
features. These include incompressibility; viscoelasticity; changes in viscosity with shear rate,
strain rate, pressure, and temperature; oil feed; boundary lubrication to incorporate extreme
effects when the cylinders are almost touching; and cavitation. In addition the imposition of a
time-dependent load means that the centre of the journal traces out a nontrivial locus in space.

In the present study we restrict ourselves to the two-dimensional flow of a non-Newtonian
fluid under static loading conditions (fixed eccentricity). This model is important in its own
right and presents a genuine and challenging test for numerical solution techniques. Significant
boundary layers can develop in the flow at high eccentricity, even at modest rotational speeds
of the journal. The accurate resolution of such boundary layers presents a major challenge to
numerical methods. The extremely high number of degrees of freedom required by traditional
finite element methods to resolve these layers has led to high-order methods such as spectral
or spectral element methods being tried. The present study concentrates on the feasibility of
solving the static loading problem for different eccentricities with particular attention given
to the speed of computation. The motivation for studying this problem is that the dynamic
loading problem will involve tens of thousands of such calculations.

In previous work on the statically loaded model [18], [19], [20] a single domain spectral
method was used which employed a bipolar coordinate transformation to map the region be-
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Piston
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FIG. 1. Schematic diagram showing the conversion of the translational motion of a piston to the rotational
motion ofthe crankshaft via three journal bearing mechanisms.

tween thejournal and the bearing onto a rectangle. The flow variables were then approximated
on this rectangle using Fourier-Chebyshev expansions. However, to allow for future possible
deformation of the journal and bearing surfaces due to increased loads for the dynamically
loaded problem we have decided to use a more versatile spectral element formulation.

In the spectral element method a variational formulation of the governing equations is
used. This results in a symmetric positive definite system of linear equations to be solved
at each time step. This system may be solved using a conjugate gradient iterative method.
Improved efficiency is gained by constructing suitable preconditioners, thus reducing the
number of iterations and the computational time to reach a converged solution. These are the
issues that will be addressed in this paper.

2. Formulation of the problem. We consider the flow of a pressure-thickening gen-
eralized Newtonian fluid between eccentrically rotating cylinders. The inner (journal) and
outer (bearing) cylinders are of radius Rj and Rs, respectively, with the distance between the
centres of the cylinders given by e. The outer cylinder is kept at rest, while the inner cylinder
is rotated at an angular velocity co. The eccentricity is defined by e e/c, where c Re Rj
is known as the average gap. Let the region between the journal and the bearing be denoted
by , and let F and F denote the boundaries of the journal and bearing, respectively.

The governing equations for a generalized Newtonian fluid compose the conservation of
momentum

(1)

the conservation of mass

(2)

and the constitutive equation

/9 + v.Vv -Vp + V.T,

V.v O,

(3) T 2r}(p, p)d,

where p is the density, r/is the variable viscosity, p v/2 tr(d)2, T is the extra-stress tensor,
(Vv + (Vv)r) is the rate of deformation tensor. Here tr(A) denotes the trace of aand d 7
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tensor A. The constitutive equation written in this form can easily be modified to incorporate
viscoelasticity 18]. The constitutive equation (3) is a modification of the usual generalized
Newtonian model to include pressure dependence of the viscosity.

The viscosity law that we have used was proposed by Li and Davies 13]. It is shear thin-
ning and pressure thickening. The various parameters in the model are determined empirically.
The dependence of viscosity on and pressure is given by

(4) r/- r/ +
[1 + (g))m]

x exp(-ottr(cr)/3 / F),

where K is a function of pressure

K K(p) exp(-tr(r)/3 + E),

r -pl + T is the Cauchy stress tensor, and r/0, r/, m, n, or, , E, and F are material
parameters. This model describes the shear-thinning behaviour ofthe viscosity by a Cross-type
formula [8]. Pressure thickening is modelled by a simple exponential law 1]. It is important
to note that the viscosity law (4) is consistent with experiments [2] which span only limited
ranges of the pressures which the lubricants experience under general operating conditions.

The governing equations (1)-(3) are solved subject to specified boundary and initial
conditions. These are, respectively,

() v=vj on Fj, v=O on

(6) v(x, 0) v0(x).

3. Analysis of the steady Stokes problem. In this section we review previous work on
the spectral discretization of the steady Stokes problem in order to motivate our choice of
discrete velocity and pressure approximation spaces. For simplicity we consider the domain
D [- 1, 1 [- 1, 1 ]. The problem is to find a velocity v (u, v) and a pressure p such that

(7) --/’]72V + Vp f,

(8) -V.v 0,

with v 0 on the boundary of D.
To set up the variational formulation of this problem we need to introduce some function

spaces. The velocity is chosen to belong to the space X Hd (D) Hd (D) and the pressure
to the space M L(D) where

The variational formulation is then given by the following: find (v, p) E X M such that

(9) r/(Vv, Vw) (p, V.w) (f, w) w E X,

(10) -(q,V.v)=0 Yq6m.

We define two bilinear forms a and b over X X and X M, respectively, by

(11) a (v, w) r/(Vv, Vw),

(12) b(v, q) -(q, V.v).

The Stokes problem can then be written as follows: find (v, p) 6 X M such that

(13) a(v, w) + b(w, p) (f, w) w 6 X,

(14) b(v,q)--0 Yq 6 m.
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In order to set up the corresponding variational formulation it is necessary to choose suitable
polynomial subspaces XN and MN of X and M, respectively. Let N be an integer which
will be used as a discretization parameter for the pseudospectral approximation. Let PN (D)
denote the space of all polynomials of degree less than or equal to N in each spatial direction.
The velocity approximation space is chosen to be the subspace of X comprising polynomials
of degree at most N in each coordinate direction which vanish on the boundary of D, i.e.,

XN X PN(D)2.

If the discrete pressure space is chosen to comprise polynomials of the same degree as
for the discrete velocity space then spurious modes in the pressure representation might arise.
If there are spurious modes in the pressure representation then the problem does not possess
a unique solution [5]. For example, if Chebyshev or Legendre polynomials are used as the
basis functions, then for the discrete version of (13) and (14) it can be shown that there are
eight spurious modes. In practice these modes pollute the pressure approximation and need to
be removed in order to recover an accurate pressure field. Phillips and Roberts 18] filter out
the spurious pressure modes using a singular value decomposition of the pressure coefficient
matrix. In the case of domain decomposition, however, it is not immediately self-evident how
to identify and then remove the spurious modes. The spurious modes have been characterised
for a rectangular domain decomposition problem [21]. However, in the general case it is
preferable to define a discrete problem which is free from spurious modes in the pressure
representation.

One means ofcircumventing this difficulty is to deplete the pressure space in an appropriate
way to remove the spurious modes. Bernardi and Maday [3] propose a method based on a
staggered mesh, similar to that used in some finite difference methods, in which the dependent
variables are defined on a different collocation grid. Although this removes the spurious
modes it does not result in optimal error estimates for either the velocity or the pressure. This
method is also cumbersome to use since it is necessary to interpolate the variables between
the different grids.

Another method which is free from spurious pressure modes and which does not require
an inordinate amount of interpolation is the PN PN-2 method ofMaday, Patera, and RCnquist
17]. In this method the pressure approximation is of degree N 2 compared with a velocity
approximation of degree N. The unknowns associated with the pressure approximation are
located at the interior Gauss-Lobatto points.

Let aN and bu be discrete bilinear forms which are, for the moment, unprescribed ana-
logues of the continuous ones defined by (11) and (12), respectively. The discrete variational
problem is as follows: find (VN, PN) E XN MN such that

(15) ON(VN, WN) + bN(WN, PN) (f, WN)N ’ WN XN,
(16) bN (VN, qN) 0 V qN MN.
Suppose that the discrete bilinear forms aN and bN satisfy the following properties:

(17) laN(UN,
(18) [bN(UN,

(19) aN(UN, UN) (D)’

(20) inf sup
bN(VN, qN)

>_ flN_t
qNMNvNXN VN [[HI(D)[I qN [[L2(D)

for all UN, VN 6 XN, and qN MN and where a, fi, y, and are constants independent of
N and s and are nonnegative real numbers. Conditions (17) and (18) state that the bilinear
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forms aN and bN are continuous over XN )< XN while (19) is a statement of the ellipticity of
aN over XN x XN. Condition (20) is known as the inf-sup or compatibility condition, and if it
is satisfied then the discretization spaces XN and MN are said to be compatible. If these four
conditions are satisfied then the problem (15)-(16) is well posed and yields a unique solution
(rN, PN) E XN x MN.

Suppose that the solution (v, p) belongs to Ha (D)2 Hor-1 (D) for a real number cr > 1
and that f belongs to Hp (D)2 for a real number p > 1; then the following error estimates hold
for the velocity and pressure approximations:

V- Vu [IHI(D) < cNS[N1-’r (11 u [IH(D)2 -+- p [[Ho-I(D)) + Nr-p f

P Pg IIL2(D) _< cNS+t[Nl-r(ll u II(DV / P IIn-(O) / Nr-P f Ilno(o].
The parameter r arises in the estimate of the inteolation eor with respect to the given set
of collocation points. This eor is determined by measuring how closely the inner product
(f, WN) is approximated by the discrete inner product (f, WN)N.

In the case of the fully staggered grid approach of Bernardi and Maday [3] we have r 1,
For the method based on the use of a pressure approximation of the sames 1, andt .

degree as the velocity but with the spurious modes removed [4] we have r 1, s 0, and
1. Finally, for the method based on a pressure approximation of degree N 2 where N

is the coesponding degree of the velocity approximation [17] we have r 0, s 0, and
This method thus yields an optimal eor estimate for the velocity and the best estimate

for the pressure amongst the three methods. Therefore, this method has the advantages of
being free from spurious pressure modes and yielding the best eor estimates for the model
problem (7)-(8). The lack of optimality in the pressure approximation is a direct consequence
of having a nonzero value of in the inf-sup condition. This property not only affects the
accuracy of the pressure but also results in a bad condition number for the Uzawa operator
used to solve the discrete set of equations. This operator results from a decoupling of the
pressure and velocity computations. Therefore, from a computational as well as a theoretical
point of view the lower the value of the better. These considerations have motivated our use
of the so-called PN PN-2 method of Maday, Patera, and ROnquist 17] in our work.

We now define the discrete biline forms for the PN PN-2 method. Let i, 0 N
be the set of Gauss-Lobatto-Legendre points in the interval [-1, 1]. There exists a unique
set of positive real numbers wi, 0 N, such that the integration rule

(X) dx wi(xi)
i=0

is exact for all P_[-1, 1]. The discrete bilinear fos a and b and the discrete
inner product for this formulation e defined by

aN(U,V) Vu Vv Vu, v G (CI(D))2,
GL

bN(U, p) ’.U p ’V’ U E (CI(D))2, p C(D),
GL

where

(f, V)N Z f V,
GL

N N

GL i=0 j=0
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4. Time-splitting schemes. Time-splitting schemes have the advantage of enabling the
different operators in a system of partial differential equations to be treated by appropriate
methods of solution. In the present context time-splitting methods are used as a means of
determining the solution of the corresponding steady problem. In this respect they may be
viewed as iterative techniques. However, for the dynamic loading problem these schemes
will be used in true time-dependent mode to track the transient solution of the journal bearing
problem, i.e., to determine the locus of thejournal in time. In general, nonlinear operators such
as the convection operator are treated explicitly while linear operators such as the diffusion,
gradient, and divergence operators are treated implicitly.

4.1. Backward Euler. In this scheme the diffusion and pressure computations are cou-
pled. After the spatial discretization has been performed, the velocity and pressure are decou-
pied by means of an Uzawa method which essentially involves a block Gaussian elimination
method to obtain a pressure system. The solution of this system requires the use of a nested it-
erative solution technique. An efficient preconditioner for this system can only be constructed
easily in the case of constant viscosity since otherwise the coefficient matrix of the inner
system needs to be updated for each iteration.

(21)

(22)

STAGE A
/9 (V* Vn)

/9 vn.vvn,
At At

STAGE B
/9 (vn+l V*) -Vpn+l -Jr- 2V.Tndn+lAt

(23) V.vn+l O.

The solution of Stage B requires the inversion of an unsteady Stokes operator at each time
step subject to the given velocity boundary conditions on the bearing and the journal. This is
the computationally intensive part of the algorithm which we will be investigating in this paper.
There is also an alternative backward Euler time splitting method in which the diffusion term
is evaluated in Stage A at the starred time level. This scheme has the advantage of decoupling
the diffusion and pressure terms completely, so that the corresponding discrete problem does
not require a nested iterative solver. However, this scheme suffers from a splitting error of
O (At) which does not vanish as the steady state is reached. This drawback is overcome by
use of the Crank-Nicolson scheme, which we describe next 16].

4.2. Crank-Nicolson scheme. In this scheme the treatment of the diffusion and the
pressure terms are decoupled. This means that when the scheme is discretized in space there
is no requirement for a nested solver. This method is therefore more suitable for variable
viscosity problems. The splitting error in this Crank-Nicolson scheme is O(At2), and at
steady state this error vanishes in contrast to the corresponding backward Euler scheme.
Although the discrete pressure operator derived in this case may appear to be nested, the
spectral element mass matrix is, in fact, diagonal, and therefore the calculation of its inverse
requires no iteration.

5. The spectral element method. In this section we describe the spectral element
method applied to Stage B of the backward Euler scheme. The spectral element method
is based on .a weak formulation of the problem. The variational formulation of (22) and (23)
is therefore as follows: find (v, p) s X M such that

ffa P ffa(wv)clx-ffa(pV.w)clx= P ff(wv*)dxYvX,(24) (r/VvVw)dx + - A--
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(25) ffa(V.vq)dx 0 q L2(f2),

where we have dropped the Jtime level n + 1 from the superscript on v and p.
The spectral element method is a technique for solving problems defined in complex

geometries [11], [12]. The idea is to divide the flow into several spectral elements, f2k, 1 <
k < K, such that Ukr__l 2 and f2 S2 0 for all k I. We also assume that the
decomposition is geometrically conforming in the sense that the intersection of two adjacent
elements is either a common vertex or an entire edge. Each of the spectral elements is mapped.
onto the parent element D [-1, 1] x [-1, using the transfinite mapping technique of
Gordon and Hall 10].

Since each element f2g is mapped onto the parent element [-1, 1] x [-1, 1] we may
associate with each point (, () 6 D a point (x (, (), y(, ()) f2. Under this mapping we
have, for example,

(26) a (v, w)= ff Vv Vwdx

(27) ffo rl { Gkl OV OW OvOw (OvOw OvOw)}+ +

where the Jacobian J of the mapping is defined by

8x 8y
(28) J

(9 a- 5-}-

(30) o2=

(31)

8x 8y

+

+
Ox Ox Oy 8y )

We approximate the primitive variables using Legendre-Lagrangian interpolants ofdegree
N in both spatial directions. Let PN,r denote the space of polynomials of degree N or less,
defined over the K elements. We choose the velocity field in PN,X and construct a Gauss-
Lobatto-Legendre grid in each of the elements f2, < k < K. The velocity representation
is then given by

(32)
N N

VkN( () V. hi()hj()1,j
i=0 j=0

where the Lagrangian interpolants hi (), 0 < < N, are defined on the parent interval with
[-1, 1] by the relationship

(33) hi()
(1 se2)Lv(se)

N(N --t- 1)LN(i)( i)’

where the points i are the collocation points on the Gauss-Lobatto-Legendre grid.
As for the finite element method, the velocity and pressure approximations must satisfy

the Babuka-Brezzi condition to avoid the presence of spurious modes. In the framework of
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Y

FiG. 2. The discretization of the physical fluid domain forfour elements in the azimuthal direction (Na 4)
and two elements in the radial direction (Nr 2). Each element is split into seven nodes in each direction (N 7).

the spectral element method Maday and Patera 15] have shown that a suitable choice for the
pressure approximation space is

(34) MN L2() O PN-2,K

Thus the pressure approximation is given by

(35)
N-1 N-1

PN(, ) Z -- Pi,Jti()j()’
i=1 j=l

where /i (), 1 < < N 1, are the Lagrangian interpolants based on the interior Gauss-
Lobatto-Legendre points.

The spectral element discretization of the geometry is shown in Figure 2 together with the
Gauss-Lobatto collocation grid. A typical collocation grid on the parent element is shown in
Figure 3. The number of spectral elements in the radial and azimuthal directions is denoted
by Er and Ea, respectively. A full description and algorithm of the grid generation is given in
Appendix A.

The integrals over each element f2 in (26) are approximated by a Gauss-Legendre quadra-
ture rule.
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(-I,1) (1,1)

(-i,-i) {i,-i).

FIG. 3. The discretization of the parent element into the N nodes (N 7) according to a Legendre-Gauss-
Lobatto distribution.

The velocity and pressure expansions are now inserted into the discrete form of (24)-
(25), and the discrete equations are generated by choosing appropriate test functions w 6

PN,: N H01 (f2) which are unity at a single point (k, ’l) and zero at all other Gauss-Lobatto-
Legendre points and test functions q PN-2,K which are unity at a single point (k, ’) and zero
at all other interior Gauss-Lobatto-Legendre points. Once the discrete bilinear forms have
been computed for all elements, the contributions from neighbouring elements are summed
along element interfaces. This procedure takes into account the situations in which the test
function extends into more than one element. In this way we obtain the system of algebraic
equations

(36i Av + cr Bv- Drp f,

(37) Dv g,

where D is the discrete divergence operator, its transpose is the discrete gradient operator, B
is the mass matrix, and r plat. The vectors of unknowns now refer to their values at
the discretization points (the Gauss-Lobatto nodes). Note that in order to evaluate the dis-
crete gradient and divergence operators we need to map the pressure PN and the test function
qN within each spectral element from the interior Gauss-Lobatto-Legendre nodes onto the
Gauss-Lobatto-Legendre nodes on the boundary of the element.

Block Gaussian elimination yields a symmetric semipositive definite system for the pres-
sure unknowns

(38) Sp c,

where S D(A + rB)-1Dr and c -D(A + r B)-lf + g. The matrix S is made positive
definite by imposing a zero volume condition on the pressure field. The velocity is computed
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using

(39) (A+rB)v Drp + f.

Due to the properties of S and its considerable size an iterative solver to solve (38) is sought.
For the model problem on the square grid it can be shown that the maximum eigenvalue of
S is fixed and is of order unity while the minimum eigenvalue scales like/32. Hence there
is a necessity from the solution point of view to have a good inf-sup condition. Using the
preconditioned conjugate gradient (PCG) method to solve this system is well documented 14],
and, using a suitable preconditioner, the PCG method is found to be very efficient. For a wide
range of problems 14]-[ 17] this preconditioner works very well within the spectral element
context, and we would not advocate the use of anything else. However, for the solution of
realistic joumal bearing problems the system of equations is extremely ill conditioned due
to the nature of the geometry. To illustrate this more clearly we will discuss our problem
applied to the constant viscosity steady Stokes solver. The iterative scheme is nested since
each matrix-vector multiplication Sp requires the solution of the system

(40) (A + r B)r s.

This inner system is also solved by the conjugate gradient method since it is a symmetric
positive definite system.

6. Preconditioners. The convergence rate of iterative methods for solving a system
of linear algebraic equations depends on the spectrum of the coefficient matrix. The idea
underlying the preconditioning philosophy is to transform the original system into one that is
equivalent in the sense that it has the same solution but that has a more favourable spectrum
We are interested in finding a matrix P, known as the preconditioner, which approximates the
coefficient matrix S in some sense so that the transformed system

(41) p-1Sp p-lb

has the same solution as (38) has but the eigenvalues of p-1S are more clustered than those
of S. The trade-off between the cost of constructing and applying the preconditioner and
the expected gain in convergence speed of the iterative method must be borne in mind. The
transformation of the linear system (41) is not what is actually used in the computations.
Instead, the preconditioner is decomposed in the form P Q Qr and the transformed system
written as

(42) Q-1SQ-T(QT.p) Q-lb.

The condition number, to, of the preconditioned system is defined by

(43) tc

where )max and )min are the largest and smallest eigenvalues of the preconditioned matrix L
where

(44) L Q-1SQ-, P QQr.

A given iterative method is then preconditioned following this procedure:
1. The right-hand side vector is transformed according to

Q-lb.
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2. Apply the iterative method to the system

3. Compute

p Q-T.

The preconditioner is chosen to be an approximation to S, in some sense, which is easier
and cheaper to invert than S. Ideally the preconditioner should have similar properties to the
original matrix and also be sparse so that it is efficient to construct and to store.

The decomposition of P given in (44) is not needed in practice. The steps of the conjugate
gradient method can be rewritten so that the preconditioner is applied in its entirety [9].

6.1. Constant viscosity problem.

6.1.1. Steady Stokes solver. As mentioned previously, direct methods for solving (38)
are undesirable due to the considerable, time required in preprocessing S. Furthermore, due
to the bad conditioning of S for small ot we find that Choleski decomposition gives inaccurate
results. In the present context accuracy is measured by comparing our results with those given
in 18] and also knowledge that steady Stokes flow is symmetric with respect to the line joining
the centres of thejournal and the bearing. We find that preconditioning is absolutely necessary
for the efficient and accurate solution of this problem.

Here we are interested in finding effective preconditioners for the matrix S rlDA-1Dr.
This matrix has rank equal to the number ofpressure degrees of freedom, i.e., M K(N 1)2,
and will be completely full due to the presence of A-1. Maday and Patera 15] demonstrate
that for some test problems the matrix S is extremely well conditioned. They use a heuristic
argument to explain this phenomenon. They argue that the spectrum of S behaves like the
variational equivalent of the identity operator since it involves the product of gradients "di-
vided" by the Laplacian. This leads them to suggest that the pressure mass matrix would make
an ideal preconditioner. For a wide range of problems 14]-[17] this preconditioner works
very well within the spectral element context, and we would not advocate the use of anything
else. However, we present results which show that the condition number of S is geometry
dependent; i.e., for the distorted spectral elements in the physical journal bearing problem the
spectrum of S is not so universally well behaved as Maday and Patera 15] perhaps suggest.

The way the spectral element grid is constructed means that as far as the geometrical
parameters of the problem are concerned the entries of the pressure matrix S are dependent
on the eccentricity e but not on the orientation of the journal. We denote this dependence by
S. The following preconditioners were considered for the constant viscosity steady Stokes
problem:

1. P B where B is the pressure mass matrix. This matrix is not sparse at the elemental
level.

2. P =/} where/} is the diagonal of B.
3. P S, where S, is the matrix S evaluated at 6*.

The geometry of a typical car enginejournal bearing is such that the physical aspect ratios,
which are proportional to oe c/2zc Rj, are very small where c =_ Re Rj is the average gap

Therefore, not even a significantof the fluid region. Typical values are much less than --ff6"
redefinition of the spectral element discretization would overcome this problem.

We show that the eigenvalue spectrum is very much dependent on the physical aspect
ratio. In Figures 4 and 5 we choose 0.5 and keep (N, Er, Ea) fixed at (7, 2, 2), which
gives M 196, and show the eigenvalue spectra of the preconditioned system when the



1380 D. RH. GWYNLLYW AND T. N. PHILLIPS

-8 -7 -6 -5 -4 -3 -2 -I 0

FIG. 4. Eigenvalue spectrum of a preconditioned system with P B with (N, Er, Ea) (7, 2, 2) and an
illustration of the modelfor the case ofot 5.3 10-2, e 0.5. The result is a condition number tc 188.3 and
the number ofPCG iterations 28.

preconditioner is the pressure mass matrix, i.e., P B. The outer radius in both figures is
the same (RB 0.03129) and the inner radius is varied so as to vary

In Figure 4, ot 0.053 whilst in Figure 5, ot 2.04 x 10-4. One can see from Figure 5
that the value of o is so small that the two cylinders are indistinguishable from each other.
The result is that the condition number increases as ot decreases with a cluster of very small
eigenvalues appearing in the latter figure. In terms of conjugate gradient iterations the model
with ot 0.053 takes 28 iterations to converge whilst with ot 2.04 x 10-4, 40 iterations
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1og(,ki/,kmax)

FIG. 5. Eigenvalue spectrum ofa preconditioned system with P B and (N, Er, Ea) (7, 2, 2) together with
an illustration ofthe modelfor the case ofot 2.04 10-4, 0.5. The result is a condition number tc 9.35 106
and the number ofPCG iterations 40.

are required. The position was much worse for the preconditioner P B for which the
PCG method failed to converge within the theoretical maximum number of M iterations for
ot 2.04 10-4, indicating that round-off errors dominate.

Changing the number of elements or the number of nodes whilst keeping the elemental
aspect ratio fixed does not alter the condition number of the preconditioned system with
P B. This is illustrated in Figures 6 and 7 where the eigenvalue spectra are given for
the same model as illustrated in Figure 5 except that (N, Er, Ea) (7, 4, 4) and (12, 2, 2),
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FIG. 6. Eigenvalue spectrum ofa preconditioned system with P B and (N, Er, Ea) (7, 4, 4) for the case

ofot 2.04 x 10-4, 0.5. The result is a condition number x 9.36 106.

log()q/-,rnax)

FIG. 7. Eigenvalue spectrum ofa preconditioned system with P B and (N, Er, Ea) (12, 2, 2)for the case

ofot 2.04 x 10-4, 0.5. The result is a condition number tc 9.36 106

respectively, as opposed to (7,2,2). The resulting condition number for both these examples
is tc 9.36 x 106.

Thus we have shown conclusively that the condition number of the preconditioned system
is dependent on the preconditioner and the physical aspect ratio, or, but not on the elemental
aspect ratio. Figures 8 and 9 give the eigenvalue spectra for two different elemental aspect
ratios corresponding to (7, 2, 4) and (7, 4, 2), respectively, whilst ot is kept fixed at 2.04 x 10-4.
The condition number remains unaltered with a value of tc 9.36 106.
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FIG. 8. Eigenvalue spectrum ofpreconditioned system with P B and (N, Er, Ea) (7, 2, 4) for the case of
2.04 x 10-4, 0.5. The result is a condition number x 9.36 x 106.

FIG. 9. Eigenvalue spectrum ofa preconditioned system with P B and (N, Er, Ea) (7, 4, 2) for the case

ofor 2.04 x 10-4, 0.5. The result is a condition number x 9.36 x 106.

The number of eigenvalues in the cluster of small eigenvalues is the same as the number
of pressure nodes Na in the azimuthal direction, where Na N x Ea. This is also the case for
the eigenvalue spectrum of the unpreconditioned matrix S. For the unpreconditioned system
the eigenvectors corresponding to these small eigenvalues display a pattern. Irrespective of
the eccentricity of the system, these "zero eigenvectors" can be associated with a set of nodal
points Pk which lie on the same radial line as the kth nodal point. As the average gap c
decreases, the values of the "zero eigenvalues" become smaller and the corresponding "zero
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FIG. 10. Eigenvalue spectrum of a preconditioned system with P So.o and (N, Er, Ea) (7, 2, 2), ot

2.04 10-4, and 0.5. The result is a condition number x 55.8 and the number ofPCG iterations 27.

eigenvectors" tend toward the vectors e, k Na, whose entries are given by

e(i) 0 if ’ P,

e(i) 1 if 6 P.

This behaviour is independent of the eccentricity of the system. This leads us to choose as
preconditioner the pressure matrix S0.0 that is generated from the concentric model ( 0.0).
If the gap c is small then the structure of the "zero eigenvalues" for the two models (S, S0.0)
are similar. The resulting eigenvalue spectrum with P S0.0 is illustrated in Figure 10, and
this can be compared directly with the spectrum given in Figure 5 where P B.

The following tables compare the condition number, the number of PCG iterations, and
CPU time per PCG iteration for different preconditioners for S in the case when 0.5. It
is clear that the most successful preconditioner in terms of number of PCG iterations required
for convergence is S0.0. There are also advantages with respect to accuracy for using this
preconditioner since its condition number is considerably lower than that of its competitors.
Even with respect to CPU time, preconditioners based on nondiagonal matrices are only
slightly more expensive to use than those based on diagonal matrices. The reason for this
somewhat surprising statement is that the CPU times are dominated by the inner iteration
process. The number of inner iterations is independent of the choice of preconditioner in
the outer iteration. The only significant difference in times occurs for larger values of M
when the cost of using a dense preconditioner is about 25% more than the cost of using a
diagonal preconditioner. However, given the considerably fewer number of iterations required
for convergence in the former case, the difference in CPU times is not enough to justify a
diagonal preconditioner. The preconditioner based on S0.0 needs to be calculated only once
and can be applied to systems with different eccentricities. The inversion of the pressure mass
matrix also requires a nontrivial amount of work. In addition it needs to be recomputed for
different eccentricities. The other two preconditioners (I and/), although trivial to calculate
and invert, are very poor preconditioners in terms of the number of PCG iterations required
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TABLE la
The number ofPCG iterations ofthepreconditioned system with 0.5for differentpreconditioners P together

with, in brackets, the corresponding condition number. The results arefor different numericalparameters based upon
the p-method analysis, c 2.04 x 10-4.

(N, Er, Ea), M P I P P B P SO.O
(7,2,2), 196 284 (4.30x 108) 164 (1.79 x 108) 40 (9.35 x 106) 29(55.84)
(10,2,2), 400 1162 (8.50x 10s) 395 (3.31 x 10s) 63 (9.35 x 106) 34 (55.84)

(13,2,2), 676 >2000 (1.39x 109) 727 (5.24x 10s) 95 (9.35 x 106) 37 (55.84)

TABLE lb
The CPU times, in seconds, of one PCG iteration of the preconditioned system with e 0.5 for different

preconditioners P. The results are for different numerical parameters based upon the p-method analysis, o
2.04 x 10-4.

(N, Er, Ea),M P I P P B P SO.O
(7,2,2), 196 0.8 0.8 0.8 0.8
(10,2,2), 400 6.2 6.2 7.3 7.3
(13,2,2)’ 676 22.0 22.0 26.0 26.0

for convergence. In practice we are not limited to using the preconditioner based on the
concentric coefficient matrix S0.0. It is possible to construct and store a set of preconditioners
S 1 < < I, for different eccentricities i and to use the preconditioner Sj for which ej is
closest to e.

Note that the condition number of the preconditioned system is independent of N for the
two cases P B and P S0.0. In this sense we say that both preconditioners are optimal
and that we can expect the number of PCG iterations to be proportional to M. However, it can
be seen from Table 1 that the number of iterations using both these preconditioners increases
less than in proportion with N. This effect is more pronounced in the case P S0.0, where
the number of iterations required for N 10 and N 13 is almost the same.

6.1.2. Unsteady Stokes solver. For the unsteady Stokes problem with a constant viscos-
ity r the resulting pressure matrix St is given by

(45) St D(rlA + aB)-1DT,

where a p/At. The "natural well conditioning" that exists in the steady pressure matrix S
does not exist in St. The matrix St is again symmetric positive definite, and, as in the steady
case, the solution to the linear system

(46) Stp= r

can be found using a nested PCG iteration.
A preconditioner considered in [7] is a linear combination of the inverses of the identity

and the Laplacian operators. This choice is motivated in 14] by considering the two limits of
St as At -+ 0 and At --+ cx; that is,

(47) St rl-ls as At ec,

(48) St -- cr-E as At -+ 0,

where E DB-1Dr is the discrete Poisson operator. The resulting preconditioner is written
as

(49) p-1 r/B- + cr E-.
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TABLE 2
The number of PCG iterations and the condition number of the preconditioned system for the two differ-

ent preconditioners corresponding to equations (50) and (51), respectively. The parameters of the problem are
(N, Er, Ea) (7, 2, 2); that is, M 196for the case ofe 0.5, ot 2.04 x 10-4, 5 (mPa s), p 820kg/m3.

e* 0.0 e* 0.25 e* 0.5
At 0 100i2’28 x 107) 81(1.47x 107) 40(9.35 x 106)

At 10-3 79(540.4) 55(324.2) 36(180.7)
At-- 10-4 48(57.3) 36(34.4) 25(19.2)
At 10-5 35(9.09) 28(6.04) 18(4.47)
At 10’7 25(6.29) 20(4.52) 11(2.65)

At=0

At 10-3

At 10-4

At 10-5

e* 0.0 e* 0.25
29(55.8) 17(9.94)

28(25.6)

27(18.1)

0.5
1(1.00)

17(5.65) 4(1.03)

17(4.68) 7(1.11)

23(6.75) 16(2.97) 7(1.23)
At 10-7 22(4.26) 16(2.38) 7(1.13)

This preconditioner clearly has the advantage that in adaptive time-stepping schemes the re-
calculation of P-1 for different time steps is trivial. As in the steady solver this preconditioner
would need to be recalculated if the eccentricity of the model changed. We generalize pre-
conditioners of the form (49) as follows:

(50) P-1 ?B, + aE,

where the subscript * means that the relevant matrices are evaluated at that particular ec-
centricity ratio. The preconditioner defined in (50) is identical to that defined in (49) when
6" e. We compare the use of (50) with

(51) P- rlS, nu aE,

which is the unsteady problem preconditioner analogous to P S, for the steady problem.
Table 2 displays the number of PCG iterations required for the preconditioners given

by (50) and (51). Also shown in this table, in brackets, is the condition number of the
preconditioned system.

It is clear that the preconditioner involving the full steady pressure matrix S,, i.e., (51),
is superior to that using the pressure mass matrix B,, i.e., (50). The extent to which (51)
is a better preconditioner than (50) depends upon the time step. For a small At the two
preconditioners are at their most comparable with the system matrix being closer to cr E; when
At 10-7, the preconditioner in (50) for e* 0.5, 0.25 is still better than that in (51) at

* 0.25, 0.0, respectively. However, for larger time steps, when the steady Stokes operator
becomes more influential, the performance of the preconditioner in (51) becomes increasingly
better when compared with (50). For example, for time steps of greater than approximately
10-4 the performance of (51) for the concentric geometry (* 0.0) outperforms (50) for

* = =0.5.
For solving (46) at a number of different eccentricities we would choose a limited number

of eccentricities and for each one calculate the preconditioner from (51). The number of pre-
conditioners that need to be calculated and for which eccentricities is dependent on the number
of solutions to the pressure system (46) that is required .and the range of eccentricity ratios.
In a typical dynamic model as many as O(105) solutions are performed with eccentricities
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log(,k,/,,,)

FG. 11. Eigenvalue spectrumofDD7" and (N, Er, Ea) (7, 2, 2) for the case ofot 2.04 10-4, 0.5.
The result is a condition number tc 1.49 x 10].

varying almost throughout the whole domain, i.e., E [0, 1). For such a model the calculation
of 10 preconditioners at intervals of equal eccentricity is found to be both effective and cheap
in comparison with the total run time. Clearly, the number of iterations listed in Table 2 and
in the rest of the paper is only for the comparison of different methods and preconditioners;
the actual number of iterations can be reduced dramatically, for example, by a choice of the
initial guess based upon knowledge of the solution at other eccentricities.

6.2. Variable viscosity problem. For the unsteady non-Newtonian problem difficulties
arise with finding preconditioners for the resulting Schur complement matrix So which is now
defined as

(52) So D(Ao + By)-1Dr,

where A0 represents the discrete weak formulation of the diffusion operator r/A. For the
constant viscosity case this operator was represented simply by r/A. For the correspond-
ing variable viscosity problem this is no longer the case. If there are only slight variations
in the viscosity then the preconditioner associated with the constant viscosity problem may
be reasonable with effective viscosity which is an average, in some sense, of the vari-
able viscosity throughout f2. However, in a typical high-speed journal bearing problem
the viscosity can vary by as many as two orders of magnitude due to, primarily, the vari-
ation in pressure. Difficulties arise in the numerical solution process because the viscosity
is now embedded in the operator A0, and this, in turn, is nested between the multiplication
of the gradient and divergence operators. For problems in which there is a large variation in
viscosity there is no obvious reason why the average viscosity preconditioner should work
well.

The poor conditioning of S, St, and So derives from the poor conditioning of DDr, whose
eigenvalue spectrum is shown in Figure 11. The Crank-Nicolson scheme described in 4.2
provides a mechanism for removing the variable viscosity from the nested solution of systems
with coefficient matrices of the form (52). The resulting linear algebraic problem involves
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TABLE 3
Information on the viscosity ofthe steady-statefluidfor geometry ofe 0.5 and ot 2.04 x 10-4 for angular

velocity co 250, numericalparameters (8, 2, 2), and viscosity parameters given in Appendix B (r/A & r/B). All units
are in (mPa s).

() 4.9996 4.9993
r/max 8.3061 9.5120
r/min ’4.7350 2.’996

tWO solutions of a system of equations of the form

(53) Hr=s,

where H is the discrete Helmholtz operator defined by

(54) H A + o" By

and one solution of a system of the form

(55) Sr t,

where

(56) S DB]1Dr

is a Schur complement matrix and By is the velocity mass matrix.
Equation (55) can be solved using a PCG method. This is not a nested iteration since the

matrix Bv is diagonal and hence the calculation of its inverse is trivial. The preconditioner
used is simply S, since S is independent of both the variable viscosity and the time step. For
the PCG method applied to (53) we use as preconditioner the diagonal of H which can be
readily calculated and inverted.

We compare the Crank-Nicolson scheme with preconditioners defined above with the
scheme described in the previous section, in which the Schur complement matrix (52) is
preconditioned by

(57) P OS, + o’Er,

where is the average viscosity of the fluid.
At a first glance it would seem that the Crank-Nicolson method involves more work,

requiring three matrix solutions as compared with the one solution in the case of solving (52).
However, the inversion of the system with coefficient matrix given by (52) requires a nested
iteration, the inner one of which may require a large number of iterations on systems of the
form (53) to converge.

We refer to the two different approaches as method-S (Schur) and method-CN (Crank-
Nicolson), respectively. In comparing the performance of method-S with method-CN we
require different viscosity fields. We use the standard geometry used previously defined by

0.5 and o 2.04 x 10-4. In addition, we use the viscosity generated for the steady flow
between the cylinders with the inner cylinder rotating at an angular velocity of 250 rad/s about
its own axis.

Table 3 illustrates the range of the viscosities for the two viscosity fields we have chosen,
OA and r/. The parameters which define these viscosity functions are given in Appendix B.
The viscosity parameters are chosen so that the average viscosities are similar in order to make
as fair a comparison as possible.

Clearly the viscosity relating to r/ has much more variation than that relating to OA. For
this reason, a preconditioner based upon a constant viscosity is expected to be more successful
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TABLE 4
The number ofPCG iterations, with the condition number in parentheses, of the preconditioned system using

method-Sfor inverting (52). The data for the model corresponds to that in Table 3, and we have taken * In
addition to the two variable viscosityfields the resultfor the constant viscosity case ofoo 5 mPa is listed. In all
cases p 820kg/m3.

I’]A YIB l]O

At-- 10-1 1i(1.58) 20(2.92) 3(1.02)
At-- 10-3 11(1.57) 20(2.92) 4(1.03)
At-- 10-5 11(1.53) 17(2.84) 7(1.23)

At ’10-7 9(1.30) 14(2.47) 7(1.13)

for the/TA model than for the r/B model, and this is shown to be the case. The performance of
method-S, in terms of number of outer PCG iterations, is illustrated in Table 4 together with
the associated condition numbers. In this table we have taken e* e 0.5.

Although neither of the two viscosities has a range covering the two orders of magnitude
reported earlier in this paper, the variation is enough to illustrate the problem that can arise with
variable viscosity, with a large variation increasing the number of iterations for the method-S.
A variation of viscosity covering two orders of magnitude can be obtained if the eccentricity
of the journal is very large or if the journal has a large squeeze (translational) velocity.

The conclusion here is that variation in viscosity causes an increase in the number of
PCG iterations required for convergence, and this is most evident when o" is small and hence
the contribution of A, in (54) is large. For the variable viscosity problem it is therefore not
surprising that as At decreases the number of iterations decreases. The opposite behaviour is
observed for the constant viscosity case since for the extreme values of At with e* the
preconditioner tends toward the system matrix (47), (48) and the range At 6 (10-5, 10-7)
corresponds roughly to a peak in the number of such iterations.

In this paper we have not mentioned the number of inner iterations required for these
nested schemes. The inner problem in the nested solver associated with method-S is the same
as the first two solvers required for the method-CN, that is, (53). For both these cases we
compare the performance of two preconditioners, namely the diagonal of the matrix, that is,
P H and P A., with * 0.5. Clearly we could have chosen a less optimal
e* for the latter preconditioner but Tables 5a and 5b should only be taken as a guide since
more work needs to be done on the preconditioning of this system. The number of velocity
degrees of freedom is denoted by My. There are surprising results in these tables, notably in
Table 5a where the number of iterations does not follow the decrease in condition number. As
At decreases, o- increases, and hence we would expect H to tend toward cr B, thus making

a more powerful preconditioner. This is supported by the condition number of the system.
The reason the number of iterations does not decrease with the condition number is due to the
eigenvalue distribution of A. For a very small aspect ratio the eigenvalues ofthe preconditioned
system of A with P , are clustered into well-defined distinct groups. The band width of
each cluster is dependent on or, and each of the (N 4-1) Er clusters contains (N 4-1) Ea
eigenvalues. To illustrate this we present the eigenvalue spectrum of this system in Figure 12
in which, to the naked eye, the system has only (N 4- 1) Er distinct eigenvalues. In
comparison, we have in Figure 13 the eigenvalue spectrum of the preconditioned system of
H with P now with At 10-5. The PCG theory [6] states that, in exact arithmetic,
the number of PCG iterations required to converge to the correct solution is equal to at most
the number of distinct eigenvalues. This is almost the case when At 0 and explains why so
few iterations are required for a system which has a large condition number.

For the At 10-5 case each local cluster of eigenvalues has spread out and hence, despite
the lower condition number, the number of distinct eigenvalues has increased dramatically,
thus increasing the maximum number of iterations required for convergence.
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TABLE 5a
The number ofPCG iterations and the condition number of the preconditioned system for the preconditioner

121 applied to the problem of (53). The parameters of the problem are (N, Er, Ea) (7, 2, 2)" that is, My 240,
c 2.04 10-4, p 820kg/m3.

/70 TA B
At 0 30(243.6) 69(259.14) 68(55173)

At 10-1 33(243.5) 70(259.11) 69(255.71)
zt 10-3 56(242.1) 75(256.94) 74(254.31)
At 10-5 75(150.8) 105(156.33) 113(165.58)
At 10-7 22(7.5) 25(7.41) 26(8.72)

TABLE 5b
The number ofPCG iterations and the condition number of the preconditioned system for the preconditioner

applied to the problem of (53). The parameters of the problem are (N, Er, Ea) (7, 2, 2); that is, My 240,
2.04 10-4, p 820kg/m3.

?70 OA B
At 0 1(1.00) 10(1.68) 16(3.06)

At 10--i 3(1.01) 10(1.68)
At 10-3 5(1.06) 10(1.68) 16(3.07)
At-- 10-5 18(6.98) 21(7.37) 26(11.47)
At 10-7 100(556.7) 127(573.3) 130(827.4)

16(3.06)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

)ki/)max

FIG. 12. Eigenvalue spectrum ofa preconditioned system of H with P 121, constant viscosity rl 5 mPa s,
At 0, c 2.04 10-4, (N, Er, Ea) (7, 2, 2), and 0.5. The result is a condition number x 243.59 and
the number ofPCG iterations 30.

The same argument can be applied to the case of variable viscosity, although the band
width of each local eigenvalue cluster is greater than in the constant viscosity case. For
At 10-7 the Helmholtz operator is sufficiently near to the diagonal mass matrix for the
diagonal preconditioner to be effective.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

i/mnx

FIG. 13. Eigenvalue spectrum ofa preconditioned system ofH with P I, constant viscosity rl 5 mPa s,
p 820kg/m3, At 10-5, ot 2.04 10-4, (N, Er, Ea) (7, 2, 2), and 0.5. The result is a condition
number x 150.76 and the number PCG iterations 75.

TABLE 6
The number ofPCG iterations and the condition number of the preconditioned system for the preconditioner

P S. applied to theproblemof(56)forvarious * and 0.5. Theparameters oftheproblemare (N, Er, Ea)
(7, 2, 2); that is, M 196, ot 2.04 10-4.

21(2.26) .(1.44 12(1.21) 3(1.00) 12(1.24) 16(1.57)

The results of Table 5b are much as expected with the number of iterations and the condi-
tion number increasing with decreasing At as the Helmholtz operator departs from the Lapla-
cian operator. We have shown that the choice of preconditioner is dependent on the time step.
For practical applications we must also consider the efficiency of using P A, for * : .

Table 6 shows the performance of various preconditioners for the third stage ofthe Crank-
Nicolson scheme, i.e., equation (55). This equation is independent of the variable viscosity
and of the time step and hence all there is to vary is *.

To make a fair comparison between method-CN and method-S we should first of all
compare the results of Table 4 with those of Table 6 under the column * 0.5, that is,

* . The rest of the entries in Table 6 are a guide to how many preconditioners need be
calculated to be within a given tolerance in the number of iterations.

Purely in terms of the number of iterations required it is clear that using method-CN is
more effective than using method-S. This is because for method-S, if we use * then the
preconditioner is, in fact, S. The reason why as many as three iterations are required to solve
for (56) in this case is that S is so badly conditioned that the resulting Choleski decomposition
is inexact.

At each outer iteration of method-S nested solutions need to be performed which are of
the same form as the first two time stages of the Crank-Nicolson scheme. Therefore, if the
number of outer iterations in solving the system" with the coefficient matrix given by (52)
exceeds two then the Crank-Nicolson scheme is the quickest in this context. Further, the
number of iterations required to invert (56) is less than the number of outer iterations to invert
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(52). We make no comment here on the accuracy of the two approaches, which also needs to
be taken into account in making a final comparison between the two methods.

7. Conclusions. In this paper we have developed efficient iterative methods for solving
the two-dimensional flow of a non-Newtonian lubricant between eccentrically rotating cylin-
ders. The constitutive model employed is a generalized Newtonian fluid with a viscosity which
is shear thinning and pressure thickening. A spectral element method is used for the spatial
discretization of the governing equations and first- and second-order time-splitting schemes
for the time integration.

For the constant viscosity problem we have considered a first-order backward Euler
scheme for the time integration. This couples the velocity and pressure computations. They
are decoupled algebraically using an Uzawa-type method. The iterative solution of the result-
ing pressure system requires a nested iteration. Both inner and outer systems are solved using
the PCG method.

When the spectral elements are not highly distorted we would advocate the use of the
pressure mass matrix as preconditioner. However, we have shown that even for the steady
constant viscosity problem the conditioning of the linear systems generated by the spectral
element discretization is poor in the extreme case when the radii of the journal and the bear-
ing are close. This is the situation which occurs in practice. A robust preconditioner for
this problem is the pressure matrix for the corresponding concentric cylinder problem. The
advantage of this preconditioner over the one based on the pressure mass matrix is that it is
only necessary to calculate it once since it can be applied to systems with different eccentric-
ities.

For the unsteady Stokes problem a preconditioner is constructed so that the calculation
of its inverse is trivial if the time step is changed. This approach commends itself for adaptive
time-stepping schemes. Again preconditioners based on the pressure matrix evaluated at a
specific eccentricity are used to precondition systems defined for a range of eccentricities.

Finally, for the variable viscosity problem the velocity and pressure are completely de-
coupled using a Crank-Nicolson scheme in order to extricate the viscosity function from the
inner iterative process. It is important to do this since the viscosity may vary greatly and thus
an updated preconditioner may be required after a certain number of time steps. This is, of
course, an expensive process. The Crank-Nicolson time-splitting scheme alleviates the need
for this extra computation. Preconditioners are given for each of the velocity and pressure
systems based on ideas explored for the constant viscosity problem.

Future work will concentrate on the extension of these ideas to the dynamically loaded
journal bearing. In this problem we will seek to determine the minimum oil film thickness in
the journal beating due to a prescribed applied load on the journal.

Appendix A: Grid generation. This appendix explains how the grid in Figure 2 is
generated. The number of elements in the azimuthal and radial direction (Ea,Er) are known
and this determines the elemental boundaries.

All the radial lines are congruent on the centre of the journal, and this includes the
interelemental radial lines. We insist upon Er being even, and this allows us to set the line
joining the centre ofthejournal Cj and the centre ofthe bearing C, as two ofthe interelemental
radial lines. The rest of such lines are drawn so that they are equidistributed in an angle about
the centre ofthejournal. The other radial lines are drawn so that they are distributed in between
the interelemental radial lines in such a way that they are distributed in an angle about the
centre of the journal in a Gauss-Lobatto distribution.

The distribution of the azimuthal lines is similar in idea to the distribution of radial lines.
Every azimuthal line constitutes a circle, and these circles are defined by their centres and
corresponding radii. All the centres lie on the line joining Cj and C, and lie in between
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them. The interelemental circles have their centres equidistributed between Cj and Ca; the
other circles have their centres distributed between the centres of the interelemental circles
in a Gauss-Lobatto distribution. The radius of the interelemental circles are equidistributed
between the radius ofthejournal and the radius ofthe bearing. The rest ofthe circles have their
radii distributed between the radii ofthe interelemental circles in a Gauss-Lobatto distribution.

The discretization nodes constitute the intersection of all these lines with the journal and
bearing’s surface also constituting such lines.

The above description can be written in algorithmic form. Let N, Ea, and Er be as defined
in the main part of the paper. We label the azimuthal lines from 0 to Na, where Na N x Ea,
and this includes the journal and bearing’s boundary. The radial lines are labelled from 0 to
Nr, where Nt (N x Ea), with the zeroth and Nrth lines representing the same line. If we
define the zeroth line as the line joining the centres, extended to the region of smallest gap,
then the following uniquely determines the point distribution.

Let the Gauss-Lobatto point distribution be denoted by the vector

g(i) [-1,1], [0, N],

the centres and radii of the Circles denoted by the respective vectors

c(i) [Cj, Ca], [0, Na],

r(i) [R, Re], [0, Na],

and the angle distribution about Cj of the radial lines denoted by the vector

a(i) [0, 2zr], [0, Nr].

Then the following algorithm holds

begin
fore= 1, Ea

step=2 x (Ea 1)
for/=0, N

v g(i)+step
j=i+(e-1) xN
r (v + 1)/(2 x Ea)
c(j) =r x e
r(j)=Rj+rx(Re-Rj)

continue
continue

for e 1, Er
step=2 x (Er 1)
for/ =0, N

v g(i)+step
j=i+(e-1) xN
r (v + 1)/(2 x Er)
a(j) r x 2zr

continue
continue
end

where e is the eccentricity.

Appendix B: Viscosity parameters. The parameter values taken for the two variable
viscosity fields r/A and r/ when applied to (4) are shown in Table B 1.
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TABLE B

00

0A 0B

9.352 x 10-4 9.352 x 10.4

4.500 x 10-4 4.500 10-4

1.119 x 10-8 2.000 10-7

2.390 x 10-8 5.000 10-7

-21.33 -21.33
7.902
2.380

Units

Pa
Pa
pa-1

pa-1

7.902
2.301
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FINITE ELEMENT APPROXIMATION ON LOCALLY REFINED MESHES*
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Abstract. A domain decomposition preconditioner suitable for h-p finite element approximation on locally
refined meshes with nonuniform polynomial degree is proposed and analysed. The preconditioner is highly suited for
parallel computation. The algorithm generalizes methods proposed by Smith [Domain Decomposition Algorithmsfor
the Partial Differential Equations ofLinear Elasticity, Ph.D. thesis, Mathematics Department, New York University,
New York, 1991] (for the h-version finite element method with piecewise linear basis functions) and by Mandel
[Comput. Methods Appl. Mech. Engrg., 80 (1990), pp. 117-128] (for the p-version finite element method). The
analysis shows that the condition number of the preconditioned system grows at most as min(H! h, -t- log p)(1 +
loga(Hp! h)). This result generalizes the known estimates in each of the special cases mentioned above. Numerical
examples are given confirming the theoretical analysis.

Key words, h-p version finite element method, preconditioning, domain decomposition, hierarchical basis
method
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1. Introduction. Let f2 be a bounded domain in IRe with piecewise smooth boundary
Consider the second-order elliptic problem

(1) xj ax =finf2
j,k=l

subject to U 0 on the boundary 0f2. The data ajk is assumed to be uniformly positive
definite, bounded, and piecewise smooth on f2. The bilinear form B HI() Hi(f2) w- IR
is given by

(2) B(U, V) jk Ja ajk dx

where H (S2) is the usual Sobolev space of distributiOns with square integrable derivatives.
The subspace Hd (s2) c H (f2) is the completion of smooth functions with support in f2, with
respect to the H (f2)-norm. The variational formulation of the problem defined by (1) is

(3) Find U H (f2) such that B(U, V) (f, V) for all V Ho (f2).

1.1. Coarse grid. The finite element approximation ofproblem (3) will be developed by
first subdividing the domain 2 into an initial "coarse" partitioning 79111 consisting of nonover-
lapping quadrilateral elements 111 such that

(4) U --c
f2H

K mj
and for K J, f2/_/C) f2/4 is either empty or an entire side or a common vertex of the domains.
Let

(5) HK diam f2/, H max H/
K

*Received by the editors September 13, 1994; accepted for publication (in revised form) June 10, 1995.
Mathematics Department, Leicester University, Leicester LE 7RH, U.K. (ain@mcs.le,ac.uk).
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and

(6) ,OK sup {diam B B is a ball in g}.

It is supposed that there exist positive constants a, r independent of h such that

n
(7)

HK p/

The partitioning ’)H is therefore quasiuniform of size O(H). The space XH consists of
piecewise bilinear functions defined on the partitioning 79/-/. An approximation of problem
(1) can then be obtained by solving the discrete problem

(8) Find l,l H E XH such that B(UH, VH) (f, I)H) for all VH XH.

If the data ajk is discontinuous then the initial coarse partitioning 79/-/is constructed so that
the element edges coincide with the interfaces along which the data is discontinuous. Such
a choice has a beneficial effect on the accuracy of the approximation UH and will have a
significant impact on the preconditioning algorithm to be developed. Typically, owing to
the geometry of the domain (e.g., re-entrant coruers) and discontinuities in the data ajk, the
true solution U of problem (1) will be nonsmooth in certain regions. It is often necessary
to enhance the approximation space X/-/in the neighbourhood of those areas where the true
solution is less regular.

1.2. Types of refinements. Various strategies have been proposed as to how to improve
the accuracy. The simplest techniques are to either subdivide the mesh uniformly throughout
the domain (the h-version finite element method) or to enrich the polynomial degree of the
functions on each of subdomains (the p-versionfinite element method [4]). Alternatively, one
can usea posteriori error estimates to identify specific regions in which the approximation is
poor and perform a selective enrichment by locally subdividing the elements and increasing
the polynomial degree nonuniformly. The latter approach is in the spirit of the h-p version of
the finite element method [3, 5]. A concrete strategy for producing meshes with selective h
and p refinement is given in 12] and a general data structure supporting such refinements is
given in [8].

The chief advantage of the uniform refinement strategies is that the data structure is kept
simple, meaning that the algorithms can often be coded extremely efficiently. However, the
disadvantages are that degrees of freedom are introduced in regions where the solution can be
adequately represented using the initial coarse approximation. Conversely, the h-p version
can lead to approximations in. which the required accuracy is obtained using a minimal number
of degrees of freedom. Unfortunately, a price is paid in supporting a much more elaborate
data structure both in terms of coding effort and the efficiency of the implementation.

1.3. Locally uniform refinements. One can contemplate retaining some advantages of
both approaches by adopting a refinement strategy based on refining the approximation space
in a locally uniform manner. Such a scheme allows the use of local refinements to resolve
local features of the solution and at the same time retain a relatively simple data structure.
Specifically, we shall consider classes ofmesh obtained by subdividing specific elements in the
coarse mesh into a uniform mesh of subelements of size O (h). Global continuity is preserved
by constraining the new basis functions obtained by the refinement on the boundaries between
the parent elements. Naturally, should a pair of neighbouring coarse elements be refined,
then the degrees of freedom on the common interface can be left unconstrained. This type of
refinement scheme has been employed, for example, in the work of Ewing et al. [6]. Equally
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FI6. 1. Example ofa coarse mesh and locally refined mesh.

TABLE
Condition number ofdiagonally scaled stiffness matrixfor Laplacian.

Elements in each direction(h -1
Degree (p) 2 4 8

4.73 "23.88 "i’22.07 598.63
2 22.08 49.78 227.79 1056.04
4 69.56 90.85 377.07 1755.91

well, the polynomial degree may be increased selectively. The details needed to implement
selective polynomial enrichment are not trivial but are similar to the techniques described in
Demkowicz et al. [8].

We shall suppose that by following some adaptive strategy, a refined partition 79h has
been generated satisfying the above rules. The partition consists of elements from the original
coarse partitioning 79H along with elements obtained by a locally uniform subdivision of an
element from the coarse partitioning (see Figure 1).

1.4. Preconditioning. Suppose that mesh refinements and polynomial enrichments have
been performed and let the associated finite element subspace be denoted by X. The finite
element approximation on the refined subspace X is defined by

(9) Find u X such that B(u, v) = (f, v) for all v e X.

The discrete form of this problem is then

(10) Bx f

where B is a symmetric positive definite matrix. The basic approach for solving the matrix
equation (10) will be the conjugate gradient method. The condition number c governs the
performance of the conjugate gradient solution routine with each iteration reducing the error
by at least a factor (- 1)/(x/+ 1). Unfortunately, it is generally found that the condition
number grows rapidly as the mesh is refined or the polynomial degree increased (see Table 1).
One possibility is to apply a preconditioner to the linear system. A preconditioning form
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C (., .) is constructed for which there exist/z, T such that

(11) lzC(v, v) < B(v, v) < TC(v, v) for all v X

where/z and T depend on the mesh and the polynomial degree but are independent of the
function v. The preconditioning form should be chosen with two properties in mind. First,
the problem

(12) Find w 6 X such that C (w, v) g(v) for all v 6 X

where g(.) is an appropriate linear functional on X must be capable of being solved efficiently.
In particular, the work required in applying the preconditioner should be modest in comparison
with simply solving the problem (9) directly. Second, since the rate of convergence for the
preconditioned algorithm is controlled by T//z, this ratio must be controlled as the mesh is
refined and the polynomial degree increased.

2. Numerical algorithm.

2.1. The basic procedure. The elements f2: constructed during the initial coarse parti-
tioning 79H will be referred to as subdomains. As remarked earlier, the unrefined subdomains
exist as elements in the final partitioning 79h. The refined subdomains serve to group the ele-
ments in the final partitioning into uniform sets of elements linked by a simple topology. The
preconditioner will be based on this natural domain decomposition. The overall data structure
can also exploit this situation.

Step 1. Coarse Grid
Construct the initial coarse partitioning
Assemble and solve the finite element problem (8) on the coarse mesh.
Use the coarse grid solution to design the partitioning 79h and the space X.

Step 2. Assembly of Schur Complement
Assemble the contributions to the global stiffness matrix and global load vector
from the subdomain f2:.
Apply static condensation to the subdomain stiffness matrix and subdomain
load vector to eliminate the internal degrees of freedom on the subdomain.
Assemble the reduced matrix and vector into a global matrix and vector thereby
obtaining a system of the form Sx b. The Schur complement is assembled
by the standard finite element subassembly (of the local Schur complements).

Step 3. Solve Schur complement Sx b
Apply preconditioned conjugate gradient with preconditioner described below.

Step 4. Internal Degrees of Freedom
Apply back substitution to obtain the values of the interiors of the subdomains.

One advantage of this approach is that the internal unknowns are eliminated at a local level
thereby simplifying the data structure. A second advantage is that the problems associated
with the interiors are constructed on a grid with regular topology.

2.2. The preconditioner. The preconditioner is based on a decomposition of the degrees
of freedom (DOFs) on the edges of the subdomains into three sets:

(13)
(14)

(15)

J/-/= {DOFs associated with the vertices of the coarse grid 79/-/},
,.7h {DOFs associated with linear functions introduced by refinement of 79/-/},

p {DOFs associated with higher-order functions}.
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For ease ofexposition, suppose that the DOFshave been ordered so that the set ,.7/-/is numbered
first, followed by fib, and finally ffp. The Schur complement and reduced load vector may be
partitioned into blocks corresponding to this ordering:

Sni4 Snh Snp bn

(16) S StHh Shh Shp b bh

Strip Sthp Spp bp

The solution of the preconditioning problem

(17) Cx b

consists of three main steps.
Linear DOFs. The DOFs within the set Jh are partitioned further into subsets corre-

sponding to the separate edges E1 En of the coarse mesh 79/-/. The submatrix Shh then
has the block structure

(18) Shh

S(1,1) K,(1,n)
hh ’-’hh

(1,n) (n,n)
"hh ’hh

Let

(19) Dhh diag(Sh(’ (n,n)h
hh

Then inverting Dhh to obtain

(20) Xh D/bh
corresponds to solving independent problems over each edge of the coarse mesh 79H.

Higher-order DOFs. Similarly, dividing the higher-order DOFs in the set Jp into sets
corresponding to each of the separate edges in the fine mesh 79h gives the matrix Spp a block
structure. Inverting the block diagonal Dpp of the matrix Spp corresponds to solving indepen-
dent problems over each edge of the fine mesh to compute

-lbp(21) Xp Dpp
Coarse grid. The problem associated with the coarse grid involves inverting the same

stiffness matrix B/-/H arising from the original bilinear discretization on the coarse grid 79H.
First, it is necessary to construct a restriction of the data b/and bh to the space XH. This
transformation is affected by writing the bilinear functions on the original coarse mesh as
linear combinations of the linear functions on the edges of the refined mesh. That is, on the
edges of 79/-/one has for a suitable constant matrix R

(22) CH qS/_/+ Rqbh

where H are the bilinear functions on the coarse grid P/, and 05/-/and Oh are the functions
corresponding to the DOFs in the sets ,Y’H and Jh, respectively The matrix R can be given
explicitly if we’let xj denote the node on the edge of 79h at which the jth linear DOF h,j E ,h
is based; then

(23) R CH(Xj)]je:h.
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In practice, it is unnecessary to assemble the matrix explicitly. The relation (23) does not
generally hold on the subdomain interiors. The matrix R is unchanged even if higher-order
approximation is used provided that the functions Ch,j are bilinear (as is the case when using
hierarchical element basis functions).

The steps to construct the coarse grid correction may be summarized as follows:
Form the restriction of the data

}H bH + Rbh.

Solve the coarse grid problem

BnHH f)H

where BHH is the stiffness matrix for the discretization (8).
Prolongate the solutionH to the space spanned by elements of,fH and 5rh according
to

RtH"XH ---H, Xh

The solution of the preconditioning problem (17) is then given by

i
xc 1(24) x xh -- xXp

The action of the inverse of the preconditioner C therefore corresponds to solving independent
problems for the linear DOFs over each of the edges of 79H separately, independent solves for
the higher-order DOFs over each of the edges of 79h separately, and a global solve over the
DOFs in the coarse grid discretization. Moreover, each ofthese overall steps may be performed
concurrently. In particular, the computations are ideally suited to a parallel programming
environment.

As remarked earlier, the performance of the preconditioner is governed by the quantities
/x and T in the equivalence

(25) lzC(v, v) < B(v, v) < TC(v, v) for all v X.

The algorithm presented above generalizes both an algorithm proposed by Smith [13] for the
h-version finite element method and an algorithm proposed by Mandel 11] for the p-version.
For the case of first-order (p 1) approximation, Smith [13] has shown that the ratio grows
at most as

(26) <C l+log2

where the constant C is independent of H and h. Conversely, for the p-version finite element
method (H! h 1), it has been shown [2] that the algorithm given by Mandel [11] yields

T
(27) _< C (1 + log2 p)

where the constant C is independent of p and the number of elements. It is important to
note that, in both cases, the constant C is independent of the variation of the coefficients ajk
between subdomains. The purpose of the present work is to obtain estimates of this form for
the combined h-p version of the finite element method.
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3. Analysis of preconditioner.

3.1. Algebraic formulation. Suppose that the standard basis functions are partitioned
into the set consisting of functions {tPi }, 27 supported on the interiors of the subdomains
and the set of functions {bi }, " having nonzero values on at least one of the subdomain
interfaces 079H. Steps 1 and 2 of the algorithm involved the static condensation of the internal
DOFs on each of the subdomains. This proces_s may be interpreted as a change of basis.
Specifically, the edge basis functions {tPi },
satisfying

(28)

and

(29) B(i, bj) 0 for all j s 27.

The modified edge functions i, are obtained from the original edge functions by
subtracting linear combinations of the internal functions. Introducing vectors defined by

(30) qz --[ti]iZ, t-- [)i]i, [i]i,
then, for a suitable matrix T, we may write the change of basis as

(31) I -]=[ I-T ][ q- ]4,z 0 4z
The matrix T can be obtained by writing the stiffness matrix for the problem_(10) in a block
form corresponding to the ordering of the basis functions into the sets 27 and 27:

Bzz Bz:(32) B
Bz B2

then condition (29) yields

(33) r BzBr.

The stiffness matrix for the problem relative to the transformed basis would then be

(34) B
0 I Bz B 0 I 0 Bzz

where the matrix S is the Schur complement (16)

-1(35) S B2 BzBzzBz.
The original problem (10) written in block form is

Applying the transformation (31) gives

Bz Bzz xz f:r
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This problem is solved in two stages (cf. Steps 3 and 4):

(38) Sx f2 B:zB.rfz
and

(39) Bzzxz fz- Bz2x:.
The preconditioner is then applied to the reduced Schur complement system (38). Let

X0 6 X be the space

(40 Xo span {;/ -}.
In view of condition (29), elements of the space Xo are referred to as discrete harmonic
functions. The Schur complement matrix S induces a bilinear form S(., .) on the space Xo
which agrees with the original bilinear form B(., .).

LEMMA 3.1. Let u, v be discrete harmonic. Then

(41) S(u, v) B(u, v).

Proof. Let w 6 Xo. Then w may be written as

Applying (34) gives

B(w, w)
0

w=

0 Bzz 0 a
Applying this result to w u + v and simplifying completes the proof.

The preconditioner was constructed by decomposing the degrees of freedom on the edges
ofthe subdomains into three sets: J/-/, fib, and tip. The space X0 is decomposed into subspaces
X/, X0h, and Xg using this partitioning where

(42) Xo span{qi, ffhr}

and Xoh and Xg are defined similarly. The matrix R defined in (23) maps Xoh into X. An
alternative viewpoint is to regard R as another change of basis from b to b given by

H

(43) bh Q

where

(44)
I R 0 1Q= o i o
0 0 1

It is easily seen that the inverse of the matrix Q is given by

(45) Q-1
I -R 0 10 I 0
0 0 I
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The Schur complement matrix S relative to the new basis has the form S:

(46) = QSQ x Shh X

x x

where X denotes appropriate matrices,

(47) S.. I R
Sht.1 Shh R

and S/-/. Spp are given in (16). The submatrices appearing on the main diagonal of this
matrix are approximated by (see 2.2)

(48) S.. , BI-I., Shh ’ Dhh, Spp Dpp,

and, equally well,

(49) S ,’ C 0 Dhh 0
0 0 Dpp

Transforming back to the basis q then gives an approximation C to the original Schur
complement S:

(50) S , C Q-Q-t.

Equation (50) shows that

(51) C-1 Qt-I Q

which, on expanding, gives

(52) C-1 Rt B-1 -1/.//411 R 0]+ I D-hl[0 I 0]+ 0 Dpp[O 0 I].
0 0 I

The decomposition (52) shows that the action of the inverse of C consists of the same three
steps described in 2.2 for the action of the inverse of the preconditioner. The matrix C in
(50) is the matrix representation of the preconditioner.

3.2. Formulation as an additive Schwarz method. Introduce inner products A", Ah,
and Ap on the spaces X4, X0h, and X, respectively, as follows:

For given u 6 X/, noting that u is linear on the edges of the partition 79., let
FI.u 6 X/4 be the bilinear function which interpolates to u at the nodes of the coarse
grid. Evidently, I-I/-/u and u agree on the boundaries 079/’/. The inner product A" is
then defined by

(53) A" (u, v) B(FI.u, I-I/-/v).
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For any edge e in the coarse partition 79/4, let Eeh xh0 xh0 be defined on the edges
of the coarse partition by

u one,EheU 0 on remaining edges in 079/4
(54)

and discrete harmonic on the interiors. Note that this operator is well defined since
functions belonging to the space Xoh vanish at the nodes of the coarse grid. For given
u 6 X0h, we may decompose u as

e0T,/4

The inner product Ah is then defined by

(56) ah (u, v) E S(Ehe u’ Ehe v)"
eOT’n

Similarly, for any edge e 60"Ph, let Eep X - X be defined on OPh by

u one,
(57) EPeu 0 on remaining edges in O’Ph

and discrete harmonic on the interiors. For u 6 X write

"Jg

and let the inner product Ap be given by

(59) AP(u, v) E S(EPeu’ EPe v)"
e07:h

Let P/4 X0 - X denote the projection defined by

(60) An (pHu, v) S(u, v) for all v X.
Define ph XO X and PP Xo - Xg similarly.

LEMMA 3.2. Relative to the basis b, the projection operators P/4, ph, and Pp have the
matrix representations

(61) P /4 R BI1H I R 0 S,
0

[ 1(62) ph I D2[ 0 I 0 S,
0

and

(63) PP 0 Dpp 0 0 I IS.
I
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Proof. Let u 6 X0 be represented relative to the basis p by [x14, xh, xp] and let P14u be
represented by [z14, 0, 0]. Condition (60) implies that z14 satisfies

IyH I(YH)tBHHZH 0
0

Xh

xP

for all y14. Hence,

z/-/ B4[ I R 0 ]SQ xh

xp

Transforming to the basis : gives

Illpnu R B-11414[ I
0

R 0 ]Su

from which (61) follows. The remaining results are obtained in a similar manner.
Examining the foregoing developments, one observes that

(64) C-1S p14 + ph _+. pp.

The significance of (64) is that the preconditioner developed in 2.2 can be viewed as an
additive Schwarz method [7, 9, 14]. The condition number of the additive Schwarz method
tc(C-1 S) can be bounded using the following result (see [9, 14]).

THEOREM 3.3. Suppose that there existpositive quantities ) and A such that thefollowing
conditions are valid:

1. For any u Xo there exists a decomposition

(65) u uH + uh --[- up

such that u 14 XoH, uh X, up X, and

(66) A14 (u14, u14) -}- mh(uh, uh) -+- AP(uP, uP) <_ lkS(u, u).

2. For s H, h, p} there holds

(67) S(u, u) ,-1A (u, u) for all u X.
Then

(68) S(u, u) < S(Pu, u) < 3)S(u, u)

where P pH _[_ ph _[. pp. Consequently,

(69) g(C-1 S) tc(P) < 3AX.



1406 MARK AINSWORTH

3.3. Estimation of condition number. To begin with, we assume that the fine parti-
tioning Ph is obtained by uniform refinement of all the elements in the coarse partition 7914.
Moreover, it is assumed that the polynomial degree is uniform throughout the domain. Later,
we shall consider the case of local h and local p refinements.

Let f2K be a subdomain from the coarse partition 79/-/. The space X0,K consists of the
restrictions to the subdomain f2K of functions belonging to X0 The spaces X14 Xh and0,K’ 0,K’

Xp
0,K are defined analogously. Let BK(., .) denote the local contribution to bilinear form B(., .)

from the subdomain f2K.
t41/2Let e be any edge lying on the boundary 0f2K The space --00 (e) consists of functions

defined on the edge e C 0f2K which have continuous extensions by zero to the rest of the
boundary f2tc 10]. A norm may be defined on this space by

(70) Iv I,,1/2,, dsx dsy + +
n00 re) Ix- yl Ix- Xe X Xe21

where Xel and Xe2 are the endpOints of the edge e. Finally, Hh denotes the piecewise linear
interpolation operator at the nodes of the fine grid 79h. It will be useful to recall the following
results proved in 1].

LEMMA 3.4. Let u XO, K. Then there exists a constant C independent of H, h, p, and
u such that thefollowing hold:

1.

(71) Z
eOKOOT’

(U(Xel)-U(Xe))2<C(l@log(?))BK(U,U).

(72) II-lhu- FIHuI,,1/2,, < C + log BK(U, u).
eOKfqOTVI-I

noo re)

(73) Z
eOKCqOT’h

2lu I’Ihul..in, < C (1 + log p)2 BK(U u).
noo re)

4 Ifu6Xp thenO,K

(74) BK(U u) < C lul 141/2
"’oo (e)

eOKfqO’Ph

Proof. See Ainsworth ]. 1-1

LEMMA 3.5. There exist constants C independent ofH, h, p, and u such that thefollowing
hold:

1 Ifu6XH thenO,K

(75) BK(U, u) <_ BK(I-IHU, 1-IHU).

2. Ifu Xh thenO,K

(76) BK(u, u) <_ C BK(Ehe u, Eheu).
eOKfqOT)H
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(77)

3. lfu 6 Xp thenO,K

BK(u’u)<Cmin(’l+lg2p) E
eEOKfqO79h

Proof
1. Let rI/-/u 6 x/4. Then on the subdomain S2/(

B:(EP u, EP u).

1-I HU U .qt_ UZ

where uz is supported on K. Then, by condition (29),

BK(I’IHU, l-IHbl) BK(U, U) + 2B(u, uz) + BK(UZ, uz)
BK(U, u) + BK(Uz, uZ)

> BK(U, u).

2. Let u Xh be written on the subdomain in the form0,K

u=
eEOKfqO79H

Substituting for u and using the Cauchy-Schwarz inequality, we have

Bye(u, u)< E 1. E BK(EheU’ EheU) < C E BK(EheU, EheU).

3. Let u 6 Xp Decompose u on the subdomain in the form0,K"

Then, applying Lemma 3.4(4),

BK(U u) < C lul 2 1/2Ho (e)
eEO Kf’lO79h

-c E IEe ul 2
1/2/-/ e

eEOKf)OTh

_< C (1 + log p)2 E
eOKOT)h

BK(EPeu, EPeu)

where Lemma 3.4(3) has been applied to each of the functions EPeu separately. Alterna-
tively, observing that there are H h elements on each subdomain edge, the Cauchy-Schwarz
inequality implies

This completes the proof.
LEMMA 3.6. Let u Xo, K. Then there exists a decomposition oftheform

(78) u U
H 21- bl

h -Jr- bl
p
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where uH X,r, Uh Xh and up Xp
o,r, o,r are such that

(79)

BK(FluuH, Flnuu) + E +
eKf3OTVh

<_C(l+log(?))2Bg(u, u)

where C is independent of H, h, p, and u.

Proof Let u XO, K. Choose UH XHO,K, uh XhO,K, and up Xpo,/ such that on the
subdomain boundary 0 f2K there holds

U
H I’IHU, Uh 1-IhU I-IHU, Up U FIhU.

Then, thanks to the quasiuniformity of the coarse grid 79H and Lemma 3.4(1),

(80)

BK(I"IHUH, I-IHuH) BK(I’]HU, I-IHU)

__< C E (u(xe’) --U(Xe2))2
eOKfO79H

<(I+log(?))BK(u,u)
where Xe, ,and Xe2 are the endpoints of the edge e 6 0H. Using Lemma 3.4(2)

(81)

E B <E e u ><c E IE eu l Ho (e)
eOKfqOTOH eOKO’PH

=C in.u-nhUl,/(e

_<C l+log Bx(u,u).

Using Lemma 3.4(4)

2B(gPeuP, geuP)C ’ IEeu’ld<e
eOKtqO79h eKtqOT)h

C lu HhU[2
M1/2,. (e)

eeOKOOh

(82) C 1 + log BK(U, u).

The proof is completed by summing (80)-(82).
THEOREM 3.7. The condition number ofthe preconditioned system (C- S) is bounded

by

(83) 3Kl( ( ))2 (’ )(C-S)_< l+log ? min ,l+logp

The constants K1 and K2 are independent of H, h, and p. Moreover, the constants depend
only on the variation ofthe coefficients ajk within each ofthe subdomains. Consequently, the
ratio K1/K2 is independent of the magnitude of the jump discontinuities of the coefficients
between neighbouring subdomains.
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Proof. The result follows after checking the conditions of Theorem 3.3. First, let u X0
be decomposed as

/g E UK
K79n

where UK X. Each of the functions UK is then decomposed using the splitting of
Lemma 3.6:

+ +
Thanks to the definition of the functions u, uhK, and u on the boundaries 0f2g we may
construct a decomposition of u as follows:

U U
H ...- uh .+. Up

with uH XoH, uh Xho, and up X defined as

K7H KT)H

It then follows that

AH (uH uH) + Ah(uh
Uh) + AP(up up)

B(nnuu, nuuu) + s(ghe u, Ehe u) + S(EPe u, EPe u)
eeO79n e.O79h

B(I-IuuU’ rIuuU)+ E B(Eheuh’ EheUh) + E B(EPeuP’ EPeUP)

KE7")H { BK(I-IHuH’I’IHuH)+ eO79nENOK OK(Ehel’th’EheUh)+

< E C 1 +log --h-- Bg(u,u) (Lemma3.6)
Ke"PH

(max.)
< ( max CK + log S(u, u) (Lemma 3.1)
\K’P

(Lemma 3.1)

E BK(EPeuP’EPeuP)}eO79hfqOK

that the first condition is verified with A (maxKvu CK) (1 + log(Hp/h))2. TurningSO

now to the second set of conditions, suppose u 6 X0n. By Lemmas 3.1 and 3.5(1)

(84) S(u, u) E BK(U, u) < E BK(I’IHU, I"IHU) B(FIHU, HHU) AH (u, u).
KeH KeTaH

Let u Xoh. Then, using Lemmas 3.1 and 3.5(2),

S(u, u) E BK(U, U)
K679H

KPH eO’f)HOK

(85) <_CK E B(Eheu’EheU)=CK E S(Eheu’Eheu)=cAh(u’u)"
eeOT")n eO79H
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FIG. 2. Compted bounds on condition nberorprecondtoner based on BHH.

Similarly, applying Lemmas 3.1 and 3.5(3) gives, for u X,

(86) S(u,u)< CK min (hH---, + log2 p)AP(u,u).
Collecting inequalities (84)-(86) shows that the second condition of Theorem 3.3 is valid with
L given by (minre7 CK) min (HI h, + log2 p). F1

3.4. Numerically computed condition numbers. Let K be a square subdomain and
Bx (’, ") be the bilinear form corresponding to the Laplace operator over the subdomain K"

(87) BK(U, o, fx V,. Vo dx.

In order to assess the performance of the preconditioner in practice we compute estimates of
the condition number. The numerical computations will be based on the following result.

LEMMA 3.8. Let Sic(., .) and CK(., .) denote the Schur complement and preconditioner
restricted to the subspace XoK. Suppose that there exist quantities lzx and TK such thatfor
all u XoK

Sr(u,u)
(88) /ZK <_ < TK.

CK(u,u)

Then

(89) c(C-1 S) <

where T maxr Tr and/ mint/r.
Proof. Sum (88) over all subdomains K T’. FI
This result shows that one may obtain estimates for the performance of the preconditioner

when applied to a partition 79/-/consisting of uniform subdomains K. Figure 2 and Table 2
show the computed condition numbers for the preconditioner described in 2. Table 2 also
shows that for large values of p and H/h, the condition number can be approximated by

(90)
t= 13.3493 (1 0.0050 log (?) + 0.0280 log2 (?))

(1 + 0.2803 log p + 0.0980 log2 p)
in agreement with the main conclusion of Theorem 3.7.
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TABLE 2
Computed bounds on condition numberfor preconditioner based on BHH. (Numbers in parentheses show the

values obtained when the data is fitted using the approximation :.)

Degree (p)

10

12

14

16

Elements in each direction (H/h)
2 4 8 16

1.00 4.23 7.28 10.72 14.73
(13.35) (13.48) (13.98) (14.83) (16.04)
6.99 9.11 13.59 18.42 23.78

(16.74) (17.35) (18.40) (19.91) (21.85)
11.83 17.10 21.32 26.33 31.98
(22.04) (23.38) (25.29) (27.76) (30.80)
15.75 23.47 27.74 33.04 38.99

(26.22) (28.14) (30.72) (33.95) (37.84)
19.05 28.89 33.17 38.68 44.85

(29.75) (32.18) (35.33) (39.19) (43.78)
21.91 33.61 37.98 43.57 49.86
(32.86) (35.73) (39.37) (43.80) (48.99)
24.52 37.80 42.22 47.88 54.24
(35.65) (38.92) (43.01) (47.93) (53.68)
26.92 41.57 46.03 51.75 58.16
(38.21) (41.84) (46.34) (51.71) (57.95)
29.11 45.01 49.49 55.25 61.70
(40.58) (44.55) (49.43) (55.21) (61.90)

TABLE 3
Computed bounds on condition numberforpreconditioner based on SigH.

Degree (p)

2
4
6
8
10
12
14
16

Elements in each direction (H/h)
2 4 8 16

1.00 4.23 7.28 10.72 14.73
6.99 9.11 13.59 18.42 23.78
11.83 15.66 19.67 23.65 28.30
15.75 21.39 25.42 29.03 33.18
19.05 26.34 30.54 33.85 37.60
21.91 30.67 35.04 38.09 41.60
24.52 34.54 39.04 41.89 45.18
26.92 38.03 42.67 45.34 48.45
29.11 41.23 45.99 48.50 51.45

The discussion in 3.1 suggests that a better condition number will be obtained by using
the matrix S/4/ defined in (47) instead of the coarse grid discretization matrix B//-/. The
results in Table 3 confirm that the condition number is reduced slightly.

3.5. Local refinements. Suppose now that the fine grid 79h is obtained by selectively
refining elements from the coarse grid (see Figure 1). The set 079n of edges in the coarse
partition is defined as before. However, the definition of the set 079h must be generalized to
encompass constrained DOFs between the subdomains. Therefore, the set 79h consists of the
edges joining unconstrained vertices lying on the edges Of the subdomains. These edges need
not coincide with the actual interelement edges as, for instance, is the case in the example
shown in Figure 3.

Suppose that the elements contained in the subdomain 2/ are quasiuniform of size h:.
Associated with each element in the subdomain are five parameters describing the polynomial
degree of the approximation on the interior and the four sides of the element. The maximum
polynomial degree used on the subdomain S2/ is denoted by p/. For technical reasons, we
shall demand that the polynomial degree on the boundary of the subdomain does not exceed
the polynomial degree anywhere on the interior.
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FIG. 3. Illustration ofthe edges contained in the set OT)h for a locally refined mesh.

The analysis of the preconditioner now follows from the previous results obtained for
the uniform case as follows. First, the results in Lemma 3.4 are valid for each subdomain
separately. However, these results have been proved only under the assumption that the
polynomial degree on the boundary does not exceed the polynomial degree on the interior.
Hence, Lemmas 3.5 and 3.6 also hold with p replaced by Px and h replaced by hx. Arguing
as in the proof of Theorem 3.7 then yields the following.

THEOREM 3.9. Suppose that on each of the refined subdomains f2x the mesh is quasi
uniform ofsize hx and the maximum polynomial degree is px. Suppose that the polynomial
degree on the subdomain is such that the degree on the boundary does not exceed thepolynomial
degree on the interior Then the condition number of the preconditioned system tc(C-1 S) is
bounded by

(91) x(C-1 S) _< K min h_---’ -t- log2 (1 -I- log(Hg))2

where maxx px, h minx h x, and g maxx px/hx. The constant K is independent
ofthe parameters H, h_, and -fi and is independent ofthe magnitude ofthejump discontinuities

of the coefficients between neighbouring subdomains.
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STATISTICAL EQUILIBRIUM COMPUTATIONS OF COHERENT STRUCTURES
IN TURBULENT SHEAR LAYERS*

BRUCE TURKINGTON AND NATHANIEL WHITAKER

Abstract. A numerical method is developed to treat the statistical equilibrium model of coherent structures
in two-dimensional turbulence. In this model the vorticity, which fluctuates on a microscopic scale, is described
macroscopically by a local probability distribution. A coherent vortex is identified with a most probable macrostate,
which maximizes entropy subject to the constraints dictated by the complete family of conserved quantities for
incompressible, inviscid flow. Attention is focused on the special case corresponding to vortex patches, and a simple,
robust, and efficient algorithm is proposed in this case. The form of the iterative algorithm and its convergence
properties are derived from the variational structure of the statistical equilibrium problem. Solution branches are
computed for the shear layer configuration, and the results are interpreted in terms of the dynamical phenomena of
rollup and coalescence.

Key words, vorticity dynamics, maximum entropy states, optimization method

AMS subject classifications. 76C05, 76F99, 82B21,49M45

1. Introduction. The emergence of organized or coherent structures in a two-
dimensional fluid flow at a high Reynolds number is observed in both physical and com-
putational experiments. In these turbulent fields a macroscopic (coarse-grained) order is
discerned in the presence of a microscopic (fine-grained) disorder. Such a coherent structure
generally takes the form of a long-lived, large-scale vortical mean flow consisting of either
a single, isolated vortex or a regular system of vortices. The vorticity field itself, however,
typically exhibits rapid, local fluctuations of the same order of magnitude as the mean vortic-
ity. The extensively studied free shear layer can be chosen as a representative of this general
phenomenon. After a complex transient process, a perturbed free shear layer tends to roll up
into a sequence of vortices whose structure depends upon the large-scale features of the initial
layer but not on the precise nature of the small-scale vorticity fluctuations that result from the
intervening dynamical evolution. The final vortex structure then persists as a nearly steady
mean flow, changing slowly due to the dissipation dictated by a finite Reynolds number.

In constructing a theoretical explanation of this phenomenon, it is natural to invoke the
methods of statistical mechanics. Under the simplifying assumption that the fluid flow is ideal,
which is reasonable provided that the Reynolds number is sufficiently high, the governing
dynamics are conservative. Consequently, it is possible to adopt a statistical equilibrium
model [5, 14]. In such a framework a coherent structure is identified with a macroscopic
equilibrium state corresponding to the complete family of conserved quantities associated
with the microscopic evolution. This kind of formulation is proposed in the fundamental
work of Miller [18] and Miller, Weichman, and Cross [19] and Robert [23] and Robert and
Sommeria [24]. These two investigations derive the same statistical equilibrium theory for the
two-dimensional flow of an incompressible and inviscid fluid, although their presentations and
emphases differ in some respects. The two key ingredients of this theory are (1) a macroscopic
description of the vorticity field as a local probability distribution, and (2) a weak form of the
conservation of all generalized enstrophies and a mean-field form ofthe conservation ofkinetic
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energy. The equilibrium state furnished by the theory is the most probable macrostate, which
has the largest number of microscopic realizations.

The formulation of the Miller-Robert theory rests on a separation of scales for the macro-
scopic and microscopic descriptions of the vorticity-field. In contrast to the theory of homo-
geneous turbulence of a driven and dissipative fluid, in which energy and enstrophy cascades
over a range of intermediate scales are postulated, this theory considers macroscopic variations
on the scale of the domain size and microscopic fluctuations on an infinitesimal scale at each
point in that domain. This idealization of the turbulent fluctuations, in which correlations
are ignored at every finite scale, amounts to a simple, random model of the complex local
distortions suffered by the vorticity on increasingly small scales as time increases. Thus, the
theory is designed to capture the large-scale features of the vorticity field, and hence the flow,
in a relaxed state after a very long evolution at a very high Reynolds number. Analytical
and numerical evidence suggests that this model of the local microscopic evolution is in good
qualitative agreement with the actual vorticity dynamics. In order to appraise its quantitative
validity, however, its predictions must be computed and then compared with direct simula-
tions or experimental observations. Some initial comparisons of this kind are provided by
Sommeria, Staquet, and Robert [27] and Robert and Sommeria [25].

Our purpose in this paper is to develop an effective numerical method of solving these
statistical equilibrium problems. We base our computations on the constrained maximum
entropy formulation of Robert [23] and Robert and Sommeria [24], which seems, to us, to be
the natural one from the standpoint of computation. The objective functional is the entropy of
an admissible macrostate, which quantifies the multiplicity of the microscopic realizations of
that macrostate. The constraint functionals are the (mean-field) energy, the (weak) generalized
enstrophies, and whatever other functionals arise from special spatial symmetries. In the
present paper we concentrate on the special case in which the initial microstate is assumed to
be a vortex patch, meaning that the vorticity takes on the given constant values 0 and ) only.

A relaxation method of producing the maximum entropy state is given by Robert and
Sommeria [25]. Their method is based on a macroscopic evolution equation that is designed to
conserve all the dynamical constraints and to increase the entropy. A numerical integration over
a sufficiently long time interval then provides an approximation to the statistical equilibrium
state. Moreover, the evolution equation itself is of interest as a model of subgrid-scale mixing
driven by the ideal dynamics.

Our numerical method of solution is an iterative algorithm derived from the optimization
structure of the problem at hand. The iterative step is defined by solving a variational sub-
problem in which the nonlinear equality constraint on energy, which presents the principal
difficulty, is replaced by an inequality constraint on its linearization about the previous iterate.
We prove that our algorithm converges to a solution from any admissible initialization and
that this solution satisfies all the constraints exactly. We obtain an efficient implementation of
our algorithm by appealing to the dual form of the iterative subproblem.

In our implemented computations, we display branches of solutions to the statistical
equilibrium problem for a periodic free shear layer of constant vorticity. We show how these
branches connect the completely disordered state, which is spatially homogeneous, to the
deterministic state, which is an exact steady flow. By so doing, we embed the deterministic
theory of coherent structures into the statistical theory as a limiting case. Moreover, in the
process of computing these branches, we exhibit a symmetry-breaking bifurcation in the
statistical equilibrium problem for the free shear layer, which we interpret as an explanation
of the rollup phenomenon. In the same context, we apply our method to the coalescence
phenomenon for like-signed vortices in a (singly) periodic array.
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2. Statistical equilibrium model.

2.1. Vorticity dynamics. The two-dimensional flow of an incompressible, inviscid fluid
is described by the Euler equations

0v
(2.1)

Ot
-v.Vv+Vp=O, V.v=0,

where v (v (x, t), re(x, t), 0) and p p(x, t) are the velocity and pressure fields, and
V (O/3x, 3/3x, 0) with x (Xl, xe). In the presence of solid boundaries, these equations
hold within a domain D

_
R, with the boundary condition n. v 0 imposed on 0D, where n

denotes the outward unit normal field. (If, instead, periodic boundary conditions are imposed
on either x or xe or both, then the domain D is determined by the fundamental period for
those conditions.) It is widely recognized that the salient features of these fluid dynamics are
more neatly described by the vorticity field co (0, 0, co(x, t)) than by the primitive fields v
and p. Indeed, the governing dynamics reduce to the single equation

0co
(2.2)

3t
+- v Vco 0,

which expresses the transport of vorticity by the flow. The velocity field is determined from
the vorticity field by the elliptic system

(2.3) Vxv=co, V.v=0 inD.

This system is easily solved by means of the streamfunction 7t (x, t), which is defined
according to v V x (0, 0, p). By virtue of the fact that co Ap, where A is the Laplacian
operator in R2, the streamfunction is determined from the vorticity by

(2.4) /(x) Gco(x) fo g(x, x’)co(x’)dx’,

where G is the Green operator for -A in D with boundary conditions 0 on 0D (or
suitable periodic boundary conditions), and g (x, x’) is the corresponding Green function.

The initial value problem for (2.2)-(2.3) is known to be well posed in the classical sense
[12]. Nevertheless, the dynamics of vorticity transport tend to produce a very rapid growth
in the vorticity gradient Vco(x, t)l in active regions of the flow, even though it preserves
maxxeD co(x, t) and minxeD co(x, t) exactly. Such a growth is consistent with the sharpest
estimates provided by the existence and uniqueness theory for Euler flow [29]. It is natural,
therefore, to consider weak solutions co 6 L(D x [0, T]) which are permitted to fluctuate
on arbitrarily small scales. While these weak solutions co(x, t) induce velocity fields v(x, t)
whose regularity properties are sufficient to determine smooth particle trajectories, they are
very complex in the sense that their flow maps tend to become increasingly distorted over time
at a very rapid rate. This body of qualitative theory, therefore, suggests that rearrangement of
vorticity under ideal dynamics generates spatial fluctuations of co on increasingly small scales.

This qualitative behavior of vortex dynamics, besides being indicated by analytical con-
siderations, is strongly supported by numerical evidence. The many simulations of turbulent
flows in two dimensions (Navier-Stokes flows at high Reynolds numbers) display the effects
of distortion on the small scales ofthe vorticity, at least to the extent ofthe numerical resolution
17, 3, 10]. Similarly, the computations of those weak solutions for which the vorticity takes
constant values 0 and ) only, which are referred to as vortex patches, show the same effects
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[30, 6]. In particular, the free boundary of the vortex patch evolves in a very intricate way,
exhibiting the characteristic phenomenon of filamentation on small scales [7].

This theoretical and computational evidence suggests that the deterministic dynamics be
viewed as governing the microscopic state of the flow. The microstate co (x, t) then constitutes
thefine-grained description ofthe flow field. Since the information content ofthis deterministic
evolution grows very rapidly over time, due to the complexity of the vorticity fluctuations
on increasingly small scales, it does not provide a convenient description of the longtime
behavior of the flow. Instead, a coarse-grained description of the vorticity is needed whenever
an understanding of the long-lived, large-scale vortex structures inherent in the dynamics is
desired. Such a description is’furnished by a macroscopic state that only partially, represents
the small-scale behavior of the vorticity field. In the formulation of the statistical equilibrium
theories proposed in [18, 19] and [23, 24], a macrostate is taken to be a local probability
distribution on the values of the vorticity. A coherent structure is then identified with a
macrostate that varies on the large scale.

2.2. Microscopic and macroscopic descriptions. We now proceed to define these con-
cepts precisely and to formulate the statistical equilibrium theory in terms of them. For a
complete motivation and justification of this theory we refer the reader to the papers cited
above. In order to make our presentation accessible, we first explain the theory in the general
case of arbitrary microstates and then derive the special case in which the microstates are
vortex patches.

Let I c_ R be a finite interval (say the minimal interval) containing the range of the initial
vorticity co0(x). Then, co(x, t) 6 I for all times > 0, by virtue of (2.2). This invariance
property allows us to define a microstate to be any measurable function co(x) taking values.
in I and a macrostate to be any probability measure p(x, dy) on I for almost all x 6 D. We
make a correspondence between these two levels of description by interpreting p(x, dy) as
the probability that the fluctuating function co takes values in dy when sampled at points that
are near x. This correspondence is determined by the identity

(2.5) .m{xA’co(x)B}=fadxfp(x, dy),

which holds for all measurable subsets A c D and B c I. It follows that

m{x’ a(x) co(x’) B}
p(x, B) lim

-o m(A(x))

choosing A, (x) to be a neighborhood of x for which diam A, (x) < . The interpretation of
p as a volume fraction is clear from the latter expression. The expectation of the distribution
p defines the mean vorticity

f y p(x, dy).(2.6) &(x)

The above correspondence between macrostates and microstates can be elucidated by
considering the longtime evolution of vorticity. Over any finite interval 0 _< _< T, we can
identify the unit point measure p(x, dy, t) o,t(dy) concentrated at y co(x, t) with
the evolving microstate co(x, t). But we cannot maintain this identification in the limit as-- +x because of the hypothesis that the vorticity develops finite oscillations on arbitrarily
small scales. If a coherent structure emerges in this evolution, then we identify it with the
weak limit co* (x) of the microstate, and we describe it macroscopically by the corresponding
weak limit p*(x, dy). Under weak convergence, the limit p*(x, dy) is not expected to be
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concentrated at a single point (y co*(x)) but rather is treated as a general probability
distribution with mean o9* (x). In other words, the x-parametrized measure p* (x, dy) encodes
the local oscillations of the limiting vorticity field in a way that is compatible with weak
convergence. As such, it is a Young measure [8].

2.3. Maximum entropy principle. In the theory of statistical equilibrium, we seek the
most probable (most random) macrostate. Such a macrostate is characterized by maximizing
an entropy functional, which quantifies the loss of information incurred by going from a mi-
croscopic to a macroscopic description. In the absence of any information that constrains the
spatial variations ofthe admissible macrostates, the assumed ergodicity ofthe vorticity dynam-
ics implies that the most probable macrostate is spatially homogeneous. This x-independent
macrostate, which can be viewed as a complete mixing of the initial microstate w0, is simply
given by

(2.7) po(B)
m{x D o9o(x) B}

m(D)

for measurable sets B c__ I. However, P0 is not admissible, in general, because it violates the
constraint dictated by the conservation of energy. Therefore, we define the (Kullback-Leibler)
entropy of any macrostate p(x, dy) relative to po(dy) by

(2.8) fS(p) dx log -po (X, y) p(x, dy),

where dp/dpo is the density (or Radon-Nikod3m derivative) of p with respect to P0. The
information functional -S(p) can be interpreted as a statistical distance between p and p0.

Consequently, we formulate the statistical equilibrium theory by taking the most probable
macrostate p to be the maximizer of S subject to all of the constraints implied by the vorticity
transport equation. This equilibrium macrostate, unlike p0, exhibits the spatial variations
characteristic of a coherent structure.

The constraints imposed in the maximum entropy principle are dictated by the conserved
quantities for ideal fluid dynamics. Expressed in terms of the microstate, these are the energy
and the generalized enstrophies, respectively,

(2.9) E (o9) - coGo9 dx,

(2.10) F (o9; f) fD f (O9) dx,

where f is any continuous function on I. Apart from those additional conserved quantities
which are associated with special symmetries of the domain (and the boundary conditions),
these are the only conserved quantities for ideal fluid flow in two dimensions. In order to
impose these constraints in the statistical equilibrium problem, which is formulated in terms
of the macrostate, it is necessary to express them as functionals of p. In these expressions
the continuity with respect to weak convergence (in either co or p) must be ensured, since this
mode of convergence is expected as --+ +cx. For this reason, the correct forms for these
expressions are given by

(2.11) E(p) - &G& dx,

(2.12) F(p;f)=fodxff(y)p(x, dy).
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The energy expression (2.11) is justified by the the compactness of the operator G LZ(D) --+
L:(D), which implies that the functional E is weakly continuous. Thus, the energy of a
macrostate p is determined by the mean streamfunction G&. This fact gives the model
the character of a mean-field theory [18, 19]. On the other hand, the generalized enstrophy
functionals, even in the classical case for which f 2o, are not continuous with respect to
weak convergence of o0, except when f is linear, which gives the circulation functional

(2.13) C(p) fz) & dx.

In general, the appropriate relaxed form (2.12) must be taken as the definition of generalized
enstrophy of the macrostate p [23, 24]. It is a central fact in the theory of Young measures
that the functional (2.12) furnishes the limit of the functionals (2.10) under Weak conver-
gence 8].

With the objective functional S and the constraint functionals E and F in hand, we can
state the variational principle for statistical equilibrium macrostates p"

(2.14) S(p) --+ max subject to E(p)= Eo, F(p; f)= Fo(f),

where the constraint values E0 and F0(f) are derived from a given initial vorticity field coo. The
f-parametrized family of constraints on generalized enstrophy can be expressed equivalently
as the condition

(2.15) m(D)-I fo p(x, dy) dx po(dy)

meaning that the x-average of p over D is the given distribution P0. Of course, the constraint
that p(x, dy) be a probability measure for almost every x 6 D is also enforced. By standard
arguments in functional analysis, the existence of a maximizing macrostate can be established.
The equilibrium equations satisfied by such a solution are

exp(-c(y) 13yG&(x))po(dy)
(2.16) p(x, dy)

fl exp(-c(y) ,6yGo(x))po(dy)

for some multipliers or(y) and/3, which are determined by p. This result can be derived
formally by a standard calculation, which is omitted. The mean flow for this equilibrium
satisfies the semilinear elliptic equation

-A ’() with (s) -/3- log f exp(-ot(y) ys)po(dy).(2.17)

These equations are supplemented by the constraints on E and F, which determine the mul-
tipliers/3 and or(y).

2.4. Statistical equilibria for vortex patches. Rather than further pursue the general
formulation described above, we now specialize our development to the simplest case when o9o
takes the values 0 and ) only, where ), is a given positive constant. For such vortex patches the
microscopic evolution is described by a weak solution o9 L(D [0, T]) that also takes the
values 0 and ) only. We therefore write w(x, t) .lf(t) where (t) is an open subset of D,
and 1 1 in 2, 1 0in D \ f2; so, w0 . (0). The conservation of (total) circulation C
alone replaces the family of generalized enstrophy integrals, which is degenerate in this case.
Thus, the patches f2 (t) evolve in such way as to conserve their area Co/. m(g2 (0)). The
macroscopic description simplifies in this case to p(x, dy) (1 p(x))3o(dy) + p(x)3z (dy),
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in which p(x) is the probability that w(x’) ) for x’ near x, or, equivalently, the volume
fraction occupied by f2 near x. The mean vorticity is simply &(x) )p(x).

The statistical equilibrium problem for vortex.patches, which is a reduction of the general
problem (2.14), can be stated in the form

(2.18) S(p) := fD[(1 p) log(1 p) + p logp]dx --+ max

subject to C(p) = Co, E(p) E0.

This entropy functional differs from that defined in (2.8) by a constant depending only on
Co and P0, as can be checked by noting that the density dp/dpo equals (1 p)/(1 P0)
at y 0, and P/Po at y ), if po(dy) (1 po)o(dy) + poSz(dy). For the sake of
simplicity, therefore, we choose the classical (Shannon) entropy as the objective functional.
The constraint functionals E and C depend upon & as in their definitions (2.11) and (2.13),
respectively.

An equilibrium solution to (2.18) satisfies the equation

(2.19) p(x)
exp(-ot)v fl2(Gp)(x))

1 + exp(-ot) fl.:(Gp)(x))

for some real multipliers ot and/3. From this equation it follows that the mean flow in
equilibrium satisfies

(2.20) --A = ’() with (s) _fl-llog(1 + exp(-otZ fl.s)).

This semilinear elliptic equation is of eigenvalue type in which the multipliers ot and/3 act
as the eigenvaiue parameters. In the typical situation of interest the coherent structure is
a coalesced, vortex and, necessarily, the inverse temperature/3 is negative. The statistical
equilibrium problem can then have multiple solutions and bifurcating solution branches. This
makes the direct solution of the mean-field equation (2.20) difficult.

The maximum entropy principle as stated above admits various extensions in the presence
of additional constraints. These constraints correspond to special symmetries in the domain
geometry and flow configuration. In this paper we are concerned with the shear layer problem
for which the coherent structure consists of an infinite system of vortices repeated periodically
in the xl direction and wall bounded in the x2 direction. Consequently, we take D {x
R2

al < Xl < bl, a2 < x2 < b2}, and for boundary conditions we impose periodicity on the
sides X a and x bl and 0 on the sides x2 a and x2 b2. The x1-translational
symmetry of this configuration yields the conserved quantity

(2.21) M fD x2w dx,

which is the X component of linear impulse 1]. In the variational principle for statistical
equilibrium, this conserved quantity introduces the additional constraint M(p) M0, where
M(p) is defined as in (2.21) with cb replacing co. In the equilibrium equations (2.19) and (2.20),
the streamfunction is then replaced by + (?’/fl)x2, which includes an Xl-translational
flow with velocity -F/fl, where F is the multiplier for the linear impulse constraint.

3. Deterministic equilibrium theory.

3.1. Feasible constraint values. The admissible class for the maximum entropy prin-
ciple is void for constraint values outside a certain feasible range. The limits of this range
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are defined by the deterministic equilibrium theory of coherent structures, which itself has a
variational formulation. As the constraint values approach the limits of the feasible range, the
statistical equilibrium solutions tend to their deterministic analogues. In the case of vortex

patches, the constraint values Co and E0 in the maximum entropy principle (2.18) cannot be
prescribed arbitrarily. Rather, for given values of Co and), there is a finite interval [Emin, Emax]
of feasible values of E0. The upper and lower bounds of this range of feasible energy values
are defined by deterministic coherent structures which have the property that p (x) is either 0
or 1 for almost all x E D. In order to explain this useful connection between the statistical
and deterministic theories of coherent structures, we summarize below the variational theory
of steady vortex flows which characterizes these limits exactly.

The upper bound for E0 in the statistical equilibrium problem (2.1_8) is given by the
variational principle developed in [28]. In this principle, a steady vortex patch co E L (D) is
a solution of the constrained maximization problem

E(co) --+ max subject to C(co) Co, 0 _< co _< ).

As is shown in [28], a maximizer co comax exists and has the form

(3.2) co )la, where f2 {x 6 D Gco(x) >#}

for a multiplier/ determined by the circulation constraint. (The admissible class of vorticities
in (3.1) admits those co which take values-in the interval [0, .], while the maximizer comax
equals either 0 or , almost everywhere in D.) We, therefore, see that the energy Constraint
in the maximum entropy principle must be prescribed with the restriction that E0 <_ Emax "’-
E (comax).

The limiting behavior of the statistical equilibrium solutions & as E0 --+ Emax can be
determined under the condition that comax is an isolated and nondegenerate maximizer in
(3.1), meaning that fz) comax co[ dx tends to zero as E(co) approaches Emax. Under such
a condition the deterministic steady vortex patch is dynamically stable with the Lyapunov
functional Emax E (co). Since &)max and & are uniformly bounded in D, this stability condition
expressed in the (circulation) L1-norm implies that (5 -+ coma in the (enstrophy) L-norm as

E0 Emax. The limiting behavior of the multipliers o and fl is inferred from the following
expression for the pointwise difference"

*[1 + exp(-oe) fl)r)]-1
comax (-

.[1 + exp(ot) +/3.r)]-1

in {max > #},
in {max < /},

which results from combining the equilibrium equations (2.19) and (3.2). In the limit, there-
fore, -oe -/3 -- cxz in lPmax > }, while o + fl --+ oc in lPmax < #}. This, together with
the fact that -- max uniformly on/5, which holds by virtue of the regularity properties
of the operator G, shows that fl -+ -ec and -o/fl # as E0 -+ Emax. This behavior
of the the multipliers is consistent with the fact that the admissible class in (2.18) shrinks to
the singleton {l{Omax>tZ}}. Thus, the statistical equilibrium problem (2.18) degenerates into
the deterministic equilibrium problem (3.1) in the limit of maximum feasible energy. This
behavior is clearly displayed by the numerical results given in 5.

The asymptotic behavior of the Emax and C0max as . --+ cx for fixed Co is also known [28].
In this limit, the statistical equilibrium solutions tend to the solutions of the classical theory
of a dilute point-vortex gas [21, 20, 16, 13, 4]. The equilibrium equation then reduces to the
mean-field equation
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(3.3) co exp(- Gco)

for the vortex density co. The deterministic solution comax, on the other hand, tends to a point
vortex with circulation Co located at an equilibrium point of the Kirchhoff-Routh Hamiltonian
for the domain D. The corresponding energy Emax diverges to infinity logarithmically, and
hence arbitrarily large values of E0 are feasible in the classical theory. As E0 increases to
infinity these classical statistical equilibria condense to a point vortex, which constitutes their
deterministic limit.

The lower bound for E0 in (2.18) is given by the deterministic equilibrium problem of
minimum energy analogous to (3.1). Unlike the coalesced vortices obtained at maximum
energy, these minimum energy solutions are steady flows for which the vorticity is dispersed
to the domain boundary. The energy of such a solution comin provides the complementary
restriction that E0 > Emin :-- E (comin). In the limit of minimum feasible energy, the statistical
theory again degenerates into the deterministic theory.

Intermediate between Emin and Emax lies the energy value Ehom E(Phom) of the most
probable macrostate Phom over all possible energy values. This homogeneous macrostate is

simply the constant Phom Co/)m(D), which corresponds to fl 0. In simple geometries,
like those of our shear layer computations, the statistical equilibria with Ehom < E0 < Emax
have negative temperatures (fl < 0), while those with Emin < E0 < Ehom have positive
temperatures (fl > 0). In complex geometries, however, this may not always hold.

3.2. Iterative algorithm. The deterministic equilibrium problem (3.1) can be solved
numerically using the method given in [9]. Since that method can be viewed as a prototype for
the iterative algorithm that we propose in the present paper to solve the statistical equilibrium
problem (2.18), we briefly restate it here.

The algorithm generates the iterate cok+ (k 0, by solving the optimization
problem that results from linearizing the energy functional about the previous iterate cok.
Thus, co cok+l is taken to be the solution of the convex subproblem

(3.4) j coGcokdx -- max over C(co) Co, 0 < co < ).

The variational equations for this subproblem are simply

(3.5) co+1 ,kl,+, where flk+ {x 6 D Gcok(x) > zk+

for some multiplier/z+ This multiplier is found by imposing the circulation constraint on
the expression (3.5), which yields a single real equation that is easily solved. Formally, the
dual subproblem to the primal subproblem (3.4),

Colz + fD (Gcok tz)+ dx --+ min over /z 6 R,

defines the iterative multiplier/zk+

This iterative algorithm is designed to be globally convergent, meaning that it converges
from any admissible initialization coo This property can be inferred from the inequality

E(co+) E(co’) > E(co+ co),

which holds for all k. A general convergence theory is presented in [9]. The algorithm has a
linear rate of convergence, which is observed to be quite rapid in implemented computations.
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4.. Numerical method.

4.1. Primal form of the algorithm. We now proceed to give a method of computing
solutions of the maximum entropy problem posed in 2. This method is an iterative algorithm
based on the special structure of the constrained optimization problem that it solves. In this
sense, it fits into the same conceptual framework as the algorithm described in 3 which solves
the related maximum energy problem.

The iterative step that generates pk+l from pk (k 0, 1 is defined by solving the
optimization subproblem

(4.1) S(p) -+ max subject to C(p) Co, E(p) + (E’(p), p- p) > Eo.

Given p, the solution p p+l to this subproblem exists and is unique, since the objective
functional is strictly concave and the admissible class is convex. Consequently, we obtain a
well-defined iterative sequence p (k 0, for every admissible initialization p0 we
choose. We require only that p0 satisfy a relaxation of the constraints for (2.18): C(p0) Co
and E (p0) > E0. In this abstract formulation, the functional derivative (denoted by a prime)
of any differentiable functional F(p) is defined by the condition that

F(p + 3p) F(p) + (F’(p), 6p) + o(1] 6p I])

as 3p [I- 0, where the symbols (., .) and denote the L2(D) pairing and norm,
respectively.

The solution p+l satisfies

(4.2) S’(pk+l) otk+lc’(pk) -+- k+l E’(pk)

(4.3) /5k+ _< 0,

(4.4) /k+l[ E(pk) + (E,(p:), pk+ pk) Eo 0

for some multipliers ok+ ,/5k+ 6 R. These are the Kuhn-Tucker conditions for (4.1), which
provide the natural extension of the Lagrange multiplier rule to an inequality constrained
problem [26, 11]. The complementarity conditions (4.4) imply that the linearized energy
constraint holds as an equality whenever/5k+ -f= 0. The solution triple (pk+l, ok+l,/k+l) is
completely determined by these conditions combined with the constraints.

4.2. Convergence properties. Before expressing the iterative algorithm in the concrete
form needed for numerical implementation, we first show how its convergence properties are
derived from its abstract structure. These special properties justify the algorithm and explain
how it makes use of the concavity/convexity properties of the objective/constraint functionals
in the variational problem it solves. For this purpose we need the the following second-order
expansions of S and E"

S(p + Sp) < S(p) + (S’(p), Sp) 2 sp 2,

E(p + 6p) E(p) + (E’(p), &p) + E(6p).

By applying these facts along with the defining equation (4.2), we make the calculation

S(p’+) S(p) 2 P+-P 2 (S’(pk+l), pk+l__ /ok)

:+ (E’(p), p+
=/3+[E0 E(p)]
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in which we note that the term involving ok+ vanishes because C is a linear functional. By
virtue of the convexity of E, we have

E(p) > E(p-l) + (E’(p-),p-p-) > Eo.

Thus, we obtain the basic inequality of the convergence theory:

(4.5) S(p+1) S(p) >_ 2 p+a pk 2 + i/3+l[[E(pk E0]

which holds for all k and for arbitrary admissible p0.
We infer immediately that the entropy S(p) increases along the iterative sequence, and

hence that it converges to a finite limit S* as k --> x. From this monotonicity property we
conclude that p+ p --+ 0 in L2. This conclusion shows that if the iterative sequence pk
converges to a limit p* and the multiplier sequence fl converges to a limit/3* < 0, then p* is
a solution of the maximum entropy problem with equality constraints on both circulation and
energy. Indeed, if we assume that p --+ p* in L2 as k cxz, then it is straightforward to
demonstrate that the corresponding multipliers converge: o o* and/3 ---> /3*. We then
deduce that the limit (p*, o*,/3*) solves the equation for statistical equilibrium

s’ (p*) u* c’ (p*) + #*’(p*),

using the fact that pk and pk+ both converge to p*. Given that/3* < 0, we retrieve the equality
constraints on p*, since C(p) Co and E(p) --+ Eo.

From the inequality (4.5) alone, however, we cannot conclude that the iterative sequence
pk converges since we lack a rate of convergence on the difference between successive iterates.
Moreover, the possible nonuniqueness of solutions p* to the statistical equilibrium problem
suggests that this convergence may not always hold. (The equality constraint on energy in the
maximum entropy problem makes it a nonconvex optimization problem.) For these reasons,
we generalize the notion of convergence to one that holds even when the statistical equilibrium
problem does not have a unique (or isolated) solution. Simply put, the generalized convergence
theorem states that the minimum distance from pk to the set of solutions (critical points) p*
of (2.18) tends to zero as k --+ x. We now give an outline of the proof of this theorem based
on the analysis developed in [9] for the deterministic problem.

The core of this proof is to Show that any subsequence of the iteratives has a further
subsequence that converges in the energy norm to a solution of a certain relaxed version of
the maximum entropy problem. Let the G-norm, which is equivalent to the energy.norm, be
defined by P 112G fD P Gp dx. Since the sequence p is bounded in L2, any sequence pJ
of iterates has a subsequence pk) that converges weakly to some p* e L2. By virtue of the
compactness of the operator G, this subsequence also converges in the G-norm. Moreover,
pk)+l converges to the same limit p* weakly in L2 and in the G-norm. To prove that p*
is a solution to the statistical equilibrium equation (a critical point of the maximum entropy
problem), it suffices to show that p* solves the variational problem

(4.6) S(p) --+ max subject to C(p) Co, E(p*) + (E’(p*), p p*) >_ E0.

In other words, it is required to show that S(p*) > S(p) for any p that is admissible in (4.6)
in which the energy constraint is linearized about p* itself. For any such p, let r/ 6 L(D)
be chosen such that its support is contained in {x D 6 <_ p(x) < 3} for some positive
3, and it satisfies C(r/) 0, (E’(p*) r/) 1 (This construction is possible unless S(p) O,
which is a trivial case.) We claim that the perturbation p + 7, for any small positive , is
admissible in the iterative subproblem (4.1) whenever k k is large enough depending on
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e. To verify this claim we evaluate the constraints in (4.1) on p + e r/, using the constraints in
(4.6) on p; thus, we find that

C (p + r) C0,

E(pk) + (E’(pk), p + rl p) > E(p*) + (E’(p*), p p*) +
> Eo- +

for a sequence ofpositive constants which, by the continuity ofthe energy functional, tend to
i, and hence in thezero along the subsequence. Therefore, S(p+rl) < S(p+1) for large k kj

limit, S(p + rl) < S(p*), by the weak upper semicontinuity of the entropy functional. Upon
taking to zero, we obtain the desired result that p* solves (4.6), which means that p* satisfies
the statistical equilibrium equation and the relaxed constraints: C(p*) Co, E(p*) > Eo.

Let E* be the set of critical points p* of the maximum entropy problem (2.18) with the
energy constraint relaxed to an inequality. From the above analysis, we obtain the generalized
convergence result in terms of the G-norm distance from the iterate p to the set

disto(pk, E*) := inf pk_ p, IIG 0 as k --+ cxz.

This convergence statement holds without any restrictions on the constraint values Co and E0
or on the initialization p0. In this sense, the iterative algorithm defined by (4.1) is globally
convergent. The proof of the statement is immediate, since otherwise dist (p, *) > > 0
for a sequence k k, which contradicts the convergence of a subsequence p) to a critical
point p* 6 *.

It is possible to strengthen this convergence result in several ways. First, by applying a
standard bootstrap argument to the statistical equilibrium equation, the G-norm can be replaced
by the L2-norm. Second, for any given initialization pO, the set of limit points of p can be
shown to consist of either a single solution (the sequence limit) or infinitely many solutions,
none of which is isolated. Third, the convergence of the (entire) iterative sequence can be
ensured by requiring that the initialization be close enough to an isolated local maximizer p*
for (2.18). We omit the details of these further results.

The energy constraint, which is relaxed 1o the inequality E(p*) > E0 in the convergence
theory, is necessarily an equality whenever * < 0, by virtue of the complementarity condi-
tions. Thus, it is evident that our algorithm is designed to compute solutions having negative
temperature. This restriction is completely natural, however, since these solutions are the
statistical equilibria of physical interest as coherent structures. Indeed, as in the theory of a

point-vortex gas, the coalescence of vorticity occurs only in the negative temperature regime.
In implemented computations, our algorithm exhibits a linear rate of convergence to an

isolated solution. This behavior is expected on analytical grounds whenever p* is a nonde-
generate local maximizer, which is the generic case. The generalized convergence behavior
stated in the global convergence theorem is, therefore, rarely observed. Moreover, we find that
the algorithm converges even in the regime where/3* > 0, which is beyond the scope of the
convergence theory. As a consequence, actual implementations of the algorithm can dispense
with the inequality constraint on linearized energy in favor of the simpler equality constraint.

4.3. Dual form of the algorithm. We now give the concrete form of the iterative algo-
rithm, which yields its numerical implementation. Equation (4.2), which defines the iterate
pk+l in terms of the multipliers c+1 and fl+l, can be written in the form

(4.7) pk+

where k Gok, k )pk. This expression employs the Legendre-Fenchel transform

s*(a) := sup{pa s(p)} log(1 + exp(-a))
p
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of the entropy density s(,o) "= -[/9 log p + (1 -/9) log(1 p)] in (2.18). The derivation of
(4.7) follows directly from the standard properties of conjugate functions"

a s’(p) and p (s*)’(a),

(s*)"(a) 1/s"(p)--p(- p) < O.

In view of the explicit formula (4.7), the iterative step is reduced to finding the iterative
multipliers otk+l and flk+l. These multipliers, in turn, solve the dual to the primal subproblem
(4.1), which is

(4.8) oCo + fi(Eo + Ek) fD S*(c) + fl,k(pk)dx min over ot 6 R, fl <_ 0,

where Ek := (E’(p), pk) E(p) is identical with E(p). This dual subproblem is easily
solved numerically, at least in principle, since it involves a convex objective function on R2

with one simple bound constraint (which can be ignored in practice). The unique solution
(ork+l fl+l to (4.8) determines the unique solution pk+ to (4.1) by means ofthe formula (4.7).

The equivalence of the dual subproblem (4.8) to the primal subproblem (4.1) is a standard
fact from optimization theory [26, 11]. The dual subproblem is derived by substituting the
expression (4.7) for pk+ into the constraints for the primal subproblem. The variational
conditions satisfied by a minimizer (ork+ ,/k+l) for (4.8) are then shown to coincide with the
Kuhn-Tucker conditions for (4.1).

In the case of the free shear layer the maximum entropy principle is supplemented by an
additional constraint associated with the conservation of the x-component of linear impulse.
The above algorithm is easily adapted to this case by augmenting the circulation constraint
into a pair of linear constraints on C and M and the corresponding multiplier into a multiplier
vector (c, 9/). The abstract construction of the iterative algorithm then generalizes in an
obvious manner, and the general convergence results also continue to hold. The explicit form
of the iterative step is then given by

pk+ (S,),(0tk+l) _at_ flk+ )rk + 9/k+l)x2),

where the multipliers are determined by solving the dual subproblem

otCo + (Eo + E) + vMo .], s*(ot + ,k(p + 9/)x2)dx

over or, 9/ 6 R, /3 < 0. -- min

4.4. Numerical implementation. In the shear layer computations discussed in what
follows, the numerical problem is discretized on a regular grid on the rectangular domain D.
The streamfunction )Gp is found by utilizing a Poisson solver with boundary conditions
that are periodic in x and homogeneous Dirichlet in x2. The dual subproblem, which presents
the main computational burden, is treated by simply ignoring the inequality constraint on/3
so that it becomes the system of nonlinear equations

O , S*(Ot) @ flrk(x) -Jr- 9//\X2)dx (Co, Eo + E Mo).’o o
This system in (or,/3, 9/) 6 R is solved by a damped Newton method with a damping factor
2-m where m is taken to be the smallest nonnegative integer for which the residual is decreased
in the Euclidean norm. (Without the damping, the Newton method can produce overshoots
in the arguments of the exponential functions participating in the dual subproblem, and this
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can lead to divergence.) The damped Newton iterations are terminated when a residual of less
than 10-9 is obtained. The double integrals over D that define the component equations of the
system are evaluated by a standard numerical integration. This direct approach to solving the
dual subproblem is fast and accurate. Moreover, if the multiplier/* lim/3 is strictly nega-
tive, and the initialization p is close enough to the solution p*, then it is justified theoretically
since necessarily the iterative multipliers/3 are strictly negative and the linearized constraints
on energy hold as equalities. In general, however, the relaxation of the constraint/3 < 0
violates the requirements of our convergence theory. Thus, the justification for this approach
rests mainly on experience, which shows that over a wide range of conditions, including those
in which/3* itself is positive, the iterative algorithm in this relaxed form is convergent.

The rate of convergence of the iterative algorithm is observed to be quite rapid. The
stopping criterion adopted for the iterations in k is of the form

IIp+l-pll IS+-SI IE+-El < 510-3.p Sl EI
While the number of iterations required to satisfy this criterion varies with the conditions
of the problem, typically about 10 iterations suffice. No significant changes are observed
as a result of decreasing these or the other tolerances set on the algorithm. Similarly, the
spatial resolution achieved by taking 50 50 grid nodes in D is typically adequate, since
the macrostate p varies on-the large scale. In order to accommodate some extreme cases
in which p varies more rapidly, more refined grids are used as necessary in the implemented
computations discussed below. Even with this finer resolution, the method produces a solution
in the order of 100 seconds on a SPARC2 workstation.

5. Computed results.

5.1. Branches of equilibria parametrized by energy. The energy of a given vorticity
distribution is the principal factor that determines how it organizes into a coherent structure
[22]. Indeed, the coalescence of vorticity into a coherent vortex, which is a negative tempera-
ture macrostate, is expected to occur when the energy is sufficiently large [21 ]. Moreover, the
spatial structure of such a vortex and the variation of the mean vorticit’ within its core depend
upon the value ofthe energy. Consequently, we devote our first set ofresults to the computation
of maximum entropy solutions parametrized by the value of the energy constraint.

We solve the statistical equilibrium problem (2.18) in the shear layer configuration on
the fundamental domain D {0 < Xl < 1,-0.5 < x2 < 0.5}, discretized with 61 grid
nodes in both the X and x2 directions. We normalize the circulation to Co and we set
) 10 with the consequence that Phom 0.1. We restrict our attention to solutions that are
symmetric with respect to x in the sense that p(Xl, x) p(Xl, -x). This restriction allows
us to ignore the linear impulse constraint M and its multiplier , since both are necessarily
zero. We enforce this symmetry in our computations by choosing a symmetric initialization
for the iterative algorithm, which preserves the symmetry at each iteration.

In Figure 1, the branch of macrostates with E0 greater than Ehom is displayed. This figure
shows the level curves of the local probability p at increments of 0.1; the figures that follow
use the same convention. The first member of the branch, which has an energy value of E0
0.1350, is computedby initializing the algorithm with a centered, circular patch whose radius is
chosen to satisfy the circulation constraint. Since its energy is very close to Emax, it corresponds
to a large negative value of/ -15.2 and exhibits a steep transition between the vortex core
(p 1) and the surrounding irrotational region (p 0). Larger feasible values of E0 give
equilibria that are very close to steady vortex patches, the deterministic limiting solutions.
The subsequent members of the branch displayed in Figure have smaller values of E0, with
correspondingly smaller values of [/ [. These solutions are computed by using a continuation
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FIG. 1. Mean streamlinesfor a branch ofmaximum entropy solutions with circulation C 1, vorticity strength
,k 10, and displayed energy values in the range Ehom < E0 < Emax and computed values ofentropy S and inverse

temperature ft.

strategy in which the algorithm is initialized by a previous solution along the branch having
greater energy. As E0 decreases, the maximum of p decreases, indicating greater mixing of
entrained irrotational fluid into the vortex core. At the nearly critical value of E0 0.0760
the mean vorticity is almost x1-independent, which evidences almost complete homogeneity
in the xl direction. Below a critical value of E0 slightly less than 0.0760, the branch becomes
exactly x1-independent. With decreasing E0, the x2 dependence of these solutions decays
until the completely homogenous (x-independent) macrostate is reached at Ehom.

If the x1-independence of solutions is imposed, then the above branch of equilibrium shear
layers can be continued to a maximum energy limit. This is easily accomplished by initializing
the algorithm with an x-independent p0 since the x symmetry is preserved at each iteration.
Such a branch is displayed in Figure 2. The xz-dependence of these solutions grows until the
parallel vortex patch is reached at a maximum energy slightly greater than E0 0.1160. It is
interesting to compare the entropies of the solutions in Figure 1 with those in Figure 2 having
the same values of the constraints E0 and Co. For instance, for E0 0.0960 the coherent
vortex in Figure has the entropy value S 0.2310 while the parallel shear layer in Figure
2 has the smaller value S 0.2290. This may be interpreted as indicating that the vortex is
the most probable state into which the shear layer will evolve if its x-translational symmetry
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is broken. These computations therefore provide a confirmation of the rollup phenomenon
exhibited in dynamical evolution of unstable shear layers.

The continuation of these coincident branches to energy values less than Ehom is given
in Figure 3. For these values of E0,/3 is positive and the solutions are xl-independent. As
E0 decreases along this branch of solutions, fl increases and the vorticity accumulates toward
the walls. This behavior is anticipated on heuristic grounds. Rather curiously, our algorithm
converges to solutions on this branch even though our convergence proofs depend on the strict
negativity of ft.

In Figure 4, we plot the dependence of the equilibrium value of S upon the given value of
E0 for the full feasible range of the energy and for both the xl-dependent and xl-independent
branches. This graph demonstrates how maximum entropy coherent vortex structures bifur-
cate from parallel shear layers as their energy is increased. Since the computation of these
branches is accomplished by our iterative algorithm which is entropy increasing, we find only
those branches whose members are entropy maximizing, possibly subject to a symmetry re-
striction. We believe that the xa-dependent branch displayed here is the absolute maximum
entropy branch.
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FIG. 3. Branch of solutions with circulation C 1, vorticity strength ) 10, and displayed energy values in
the range Emin < E0 < Ehom and computed values ofentropy S and inverse temperature .

5.2. Rollup of shear layers. In the context of xl-periodic, x2-bounded flows, the most
basic prediction of the statistical equilibrium theory resides in the correspondence between an
initial perturbed shear layer and a final array of coherent vortices. In particular, the compu-
tational solution of the maximum entropy principle (2.18) establishes a definite, quantitative
relationship between the thickness of the given shear layer and the form of the coherent struc-
ture into which it evolves. We examine this relationship in our second set of computations.

We now take a domain D {0 < xl < 1, -1 < x2 < 1}, which we discretize with 81
grid nodes in each direction. With C as before, we determine the vorticity strength ,k and
the energy E0 from a shear layer that is in the form of a parallel vortex patch: coo in Ix2[ <
/2}, coo 0 elsewhere. The normalization of circulation obviously implies that ) -.
Consequently, the thickness of the shear layer completely determines the constraints in
(2.18). The energy value E0 is a decreasing function of and takes its largest value in the limit
as --. 0, which corresponds to a (unit strength) vortex sheet. For << 1, this configuration is
a good approximation to a free shear layer with a linear velocity profile, the bounding walls at

x2 4-1 being sufficiently far from the layer centered at x2 0 to have only a small influence.
We compute a branch of equilibria parametrized by 3, using an initialization that breaks

the x-independence of the defining shear layer. The iterative algorithm then mimics the
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FI6. 5. Rollup ofshear layers with thicknesses into coherent vortices.

temporal evolution of the perturbed shear layer as it rolls up into a coherent vortex, which
the statistical equilibrium model takes to be the maximum entropy solution. In Figure 5, .we
show these solutions for layer thicknesses of 0.2, 0.1, 0.05. As is decreased, the vortex
structure develops a more pronounced core and the mean vorticity becomes more concentrated
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FIG. 6. Coalescence oftwo circular vortex patches into a coherent vortex.

in that core. Nevertheless, the maximum of the volume fraction p (which occurs at the center
of the vortex) decreases along with 3, indicating that the thinner shear layers result in coherent
vortices with greater mixing in their cores. This behavior is in good qualitative agreement
with the results of direct simulation of rollup in thin shear layers 10] and (desingularized)
vortex sheets [2, 15]. A further quantitative comparison with such results would certainly be
very interesting but will not be included here.

5.3. Coalescence of vortices. A common feature of shear layer turbulence is the pairing
or merging of like-signed regions of vorticity. As a simple example of this general phe-
nomenon, we consider the leap-frogging behavior of two identical vortex patches, a combi-
nation of translational and corotational motion. The statistical equilibrium theory predicts
that the longtime average of this evolution leads to a steadily translating, coalesced vortex
structure. We take this example as the third application of our numerical method. In contrast
to the two preceding cases in which the multiplier y (translational speed) can be ignored, the
impulse constraint is active in this case.

We are interested in the behavior of two vortex patches of unit circulation in the funda-
mental domain D {0 < xl < 1, 0 < x2 < 1}. Initially the patches are circular with
centers at (0.35, 0.125) and (0.65, 0.125), and both radii are equal to 0.1. This distribution
coo determines the constraint values Co, E0, M0 in the maximum entropy principle. Since the
vortices are close to the wall at x2 0 and are closer to each other in xl separation than to
their periodic images, they are expected to translate in the positive x direction and to corotate
mutually. The distortion caused by the boundary wall and the mutual straining then promotes
the coalescence of the vortex patches. The resulting coherent structure is modeled by the
maximum entropy solution displayed in Figure 6. It has a translational speed of -V/fl, with
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computed values of/ -3.77 and ?, 1.92. In addition to the form of this macroscopic
vortex structure, the statistical equilibrium theory thus predicts its speed of translation, using
the conservation of linear impulse associated with the underlying dynamics.
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THE THEORY OF THE STABILITY OF CYLINDERS*
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Abstract. A family of space-time finite element approximation schemes is presented for the nonlinear partial
differential equations governing diffusion in the surface of a body of revolution. The schemes share with the partial
differential equations properties ofconservation ofvolume and decrease of area. Numerical experiments are described
showing that the result of the linear theory of small amplitude longitudinal perturbations of a cylinder to the effect that
a long cylinder is stable against all perturbations with spatial Fourier spectra containing only wavelengths less than
the circumference of the cylinder does not hold in the full nonlinear theory. Examples are given of cases in which
longitudinal perturbations with high wave-number spectra grow in amplitude, after an initial rapid decay followed by
a long "incubation period," and result in break-up of the body into a necklace of beads. The results of finite element
calculations are compared with the predictions of a perturbation analysis.

Key words, axially symmetric motion by Laplacian of mean curvature, stability against surface diffusion
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1. Introduction. We are concerned here with the numerical computation of morpholog-
ical changes induced in an isotropic and homogeneous solid body by mass diffusion within the
body’s bounding surface $. We employ a constitutive equation, due to Herring [6], expressing
the mass flux q in $ as a linear function of the gradient in $ of the sum H of the principal
curvatures:

(1.1) q -KVsH.

Here K > 0 is a material constant proportional to the surface self-diffusion coefficient of the
isotropic material of which the body is composed, and we are using a, sign convention for
curvature such that H is positive for a sphere. As was observed and exploited by Mullins [9],
when the only motion is the flux q in S, the mass balance yields the following relation between
the rate v of advance of S along its exterior normal and the surface divergence of q:

(1.2) pv + divsq 0;

here p is the mass density, per unit volume, of the material in the body.
For a given characteristic length L, the theory of (1.1), (1.2) is rendered dimensionless

by replacing quantities x, r, etc., with dimension of length by xL, rL, etc., the time by
pL4t/K, and hence q by Kq/L2 and H by H/L. When this is done, (1.1), (1.2) yield

(1.3) v AsH,

and thus are said to govern the theory of motion by Laplacian ofmean curvature. That theory
has a less-developed literature than the theory of motion by mean curvature, which is based
on the equation

(1.4) v -H.
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In a recent survey [1], Cahn and Taylor discuss the difficulties encountered when one
attempts to extend techniques employed to develop the theory of motion by mean curvature
to the theory of motion by Laplacian of mean curvature. Whereas H in (1.4) is given by
second-order spatial derivatives of surface coordinates, AsH in (1.3) depends on fourth-order
derivatives of the coordinates, and this elementary fact has the important consequence that a
maximum principle employed in the theory of (1.4) does not hold for (1.3).

Among the papers presenting computational methods for motion by mean curvature are
that of Dziuk [3], giving a semidiscretization scheme based on tangential gradients, and that
of Sethian [11 ], based on a level set formulation of equation (1.4).

Among recent analytical developments in the analysis of the motion of surfaces by mean
curvature are Huisken’s short-time existence and regularity results [8], Soner and Songanidis’s
analysis of the nature of singularities in axially symmetric surfaces [12], and Evans and
Spruck’s theory of viscosity solutions [5] for a level set formulation of (1.4).

Interesting and very recent results in the theory of motion by Laplacian ofmean curvature
in a plane are proofs by Elliott and Garcke [4] of the asymptotic stability of circles and of
global existence of planar solutions with initial data in a neighborhood of a circle.

The numerical methods and results presented here are for initial-value problems arising
in the theory of motion by Laplacian ofmean curvature for axially symmetric surfaces subject
to periodic boundary conditions. In 2 we give various forms taken by the system (1.1), (1.2)
for such surfaces and discuss relevant laws of conservation of volume and decrease of area [2].
A variational formulation presented in 3 is discretized in 4 with space-time finite element
schemes that yield analogues of the laws of conservation of volume and decrease of area that
hold for (1.1), (1.2). Results of numerical experiments are presented in 5.

For an axially symmetric surface, in a natural cylindrical coordinate system with radial
coordinate r and axial coordinate x, the equation (1.3) of motion by Laplacian of mean
curvature becomes

(1.5) rt
r (1 -+-r2x)/ r(1-+-r2x)/ (1-t-r2x)3/ x

The emphasis here is on cases in which this equation is subject to initial data of the form

(1.6) r(x, O) ro(x) + eu(x)

with e > 0 and u an almost periodic function. For simplicity we often take u to have a finite
Fourier spectrum, i.e., to be of the form

(1.7)
M

hi(X) E ci sin(kix + qPi)
i=1

with Ci, ki > 0. (In the numerical calculations of this paper u is assumed periodic and hence
the wave numbers ki in (1.7) are commensurate.) For longitudinal perturbations of a cylinder
ofradius a, (1.5) is obtained from (1.1), (1.2) by putting L a and making the change of units
discussed above. For a given u, the perturbation is small if e is small.compared with 1, and,
in (1.7), ki < 1, 1, or > 1, in accord with whether the corresponding period Pi 2re ki
exceeds, equals, or is less than the circumference of the unperturbed cylinder.

Since the work of Nichols and Mullins [10], in the study of small amplitude longitudinal
perturbations of a cylinder it has been customary to restrict attention to the linearization of
(1.5) about r 1, i.e., to the equation

(1.8) rt + rxxxx + rxx O,
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whose solution with the initial condition (1.6), (1.7) is

(1.9)
M

r(x, t) + Ci et(ki)t sin(kix + (t9i)
i=1

where ot obeys the dispersion relation

(1.10) o(k) k2(1 k2).

The maximum value of o(k) is and occurs at k 1/,/-. As the right side of (1.10) is
negative for k > 1, the linear equation (1.8) implies that whenever, in (1.7), ki > 1 for all i,
the perturbation decays to zero as -- ec. We recently presented arguments [2] to the effect
that such is not the case in the theory of the nonlinear equation (1.5).

The arguments given in [2] are based on formal perturbation analyses employing an
expansion of the solution of (1.5), (1.6) in e. A perturbation argument taking into account
terms O (e2) yields the conclusion that if

(1.11a) ki > 1 for 1 M

and, in addition, two distinct wave numbers, ki, kj, have Iki kj] < 1, then, although the
solution of (1.5) will exhibit an initial decay of the perturbation, after a time whose duration
can be estimated, a new sinusoidal term with wave number equal to ]ki kj ], i.e., to that of the
envelope of the ith and jth terms in (1.7), will appear in the solution and grow in amplitude,
taking the surface far from cylindrical shape. When terms O(n) are taken into account the
following generalization of this conclusion is obtained: if (1.11 a) holds, and, in addition, there
is an integer n > 2 and there are M integers mi (positive, negative, or zero) that obey the
relations

M

(1.11b) Z Imil n and 0 <
i=1

miki
i=1

<1,

then, again after an initial decay, the perturbation will grow.
The perturbation analysis given in [2] and discussed here in 5 leads one to expect, but

cannot be employed to prove, that in the cases in which (1.11 a) and (1.11b) hold the growth in
perturbations proceeds until there is a time t* and values x* ofx for which limt__,t, r(x*, t) O.
The numerical methods we present here were developed to see if such is the case and, if so,
to permit precise calculation of the break-up time t* as well as the "incubation time" required
for occurrence of appreciable growth of a perturbation after its initial (and generally rapid)
decay. Numerical experiments confirming expectations based on the perturbation analysis are
described in 5. We also give there an example of a case in which our numerical methods
can be applied to study the evolution of the body for > t*. In general, a topological change
occurs at t*, resulting in the break-up of the original body into separated subbodies. Thus
we refer to t* as the "time of break-up." (In the theory of motion by mean curvature, in which
the volume is not conserved but decreases in time, similar phenomena can occur, and their
times of occurrence are often referred to as times of "pinch-off.")

2. Basic equations. To describe the evolution of the surface of an infinite body of rev-
olution, we continue to use the cylindrical coordinates x and r of equation (1.5). We write
t for the unit tangent to the time-dependent curve r r(x, t) in the (x, r)-plane, and we
define the signed magnitude q of q so that q qt. For axially symmetric surfaces, when the
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dimensionless units are used, (1.2) and (1.1) become, respectively,

(2.1) rrt -(rq)x,

(2.2) q -(Vs H). t

where

v/1 +rx2

r V/1 +rx2
For numerical calculations we treat the body as one with finite length subject to space-

periodic boundary conditions with, say, period P. The resulting problems have properties of
volume conservation and area decay which we now discuss.

It follows from (2.1) that the volume of material lying between cross-sectional planes
x a and x b with b a P, i.e.,

b

(2.4) V (t) rc re dx,

is constant in time if r and q -Hx/v/1 + rZx are P-periodic. Equations (2.1) and (2.2)
together imply that the surface area (or the free energy) of the portion of the body lying
between these two planes, i.e.,

(2.5) P (t) 27r r + r2 dx,

is a monotone-decreasing function of time, provided that not only r and Hx/v + rZx but also
H and rx /v/ + r2, are P-periodic. The periodicity of r, H, rx /v/1 + rx2, and Hx/v/1 + rx2 are
equivalent to the periodicity of r, H, rx, and Hx. Thus, under boundary conditions implying
such periodicity, V is preserved and q represents a Lyapunov function for the evolution of r.

We put f2 (a, b) and write 2- (0, T) for an interval with T > 0 on which solutions
of (2.1)-(2.3) with r > 0 are defined. Under the conditions of periodicity just described

(2.6) + -2rr
v/1 + rx2

dx- -2re q2rv/1 + r2dx < O,

and hence under the same conditions

(2.7) f0tf (t) (t) + 27r q2(x, r)r(x, r) + r2x(X, r)dx dr

is constant:

(2.8) (t) (0) P(0).

For each initial configuration r0 we seek r(., t) satisfying (2.1.), (2.2), and the periodicity
conditions. The equation of evolution for r, (1.5), which is fourth order in the space variable
x, can be formulated in terms of r and H to yield a coupled system of second order in x.
The resulting fully nonlinear initial-value problem with periodic boundary conditions has a
variational formulation that can be slightly simplified by introducing a function R defined by

(2.9) R(x, t) -rZ(x, t).

In this way we are led to the following problem.
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(2.10)

(2.11)

Problem RH. Find (R, H) with R > 0 satisfying

2RHx )x (x,t)f2xZ,Rt
v/2R + RZx

( Rx )x (x, t) f2 x Z,H
v/2R + RZx v/ZR + RZx

with the periodic boundary conditions

R (a, t) R (b, t),

(2.12) H(a, t) H(b, t),

and the initial condition

(2.13)

Rx (a, t) Rx (b, t) Yt 6 2",

Hx (a, t) H (b, t) Yt 6 2-,

,.o(X)R (x, O) Ro (x)

3. Variational formulation. We use standard notation: L2(f2) is the space of square
integrable functions on 2, L (f2) is the space ofessentially bounded functions on , H (f2) is
the Sobolev space of functions in L2 (f2) with distributional derivative in L2 (f2), and Wl,c (f2)
is the Sobolev space of functions in L() with distributional derivative in L(). Of
importance here are subspaces H and W’ of H () and W’(), with (a, b), that
arise from our concern with periodic bounda conditions

{ n(). () (b)},

We also define H as the dual space of H. Let X be a Banach space on with norm
[[" [Ix. We denote by L2(0, T; X) the space of functions f from (0, T) into X such that

(ff []fl]dt)/2 < and by L(0, T; X) the space of functions f from (0, T) into X such
that [[ f[[x is essentially bounded on (0, T).

For brevity we write

(L g) fg dx.

Variational form of Problem RH. Find R 6 L(0, T; W’) with R > 0 and Rt
L2(0, T; H1) and H 6 L2(0, T; H) satisfying

(.) ((., 0), w) (N0, w) w e ().
We note that there e not yet available proofs of existence and uniqueness for solutions

for either Problem RH or (3.1)-(3.3). However, if we are granted existence and uniqueness,
the stated variational fo of Problem RH is a useful formulation for the construction of the
conforming finite element approximation schemes presented in 4.
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Straightforward arguments show that solutions of (2.10)-(2.13) obey (3.1)-(3.3) and that
solutions of the variational equations (3.1)-(3.3) with sufficient regularity obey (2.10)-(2.13).

Constancy ofvolume and monotone decrease of surface area hold for each solution (R, H)
of (3.1)-(3.3). To show this, we observe that in our present notation

(3.4) f" 2rc(Rt, 1),

and hence by putting u _= 1 in the time interval (0, t) and u -= 0 in the time interval (t, T) in
equation (3.1), we obtain

(3.5) v(t) v(o).

In (3.1) and (3.2) by.putting u H and v Rt in the time interval (0, t) and u -= 0, v _= 0
in the time interval (t, T), both of which are admissible test functions, we obtain

(3.6)

(3.7)

(Rt, H) dt +
v/2R + R2x, H2x dt O,

(H, Rt) dt
v/2R + R2x

g at-1t-
v/2R 4 R2x

gtx dl,

As q 27r(v/2R + Rx2, 1) and hence

(3.8) +--27r
v/2R+Rx2

,Rt +27r
v/R4R2x’Rtx

(3.7) yields fd + dt 27c fd (H, Rt) dt, and, by (3.6),

(3.9) (t)- (0) -27r
v/2R + R2x

H2x dt.

Hence

tp (t) *(0) -2yv

vl2R + R2 H2x dt <_ O.

4. Finite element method. To approximate the variational form of Problem RH, we
here construct a family of mixed finite element methods for which piecewise polynomial
approximations in space and time are used for both R and H. Leta --x0 < xl < < XN b
and 0 o < < < K T be partitions of f2 and 2-, and let hi Xi+l xi,

0 N and kj j+ j, j 0 K 1, be mesh spacings and time
steps. Let S (f2) be the finite element space of continuous functions Q that are piecewise
polynomials of degree p > on each interval of the partition of f and obey the periodicity
condition Q(a) Q(b). We write S (2-) and (2-), respectively, for the finite element
spaces of continuous and discontinuous functions that are piecewise polynomials of degree
q > 0 on each interval of the partition of 2-. The members of the tensor product spaces

Shtq S (a)@ Sc (2-), -p,q p -qSh s (R) s
are functions on f2 x 2-. We consider, for given integers p > 1, q > O, the following.
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Finite element approximation of type (p, q) to Problem RH. Find Rhk E Sq+l and
-p,qHhk Sk satisfying

((Rhk)t, Uhk)dt + v/2Rhk + (Rhk)2
(Uhk)x dt 0 -p,qVuh Sh

(Hhl, Vhlc)dt
v/2Rh + (Rhlc)2x,

(Vhk)x dt

+
v/2Rhk -Jr-(Rhk)2x

Uhk dt VUhk q,

(Rhk (’, 0), Whk) (Ro, Whk) VWh S().

We note that Rh is a polynomial of one degree higher in time than Hh and the test
functions uh and Vh. The simplest finite element approximation in this family is that of
type (p, q) with p and q 0, i.e., that for which Rhk is a continuous piecewise linear
polynomial in both space and time and Hh and the test functions Uh and vh are continuous
piecewise linear polynomials in space and piecewise constant in time.

Because the test functions Uhk and vhk are discontinuous in time, finite element solutions
(Rh, Hhk) can be computed by marching through successive time intervals. Let Pq (In) be
the set of polynomials on 2TM [tn, +l] of degree q. On the time-strip I the appropriate
restrictions of Rhk and Hhk belong to S (S2) (R) pq+l (In) and S2 (f2) (R) Pq (In), respectively,
and obey, for each Uh and Vh in S() (R) Pq (In),

f
t"+ ft"+( 2R(Hh)x

((Rhk)t, uhk)dt +
v/2Rhk + (Rhlc)2xdtn dtn (Uh)x) dt O,

(4.2)

(Hhk, Vhk)dt f (Rhk)x

V/2,Rh -[- (Rhk)2
(Vhk)x dt

+
at v/2Rhl -}- (Rh/c)x2, Uhk dt

where Rh at t" is fixed by continuity (or by the initial condition if n 0).
The arguments which gave us (3.4) and (3.8) hold for the spaces to which Rhk, Hh,

Uh, and Vh belong for each finite element approximation, and each approximate solution
(Rh, Hhk) will show constancy of V and (I) and monotone decrease of q.

In the simplest case, p and q 0, we write Rh(x, t) on the time-strip 2- as

Rhk (X, t) [Rhk(X, n+l) Rhk(X, tn)] + Rhk(X, tn),

and Hh1(x, t) reduces to the constant-in-time function Hh(X, t) Hh(X, (t + t+l)/2).
Upon use of the usual expansion in piecewise linear basis functions, (4.1) and (4.2) yield a
system of nonlinear algebraic equations for the coefficients of the basis functions. In our nu-
merical work that algebraic system was solved by an iteration procedure which was initialized
with the choice Rh (x, 1) Rhk (X, ) for the time-strip I [t, and carried forward
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with the extrapolation

0 ,tn+l ( kn) k
ghk(X q- ghk(X, n) k---(_l ghk(X, n-l)

for the strip 2-n, n _> 1; here Rk denotes the lth iterate of Rhk. At the lth iteration on2-, n _> 0,
Rlhk, and Hh/ are determined by solving the linear system

_ti,,
n+

_jfn+l ( 2Rlhl
(Rhl)x2

(Hh)X
(Uh)x dt O,((Rlhl)t, Uhk)dt +

(Hlh, Vh)dt
j2R_

+ Vh dt

with Uh and Vh as in (4.1), (4.2) and
n

R(x, t) k[R(x, n+) R(x, tn)] + Rh(X, t).

5. Numerical experiments. For the two numerical experiments described below, we
employed a finite element approximation of type (1, 0). The initial data had the form (1.6),
(1.7) with each phase angle, i, zero and, more importantly, each wave-number ki greater than
l, so that (1.10) yields

(5.1) a(ki) < O, i= M,

and hence each exponential term in the solution (1.9) ofthe linear equation (1.8) decays to zero.
The wave-numbers ki were taken to be commensurate, which makes the periodic boundary
conditions (2.12) exact relations.

Let Y be given by

(5.2)

and put

(5.3)

b

Jr(b a)F2 V(0) Jr rdx

g(t) sup Ir(x, t)
X

A cylindrical body can be said to be asymptotically stable against a class 79 ofperturbations,
u, if for each function r0 / u with eu in 79 the solution of Problem RH obeys the two
conditions

(I) r(x, t) > 0 (x, t) e f2 x (0,

and

(II) g (t) --+ 0 as --(I) asserts that "break-up" does not occur; (II) asserts that in the limit as -- cx the body
returns to cylindrical shape with a radius determined by the mean volume V(0)/(b a) of
the perturbed cylinder. (To generalize the condition (II) to initial data that are not periodic,
but instead, say, almost periodic, one may replace V (0)/(b a) in the definition of by the
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quantity

(5.4) (Trr2} 2(7r R) lim
7c ’lx+x r2dx

x 2X J-X+xo

which is constant in time and, for almost periodic functions, independent of x0.)
When the function u in (1.6) is specified, the solution r of the nonlinear equation (1.5)

depends on e. For the perturbation analysis given in [2] we made the usual assumption that
the dependence of r (x, t; e) on is sufficiently smooth that for each integer n one can write

(5.5) r(x, t; ) + eSw(O(x, t) + O(en+l).
/=1

By placing (5.5) in (1.5) and using (1.6) with u as in (1.7) we found, using a perturbation
analysis of order 2, i.e., setting n 2 in (5.5), that the term 1 + ew(1)(x, t) is given by the
right-hand side of (1.9), and

(5.6)

where

(5.7a)
3c(ki)

A(i; t)
2[ot(2ki) 2ot(ki)]

(5.7b) A2(i, j; t)

(5.7c) A3(i,j;t)

(e(2ki) e2Ot(ki)t),

CiCj+(ki,kj)
ot(ki -t- kj) ot(ki) ot(kj)

(eot(ki+kj) e(Ot(ki)+(kj))t),

cicj-(ki,kj)
ot(ki kj) (ki) (kj)

(eo(k-kj) e(a(k)+a(kj))t)

with o as in (1.10) and

(5.8a) fl(k) k2(1 -+- k2),

(5.8b) fl+ (ki kj) (ki kj + k + k) (1 -Jr- ki kj

(5.8c) 2fl (ki, kj) (ki kj ki kj)(1 ki kj).

When, as in the numerical experiments, (1.1 la) holds, the quantities ot(ki), ot (2ki), ot(ki -+-
kj) are negative for each and j > i. Hence not only w() but also all the terms in w (2), other
than the constant term a2 /M__, c/2 and possibly some of the form e2f(ki, kj," t)cos((ki
kj)x + Pi (#j with

(5.9) f (ki, kj; t)
cicjfl-(ki, kj) ea(ki_kj)t

ol(ki kj) ot(ki) ot(kj)
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will decay to zero exponentially with increasing t. The quantity If (ki, kj; t)l is constant in
time when Iki kjl 1; it increases exponentially if and only if

(5.10) 0 < Iki- kjl < 1.

Thus, if (1.11a) holds and in addition Iki kjl > for all distinct pairs (i, j), the second-
order perturbation analysis, like the linear theory, does not yield the existence of times at
which g(t) increases; however, a higher analysis may yield such times. In fact, exponential
growth of g(t), beginning at some time > 0 and proceeding until break-up occurs, i.e., until
a time t* at which there are.values x* of x with r(x*, t*) 0, will be shown in an nth-order
perturbation analysis if (1.11b) holds for an M-tuple (m m mM) with the mi having
(positive, negative, or zero) integral values.

In the numerical experiments reported here (1.1 la) and (5.10) hold for at least one pair
(i, j), < j, and hence although the linear theory based on (1.8) predicts that the cylindrical
body is asymptotically stable against the perturbation studied, the second-order theory predicts
that the body is not stable against the perturbation and suggests that break-up can occur at a
finite time. Specifically, underthe conditions of the experiments, the second-order analysis
yields the conclusion that for short times r(x, t) is approximated by the expression

(?2 M M

+ - Z c2i + e Z ciet(ki)t sifl(kix + q)i)
i=1 i=1

where each ot (ki) is negative, and hence, after a brief time interval, r (x, t) will be close for all
x to the constant

c + c/2 + 0((?4);? --[- -- i=1 /=1

i.e., the body will be essentially indistinguishable from a cylinder. In a subsequent time
interval, however, r (x, t) will be approximated by

52 M

+ - c2i +2 f(ki,kj;t) cos((ki-kj)x -I-q3 --qgj)
i=1 (i,j)eF

where f is as in (5.9) and r’ is the set of pairs (i, j) with 1 _< < j < M and [ki kj[ < 1;
during that interval g(t) will increase monotonically.

Let v be the minimum value that g(t) must have for a departure ofthe body from cylindrical
shape to be easily observable after g(t) has decayed and started to increase. The time t# at
which g(t) attains the value v (after an initial decrease) may be called the "incubation time"
for observable growth of a perturbation which according to the linear theory (1.8) would only
decay. The second-order perturbation analysis gives the following relation for t# in the case
in which there is precisely one pair (i, j) for which (5.10) holds"

(5.11) v 62f (ki, kj; t#).

A reasonable value for v would be 0.05. We note that equation (5.11) implies that t# varies
slowly, i.e., logarithmically, with e.

For large k, or(k) decreases rapidly with k; indeed, as oe(k) -k4. However, on the
interval 0 < k < 1 where or(k) is positive, the maximum value of or(k), ot(1//), is only
1 Hence the incubation time t# can be expected to be orders of magnitude longer than the4"



1444 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

time required for decay of an initial perturbation that has each ki appreciably greater than 1.
This disparity in time scales requires that time steps be adjusted in numerical calculations in
accord with the rate of convergence of the iterative procedure described at the end of 4, i.e.,
in accord with the rate of evolution of R and H.

For the first numerical experiment the initial data correspond to the function

(5.12) ro(x) q--5 10-2 [sin(5x)+ sin(llx/2)],

which has minimum period 47r. Here kl 5 > 1, k2 11/2 > 1, but ]kl k21 1/2 < 1.
According to the second-order perturbation analysis, the two sinusoidal terms in the initial
data should decay rapidly, and, after this rapid decay, which in the present case lasts until
approximately 2 10-2, r(x, t) should be, for a while, close to a cosine function of x
which has period 47r and an amplitude growing as e(1-/2t with or(l/2) 3/16. In the finite
element scheme, the interval a < x _< b was chosen to have length 87r, i.e., two periods,
and was discretized into 512 equal segments. For the time interval 0 < _< 5 10-2 that
contains the times of rapid decay of g(t), the time step, At, was chosen to be 10-4; during
the early growth phase, i.e., for 5 10-2 < < 28.05, At was set equal to 10-2. For
28.05 _< _< 28.27234 t*, the time steps were refined in such a way that At decreased
rapidly as approached the break-up time t*. (As is common practice, we repeated suspected
critical parts of this and the second numerical experiment using refined spatial and temporal
meshes; the reported mesh densities are such that further refinement produced no change in
results.)

In Fig. l there are graphs of r versus x for various between 0 and t*. The initial data,
(5.12), are shown in Fig. la. The scale of the ordinate r contracts in the sequence from
Fig. lb to Fig. f, but in each case is greater than that of the abscissa x. Figure lb contains
graphs corresponding to 10-2 and t- 1.63 x 10-2. At 10-2 remnants of the terms
5 10-2 sin(5) and 5 10-2 sin(1 lx/2) can be seen perturbing the function 7(., t) given by

(5.13) 7(x, t) ? + e2f(5, 11/2; t) cos(x/2)

.where 2 25 10-4 and f is as in (5.9) with ot 3/16. At 1.63 10-2, g(t) attains its
minimum value, and at that time the difference between r(x, t) and ?(x, t) is not detectable
on the scale employed for r of Fig. lb. Figure l c contains graphs for values of at which
r(x, t) is close to ?(x, t); the earliest time at which the second-order perturbation analysis
gives results (here plotted with dashes) that are distinguishable from the finite element results
(on the scale of Fig. l c) is 15.

In Fig. 2, where we employ equal scales for the ordinate and the abscissa, there are shown
profiles of the axially symmetric body whose surface is given by r r(x, t). The initial
configuration is seen in Fig. 2a. At a time 10-2 the body is of cylindrical shape to within
an error of the order 0.1% in r. If we set v 0.05, the configuration shown in Fig. 2b, i.e.,
that for 20, is very close to one with g(t) v; in fact, the finite element results yield 0.05
for g(t) when 19.55; the second-order perturbation analysis, on the other hand, yields
0.05 for g(t) when 19.72. We think it remarkably fortunate that in this case an elementary
analysis that takes into account only the lowest-order nonlinear terms gives an estimate for
the incubation time t# that is off by only 1%.

There are cases in which the evolution of the subbodies formed at time t* can be studied
for > t* by reparameterizing with spherical coordinates the surface of each connected
subbody. In this procedure one chooses a point on the original x-axis to be the origin of
a spherical coordinate system, and the closed surface of the subbody containing that origin
is described by giving the distance ? from the origin to a point on the surface as a function
of and the colatitude q) measured from the x-axis. A finite element method analogous to
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FIG. 1. The radius r as a Junction of x ’at various times in the first numerical experiment: (a) 0; (b)
10-2 (wavy line), 1.63 10-2; (c) 0.1, 5, 10, 15 (the dashed curve gives the result ofthe second-order

perturbation analysis at 15); (d) 16, 18, 20; (e) 22, 24, 26; (f) 28, 28.25, 28.27234.

(a)

(b)

(d)

(e)

(c) (f)

FIG. 2. Profiles at selected times in the first experiment: (a) 0; (b) 20; (c) 23; (d) 25.5; (e)
28" (f) t* 28.27234.

that employed for the cylindrical-coordinate formulation gives satisfactory results in cases in
which, for all > t*, the closed surface remains star shaped with respect to a fixed point.
We note that for motion by Laplacian of mean curvature there is no analogue of Huisken’s
theorem [7] in the theory of motion by mean curvature, asserting that if a closed surface
deforming in accord with (1..4) is convex at one time o then it is convex at all subsequent
times.



1446 B.D. COLEMAN, R. S. FALK, AND M. MOAKHER

FIG. 3. Profiles in thefirst experimentat times t* +for " 0, 10-3, 10-1, 1, 4, 10. Note that at " 0, 10-3,
and O-1 the subbody is convex and that this convexity, which is not present at 1, returns before 4.

In the experiment under discussion here, the subbodies are congruent and for all > t*
are star shaped with respect to the midpoints of successive values of x*. Calculated profiles
of a subbody for several times t* -t-/" with/’ > 0 are seen in Fig. 3. When/" 10 each
component is a sphere in the sense that ?(0, t* / 10) is constant in q) to within six significant
figures; of course, the collection of spheres so obtained is the new equilibrium state of the
original perturbed cylinder.

The initial data for the second numerical experiment correspond to

(5.14)
ro(x) 1 + lO-2[sin(2x) + sin(13x/6) + sin(7x/3)

+ sin(5x/2) + sin(8x/3) + sin(17x/6)].

In this case r0 has minimum period 12zr. For the finite element computation, b- a was chosen
to be 12zr, i.e., one period. As in the previous case, the interval a < x < b was discretized
into 512 equal segments, and the time steps At were chosen to be 10-4 on an interval that
contained the times of initial decay, 10-2 during the early growth phase and much smaller
as approached t*. Numerical results are shown in Figs. 4 and 5. Here, again, albeit only
wave-numbers ki that exceed 1 are present in the initial perturbation, and hence the linear
theory predicts that g(t) should decay to zero exponentially in t. A second-order perturbation
analysis yields the conclusion that new wave-numbers given by Iki kjl will appear and grow.
In the present case there are five distinct values of ]ki kj] obeying (5.10), namely, 1/6, 1/3,
1/2, 2/3, 5/6. Of these, three, 1/2, 2/3, 5/6, have rates of growth, or(l/2) 3/16 0.1875,
oe(2/3) 20/92 0.2469, ot(5/6) 275/362 0.2122, that are close to maximum growth
rate o(1/,/) 0.25. The periods 2zrlki kj1-1 corresponding to these three fast-growing
modes are 4rr, 3rr, 12rr/5. The distances between adjacent local minima of r(x, t*) were
found to be 9.,35115, 9.42478, and 9.57204. One of these values is equal, up to five decimal
places, to 3zr 9.42478, and the other two are much nearer to 37r than to either 4zr or 127r/5.
As c(1/2) and ot(5/6) both are less than ot(2/3), it is not surprising that an examination
of spatial frequencies at t* confirms that the mode with wave-number 2/3 (period 3zr)
dominates the growth.

Whereas in the first experiment the body breaks into congruent subbodies, in this exper-
iment the break-up at time t* yields two distinct equivalence classes C1 and C2 of congruent
bodies. Figure 5d makes this clear. At t*, the bodies in C1 have length 9.57204, and those
in C2 have length 28.12708 2 x 9.33115 + 9.42478. We have found that members of C1
remain star shaped for all > t*, and the spherical-coordinate formulation can be employed
to follow their evolution to a final equilibrium state which is spherical. On the other hand, the
bodies in C2 cease to be star shaped at a finite time, and for them the spherical-coordinate for-
mulation is not applicable without major modification. Here the question arises as to whether
subbodies of class C2 will exhibit further break-up or end up as a single sphere. The search
for a general algorithm to study post break-up behavior is a topic of current research.
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FIG. 4. The radius r as afunction ofxin the second numerical experiment: (a) 0; (b) 0.7, 4.7, 6.7; (c)
12, 16, 19" (d) 20, 22, 24; (e) 26, 28, 30; (f) 31.5, 31.7, 31.7357.
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FIG. 5. Profiles in the second experiment: (a) 0; (b) 30; (c) 31.5; (d) t* 31.7357.
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A FAST MULTIGRID ALGORITHM FOR ISOTROPIC TRANSPORT
PROBLEMS II: WITH ABSORPTION*
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Abstraeto A multigrid method for solving the one-dimensional slab-geometry SN equations with isotropic
scattering and absorption is presented. The case with no absorption was treated in part of this paper [Manteuffel,
McCormick, Morel, Oliveira, and Yang, SIAM J. Sci. Comput., 16 (1995), pp. 601-635]. Relaxation is based on a
two-cell inversion, which is very efficient because it takes advantage of the structure of the two-cell problem. For
interpolation we use kinked linear elements. The kink is based on the amount of absorption present. The restriction
operator is full weighting. Numerical results show this algorithm to be faster than diffusion synthetic acceleration
(DSA) in all regimes. This scheme is also well suited for massively parallel computer architectures.

Key words, multigrid, particle transport

AMS subject classifications. 65N20, 65F10

1. Introduction. In this paper we describe a fast method for solving the equations used
to model the transport of neutral particles with isotropic scattering in slab geometry. These
problems are important in many applications such as nuclear reactor design, radiation therapy
in medical science, and radiation effects on global weather, and they are a fundamental part of
many algorithms used to model more complicated applications such as coupled photon/electron
scattering used to model satellite electronics shielding.

We focus on the solution of the steady-state, monoenergetic, linear Boltzmann equation
in slab geometry. The need to solve such equations arises from the time-dependent Boltzmann
equations used in the applications mentioned above. The physical domain is assumed to be a
semi-infinite slab of width b a in the x dimension. Although they are three dimensional, we
assume that the flux of particles is independent of the y and z coordinates. Let (x, #, e, t)
represent the flux of particles at a position x, traveling at an angle t* to the x-axis, with energy
e, at time t. The Boltzmann equation takes the form

(1.1)

o--t- =-x a,(x, e) + (’ , e’ e)(x, ’, e’, t)d’dd +q(x, , e, t).

Here, at is the collision cross section and fx tdx represents the expected number ofcollisions

that a particle will experience in the interval (x0, x). In the same manner, the scattering kernel

f f K(’ , e’ e) represents the expected number of particles that will scatter from
direction and energy e’ to direction and energy e. Finally, q(x, , e, t) represents
particle sources.

The above equation is usually integrated with implicit time-stepping methods and the
energy variable is treated with a piecewise-constant finite element method to yield a coupled
system of equations m each time step. Let $(x, ) be the flux of particles with energy e.
Then

(1.2) + a(x) . K,j(>’ >)J(x, >’)d>’ + q(x, >),
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where the time-step information has been incorporated into
represents the expected number of collisions that will rescatter a particle from energy ej into
energy ek.

Since particles generally lose energy, the system of equations is solved by a block Gauss-
Seidel-type iteration. Starting with the highest energy level, TrY(x, /) is updated assuming
that pJ (x, #) for j k are known. This yields the equation

(.3) +(x) K,(’ )(x, ’)d’+ O(x, ),

where now K contains all the inscatter from other energy levels.
The kernel K, is often mildly anisotropic, becoming more isotropic as energy decreases.

In this paper we focus on the isotropic form of (1.3) (for strongly anisotropic scattering see
[41):

O(x,

Here, as is now the scattering cross section and represents the expected number of collisions
that result in a rescatter, while aa at a, represents the expected number of collisions that
result in an absorption. When at a,, there is no absotion. The equation is well defined if
the flux of particles entering the slab is given as boundary conditions

(.5) (a, u) g(u), (b,-U) ge(u) U(0, ).

In general, numerical methods that are effective for isotropic equations also work well for
mildly anisotropic equations. We believe that this will be especially true for the multigrid
algorithm described below because of the special form of relaxation used (see 3).

Problem (1.4) will inherit the discretization scheme from problem (1.1). The standard
approach is to expand the angular dependence in terms of the first N Legendre polynomials
and to close the system with a Galerkin condition. This is attractive because the Legendre
polynomials are the eigenvectors of the scattering operators Kk,j in slab geometry. This
results in the PN- discretization. In slab geometry, this is equivalent to collocating at Gauss
quadrature points which are known as the discrete ordinates or SN discretization (cf. [7, 13]).

Spatial discretization must take into account the important optically dense or thick limit
in which the problem becomes ill conditioned. Physically, this coesponds to a mean-flee
path between collisions that is small compared with the width of the slab and materials that
allow very little absorption. Mathematically, we have

as(1.6) at , 1.

Dividing (1.1) by at and taking the limits in (1.4) yields

(1.7)

which admits any (x, ) that is independent of . Thus, in this limit, (1.4) is singularly
perturbed with a large near null space. For discrete equations it is the product at hi, where hi is
a mesh parameter, that parameterizes each equation. There are two quantities that determine
the character of the discrete problem: the overall thickness at(b a) and the thickness of
individual cells athi.

Some spatial discretization schemes, for example upwind differences, have discretization
eor O(athi). Thus, for at >> these schemes require hi 0 even for well-behaved
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solutions. For a discussion of this issue see [4, 10] and Larsen and Morel [6]. One difference
scheme that behaves well in the thick limit is the modified linear discontinuous (MLD) scheme
[6]. Not only does it give the proper behavior in the thick limit, but it is very accurate. In 10],
we developed a very efficient multigrid algorithm to solve the discrete equations produced by
the MLD scheme in the absence of absorption (o’t rs). Our analysis shows that, in this case,
a V(1,1) cycle version of our algorithm yields a convergence factor p bounded as follows:

(a) for maxi(ffthi) << 1, p--- O(maxi(crthi)2),
(b) for mini(trthi) >> 1, p-- O(maxi(h/)).

Numerical results are even better than these theoretical estimates. Experiments yield the
following convergence factor p for a V (1, 1) cycle:

(a) for maxi(crthi) << 1, p O(maxi(crthi)3),
(b) for mini(crthi) >> 1, p O(mini(o.thi):2 ).
When there is absorption in the transport equations (o’t > o’s) and rth >> 1, the two-cell

/z-line relaxation used in [10] will leave an error that is essentially independent of angle and
continuous but no longer linear across two cells (see [10, 3]). The deviation of the errors

and h. Because the errors after relaxationfrom linearity depends on the value of 9,, t
will not be linear across two-cell pairs, the linear interpolation used in our previous multigrid
algorithm is unsuitable. In this paper, we will present a new method which uses kinked
elements whose shape will be determined by the severity of deviation from linearity of the
errors after relaxation. When ?’ 1, the kinked element will be linear.

We remark that for small values of the angular discretization dimension N the discrete
form of (1.4) could easily be solved by direct inversion of the resulting banded matrix. How-
ever, direct methods require O(N2m) operations and O(N2m) storage, where m is the num-
ber of spatial cells. Both the method described here and the diffusion synthetic acceleration
(DSA) 1, 2, 5] to which we compare our method require only O (Nm) operations and storage.
Thus, these methods are viable for problems that require fine angular resolution. Because of
the large number of times equations of the form (1.4) must be solved, efficiency is critical.
Moreover, both DSA and our method have obvious generalization to higher spatial dimen-
sions.

In 2, we analyze the properties of relaxation when , 1. In 3, we introduce the kinked
element, relaxation-induced interpolation, and coarse grid operators used to solve the transport
problems when V 1. The multigrid algorithm is discussed in 4. In 5, we examine the
properties of the new interpolation. In 6, computational results are presented. We show that
the multigrid algorithm is faster than the DSA algorithm 1, 2, 5] on a representative set of test
problems. We include a study of domains with nonhomogeneous material properties. Finally,
in 7, we present our conclusions.

2. The discrete model. We start with an SN approximation in angle. This corresponds
to expanding the angle dependence in terms of the first N Legendre polynomials. Closing the
equations with a Galerkin formulation yields a system that resembles collocation at the Gauss
quadrature points/zj, j N. Similarly, the integral is replaced with a quadrature
formula using the Gauss quadrature weights coj, j N. By symmetry, we may
denote the positive quadrature points /zj > 0, j n with corresponding weights
coj, j > n, and negative quadrature points -/zj < 0, j 1 n with corresponding
weights o)j, j 1 n, where n N/2. We use + (Xi, /zj) l(Xi, /zj), lit- (Xi, /zj)
7r(xi, -/zj) to denote flux variables at spatial point xi, angular position /zj at positive and
negative directions, respectively.

The spatial difference scheme is the MLD discretization. Consider the grid a Xl/2 <

X3/2 < < Xm+l/2 b, where Xi:t:l/2 are cell edges and xi (xi-1/2 --1-- xi+1/2)/2 is the cell
center. Let ]- (7t+(xi,/zl) P+(xi,/zn)) r and- (P-(xi,/zl) P-(xi,/zn))r.
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In matrix form MLD can be written as (for a complete presentation see [6], [10])

(2.1a)

(2 lb) +. + ++ ’R(_._.i+_q_1/2 .-+- 27, lrT1 "-}- q+i2Bi llti_ .--? ---i_ ---. -+-

for rn and

(2.1c)

(2 ld) 2Bi(7,_ - _7, + _7,
__

for m with boundary conditions

where Bi and R are the n x n matrices

(2.1f) ".. R--

ffthi

In block matrix form, (2.1) can be written as

(2.2)
I + 2Bi ?’ R

0

Bi

-27’R -2Bi ?’R 7,__
I v R -vR Bi l[t]

o
-2Bi -27’R I + 2Bi ?,R lp?+

COn ]= leo:r.

l/ i-1 - q7
1+q7,Bi ___L-

q__i++
In this paper, we will use an edge-edge notation for the unknown flux variable gr. That

is, the flux within cell is linear and is determined by the value at the right and left sides lri+
and + We define the transformationil"

(2.3a)

Then the inverse transformation of (2.3a) will be

(2.3b)

_7-1/2 o o o
+

o o --Tr
/r;1/2 0 0 0 i;

Figure 2.1 shows the piecewise discontinuous elements we use. At cell i, two variables
gri;, grir are defined.
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FIG. 2.1. Piecewise discontinuous elements.

By substituting (2.3b) into (2.2) and multiplying both sides of (2.2) by the transformation
matrix of (2.3a), we then can write (2.2) in block matrix form as

(2.4)

A1 -C1
A2 -C2

Ai -Ci

where Q is the right-hand side and

(2.5a) Ai

I + Bi vR -yR -Bi 0
-yR I -+- Bi yR 0 Bi
Bi 0 I + Bi yR -yR
0 -Bi -yR I + Bi yR

(2.5b)

0 0 0 0
0 0 0 0

i=1 m-1Ci
2Bi 0 0 0
0 000

(2.5c)

0 0 0 0

Di
0 0 0 2Bi 2 rn
0 0 0 0
0 0 0 0

(2.5d) kI/i __- (r/, 1/ri l/rr .._.i+r T rn

In the following section, we will examine the two-cell/z-line relaxation and its properties.

3. Relaxation. By two-cell red-black/z-line relaxation, we mean that at cells 2i
and 2i, we set l/t(/_2) and l/r2i+1)/as boundary values and Solve for all other interior values
in cells 2i 1 and 2i simultaneously. This relaxation is carried out in a red-black order-
ing. Since relaxation uses a red-black ordering, we can look at each two-cell pair individ-
ually. For a two-cell pair, for example cells 2i and 2i, the errors after the relaxation
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will be

(3.1)

e(2i-1)/

ei-1)l
8--(2i- 1)r
+

e_.(2i- 1)r

e(2i)/
+

e(2i)/

e--(Zi)r
+

(2i)r

-D2i A2i

-1

0

2B2i-18_(2i_2)r
0

0

0

0

2B2i-i+ )l

0

where on the right-hand side is the error at the outside border of the two-cell pair before
relaxation. As we have shown in our previous paper 10], the inversion ofthe

A2i-1 -C2i--1 ]-D2i A2i

can be performed in O (n) operations by using the Sherman-Morrison formula. In 10], only
the case , 1 was examined. The following result for ?, was proved.

THEOREM 1. Suppose ?’ in (3.1) and min(trth2i_l, tzrth2i) 1; then, the errors

after the two-cell red-black Ix-line relaxation will be independent of angle, continuous, and
piecewise linear up to accuracy of O (max( th2i-1’1 ,th2il )).

Proof See Theorem 3 in [10].
In this paper, we will discuss the MLD equation with absorption(, 1). In the thin limit,, will not affect the behavior of Ix-line relaxation. The proof of Theorem 2 that appears in

[10] does not depend on ?,. We restate Theorem 2 in [10] for , < in the following way.
THEOREM 2. Suppose , < and max(othzi_, o’th2i) 1; then the errors after two-cell

red-black Ix-line relaxation will be continuous and piecewise linear across two cells up to

accuracy of O (max(trt2hi_l tTt2hi )).
Proof See the proof of Theorem 2 in [10]. D
In the thick limit, the size of 1- ?, relative to othi-ll and1 will determine the effectiveness

of Ix-line relaxation. For simplicity, we restrict our analysis to uniform trthi and let h be the
uniform mesh size. The extension to nonuniform meshes is straightforward but messy. We
will analyze the Ix-line relaxation when

(a) V >> --,
(b) 1 ?, thP’ P 1, 2, 3.

In the second case, when rth >> 1, the larger p is, the closer F is to 1.
THEOREM 3. When F >> and crth >> 1, the two-cell Ix-line relaxation alone will

reduce errors at any two neighboring cells 2i 1, 2i by afactor of O(,h )"
Proof When F - 1,

-yR I- yR 0 I +
1- y R R



MULTIGRID FOR TRANSPORT II: WITH ABSORPTION 1455

Write

(3.3)
A2i-1
-D2i

-C2i-1
A2i

I-,R
-yR

I- yR -yR
-yR I- yR

B 0 -B 0 0 0 0 0-
0 B 0 B 0 0 0 0
B 0 B 0 -2B 0 0 0
0 -B 0 B 0 0 0 0
0 0 0 0 B 0 -B 0
0 0 0 -2B 0 B 0 B
0 0 0 0 B 0 B 0
0 0 0 0 0 -B 0 B

Ho- H1,

where Ho is the first matrix and H1 the second in (3.3). By (3.2), Ho is not singular, so

(3.4) HIH1-- th

M 0 -M 0 0 0 0 0
0 M 0 M 0 0 0 0
M 0 M 0 -2M 0 0 0
0 -M 0 M 0 0 0 0
0 0 0 0 M 0 -M 0
0 0 0 -2M 0 M 0 M
0 0 0 0 M 0 M 0
0 0 0 0 0 -M 0 M

(1 ?,)trth

where M
/Zl

RM
RM
RM
RM
0
0
0
0

RM -RM RM 0 0 0 0
RM -RM RM 0 0 0 0
-RM RM RM -2RM 0 0 0
-RM RM RM -2RM 0 0 0

0 0 -2RM RM RM -RM RM
0 0 -2RM RM RM -RM RM
0 0 0 RM -RM RM RM
0 0 0 RM -RM RM RM
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When crth >> and (1 F) >> b-, then (1 y)rth >> and we can find a constant c
such that

(3.5) liB0-1Hl112

So

(3.6) (1)(I- Ho-1H1)-1 I q- Ho- H1 q- 0 crteh

Since H0-1 is constant, we have

(3.7)

I a2i-1 -C2i-1 ]
-1

-D2i A2i
(I- U"1 Hi)-1U"1 So-1 -I- So-1H1H q-- 0 grt2h2

(1)=/-/o

From (3.2) and (3.3) we have

(3.8) IIn0-all=
_

1 +
1-F

Therefore, by (3.8) we can find a constant c such that

(3.9) A2i-1 -C2i-1 ]-D2i A2i

-1

Substituting (3.9) into (3.1) and noting that Bi b-M, we have

1+ / +
)rII(e-i_l)l, e2i_l)l, e(2i_l)r, e(2i_l)r, e-i)l, e(2i)l, e(2i)r, e(2i I1 < c--.(rth

This completes the proof. Fq

When F 1 and (rth >> p 2, 3, the two-cell/z-line relaxation will((7th)P
produce errors that are continuous and essentially independent of angle but kinked across two
cells. To show this behavior, we rewrite (3.1) as
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(3.11)

e_(2i-1)/

2i-1)l
(2i-1)r
e2i-1)r
(2i)/
+

(2i)I
e(2i)r
+

e(2i)r

-D2i A2i

-1

-1

+
-D2i A2i

0

2B2i_1

0

0

0

0

0

0

0

0

0

0

0 e(2i+l)/"

0

2B2i J0

When ath >> 1 and ?, 1 (ath)p, we can expand matrix

A2i-1 -C2i-1
-D2i A2i

into Taylor series as O (ath) + O (1) + O(). We omit the details of the expansion because

of the complexity. Let and After the expansion, we have
atn

(312). [ A2i-l -C2i-1
A2i

-1

0

2B2i-1
0
0
0
0
0
0

oth

2RM
2RM
0
0
0
0
0
0

22

+ at3h3

0
0

4co--R
4co--R
2R
2R
0
0

(1)P(coM2R + clMR) + 0 th
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where

(3.13)
1= 1- k( 2wJ (1+-*’))( ?’

2 *j *J
j=

1 + + 2()2
CO O)jJJl,j,

j=l

C o)j/.t--
j=l

and

(3.14)

P=(1- )( 2 )( 22(a + 2co)2
MR 1 + MR 1-

6 + 4co 8 q-- 2C152 8C0C153 + 2coa + a2 M2R)
Here, is not expanded yet. Its expansion will depend on the power p in ,
will discuss the three cases p 1, 2, 3 separately.

Case (1) p 1.
When oth >> 1, ( in (3.13) can be expanded as

(ath)P" We

2wj(1 +
j=l 1+ ---+2()2

/tj /j + Co
---?’ jn____l 2C0j (l q--7-t-t)(1 2---t- 0 (at2h2))-- ?’ (1--2---t-t-)q-0 (a21h,2,)
So by (3.15), in (3.13) can be expanded as

2co -1
I- 0(3.16)

( 1 y q- -}- O(o.th-----) 1 + 2C0 at2h2

When p 1, P of (3.14) can be expressed as

( 2 MR)+O(+)(3.17) P=(I+MR) 1-
1+ 4co

By (3.16) and (3.17), the norm of the second term in (3.12) is O(TZ). So

A2i-1 -C2i-1 ](3.18)
--D2i A2i

-1

0
2B2i_1

0
0
0
0
0
0

1 / 2c0

2RM-
2RM
0
0
0
0
0
0
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2 RM2i_2)r1+2c0

olo
+ + +

e(2i-1)/ (2i-llr e(2i)/
1o

+
e(2ilr 2i-1)l

2l+2coRMi+l)l

+2i-1)r e(+2i)l e(2i)r

(a) (b)

FIG. 3.1.

Similarly, we have
0
0

[ A2i_l -C2i_l ] 0
(3.19)

D2i A2i 0 1 + 2co
0

2B2i
0

0
0
0
0
0
0

2RM
2RM

By (3.18) and (3.19), the errors after relaxation will be essentially independent of angle but
not piecewise linear. To graphically show this, we plot the errors after the/z-line relaxation in
Figure 3.1. Figure 3.1a depicts the first term in (3.11) for positive angles. Figure 3.1b depicts
the second term in (3.11) for positive angles. The real errors after relaxation should be a linear
combination of Figure 3.1a and b. The error distribution for negative angles will have the

+ +same pattern. From Figure 3.1 we see that, after relaxation, e(2i_l) equals (2i)1 and e(2i_l)
equals e(2i) up to accuracy of O(). We can see that the error after relaxation is kinked and
that linear interpolation will not be suitable for this case. However, regardless of the size of

e2i_2) and e2i+1)i, the errors at the boundary between cell 2i 1 and cell 2i are O (-h).
Case (2) p 2.
When p 2 and oth >> 1, with " as in (3.15), can be expanded as

1 1 ath
(3.20) 2coy1 g" , + + 0() 2co

and P in (3.14) can be expanded as

ath
(3.21) P MR+ 0(1).

+4c1
Substituting (3.20) and (3.21) into (3.12), we have

[ A2i-1 -C2i-1
(3.22) -D2i A2i

0

2B2i-1
0
0
0
0
0
0

I__RM
CO

J-RM
CO

2cl RMc0(1+4cl)

Zcl RMc0(1+4Cl)

2.c. RMco(1+4c)
Zc RMco(1+4c)

0
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^+1__ RMe(2i_2)rCo

2q
co(1+4c)RMi_2)r

olo olo
e-2i-1)l i-1)r e--(+2i)l

10
-(2i)r

1_ RM-i+I)ICo

2ct
c0(1+4Cl) RMi+l)l

ol8 ,’ olo
+ +

e-(2i-1)/ e--i-1)r ei)l e--(2i)r

(a) (b)

FIG. 3.2.

and

A2i-1 -C2i-1 ](3.23)
-D2i A2i

-1

0
0
0
0
0
0

2B2i+1
0

0
0

,2Cl RMco (1 +4Cl
2Cl RMco(1+4c)

.2c RMcO(I+4Q)

2cl.
co(1+4c) RM

I_.RM
co
I_.RM
Co

We plot (3.22) in Figure 3.2. The errors for negative angles are similar. We can see once again
the errors after relaxation are essentially independent of angle and continuous across cells but
kinked linear. In fact, they will be sublinear; that is, the error at the interface between cell
2i and cell 2i is less than the average of the errors at the edges of the two-cell pair.

Case (3) p 3.
When p 3 and o’th >> 1, with in (3.15), can be expanded as

crth (1)2coy + 0(3.24)
1 ff y + + O(,-) 2co crtZh2

and P in (3.14) be expanded as

(3.25)
4c

Substitute (3.24) and (3.25) into (3.12), we have

(3.26) [ A2i-l -C2i-1
A2i

-1

P cr’---hMR + 0(1).

0

2B2i-1
0
0
0
0
0
0

I_RM
Co

I__RM
Co

co RM
co RM

co RM
co RM

0
0
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1-- RM2i_2)co... __
Rmi2co -2)r

olo olo 1o
/

(2i- 1)/ 2i-1)r e2i)l e(2i)r

o RMi+ )l

2c’-- RM--(2i+ )I

o1 olo olo
+ + + +

8--(2i- 1)1 e(2i-1)r 8--(2i)1 8--(2i)r

(a) (b)

FIG. 3.3.

and

(3.27) I A2i-l -C2i-1]A2i

0
0
0
0
0
0

2B2i+1
0

0
0

o RM

gco RM

RM

oRM
I__RM
Co

I__RM
Co

1

We plot (3.26) in Figure 3.3. Again (3.27) is similar. In this case the error after relaxation is
independent of angle, linear and continuous across a two-cell pair up to accuracy of O (aT)"

In any case, after/z-line relaxation the error across a two-cell pair will be independent of
angle, continuous, and sublinear up to order O (@h). The error at the boundary between cell
2i and cell 2i can be expressed as

(3.28) d}+-(g--(2i-1)l + g--(2i)r)4- + O

where 0 < d < 7 and 4- denotes variables in either positive or negative directions. We
summarize the above discussion in the following theorem.

THEOREM 4. Suppose 9/ and crth > 1 After two-cell relaxation,(rth)P

the error across a two-cell pair will be independent of angle and continuous up to 0 (+).
Further, the error at the boundary between the two-cell pair can be written as in (3.28), where

for <(i) d p

for 2,(ii) 0<d< 7 p=
(iii) d Ofor p > 3.
Proof. The proof follows from the discussion above.
When p 3, the/z-line relaxation will produce errors of which the dominant terms are

piecewise linear. But, in a multigrid algorithm, the mesh size of the coarse grid is twice as
large as the fine grid. Since y is the same on all grids, although p 3 on the finest grid,

will change.as the grids go from finest to coarsest level, the relative size of 1 ), to
To show this, assume that the finest grid is uniform and the number of cells is a power of
2. Now, let rth 100 and y .999999; that is, let Ph ----- 3. On the finest
level interpolation should be linear. However, four levels down we have at 16h 1600 and
y 0.999999 1 (o.t16h)l.873, that is, Pl6h 1.873. From the discussion above we see that



1462 T. MANTEUFFEL, S. McCORMICK, J. MOREL, AND G. YANG

linear interpolation is not adequate on this level, even though linear interpolation is sufficient
on the finest grid.

We use the parameter d to indicate the severity of deviation of errors from linearity after
relaxation. If ath >> on the finest level and the relation between 9/and crth yields p < 1,
then we can set d g.1 If p >_ 3 we can set d 0. If p 2 we can use d 2(1+4cl)’1
Unfortunately, the relation between 9/and trth does not always yield an integer. However, we
can use the relaxation to determine the proper interpolation. Consider equation (3.11). Set
+ +

e(2i_2) 1 and e(2i+1) 0__ and use the two-cell inversion to compute the result. Then we
may define

(3.29)
1T 4- 4- 4- 4-

(e(2i_l) -t- e(2i) (g(2i-1)r -t- e(2i)/))
iT +/-(e(2i_1) q- e2i)r)

+ linParameters dr could be found in a similar manner by setting e(2i_2) _Q and e2i+l)l
(3.11). Of course, for the uniform grid case d/ d. Moreover, dr+ d7- + O (-h)" In
practice, we use an average value d (dr+ + d7-)/2.

+ +Now, suppose we know e_i_l)l, e_.(2i) and d; then we can approximate e(2i_l) and e_i
by interpolation:

(3.30)

e2i_ )l 1 0
+ -de(2i-1)r d
+ l_d(2i)/ d
+

e(2i)r 0 1

[ ]e(2i-1)/
+

e(2i)r

The same interpolation can be used for negative angles. If e(-i_l)/, ei)r and d are known, we
have

(3.31)

e(-i- 1)/ 1 0

l_d8--(2i- 1)r d

l_de(2i) d

e(-2i)r 0

+For every two-cell pair, the problem is reduced to finding d, e2i_l)l, _8(2i)r, ei_l)l and

e(-2i)r. If interpolation is relatively accurate, then we can use a coarser grid to approximate
+ + and on thefine grid. In a multigrid algorithm, a coarse gride(2i-1)l, (2i)r, -(2i-1)I’ (2i)r

solution can be approximated by an even coarser grid, provided a good interpolation can be
found. This process can be accomplished recursively down to the coarsest grid. On the coarsest
grid, there will be only a few grid points and the solution on the coarsest grid usually can be
solved explicitly. For our case, a two-cell/z-line relaxation will exactly solve the coarsest, grid,
since it has only two cells. Thus, finding a good interpolation is vital to an efficient multigrid
scheme.

We define the restriction operator Ihh by

S1 S2
(3.32) Ih ".. (R) I,

& $2
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where I is the N N identity and

0 0 0 00
0 0 00 0

S2--_3.33_ $1
0 0 0 0 0
0 0 0 0 0

Note that the restriction operator represents full weighting. We also define the interpolation

Ih2h as

(3.34) Ih2h (R)I,

where I is the N x N identity and
(3.35)

1-d 00 0 0 7-d 0 7
0 0 0 0

T1 -d 0 -d 0 T2
-d 0 -d

0 0 0
0 -d 0 7 -d 0 0 0 1

When d 0, the interpolation operator Ih2h is the transpose of the restriction operator scaled
by a factor of .

Generalization to a nonuniform grid is straightforward. Suppose a two-cell pair has cell
+ +widths h(2i-1) and h(2i). A two-cell inversion in (3.11) with e(2i_2) 1 and (2i+1)1 0

yields the deviation from linearity, which is then built into the interpolation formulas. One
could carry a different interpolation for r and as well as / and if not in the asymptotic
regime. With a uniform grid, the computation need only be done once per grid level, while
for the nonuniform grid it must be done for each two-cell pair. However, all two-cell pairs
can be calculated in parallel. The restriction operators correspond to full weighting, that is,
the transpose of linear interpolation is weighted so that each row sums to 1.

We remark that the two-cell/z-line relaxation can be adapted to the context of mildly
anisotropic scattering. For example, if the scattering operator involves P3 scattering, then it
has only four nonzero eigenvalues. This will result in a two-cell problem involving an easily
solved linear system plus a rank 16 matrix. The two-cell inversion will require the solution
of two systems involving a 16 16 matrix. However, the matrix will be the same throughout
a particular material and could be factored before the start of the computation. The total
computation would be O(N).

In the next section, we will discuss the multigrid algorithm using the kinked interpolation
operator Ih2h and restriction operator Ih.

4. Multigrid algorithm. In this section, we derive the coarse grid operator and show
that, although the coarse grid operator no longer represents MLD on the coarse grid, it has the
same structure as the fine grid operator, and two-cell/z-line relaxation can be accomplished
with the same formula and cost.
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From (2.4), we define the fine grid operator Lh as

Ah _Ch

(4.1) Zh _Dh Ah "..

_Dh Ah

where Ah, Ch, and Bh are defined by (2.5) for uniform grid h. With restriction operator Ih

and interpolation operator Ih defined by (3.32) and (3.35), the coarse grid operator L2h can
be obtained by

A2h _C2h

(4.2) L2h IhLhIh
_D2h A2h "..

.. .. _C2h

_D2h AEh

where

Ah
(4.3a) A2h S1 $2 Dh

[o(4.3b) C:zh $1 $2 ch

[o(4.3c) D2h S1 S2 0

It is easy to verify that (see (2.1f), (2.5b), and (3.4))

_Ch

Dh T1 ]

(4.4a) C2h

(4.4b) D2h

0 0 0 0
1 0 0 0 0

o’th M 0 0 0
0 0 0 0

0
M
0
0

To derive A2h, we write Ah as

(4.5) Ah

Fh 0 Gh 0 ah R ah R bh R bhR
0 Kh 0 Zh ah R ah R bh R bh R
Zh 0 Kh 0 bh R bh R ah R ah R
0 Gh 0 Fh bh R bh R ah R ah R

where Fh Gh Kh, and Zh are diagonal matrices and ah and bh are scalars. We use this notation
to explain that the coarse grid operator will follow the same pattern as the fine grid operator;
that is, Ah and consecutive two-cell coarse grid operators A2h, A4h are all composed of a
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matrix whose components are diagonal matrices plus a rank two matrix. For the fine grid h,
Fh I + B, Gh ---B, Kh I + B, Zh B, ah 1, and bh --0. After multiplication,
(4.3a) can be written as

(4.6) A2h

F2h 0 G2h 0 a2h R a2h R b2h R b2h R
0 K2h 0 Z2h a2h R a2h R b2h R b2h R
Z2h 0 K2h 0 b2h R b2h R a2h R a2h R
0 G2h 0 F2h b2h R b2h R a2h R a2h R

where

(4.7a) F2h 1
[(2.5 d)Fh + (1 2d)Gh + (0.5 d)Kh + Zh (1 2d)B],

(4.7b) G2h 1
[(0.5 d)fh + (2 2d)Gh + (0.5 d)Kh (1 2d)B],

(4.7c) K2h Fh Gh Kh[(0.5 d) + + (2.5 d) + (1 2d)Zh (1 2d) B],

(4.7d) z:Zh 1 Fh[(0.5 d) + (0.5 d)Kh + (2 2d)Zh (1 2d) B],

d bh(4.7e) a2h 0.75ah ah + 0.5bh -d d
(4.7f) b2h --0.25ah -ah --[-0.5bh -bh.

2

Since Fh Gh Kh Zh, and B are diagonal matrices, then F2h G2h K2h Z2h are also diagonal
matrices. Structurally, Ah and A2h are the same. For two-cell/z-line relaxation on grid 2h,
we can still easily invert

2h 2hA2i_l -C2i_

-l) Ahi
with O (n) operations by taking advantage of the fact that the matrix to be inverted consists of
an easily invertible matrix with diagonal components and a rank four matrix. The coarse grid
operator on grid 4h also will have the same structure as on grids h and 2h.

The generalization to nonuniform grids is again straightforward. Each two-cell pair will
yield a different A2h but it will again have the form as in (4.6) and two-cell inversion on each
coarse grid will be amenable to fast inversion.

In the next section, we will display properties of the kinked interpolation operator.

5. Properties of kinked interpolation. In this section, we will display the properties of
the kinked interpolation operator by solving (2.5) with boundary conditions

(5.1)  0+r 1, 0

on a slab ofx(-1, 1). Suppose h is the mesh size of the finest grid and H is the mesh size
of the coarsest grid, which has only two cells. We choose crt >> 1 and

(5.2) , 1
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TABLE 5.1
Value ofp on various grid levels.

m

q=2

128
10.32
20.64

64 32 16 8 4 2

4.04 2.51 1.82 1.43 1.17
8.08 5.02 3.64 2.86 2.34 2

for q 1, 2, 3. The case q 1 represents substantial absorption. The case q 2 is the case
of most interest to the transport community and yields the well-known thick diffusion limit.
The case q 3 also yields the thick diffusion limit but with little absorption.

Given at and y and grid size h, the value p that satisfies

(.3)
(o’th)P

describes the behavior of the error after relaxation as in Theorem 4. This analysis assumes
rth >> 1. Equating (5.2) and (5.3) yields

(5.4) p q
log(at)
log(o’th)

In our analysis, h < 1, which implies p > q on all grids with p q on the coarsest grid
where H 1. This shows that if q 3, the error after relaxation will be linear on all grids.
It is only for q < 3 that kinked elements are necessary. To see this, let at 100. Table 5.1
shows the values of p for q 1 and q 2 on grids with rn varying from 128 to 2.

For each set of at, y, we can find parameter d defined in the previous section on each level
(from finest grid to coarsest grid). With d on every grid obtained, we have kinked interpolation
on each grid. We define the accumulated interpolation as

IH/2lhn l h2h l2hh H

With accumulated interpolation so defined, we then solve a homogeneous $8 transport equation
with unit isotropic boundary condition on the left and zero on the right on grids with 8 cells
and 128 cells, respectively. We choose o’t 100 and y 1 , p 1, 2, 3. We choose
an angle line/z 0.525 for the comparison of the interpolated approximation and the exact
discretized solution. With the calculated values 1/tl and m+r we use the accumulated kinked

interpolation operator Ibm from the coarsest grid to the finest grid to obtain all interior values
on the finest grid and compare the interpolated approximation with the calculated solution.
Figure 5.1 depicts the case in which there is substantial absorption (p 1). In this case, the
relaxation itself is very efficient.

Figure 5.2 shows the case that is of most interest in the transport community (p 2).
Figure 5.3 shows the case in which there is not much absorption (p 3). Notice how well
interpolation approximates the exact MLD on the finest grid. From Figure 5.3 we can see that
when the power p increases, the interpolation is more accurate since the kinked elements are
less kinked. We can see from these plots that the relaxation-induced interpolation we have
designed is accurate and suitable for the multigrid algorithm.

In the next section, we will present computational results of the multigrid algorithm using
kinked interpolation.
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FIG. 5.1.

6. Computational results.

6.1. Multigrid convergence factors. The following computational results were con-
ducted on the domain x [0, 1] using homogeneous boundary conditions. The domain was
divided into m 128 spatial cells, and an $32 discretization (n 16) was used in the angle.

’ Convergence factorsThe problem is then specified completely by choosing crth and
were computed by setting the right-hand side equal to zero, choosing a random initial guess,
and performing 15 V (1, 1) cycles and taking the geometric mean of the last 5 cycles. This
process exposes the most slowly converging eigen components. Initial reduction is usually
much faster.

From computational results conducted on SN with N ranging from 2 to 256, we observe
the same convergence performance as those shown in Table 6.1.

From Table 6.1, we observe that the convergence factor p is O(rt3h3) when crth << 1.
For the thick limit, we will let , 1 (b-)p, since, from our previous section, the

power p will influence the error distribution after relaxation. We will present results with
p= 1, 2, 3, and x.
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FIG. 5.2.

In Table 6.2, the convergence rates p are for a multigrid V(1,1) cycle with linear inter-
polation. Table 6.3 contains the convergence rates for a multigrid V(1,1) cycle with kinked
interpolation.

Table 6.2 shows that the multigrid V (1, 1) cycle with linear interpolation has a convergence
factor peon the order of O ((b--t-t-)2) with y (p cxz) in the thick limit. But, when there
is absorption (, 1), the convergence factor for linear interpolation is not satisfactory at all.
As we have discussed in previous sections, when , 1 the errors after relaxation will be
kinked. Linear interpolation will not be suitable for this case since the linear interpolation will
simply interpolate the coarse grid approximation to the fine grid as if the error on the fine grid
after relaxation were linear. So, even if the coarse grid is solved exactly, linear interpolation
of this solution to the fine grid will not approximate the error on the fine grid. The situation
will be compounded for a multigrid V (1, 1) cycle since there are many levels. Every coarse
grid solution will not approximate the error on the next finer grid. From our discussion in the
previous section, when p 3 on the fine grid, there is relatively little absorption and the errors
after relaxation will be nearly linear. But, as we go down to coarser grids, we will reach a level
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TABLE 6.1
Convergencefactorsfor uniform grid.

y 0.999999 ?’ 0.999 1/= 0.9 0.7

0.37 x 10-9 0.37 x 10-9 0.35 x 10-9 ’0.33 x 10-9

0.31 x 10-6 0.31 x 10-6 0.31 x 10.--6 0.30 x 10-6

0.11 x 10-3 0.11 x 10-3 0.11 10-3 0.9 x 10-4

0.50 x 10-2 0.50 x 10-2 0.44 x 10-2 0.38 x 10-2

0.68 x 10-2 0’43 x 10.-2 0.68 x 10.2 0.68 x 10-2

0.70 x 10-2 0.72 x 10-2 0.14 x 10-2 0.19 x 10-2

2on which crth will satisfy 9/ (--) Thus, using linear interpolation on this particular
level will adversely affect the overall convergence factor. From Table 6.3 we see that when
kinked interpolation is used the multigrid V(1,1) has a convergence factor p on the order of
O (---) for all levels of absorption. When there is no absorption, the multigrid V(1,1) with

kinked interpolation has a convergence factor on the order of 0 ((---)2).
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TABLE 6.2
Convergencefactorsfor linear interpolation.

rth p=l

i01 0.37 x 1022

102 0.78 x 10.2

103 0.84 x 10-2

104 0.85 x 10-2

p=2 p=3

0.15 0.32 0.27 10-4

0.61 0.74 0.22 10-6

0.82 0.62 0.20 10.8

0.85 0.34 0.18 10-1

TABLE 6.3
Convergencefactorsfor kinked interpolation.

bth p
]01 0.22 10-5

i02 0.4’5 10-6

’’i03 0.47 1027

i0 0.49 X i0-8

p 2 p=3

0.43 10-2 0.53 10-2

0.51 x 10-3

0.89 x 1025

0.85 10-4

0.11 x 10-5

0.13 10-7

0.39 10-4.. 0.1i 10-6 0.14 10.-9

TABLE 6.4
Convergencefactorsfor kinked interpolation, y 0.999.

240 1245 1250 2 ’6 260 270 1275 1=80008210.0083]0.0084]0.008510.008510.008510.008410.008410.0083
TABLE 6.5

Convergencefactorsfor nonuniform grid.

c ?, 0.999999

10-4 0.12 10-1

’"10-3’ ’0.2 x 10’-7’
10’2 0.29 10-4.

10-1 0.20 x 1024

10- 0.22 10-3

y 0.999

0.12 10-1

0.32 10-7

0.29 x l0-0.10 x 10-2

0.32 x 10-2

101 0.17 10-1 0.54 10-2

102 ’0.70 10-1 OiaO 10-3.

103 ’0.78 1{5"-1 Oi"lgx 10-3

104 0.45 x 10-1 0.17 x 10-4

105 0.19 x 10-2 0.20 x 10-5

In Table 6.4, we show a range within which the worst convergence factor occurs when
y 0.999 and m 256. In this case, the maximal p is 0.0085.

In Table 6.5, we present convergence factors of the multigrid V(1,1) cycle with kinked
interpolation for a nonuniform grid. We select crth c x 102.i where Oi is a random number
between (-1,1). For example, when c 1, rth ranges from 0.01 to 100. We use parameter
c to shift from the thin limit to the thick limit.

From Table 6.5, we see that the kinked interpolation is also suitable for nonuniform grid
or, equivalently, for nonconstant at.

6.2. DSA convergence factors. In this section, we will present a comparison ofthe DSA
algorithm 1, 2, 5] and the multigrid algorithm with kinked interpolation. The slab is assumed
to have physical thickness 2. Thus, at represents the width of the slab measured in the number
of mean-free paths. The tests were performed using $8 and a wide range of at and m (the
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o’t

4-5
4-4
4-3
4-2
4-1

4

42
43
44
45
46
47
48
49
410

o’t

4-5
4-4
4-3
4-2
4-1

4

42
43
44
45
46
47
48
49
410

TABLE 6.6
Convergencefactorsfor multigrid , 0.999.

m= 16 m=64

0.0 0.0

0.32 10-1 0.13 10-1

0.71 10-8 0.30 10-8

0.12 10-5 0.51 10-6

0.61 10-4 0.29 10-4

0.57 10-3 0.37 103
0.12 10-2 0.12 10-2

0.31 10-2 0.36 10-2

0.57 10-2 0.79 10-2

0.57 10-2 0.69 10-2

0.68 10-3

0.93 x 10.5
0.58 x 10-3

0.71 x 10--3

m 256 m 1024

0.0 0.0

0.10 x 10-l 0.10 x 10-l

0.19 x 10-8 0.20 x 10-8

0.30 x 10-6 0.30 x 10-6

0.13 x 10-4 0.11 x 10-4

0.32 x 10-3 0.31 x 10-3

0.11 x 10-2 0.13 x 10-1

0.54 x 10-2 0.76 x 10-2

0.73 x 10-2 0.11 x 10-1

0.85 x 10.2 0.78 x 10.2

0.71 x 10-2 0.86 x 10-2

0.58 10-2 0.71 x 10-2

0.25 x 10-7 0.95 x 10-5 0.72 x 10-3 0.58 x 10-2

0.25 x 10-70.33 x 10-1 0.94 x 10-5

0.25 x 10-7
0.72 x 10-3

0.0 0.32 10-10

0.0 0.0

0.94 10-5

0.32 10-10 0.25 10-7

TABLE 6.7
Convergencefactorsfor DSA ?’ 0.999.

m= 16 m=64 m=256 m=1024

0.19 x 10-2 0.19 10-2 0.190 10-2 0.190 X 10-2

0.75 10-2 0.75 10-2 0.75 x 10-2 0.75 10-2

0.28 10-1 0.28 10-1 0.28 10-1 0.28 10-1

0.83 10-1 0.83 10-1 0.83 10-1 0.84 10-1

0.153 0.150 0.150 0.151
0.186 0.203 0.204 0.204
0.179 0.216 0.216 0.216

0.142 0.165 0.204 0.210

0.127 0.142 0.149 0.163

0.118 0.129 0.143 0.156

0.102 0.119 0.130 0.144

0.66 10-1 0.102 0.119 0.130

0.27 10-1 0.66 10-1 0.102 0.119

0.82 10-2 0.27 x 10-1 0.66 10-1 0.102

0.21 10-2 0.82 10-2 0.27 10-1 0.66 10-1

0.54 10-3 0.21 10-2 0.82 10-2 0.27 10-1

number ofcells) and various values of ?, ranging from .9999 to .9. The performance was similar
for each value of ,, so we present only the complete results for ?, .999. The results for other
values of 9,, can be found in 11 ]. Tables 6.6 and 6.7 give convergence factors for multigrid
and DSA for various values of o’t and m. The diagonals of these tables represent constant crth.

In Tables 6.6 through 6.9, we say the convergence factor is zero if p < 10-11. For both
algorithms, the convergence factors are roughly constant along diagonals. But for each fixed
?,, the multigrid convergence factor will approach zero much faster than the DSA convergence
factor as ot goes to ec in the thick limit and ot goes to zero in the thin limit.
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TABLE 6.8
Adjusted convergencefactorsfor DSA , 0.999.

crt

4-5
4’4
4-3
4’2
4-1

4

m 16 rn 64 m 256 m 1024

0’16 x 10-6 0.16 x 10-6. 0.16 x 10-6 0.16 x 10-6

0.49 x 10-5 0.49 x 10-5 0.49 x 10-5 0.49 x 10-5

0.13 x 10-3 0.13 x 10-3 0.13 x 10-3 0.13 x 10-3

0.20 x 10-2 0.20 x 10-z 0.20 x 10-2 0.20 x 10-2

0.92 x 10-z 0.87 x 10-2 0.87 x 10-2 0.87 x 10-2

0.15 x 10-1 0.19 x 10-1 0.19 x 10-1 0.19 x 10-1

0.14 x 10- 0.22 x 10- 0.22 x 10-1 0.22 x 10-1

4 0.76 x 10-2 0.11 x 10-1

43
44
45

47

410

0.19 10-1 0.22 10-1

0.57 10-2 0.76 10-2 0.86 10-2 0.11 10-1

0.48 x 10-2 0.59 10-2 0.77 10L2 0.96 10-2

0.33 10-2 0.49 10-2 0.61 10-2 0.79 10-2

0.12 x 10-2 0.33 10-2 0.49 x 10-2 0.61 x 10-2

0.12 x 10-3 0.11 10-2 0.33 10-2 0.49 x 10-2

o.6 o- o.2 o- o.1 o o, o-
0.20 10-6 0.61 10-5 0.12 10-3 0.11 10-2

0.68 10-8 0.20 10-6 0.61 10-5 0.12 10-3

In all cases, the multigrid convergence factors were superior to the DSA convergence
factors. However, it is important to adjust for the relative amount of computational work
required by each algorithm. Of course, such measures will be machine dependent. On the
Cray Y/MP, where these tests were performed, we compared times for N 64 and rn 1024.
Ten V(1,1) cycles required 93 seconds. This includes 4.2 seconds to obtain the parameter d on
every level. The parameter d on the coarse grid will depend on the relaxation on the fine grid.
Thus, this setup process is sequential. One V(1,1) cycle required 9.3 seconds and one DSA
cycle required 3.7 seconds. The ratio of these times is 2.5. Table 6.8 contains the results of
raising each entry in Table 6.7 to the power 2.5. This is a fairer comparison with the multigrid
tables on a serial machine.

From Tables 6.6-6.8 we see that the convergence factors are nearly constant along di-
agonals, that is, for constant crth. This was true for other values of ?, also. In Table 6.9 we
present both multigrid and adjusted DSA convergence factors for m 1024, four values of
9/, and various values of rth. Again, we see that multigrid is faster in all tests. The two
algorithms have nearly equal rates in regimes in which rth 1. This is the region in which
the relaxation will not produce continuous kinked linear errors across two cells and, thus, the
kinked interpolation is not as accurate.

On a parallel machine we expect the results to more heavily favor the multigrid algorithm.
Both algorithms can be implemented with parallel complexity O(log(m)). In this context,
however, we expect the times to be more nearly equal. The multigrid algorithm has been
implemented on an Thinking Machines Inc. CM-200 [8, 9]. The fundamental step in the DSA
algorithm, the transport sweep, has also been implemented on the CM-200. A form of cyclic
reduction was used. A comparison of timings on this machine appears in [15].

In either setting, parallel or serial, a full multigrid algorithm (FMG) can be implemented
[3, 12]. This would provide a savings in some regions of the tables. Moreover, full multigrid
provides a natural framework for adaptive grid refinement.

7. Conclusions. From our analysis and computational results, we conclude the
following:
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TABLE 6.9
Convergencefactorsfor multigrid/adjusted DSA.

h
2-9
2-7
2-5
2-3
2-1
2

23.
25
27
29
211
213
15

217

, .9999 9/ .999 , .99 9/ .9

3.2e--04 1.9e--02 3.1e--04 1.9e--02 3.5e--04 1.9e--02 3.2e--04 1.5e--02

1.1e--03 2.2e--02 1.3e--02 2.2e--02 3.2e--03 2.2e--02 1.5e--03 1.7e--02

1.3e--03 2.1e--02 7.6e--03 2.2e--02 9.8e--03 2.1e--02 2.0e--03 1.5e--02

7. le--03 1.2e--02 1. le--02 1. le--02 1.0e--02 4. le--02 2.3e--03 1.2e--02

3.9e--03 8.3e--02 7.8e--03 9.6e--03 1.0e--02 8.7e--02 7.6e--04 5.1e--03

2.6e--03 7.7e--03 8.6e--03 7.9e--03 4.5e--03 6.9e--03 3.5e--04 2.9e--03

4.1e--03 6.2e--03 7.1e--03 6.1e--03 8.4e--04 4.4e--03 9.0e--05 5.6e--04

4.0e--03 5.5e--03 5.8e--03 4.9e--03 4.5e--04 1.8e--03 2.2e--07 3.8e--05

2.3e--03 5.2e--03 7.2e--04 3.3e--03 2.0e--06 2.8e--04 2.7e--10 1.6e--06

4.8e--04 4.4e--03 9.4e--06 1.1e--03 3.1e--09 1.6e--05 0 5.0e--08

2.1e--05 2.6e--03 2.5e--08 1.2e--04 3.0e--12 6.7e--08 0 1.7e--09

1.5e--07 5.9e--04 3.2e--11 6. le--06 0 2.2e--08 0 5.5e--11

2.7e-- 10 4.3e--05 0 2.0e--07 0 7.2e-- 10 0 0

0 1.9e--06 0 6.8e--09 0 2.1e--11 0 0

The two-cell/z-line red-black relaxation is inexpensive, highly vectorizable, and
parallelizable. Modification of this algorithm to incorporate mildly anisotropic scat-
tering is also viable.
When there is no absorption (, 1), this relaxation will cause the error to be linear,
independent of angle, and continuous across two cells up to O (-7-t-t-) accuracy when
crth >> 1.
When ?’ < 1, the error after relaxation will be essentially kinked linear. The severity
of deviation from linearity of the error ,after relaxation is determined by the values
’, crth, and p in V 1 (-h)p. In the thick limit, the error after relaxation will be

independent of angle up to accuracy of :O ().
Relaxation-induced kinked interpolation is fairly accurate, and it can be obtained by
the relaxation operator on each level to ensure that each level will have a good coarse
grid approximation. This methodology can be extended to higher dimensions.
The error reduction factor p for a multigrid V(1,1)cycle is p O((ffth)3) for the thin

)p and 1 < < 3. Whenlimit and p O() for the thick limit when , 1 ( p
p is smaller than 1, there will be more absorption and the multigrid performance
will be better. When p is more than 3, there will be hardly any absorption and the
multigrid performance will be close to that of the performance when 9/-- 1 10].
The multigrid scheme was shown computationally to be effective for highly irregular
meshes and heterogeneous material.
The multigrid algorithm is more efficient than the DSA algorithm in all regimes.
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JACOBIAN-WEIGHTED ELLIPTIC GRID GENERATION*

PATRICK M. KNUPP

Abstract. Variational grid generation techniques are used to derive and analyze a weighted elliptic grid generator
that controls the Jacobian of the underlying transformation in a least-squares sense. The Euler-Lagrange equations
for the area and volume generators are weighted forms of the well-known Laplace generator. Weights are restricted to
the class of P-matrices to help achieve global invertibility of the map. Connecting the weights to the Jacobian of the
map results in an intuitive means of controlling grid spacing, area, orthogonality, and grid-line directions. Examples
are given on the unit square to demonstrate point attraction, local refinement, directional alignment, and adaption to
a shock.

Key words, elliptic grid generation, adaptive grid
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1. Introduction. Elliptic grid generation, as originally proposed by Winslow [20] and
subsequently developed by Thompson, Thames, and Mastin [18], entails solving a set of
uncoupled Laplace equations for the logical coordinate variables subject to Dirichlet data
describing the boundary of some domain. The so-called "boundary-fitted" coordinate system
that results is used to compute finite difference or finite volume solutions to physical problems
on geometrically complicated domains that involve partial differential equations (PDEs) such
as the heat equation, convection-diffusion, and the Navier-Stokes equations without need
for interpolation of the physical boundary conditions. The principle advantages of elliptic
grid generation using the Laplace equation are that the resulting coordinate transformation is
smooth and, in many cases, nonsingular. A major limitation of the Laplace generator is that
there is no control over the grid that is generated (except for weak control via the boundary
parameterization). Often the unique grid that is the solution to the Laplace system of equations
is unsatisfactory for the physical problem at hand due to inappropriate spacing, overly large
cells, or lack of orthogonality. A widely accepted approach to overcoming this limitation
is to introduce user-specified weighting functions that generalize he Laplace equations to a
system of Poisson equations 18]. It should come as no surprise that this does indeed provide
qualitative control over the grid since the addition of any "source term" must surely modify the
grid in some way. Because of this flexibility it is not unreasonable to ask that the weightings
have a clear geometric meaning. By this criterion it is not clear that the weighting suggested
in [18] is optimal. An alternate weighted form of the Laplace generator (referred to as the
"Jacobian-weighted" generator) is proposed for which the weights have a clear geometric
interpretation. As a bonus, the generator includes additional control capabilities beyond those
usually claimed for weighted elliptic generators.

2. The variational principle. Let n 2 or n 3 be the dimension of the physical space
in which grid generation is to be performed. Define a unit logical domain Un as the Cartesian
product of the unit interval n times: Un {(1 n) 0 < i < 1} for 1 n.
Let S2 C Rn be a bounded, simply connected "physical" domain. We seek a smooth (at least
C2(f2)) one-to-one mapping xi xi(l n) (or, in shorthand notation, x x()) from
Un to f2 whose Jacobian matrix if,

Xi(1) [ff]i,j
Oj
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obeys certain requirements. The inverse mapping is given by i i (Xl, Xn), with inverse
Jacobian matrix if-1 having the elements

Oi(2) [J-1]i’J
Oxj

Our goal is to control the full Jacobian matrix of the map. To do so, let ,5 be an n x n
square, nonsingular weight matrix defined on fla. A direct way to use this weight would be to
solve the system j-1 S, giving n2, first-order equations

(3)
Oxj

[S]i,j.

A major difficulty with this direct approach is that such a system ofequations is overdetermined
because an additional set of constraints

(4)
O[ S ]i,j O[ S ]i,k
Oxk Oxj

must be satisfied (these are derived from (3)). To fix this problem one should add the re-
quirement that the weight matrix be the gradient of some continuous vector potential function.
Such a vector potential would not be easy to construct as it essentially requires knowledge
of the solution coordinates. Furthermore, even if such a potential were found, this system
of first-order equations is not easily solved, particularly in view of the necessity of matching
prescribed boundary conditions on 02.

Given these considerations, it makes sense instead to perform a "least-squares" fit to
the weight S. Consistency conditions then need not be met and a vector potential is not
required. The tools for such a least-squares approach are found in the method of variational
grid generation [2], 15]. Following the former reference, one minimizes a functional of the
form

(5) I [,f-l] fe G(x, t."-1) dx

subject to given boundary data, where G Rn2+n --+ R is an at least twice differentiable
function of its arguments. The smoothness principle of Brackbill and Saltzman, which leads
to the Laplace generator, is a critical example.

Prior to the present work, weighted variational principles have been formulated to control
the elements gi,j of the metric tensor 15] or its inverse [2]. To improve upon this one must
control the Jacobian matrix J (or its inverse). We thus formulate a variational principle that
performs a least-squares fit of the inverse Jacobian matrix to the weight S. The integrand in
(5) that gives the Jacobian-weighted variational principle is

(6) G--I -1_ S 12
where 3// 12= tr( 34 r.A//) is the square of the Frobenius norm of the matrix A4. Thus G is
simply the sum of the squares of the differences [,.7-1 $]i,j. One could, of course, consider
alternate matrix norms to measure the "closeness" of the two matrices. The Frobenius norm is
presently favored since the resulting generator is then a weighted form of the widely accepted
Laplace generator.

The stated variational principle compares favorably with Brackbill’s weighted combina-
tion of the three functionals: smoothness, area, and orthogonality. As noted in [3, p. 39] there
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are problems with weighted combinations of functionals" one does not know a priori what
weights to choose for the combination, one has no guarantee that the combination selected
will result in a convex functional, and, finally, one has a scaling problem due to the dimen-
sional heterogeneity of the functionals. These problems are avoided in the Jacobian-weighted
functional because, by controlling the Jacobian of the map via a least-squares fit, only a single
functional is needed to control grid spacing, area, orthogonality, and even the direction of the
tangents.

The boundary data for the grid on 0f2 is critical in determining the "goodness of fit," i.e.,
how close the value of I is to zero. Ifthe boundary data and the weight matrix are incompatible,
then the Jacobian of the minimizing grid will not agree with the weight--a least-squares fit
will result. Even when the boundary data is compatible with the weight, I 0 may not be
attained unless the weight matrix is the gradient of a vector potential.

So far, no smoothness assumptions concerning the weight ,9 have been mentioned. Since
the goal is to generate smooth grids whose inverse Jacobian is potentially equal to the weight
matrix, it is reasonable to require $ to have some degree of smoothness. As will be seen in
the next section, strong solutions to the Euler-Lagrange equations require $ 6 C() with
k > 1. When k 1, the minimization should lead to mappings whose coordinates are nearly
twice differentiable.

Since the integrand of the Jacobian-weighted functional is a convex function of the el-
ements of -1, it should be possible to show strong convexity of the functional using the
techniques in 11 ]. In addition, the Legendre-Hadamard ellipticity condition is probably sat-
isfied. If so, the generator is elliptic and a unique minimum of the functional exists. A rigorous
analysis to show this has yet to be carried out.

3. The grid generation equations. Since the weighted variational principle (6) is a
generalization ofBrackbill and Saltzman’s "smoothness" principle, one should not be surprised
to learn that the Euler-Lagrange equations are a weighted form of the Laplace generator.
indeed, one finds that the coordinates ofthe inverse mapping satisfy a set of Poisson equations:

OSik
(7) Vx2i

k=l OXk

with 1 n and S/, the elements of the weight matrix S. To compare with standard
Poisson grid generators, we explicitly give the equations for the planar form of the Jacobian-
weighted generator:

OSll
(8) V2x-- Ox

O S2
(9) V2xr]

OX

We prefer to write (7) in the symmetric form

0S12
Oy

because this makes it clear that a potential solution is ,.7-1 ., boundary conditions permit-
ting. If $ is any matrix whose divergence is zero, the system reduces to the Laplace system
of equations.

Since, in general, the grid on f2 is not uniform it is not easy to numerically solve the Euler-
Lagrange equations directly (but see the work of Hagmeijer [5] for an example ofhow this can
be done). For numerical computation, it is convenient (and standard) to invert the equations

(1O) divx if-1 S 0
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so that the logical variables become the independent variables. The lengthy derivation of
the inverted Laplace equations is seldom given since the result is the well-known Winslow
equation

(11) g22 X:: 2 g12 Xn + gll xnn 0

(as shorthand, we denote the left-hand side operator of the Winslow equations by Qw x). As
shown in [8, p. 154], the lengthy derivation ofthe Winslow equations can be condensed intojust
a few steps. That derivation is extended here for (10) in order to obtain inverted, nonsymmetric,
Jacobian-weighted equations that can be conveniently solved numerically. Let C /j-T.
Then

(12)

Explicitly, the inverted equations (12) in two dimensions are

(13) g22 x 2 g12 x:n + gx Xrm --x/- J R

with right-hand side vector

(14)
(Sll)s yn (S12) Xr/ (Sll)r/Y + (S12)r/x}. ]R
(Sex) yo (See) xo (Sex)o y + (See)o x

As shown in [8], one can form projections of these equations in physical space and also
derive a symmetric inverted form. Since our numerical scheme is based on solving (13)-(14)
these alternate forms are not given here.

4. Ellipticity. It is commonly accepted that the Winslow operator in (13) is elliptic. For
completeness, we sketch a proof of this fact here using the ellipticity test given in [8, p. 127].
The grid equations have the form

(15)

with /,j being n n coefficient matrices and F being a right-hand side comprised of lower-
order terms. The following ellipticity test applies: the system is elliptic if one can find a
positive constant c that is independent of co (cox con) and x such that

(16)

Evaluation of the left-hand side of this expression for Q0 x converts the ellipticity requirement
to

(17) (coTgg-1 co)n >_ C (coTco)n.
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On the left-hand side is recognized the "elliptic norm" of co under the symmetric, positive-
definite matrix g -1. A well-known property of such elliptic norms [6] is that

(18) 0 "< ,),m coT CO < CO
Tg- co < M CO

T co

where A and )t are the minimum and maximum eigenvalues of g-l, respectively. We thus
choose c (infxa m)n to satisfy the ellipticity condition (17).

5. Grid replication. It is clear that ,7-1 S is a solution to (10) (with no boundary
conditions). It is perhaps not as clear that it is also a solution to the inverted equations (12),
but this fact may be verified using the identity

(19) Qox -/-3 V3- C,

which holds for all parameterizations of the domain.
The identity (19) is easily proved beginning with another, more obvious identity:

(20) V2] J-z 0,

(21) V (ffJ-) j-r 0,

(22) j Vj-1 ]j-T -k- VJ]J-1J-T -= 0.

The result (19) directly follows.
Since -1 S is a generic solution to the grid equations, it is clear that for any smooth

mapping from Un to S2 there exists a weight ,9 that will replicate this mapping provided the
proper boundary data is applied to the system of grid equations. This result holds for the
continuum. If the grid equations are not discretized in just the right way (at this point it is
not clear that such a way exists), truncation error will foil exact replication of most discrete
grids. This truncation error effect on grid replication may become important if the desired
coordinate system is highly stretched. To save space, an investigation as to whether or not one
can discretize (13)-(14) to maintain replication is reserved for a future article.

6. Relationship to other generators. The fact that the present generator controls (in
a least-squares sense) the Jacobian of the map means that it can be used to approximately
align the coordinate system with a given set v Vn of vector fields; examples for n 2
are given in [9]. It is appropriate then to compare, in general terms, the Jacobian-weighted
method with other generators which have this alignment capability. The variationally based
alignment generator due to Giannakopoulos and Engel [4] minimizes a functional having the
integrand (in two dimensions)

(23) G-I v- x Vx 12 +lv x Vxr/ 12
to achieve "directional control" (we have modified their original notation to coincide with
ours). The geometric idea behind this principle is that the cross products are minimized when
the vector v- is parallel to Vx and the vector v is parallel to Vxr/ (here v is a vector
perpendicular to vi). In terms of covariant vectors, the functional is minimized when vi is
parallel to (i.e., aligned with) x;. Examples are given in [4] to show that this indeed works, at
least in some cases. As noted in [8, p. 224], the integrand (23) may be rewritten in the form

(24) G Vx (2 @ 2)Vx -- Vx/]. (1 @ 1)Vx/’]

The matrices in this latter expression are vector outer products. Such product matrices are
singular; thus it is not unreasonable to expect that the grid equations corresponding to this
variational principle are nonelliptic.
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Applying the method of 4, the ellipticity of the Giannakopoulos and Engel functional (for
n 2) is considered. Let A v2 (R) v2 and/3 Vl (R) v. Define matrices 7 J-4J-r,
S -/3-r. The Euler-Lagrange equations corresponding to the functional in (24) are
given in equations (11.120)-(11.121) of [8, p. 236]. The latter may be written in the form (15)
where

(25) ’T//,j diag([T]i,j, [.]i,j) ,-1

Evaluation of the left-hand side of (16) for this functional gives

(26)
(coy co) (coz$ co)

> c(coco)2

as the ellipticity condition. Since 4 and/3 are singular, so are 7Z and S. If co 0 is in the null
space of either of the latter matrices, the left-hand side of the previous equation is zero. There
does not exist a positive constant c, so the Giannakopoulos and Engel alignment functional is,
at best, degenerate elliptic.

This analysis is supported by Brackbill’s proposal to form a combination ofthe directional
control functional (23) and the "smoothness" functional to improve the "regularity" of the
equations [3]. A problem with such combinations is that they involve trade-offs between
the various properties. One might expect that the more one weights the combination toward
"smoothness," the less one will achieve directional control and vice versa.

We have little doubt that other functionals have been or may be devised which would
achieve alignment (see, for example, [5]). We are not in a position to judge whether or not
the presently proposed generator can align grids better than these other methods because
to date it has not been possible to run the different algorithms on the same problem. It is
possible that all of these generators do comparable jobs of grid alignment; however it seems
that the Jacobian-weighted approach has several significant advantages. First, the generator
reduces to the well-established Laplace generator in the unweighted case, so it has all the
strengths (including ellipticity) of the latter generator, at least in the limiting case. Second, the
proposed generator can be used to control other properties of the grid besides alignment (see
10), whereas the "directional control" generator is designed specifically for the alignment

task.
What is the relationship of the present scheme to the Thompson-Thames-Mastin (TTM)

elliptic generator 18]? Recall that the latter employs weight functions P and Q in the Poisson
system

(27) Vx P,

(28) VxZr/= Q.

In the original TTM generator, the weights P and Q have the complicated forms

(29)

(30)

M

P(, rl) am
m=l

i=1

M

Q(, rl) am
m=l

i=1

e-Cm ]-ml

e-di (-i)2q-(rl-tli)r 11/2

e-Cm

e-di (--i)2q-(rl--rli)r 11/2
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(see [18] for details of how this is supposed to work). By specifying the various parameters
am, Cm, bi, and di, it is claimed that one can attract or repel grid lines to M points and I lines
within the physical domain. Examples show that this qualitatively works, at least for a small
number of attraction points/lines. The forms (29)-(30) of the weights provide the user with
neither orthogonality nor grid alignment controls.

Warsi [19] replaced the original P and Q weights defined in (29)-(30) by gll p and g22 Q
to improve the numerical behavior of the generatormno additional control over the grid was
claimed. Thomas and Middlecoff [16] replaced the P and Q in the Warsi modification with
P 4 (, r/) and Q 7t (, r/) and abandoned formulas (29)-(30) for the weights in favor of
performing interpolations from the boundary data. In Anderson ], the new control functions

0
(31) b lnw/-l

(32) p In 220O
so that the weights potentially control the normalized rate of change of grid spacing in the
two logical directions (the derivation of these relationships is not strictly correct because it
is assumed that the grid is orthogonal). Nonetheless, the resulting grid generator has proved
useful in numerous instances, particularly if physical space weightings are used (as in [14]).

The Jacobian-weighted generator defines weights P and Q by

0
( ’ 0-;s + s,

0 0
(4 Q xs + ys,

where the S, are the elements of a weight matrix S which controls the elements of the inverse
Jacobian matrix of the transformation. Superficially then, the generator is a special case of the
P-Q generator of (27)-(28). On a deeper level, however, it cannot be considered a special case
because the traditional P-Q generator is derived from a different variational principle. The
integrand in the variational principle for the P-Q generator (with physical space weightings
P P(x)and Q Q(x))is

j-1 2(35) 6 51 +e+
which has no obvious geometric meaning.

It is not claimed that the present Jacobian-weighted method always does a better job of
controlling the grid than does the P-Q method. In fact, any grid generated by one of the
methods can be generated by the other provided the proper weight is selected. However, the
Jacobian-weighted method should ultimately prove preferable because of the clear meaning
of its control functions and because it can potentially control grid orthogonality and grid
alignment, in addition to all of the properties controlled by P-Q.

7. Nonsingular mappings, Boundy-fitted coordinates are often used in computational
fluid dynamics to solve a system ofPDEs that models some physical phenomenon such as fluid
flow or heat transfer. To apply these coordinates one must transform the physical equations
to general coordinates. To avoid a change of type of the governing equations requires the
mapping to be locally inveaible. It is therefore desirable to have a guarantee that the mapping
produced by a grid generator will be locally invertible, i.e., nonsingular. Such a guantee has

and p are constructed to satisfy
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been constructed for the 2D Winslow generator QwX 0 [12]. The proof of this guarantee
hinges on the maximum principle for Laplace’s equation in the plane. Even this guarantee
does not always avoid trouble when the equations are discretized: the results in 5.4.3 of
[8] suggest that truncation error effects can sometimes prevent the discrete grids from being
nonsingular. Examples have also been constructed to show that the guarantee that holds for
the 2D Laplace equations does not extend to the 3D case (see [10] for a discussion of the
extension of Rado’s theorem to three-dimensions).

A more serious limitation is that, in practice, the weighted P-Q forms of the Laplace
generator are often used. This case is not covered by the guarantee that holds for the unweighted
equations. As observed in [14], there can be no guarantee that the P-Q generator will not
produce a folded grid because given any smooth but folded mapping one can compute P and
Q directly from the Laplacian of the map. If these weights are used in the Poisson generator,
then the folded mapping will be reproduced. In contrast to the unweighted generator, it is easy
to produce folded maps with the P and Q generator (see Project 5.5.1 in [8, p. 109]).

From these observations it seems that one cannot hope for an inverfibility guarantee for
the present Jacobian-weighted elliptic generator. However, in the next section we will suggest
a condition upon the weight matrix that, although not a guarantee, will provide a guideline for
constructing weights that have a reasonable chance of producing a nonsingular grid.

8. Global univalence. A sufficient (but not necessary) condition to achieve local invert-
ibility of a mapping is the requirement that the Jacobian matrix be invertible; equivalently,
one needs % 0. There has been considerable work 13] in determining what are sufficient
conditions to guarantee that a map is globally invertible.

We focus on one of several results that is known on this subject because it seems to fit
naturally with the grid generation problem. We need the following definition.

DEFINITION. An n x n real matrix 4 is a P-matrix ifeveryprinciple minor of4 is positive.
Recall that the principle minors of a square matrix are the determinants of the square

submatrices of the matrix. For example, if n 2, the principle minors of 4 are all, a22,

and det 4. If n 3, the principle minors are all, a2, a33, alia22 a21a12, ala33 a3a3,

a22a33 a3za3, and det 4. It is shown in [13] that if 4 is nonsingular and a P-matrix, then
4-1 is a P-matrix. We base our argument in this section upon the following fundamental
result of Gale, Nikaido, and Inada.

FUNDAMENTAL GLOBAL UNIVALENCE THEOREM. Let F U C Rn --+ R be a differen-
tiable mapping, where U is the rectangular region U {x x 6 Rn

ai <_ xi < bi }. If the
Jacobian matrix of F at x, if(x), is a P-matrixfor every x U, then F is globally univalent
in U.

In general, the Jacobian matrix 7 is not a P-matrix, so the mappings produced for arbitrary
weights S cannot be expected to be globally invertible. The univalence theorem suggests that
it is reasonable to require that the weight matrix ,9 in the Jacobian-weighted elliptic grid
generator be a P-matrix. If j-1 S is achieved, then S-1 is a P-matrix and the map
will be globally univalent. Even if if-1 S is not achieved, it is possible that if-1 will still be
a P-matrix because matrices "near" S are still P-matrices. P-matrix weights do not guarantee
global invertibility of the mapping but can serve as a guide to help construct useful weights.
A subset of the P-matrices is the set of positive, quasi-definite matrices.

DEFINITION. An n x n (not necessarily symmetric) real matrix4 is apositive quasi-definite
matrix ifxr fltx > 0for all x # O.

Since such matrices are more strongly constrained than are P-matrices, requiring the
weight S to be positive, quasi definite would seem to help achieve global invertibility. The
P-matrix and quasi-definite criteria on the weight will be refined in the next section.
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9. The form of the weight matrix. The weight function $ controls the inverse Jacobian
matrix of the transformation. A crucial question asks how this weight should be constructed.
Consider the planar case g2 C Re first.

In the general planar case, one can consider alignment of the two tangent vectors x and
T (ulxo with two unit vectors uj j, u ), j 1, 2. Let L/be a 2 2 matrix with elements

It is sometimes useful to express the unit vectors in terms of"direction cosines" asUi, u.

(36)
cos01 cos02 )sin 01 sin 02

where -zr < Oj "< 7"g foITnS the angle between the jth tangent vector and the x-axis. To
establish the length scale of the map, let/2 diag(, 2) with j > 0. The weight matrix is
written as the inverse product

(37) S (/g )-1.

For the special case of a single direction I11, given it makes sense to require grid
orthogonality, let 0 0 be the angle between the x-axis and the known unit vector Ul.
Let 02 0 + r/2 in order that the unit vector u2 be orthogonal to Ul. This gives

(38) /g ( cos0 -sin0 )sin 0 cos 0

If the solution J $-1 is attained, then the following relations hold:

(39) x 1 cos/9,

(40) Y 1 sin O,

(41) --x0 2 sin O,

(42) Y0 2 cos 0.

These in turn imply

(43) 1 -gll
(44) 2 r22,

and

(45) g12 0,

(46) 1 2,

(47) v/g:zz/g

showing that this construction of the weight potentially gives an orthogonal grid with cell
areas given by the product of the length-control functions, cell-aspect ratios given by the ratio
of the length-control functions, and whose tangent x makes an angle 0 with the x-axis.

To make use ofthe concept ofP-matrices for the weight matrix requires further discussion.
Consider the mapping x r/, y - on the unit square. The Jacobian matrix for this map is

(48) j=( 0_1 01 )
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and the determinant is ,v/- 1. The map is thus nonsingular, yet the Jacobian is not a
P-matrix because two of the minors are zero. The global univalence theorem is not refuted
by this example because the requirement that the Jacobian be a P-matrix is a sufficient, not
necessary, condition. Nevertheless, it is disturbing that the Jacobian for this simple map does
not give a P-matrix.

To fix this problem we refine our notion of how P-matrices should be applied to grid
generation. Instead of requiring that the Jacobian of the map be a P-matrix we shall require
that there exists a finite set of rigid body rotations (given by the n n matrix 72) such that the
product ,7 is a P-matrix. Intuitively, this means that we can rotate the local tangent vectors
in such a way as to obtain a P-matrix. In the above example, if one lets re/2 and

(49)
cos -sine )sin cos

then 7 ,7 2-, which is obviously a P-matrix.
We next determine what restrictions must be put on the weight S in (37) to ensure that

RS-1 is a P-matrix. Since

(5O) TS- ( cos(0 + )
el sin(01 + )

e cos(0 + )
e2 sin(02 + )

one finds that sufficient conditions for the product to be a P-matrix are that el > 0, 2 > 0,
and 0 < 02 01 < zr (this can be seen by taking -01). Geometrically this means that the
length scales are positive and the unit vectors are properly oriented (positive cross product).
Restricting the weight matrix to a positive, quasi-definite matrix requires that 02 01 / zr/2;
i.e., an orthogonal grid is demanded.

In this construction of the weight matrix we are to supply three controls, 1, e2, and 0,
that are functions of x which prescribe the two length scales and the direction of the tangents.
Precise control (i.e., actually getting a grid for which J-1 S) may not be achieved due to
the fact that the elliptic equations produce solutions that are least-squares fits to the conditions
we are attempting to impose. Lack of precise control can be helpful because one may have
only a rough idea of values for these control functions. The advantage of the construction just
given is not that it makes figuring out the weight function easy (it is not), but rather that the
weight functions that must be defined have clear geometric meanings.

In three-dimensions, let 1, 2, and 3 be given length-control functions and
diag(gl, e2, 3). Three unit vectors uj, j 1, 2, 3 are given in terms of the angles qj and Oj.
The polar angle Cj lies in the range 0 < j 7/" and gives the angle between the unit vector
and the z-axis. The azimuthal angle Oj lies in the range 0 < Oj < 2 zr and gives the angle
between the projection of the unit vector onto the x-y plane and the x-axis. The matrix L/of
components of the unit vectors has entries

(51)

cosOj sinCj 1Uj sin Oj sin Cj
COS bj

and the weight S is again formed as in (37). It is not clear what the useful special cases of
this general setup in three-dimensions are, so no further assumptions are made at this time. It
is expected that sufficient conditions for the 3D construction to be a P-matrix will turn out to
be positive length-control functions and a well-oriented vector triple.
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10. Examples on the unit square. Methods for discretizing and numerically solving
grid generation equations of the type found in this paper are well known; examples may be
found in [8]. It is well beyond the scope of this paper to consider all the ways in which
the Jacobian-weighted generator may be used. The purpose in this section is to show that the
control functions described in 9 indeed provide the control that is claimed and that reasonably
good grids can be generated with minimal effort. The simple case in which the physical domain
is the unit square seems sufficient for this purpose and has the advantage that the weight S can
be given in terms of an analytic function of the physical space variables. Nonanalytic weights
raise interpolation questions which cannot be addressed here due to lack of space.

A few preliminary remarks are in order before concrete examples are given. First, given a
uniform parameterization of the boundary of the unit square, the natural transformation on the
square is x(, r/) and y(, 0) r/. The Jacobian matrix for this transformation is simply
the identity. Uniform boundary data and a weight matrix el 2 1, 0 0 gives the natural
transformation because the gradient of this particular weight is zero and the uniform grid is a
solution to the Winslow equations. Second, if a nonuniform parameterization of the boundary
is given, then the identity weight will not reproduce the grid based on the natural uniform
transformation because the weight is inconsistent with the boundary data. The solution to the
Winslow equations with nonuniform boundary data thus produces a least-squares fit to a map
having the identity as the Jacobian. Third, if the boundary parameterization is achieved by an
exponential stretch of the logical variable, as in

(52) x,()
(1 ez)
(1 ez)

(53) x() x()

(with . 0), then the exponential map x(, r/) xB(), y(, r/) r/will be produced by a
weight matrix having a linear variation in x because then

(54) x [(1 ez)x 1].

Example 1. Local refinement. Sometimes it is desired to refine a grid on a local subregion
or patch to achieve greater accuracy in a part of the domain having a lot of solution structure.
Often this is done by overlaying the main grid with a second grid having smaller cells on the
subregion and performing an interpolation of the solution between the main grid and the patch
grid. As a cheap alternative, the Jacobian-weighted generator can approximate patching by
using a single grid to eliminate the need for interpolation.

As an example, let a patch P C f2 be the union of two rectangles: R1 [1/4, 1/2] x
[1/2, 3/4] and R2 [1/2, 3/4] x [5/8, 3/4]. The weight matrix control functions are 0 0
and el 2 1/2 on P and unity otherwise (notice that we have violated our assumption
that the weight is C in this example). Nonetheless, Figure shows that these simple controls
permit the resulting elliptic grid to approximate subgrid patching. The transition zone between
the patches could perhaps be improved by introducing a smooth transition function between
the length scales on f2 and P (this would also improve the convergence rate of the Picard
iteration for the solution). It would, of course, take considerably more work to define smooth
control functions and the results may not justify the additional effort.

The main point in this example (and the ones below) is not that the grids generated are
all that much better than those generated by other means, but merely that it is relatively easy
to devise the control functions in the Jacobian-weighted method due to the clear meaning of
the controls.
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FIG. 1. Local refinement.
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Example 2. Point attraction. In this example it is shown that weights can be devised
to attract grid nodes to multiple points in the physical domain. Suppose the grid nodes are
to be attracted to N distinct points (Xn, Yn), n N in the domain. The horizontal
length-control function in this example takes the form

(55)
N

el(x, y) y anB(rn, Rn),
n=l

where B is a smooth "bump" function

3(r/R)2 + 2(r/R) r/R <
(56) B(r, R)

0 else

chosen for the following properties: B(0, R) 1, B(R, R) 0, Br (0, R) 0, and
Br(R, R) 0. Here r, is the distance between the point (x, y) and the point (Xn, y). The
parameters 0 < R < 1 are "radii of attraction" and the parameters 0 < an < 1 are "attraction
strengths." The radii Rn are chosen so that the support of the "bump" functions do not overlap.
The other control functions are 2 el and 0 0. In Figure 2 we show results for the three
attraction points (Xl, yl) (1/4, 3/4), (x2, Y2) (3/8, 1/4), and (x3, y3) (3/4, 5/8). The
attraction radii were set to Rn 0.10 and the attraction strengths were set to an 0.75. Al-
though the grid produced in this example is reasonably good (except for a lack of orthogonality
in part of the domain), it is all too easy to produce poor grids or cause the Picard iteration to fail
to converge by selecting extreme values of the parameters Rn and an. This will be exacerbated
if the location of the attraction points is particularly demanding of a structured grid. If two or
more of the attraction points lie close to one another, the separate attraction points will not be
individually resolved unless more cells are added to the grid.

Example 3. Feature adaptivity. This example demonstrates that the alignment generator
can be used as a feature-adaptive generator in much the same way as many other weighted
grid generators. The example is based on a "solution" function borrowed from [7]:

(57) f (x, y) tanh R {r2 (x Xc)2 (y yc)2}.
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FIG. 2. Point attraction.

This function forms a circular "hill" with radius r centered about the point x Xc, y yc (in
this example, r 1/4, Xc 1/2, and Yc 1/2). Large values of R create a steep-sided hill.
As is commonly done with adaptive generators, we wish to produce a grid with small cells at
the points in physical space where Vxf is large. To achieve this we set

(58) el
(1 + a Vxf I)’

(59) g2 =el,

(60) 0 0,

where a is a positive scale parameter. Four grids are shown in Figure 3: the first, Figure 3a,
directly compares the Jacobian-weighted result for R 20, a 0.2 with Figure 3.5 in [7].
The grid in FigUre 3a does not have the pinched cells found in Figure 3.5 in [7] because the
present method is not based on 1D adaptions. Figure 3b shows the results of the Jacobian-
weighted generator for a steeper hill (R 100, a 0.05). Figure 3c shows what happens for
R 100 when "a" in (58) is increased to a 0.10--the grid has a cell of zero area (at least
it did not fold over). This problem can be fixed by increasing the problem resolution from
40 x 40 to 60 x 60 cells. The result (R 100 and a 0.10) is given in Figure 3d.

The usual problems of feature-adaptive grid generation remain: determining the best
choice for the parameter a. If a is too small, the grid does not respond to the gradient while
if a is too large, the grid overresponds, resulting in a bad grid or even a folded grid (if one is
lucky, the numerical iteration will fail to converge instead of producing a folded grid). What
is the proper choice for the form of the control function (for example, why not use

(61) el V/1 + a2 Vxf 2

instead of that defined in (58))?
Presently there is not enough evidence to claim that the Jacobian-weighted grid generator

always gives better grids than other adaptive methods. It seems inescapable that a poor choice
of parameters in the control functions of any method will produce a poor grid no matter how
good the basic generator is. Thus the Jacobian-weighted grid generator (like all other known
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(a) (b)

(c) (d)

FIG. 3. Gradient-weighted adaptivity: (a) Gentle hill. R 20, a 0.2. (b) Steep hill. R 100, a 0.05.
(c) Steep hill. R 100, a 0.10. (d) Increased resolution.

generators) cannot be considered an automatic generator, i.e., one which requires no user
intervention. Instead, it is best if used in an interactive mode wherein the user can try a set
of control functions and parameters, look at the grid produced, and adjust the parameters
accordingly. From this viewpoint, the Jacobian-weighted generator seems attractive because
at least the meaning of the weights is clear.

Example 4. Adaption to a curved "shock". This example also uses the "hill" function (57)
but with r 5/4, Xc 3/2, and yc 0. With this choice the center of the "hill" lies outside
the physical domain and the locus of points of maximum gradient traverses the domain in a
circular arc. The goal is to create small cells near this arc and to align the horizontal tangent

x so that it orthogonally traverses the arc. To do so, an annular sector of points (x, y) near
the "shock" is identified by the relation r p I< e where p2 (x Xc)2 + (y yc)2. The
parameter e is the width of the annulus (taken to be 0.1 in this example). If the point (x, y)
lies within this band, then the angle control function is taken to be

(62) O=arctan(Y-Yc)"x-xc
If the point (x, y) lies outside the annulus, then 0 0. Since the top boundary of the domain
is not orthogonal to the "shock" we introduce a blending function

(63) u(x)
(exx e

(1 ez)

and multiply 0 in (62) by u to reduce the amount of angle adaption near the top boundary
(, 2 in the present example). The length-control functions are the same as in the previous
example. The resulting grid shown in Figure 4 closely approximates the desired properties.



JACOBIAN-WEIGHTED ELLIPTIC GRID GENERATION 1489

FIG. 4. Adaption to a curved "shock."

11. Summary. The "smoothness" variational principle of Brackbill and Saltzman has
been generalized by performing a least-squares fit of the inverse Jacobian matrix to a weight
matrix in order to control the Jacobian matrix of a mapping from a uniform logical domain to
a bounded, simply connected domain in physical space. By specifying the Jacobian one can,
in principle, control cell lengths, areas, orthogonality, and the direction of the tangent vectors,
thus obviating the need for combining separate functionals for these properties into a single,
possibly nonconvex, functional having mixed dimensional characteristics. The least-squares
principle leads to "Jacobian-weighted" grid generation equations that are elliptic and constitute
a generalization of the Laplace generator. The inverted equations are a weighted form of the
well-known Winslow equations. Given any continuum transformation, the weight matrix
that replicates the transformation is merely the inverse Jacobian matrix of the transformation.
The Jacobian-weighted generator has a different variational principle than does the widely
used "Poisson generator" and thus cannot be considered a special case of the latter. It is
suggested that restricting the weight matrix to be a P-matrix will help give globally invertible
mappings. Length-scale and directional control functions further define the weight matrix.
Four examples were given to show that it is relatively easy to construct control functions to
achieve local refinement, point attraction, feature adaptivity, and directional control.

The control functions of the Jacobian-weighted generator have clear geometric meanings
and thus seem preferable to other weighted elliptic grid generators. Nevertheless, the method
retains a number of the problems of previous elliptic methods such as lack of automation, lack
of precision, and relative slowness due to the fact that a system of nonlinear PDEs must be
solved. Further work should at least partially address these issues.

Many open issues regarding this generator remain. A partial list of such issues includes
devising a discretization that will permit exact replication, designing fast, robust solvers for
the discretized equations, testing of the method in three-dimensions, testing the method as an
adaptive generator, finding efficient ways of constructing smooth, effective weight matrices,
finding ways to ensure compatibility of the boundary data with the weight, parallelization of
the algorithm, extension to a surface grid generation algorithm, determining fast and accurate
interpolation methods when the weight is known only at discrete points, and determining if
the generalized principle

(64) G w(x) 1-1 S 2
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with w > 0 is ofany use in forcing more precision at particular points in the domain. Extension
of (13) to the case of surface grid generation will result in equations similar in form to those
given in [17]. The left-hand side of the equation would remain the same while the right-hand
side would be generalized to include a surface curvature term.

Acknowledgments. The author wishes to thank G. Liao, N. Robidoux, and S. Steinberg.
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NONSYMMETRIC LINEAR SYSTEMS*
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Abstract. First proposed in [Numer. Math., 66 (1993), pp. 295-319, Numer. Algorithms, 7 (1994), pp. 1-16] by
Bank and Chan, the composite step (CS) method is a technique for curing the pivot breakdown (one of two possible
breakdowns) in the biconjugate gradient (BCG) algorithm by skipping over steps in which the iterate is not defined. We
show how to extend this method to cure the same breakdown inherited in product methods such as conjugate gradients
squared (CGS) [SIAM J. Sci. Statist. Comput., 10 (1989), pp. 36-52], Bi-CGSTAB [SIAM J. Sci. Statist. Comput.,
13 (1992), pp. 631-644], Bi-CGSTAB2 [Variants ofBiCGSTABfor Matrices with Complex Spectrum, IPS Research
Report No. 91-14, ETH Ztirich], which are derived from a product of the BCG polynomial with another polynomial
of the same degree. New methods introduced in this paper are CS-CGSTAB (composite step applied to Bi-CGSTAB)
and a more stable variant of this, CS-CGSTAB2, which handles a possible additional breakdown problem due to the
Bi-CGSTAB process in the case where A is skew symmetric. CS-CGSTAB2 can be viewed as an improvement over
the Bi-CGSTAB(I) algorithm (Sleijpen and Fokkema [ETNA, (1993), pp. 11-32]) with 2 in that although Bi-
CGSTAB(2) is designed to cure the skew-symmetric breakdown, it does not handle pivot breakdown as CS-CGSTAB2
does. The new methods require only a minor modification to the existing product methods. Moreover, the sizes of
the steps taken in our methods can vary as opposed to fixed step methods like Bi-CGSTAB(I) and Bi-CGSTAB2. Our
strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to
skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new methods do
produce improved performance over those without composite step on practical problems. Furthermore, we extend
the "best approximation" result in [Numer. Algorithms, 7 (1994), pp. 1-16] to obtain convergence proofs for CGS
and Bi-CGSTAB and their composite step stabilized versions.

Key words. Lanczos method, biconjugate gradient method, breakdowns, product methods, Bi-CGSTAB, com-
posite step

AMS subject classifications. 65F10, 65F25

1. Introduction. The biconjugate gradient (BCG) algorithm [21 is the "natural" gener-
alization of the classical conjugate gradient method [19] to nonsymmetric linear systems

(1) Ax b,

where A Ruu. It is an attractive method because of its simplicity and its good practical
convergence properties. Unfortunately, one of its drawbacks is that it requires multiplica-
tions with the transpose matrix At. Methods have been developed which overcome this by
computing residuals characterized by a product of the BCG residual polynomial with another
polynomial of equal degree. Hence, we term the class of these algorithms product methods.

The conjugate gradients squared (CGS) algorithm (Sonneveld [26]) is a product method
whose residuals can be written rCns Cp2n(A)ro, where dpn(A)ro is the residual from the
standard BCG method. However, as discussed in [29], the convergence behavior of CGS can
sometimes be irregular (i.e., IlriCaSll can vary wildly with i). This is due to the fact that if
bn(A) is viewed as a reduction operator applied twice to r0, since dpn(A) is quite dependent
on the initial residual r0, it may be possible that it is not a reduction for any other vector, not
even for dpn(A)ro itself.

The Bi-CGSTAB algorithm [28] due to Van der Vorst attempts to stabilize this by multi-
plying the BCG polynomial bn (A), instead, by another polynomial of equal degree,

(2) rn(A) (I (.OlA)(I (.o2A)’’’ (I conA),

*Received by the editors June 6, 1994; accepted for publication (in revised form) June 27, 1995. This research was
partially supported by ONR grant N00014-92-J- 1890, NSF grant ASC92-01266, and ARO grant DAAL03-9l-G- 150.
This paper was presented at the Colorado Conference on Iterative Methods, Breckenridge, CO, 1994.

tDepartment of Mathematics, University of California at Los Angeles, Los Angeles, CA 90024 (chan@math.
ucla.edu, szeto@math.ucla.edu).

1491



1492 TONY F. CHAN AND TEDD SZETO

where the O)i’S are chosen to locally minimize the residual by a steepest descent method. Thus,
by computing residuals rnBi-CGSTAB rn (A)dpn(A)ro, we obtain a more smoothly converging
algorithm.

Unfortunately, problems arise in this method if we encounter a matrix A having complex
eigenvalues with large imaginary parts. Since rn has only real zeros, it is difficult to accurately
handle such eigenvalues. Thus, the Bi-CGSTAB2 algorithm (Gutknecht [18]) was developed
to overcome this by performing two steps of Bi-CGSTAB at a time to allow for pairs of
complex conjugate zeros but doing the local minimization at the nth step over the two degrees
of freedom in o9 and COn-a. Bi-CGSTAB2, then, is also a product method.

In the case that A is (nearly) skew symmetric, however, Bi-CGSTAB2 will suffer (near)
breakdown due to the r_a polynomial. The Bi-CGSTAB(2) method (a case of the Bi-
CGSTAB(/) algorithm by Sleijpen and Fokkema [25] when 2) cures this by not involving
r-i in the intermediate step.

Since all of the product methods mentioned above involve the BCG residual polynomial
b, they not only inherit the good properties ofBCG, but they also take on some ofthe problems
of BCG. Specifically, it is well known that BCG suffers numerical breakdowns (attempts to
divide by zero). There are two different possibilities of breakdown in the algorithm and many
methods have been designed to cure them by "looking ahead" to avoid computing iterates
where a breakdown can be predicted. The spectrum of these methods ranges from simple
modifications of BCG to handle only one of the breakdowns to more complex algorithms
which provide total breakdown protection using a variable look-ahead step. (See, e.g., [3, 5,
7, 8, 14, 16, 17, 20, 24].)

In this paper, we consider the composite step technique (Bank and Chan [2, 3]) which
cures one of the breakdowns (assuming the other one does not occur) by simply looking ahead
only one step when a (near) breakdown occurs. This technique is attractive because it does
not require user-specified tolerance parameters or variable step sizes, and it is accomplished
with only a minimal modification of the standard BCG algorithm. Moreover, the composite
step technique can easily be extended to product methods. For example, the composite step
CGS (CSCGS) algorithm was developed by Chan and Szeto in [9], and in this paper we show
how composite step can be applied to Bi-CGSTAB.

In [3], Bank and Chan also prove a "best approximation" result which establishes a bound
on the error of BCG. Here, we extend this result to prove convergence results for CGS, Bi-
CGSTAB, and their composite step variants since these product methods all involve the BCG
polynomial qn.

Section 2 describes in detail the composite step idea as originally presented for BCG
and in 3 this is extended to Bi-CGSTAB yielding the method CS-CGSTAB. We emphasize
in this section the strategy used to decide when to take a look-ahead composite step. We
note that this stepping strategy not only skips exact breakdowns but is also designed to yield
smoother residuals and does not require any user-specified tolerance parameters. A variant of
this method, CS-CGSTAB2, which is a way of combining composite step with an idea from
Bi-CGSTAB2, is presented in 4. The purpose of this variant is to cure additional breakdowns
that may occur due to instability in the Bi-CGSTAB steepest descent polynomial in a manner
similar to Bi-CGSTAB(1) with 2. The advantage is that our method cures pivot breakdowns
as well. In addition, the step sizes in our new methods can vary as opposed to steps of fixed
size in Bi-CGSTAB2 and Bi-CGSTAB(/). In 5, we show some numerical examples which
compare these methods and show the advantages over their noncomposite step counterparts.
Finally, 6 details the proofs for convergence of CGS, Bi-CGSTAB, and their composite
step variants.
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2. The CS idea: CSBCG. It is well known that the BCG method 19] is closely related
to the nonsymmetric Lanczos process for computing the basis for the Krylov subspaces Kn (r0)
and K* (0), defined as follows"

(3)

(4)

Kn(ro) span{r0, Aro An-lro},
K,(?o) =span{?o, Ar?o (AT)n-lo}.

The BCG iterates are defined by a Galerkin method on the associated Krylov subspaces. Given
initial guesses of x0 and 20 to the solutions of (1) and an auxiliary system, At2 D, BCG
produces iterates xn x0 + y, and 2n 20 + n, with corresponding residuals of the form
rn b Ax and ? =/ Ar2, where Yn E K(ro) and n E K,(?0), and such that the
following Galerkin conditions are satisfied:

(5) rn _1_ KS(?o), ?n I Kn(ro).

If we define/,/* to be matrices whose columns are as given in (3) and (4) and span the
Krylov spaces Kn(ro) and K*(?0), respectively, condition (5) implies that the BCG iterates
Xn X0 + I l)n are defined by the solution to the linear system (/n*) rA/n l)n (/;)T r0"
We note that the iterate Xn exists whenever the Hankel moment matrix

1 //’2

H(I> (/n*) rAn #2. tx3.
]Jn /btn-t-1

]A-,n+

/Z2n-1

where job A ro, is nonsingular.
In the standard BCG algorithm [21, 13], there are two possible kinds of numerical break-

~Tdowns (attempts to divide by zero): (1) r, Pn Ap, 0, where p and/n are the BCG
search directions (pivot breakdown), and (2) p ?r rn 0, but rn 7& 0 (Lanczos break-
down). Although such exact breakdowns are very rare in practice, near breakdowns can
cause severe numerical instability.

We term the first kind ofbreakdown apivotbreakdown because it is due to the nonexistence
of the residual polynomial implicitly caused by encountering a zero pivot in the factorization
of the tridiagonal matrix generated in the underlying Lanczos process. In terms of formally
orthogonal polynomials [5], the BCG polynomial Cn (defined from rn dpn(A)ro) exists and
is unique if and only if the H(1) is nonsingular. In other words, a pivot breakdown will occur
at the nth iteration of the BCG algorithm if det(Hn() 0.

The second source ofbreakdown, Lanczos breakdown, is directly related to the breakdown
of the underlying Lanczos process and is tied to the singularity of another Hankel moment
matrix Hn() 17] defined by

0 /--1

(o> (2)r: 2

]-in-1 ]An 2n-2

In other literature, what we term thepivot and Lanczos breakdowns are also known as true and ghost breakdowns
[6], Galerkin and serious Lanczos breakdowns [14], and hard and soft breakdowns [20].
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There are many methods designed to handle pivot breakdowns (see, e.g., [3, 14, 17]), as
well as methods which cure both types of breakdown (see, e.g., [5, 7, 8, 14, 15, 16, 20, 24]).
Although the step size needed to overcome an exact Lanczos breakdown can be computed in
principle, these methods can unfortunately be quite complicated for handling near breakdowns
since the sizes of the look-ahead steps are variable (indeed, the breakdowns can be incurable).

The CSBCG algorithm (Bank and Chan [2, 3]) is an alternative which cures only the pivot
breakdown (assuming no Lanczos breakdowns) by "looking ahead" in Hn1) and not computing
Xn where it is not defined. Looking ahead, in general, means that we build Hi

() until it is no
longer singular and we have an iterate Xn+m, rn > 1. In CSBCG, this is done with a simple
modification ofBCG which needs only a maximum look-ahead step size of rn 2 to eliminate
the (near) breakdown and to smooth the sometimes erratic convergence of BCG. It was shown
in [2, Lem. 4.3] that only two steps are needed if we assume no Lanczos breakdown, but this
can also be seen in the relationship between the two Hankel matrices defined above: assuming
that det(H)) 0 for all n, then no two consecutive principal submatrices of Hn) can be
singular. (The structure of these Hankel determinants was studied in detail by Draux [10].)
Thus, instead of a more complicated (but less prone to breakdown) version, CSBCG cures only
one kind of breakdown, but does so with a minimal modification to the usual implementation
of BCG in the hope that its empirically observed stability will be inherited [27].

Next, we shall briefly review some of the details of CSBCG. Suppose that in running the
BCG algorithm we encounter a situation where rn 0 at step n and, therefore, the values
Xn+l, n+l, rn+l, n+l cannot be defined. The composite step approach is to overcome this
problem by skipping the n + update and computing the quantities in step n + 2 by using
scaled versions of rn+l and ?n+, which do not require divisions by an. More specifically, we
define the auxiliary vector:

(6) zn+ =--rrnrn+ crnr pApn E Kn+z(ro);

Zn+l and its counterpart ,+1 crn?,+ exist even if r 0 and, thus, can be used in defining
Xn+2"

Xn+2 Xn -" [Pn, Zn+l]fn,

with corresponding residual and search direction

(7)
(8)

rn+2 rn A[pn, Zn+l]fn,

Pn+2 rn+2 4- [Pn, Zn+l]gn,

where fn, gn R2, and similarly for 3n+2, n+2, /n+2, fn, and n.
To solve for the unknowns f, -() if(2) T (1) _(2) T(J, ,jn and g, (,gn gn we impose the

Galerkin condition and conjugacy condition ofBCG which result in two 2 2 linear systems"

[Tnapn ~T l[f(1)] [
"T

]Pn AZn+ n Pn rn
(9) ~r Apn T AZn+l /c(2) ~TZn+ n+l n Zn+ rn

[ PnaZn+l I [gn ]---I Pnarn+2 1(10)
TnApn ~T _(1) ~T

Zn+~r Apn rn+AZn+l gn(2) Tn+lArn+2
These systems can be solved simply, as shown in [3], making it possible to compute Xn+2,
Xn+2, rn+2, [n+2 and, thus, advance from step n to step n 4- 2. The CSBCG algorithm, then, is
simply the combination of the x and 2 x 2 steps.
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3. Composite step Bi-CGSTAB. We now apply the composite step idea to handle the
pivot breakdowns that occur in the Bi-CGSTAB method proposed by Van der Vorst [28]. Since
the Bi-CGSTAB residual polynomials are formed from multiplying the BCG polynomial bn
with another polynomial rn of the form (2), we can use the subset of well-defined bi’s from
CSBCG to multiply with rn instead. To do this, we first define

pSC _sc
n n(A)ro,. Zn+l n+l(A)r0.

The CS-CGSTAB polynomials, then, take on the form

rCn s-c6srAn rn(A)dPn(A)ro, pCS-C6SrA rn(A)n(A)ro.

In the case of a 1 x 1 step, we simply use the Bi-CGSTAB update. For the 2 x 2 composite
step, we will need to evaluate

(11) CS-CGSTABrn+2 75n+2)n+2?"0

(I COn+aA)(I O)n+l A):nCn+aro

and

(12) _CS-CGSTAB
Pn+2 Z’n+2n+2r0

(I OOn+2A)(I O)n+lA)’cnn+2ro

using the quantities obtained from the nth step: rn4. and rnn- We first show how to compute
the polynomials r.qn+a and rnn+a appearing in (11)-(12). We use the CSBCG relationships
from (6)-(8):

(13) n+l (Lg)--’tTn)n--DnLglpn

(14) bn+2(Lg) n Onf(1) On+l f(2)

(15) n+2() n+2 + ng1) + n+lg2)

and multiply by the rn polynomial to evaluate the needed quantities:

(16) Tn(O)n+l (O) ffnTnCn PnOTnn,

(17) r.(O)n+2(O) rn(n OCnf) On+f)2)
nCn 0nng(1) OTnn+l an

(8) rn(O)n+(O) rn(n+ + Cng + n+g)
TnCn+2 + Tnng1) + nn+lg2).

We now show. how to compute the unknowns fn and gn in (17) and (18). The CSBCG
residual rn+2 in (7) and sech direction Pn+2 in (8) e, respectively, oahogonal and A-
conjugate to K+1(?0) [2]. By imposing oahogonality and A-conjugacy conditions on two
specific vectors r.(Ar)?0 e K+(?0) and Arrn(A)o K+I(?0), we obtain two line
systems which give fn and g..

Specifically, by writing (7) in polynoal fo (14) and tng an inner product with
rn (At)?0, we obtain the relation

0 (Vn(AT)o, Cn+2(A)ro)
(o, vn(A)n+2(A)ro)

(?o, [VnCn AvnCnf) Avnn+f2)](A)ro).
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Similarly, for the A-conjugacy of the search direction (8),

0 (Arn(A)?o, 1/rn+2r0)
(o, Avn(A)n+2(A)ro)

(0, [arn,+2 + avn,g1) + arn,+lgz)](a)ro).

We derive two similar relations by imposing the orthogonality and A-conjugacy conditions
on ATrn(Ar)?o. Combining the four relations, we obtain the following two 2 2 linear
systems:

(0, tgVn llrnro)
(19)

(0, bq2"t’n llrnro)

LgVn nro)
(20)

(0, bq2Z’n llrnro)

(O, 1)nn+lrO) ] [ fn(1) ] [ (O, nqbnro) ](0, L2Z’nn+lr0) fn(2) (0, L’gnnro)

(0, 022nn+lrO) gn(2) (0, t2"nqn+2)

These are easily solved since all of the entries in the 2 2 matrix and the fight-hand sides
can be obtained from (16), (17), and quantities from the nth step. Thus, we can update (17)
and (18). Note that the linear systems (19) and (20) can be shown to be nonsingular in the case
where an 0 and the underlying Lanczos process does not break down. (See the Appendix.)
This verifies that a 2 2 step is always sufficient for skipping over the pivot breakdown.

The next step in evaluating (11) and (12) is to choose COn+l and COn+2 to satisfy some
local minimization property. In the case of a 1 1 step, we imitate the Bi-CGSTAB update
steps. Specifically, O)n_I_1 is chosen to minimize the norm of rn+l "gnA-1 nh- ro (I
COn+l A)rnqn+l ro. For the 2 2 step, we employ the same steepest descent rule to compute COn+l
and Wn+2 by minimizing Ilrn/l and Ilrn/=ll, Note that rn+ is not available in a 2 2 step, but
we can use a scaled version for minimization. To do this, let Un+l Znn+lrO = -n ZndPn+lrO"
Then we can write

(21) rn+l Zn+ldPn+lrO (I --Ogn+lA)rndPn+lr0 (I -On+lA)-- Un+l.

The vector Un+ is already computed in the CS-CGSTAB algorithm (see relation (16)) and,
thus, we minimize

1
Ilrn+12 _9 ((I O)n+1A)ttn+l)T ((I O)n+1A)ttn+l)

oy

by choosing w+ (AUn+l, Un+l)/(Attn+l, AUn+l), an orthogonal projection of Un+ onto

AUn+l.
Similarly, let

(22) Un+2 n+ln+2ro (I -O)n+lA)nn+2ro

which can be computed because r,q,+2 is available from relation (17). Then write

(23) rn+2 "gn+2n+2ro (I O)n+2A)-n+ln+2r0 (I O)n+2A)un+2

and minimize

2Ilrn+2l ((I O)n+2A)lgn+2)T ((I O)n+2A)un+2)
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by choosing

(24) O)n+2 (Attn+2, Un+2)/(Aun+2, Attn+2).

Finally, in running CS-CGSTAB, we must be able to recover the BCG constants pBC
and CrnBc in order to update the BCG polynomial part of the residual. In [28], Van der Vorst
defined the Bi-CGSTAB constant

pBi-CGSTAB (0, rBn i-CGSTAB)n

and showed its relation to

pBC6 (?BCa rBCa)n n

Using the property that, by construction, Cn(A)ro is orthogonal with respect to all vectors

Xn-1 (AT)?0, where Xn-1 is an arbitrary polynomial of degree at most n 1, one gets

n (n(AT)o, Cn(A)ro)

oto Otn-l ((--AT)no, Cn(A)ro),

lOBn i-CGSTAB (0, "cn (A)dpn (A)ro)

(rn(AT)?o, Cn(A)ro)

091... O)n((--AT)no, Cn(A)ro).

The relationship between them follows:

_BCG Olo Oln _Bi-CGSTAB tOBn CG
P,+I where an anBC6tOn+l

0)1 (-On+l

If we let/Zn (or0... an-1)/(COl... Wn), this reduces to the update formula

BCG pBi-CGSTAB Pn Bi-CGSTAB
Dn+l //n+l n+l ln 0.2CGOgn+l Pn+l

In a 2 x 2 step, we determine pCSBC similarly. First we use relation (14):n+2

(25) _CSBC
Pn+2 (qbn+2(aT)o, qbn+2(a)ro)

((n(aT) cnaT aPn(aT) Otn+l AT+l (AT))?0, Cn+2(a)ro).

Then the fact that Cn+2ro is orthogonal to all vectors Xn+l (AT)?0 implies that the inner product
(25) picks out the coefficient of the highest-order term of the n + 2 degree polynomial that

n+2 is being orthogonalized against. In this case, the coefficient of the highest-order term for

COCn ) .Co n,the polynomial n+l (AT) + (A is so (25) reduces to

pCSBCG ff:CG AT
n+2 -oto. Otn+ ((- )n+2o, Cn+2(A)ro)

which leads to the update formula

_CSBCG CS-CGSTAB {pCnSBCGOln+I _CS-CGSTAB(26) Pn+2 lZn+2Pn+2 --n ) Pn+2
O)n+ (-On+2

The update for CrnBca= (n(AT)?o, An(A)ro) can be calculated similarly. We define

O’ncs-c6sTAB = (o, arn(a),(a)ro) (o, CS-C6STAB,npn and obtain the analogous update
formula

(27) rnC+S?Ca CS-CGSTAB
inW2On+2
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TABLE
Notationfor CS-CGSTAB.

Vector Polynomial

,n nnr0

Pn .n lPn ro
Un+l 7:nn+lrO
Sn+ Zn dl)n+ ro
Un+2 "n+ln+2r0

Where/how derived Where used

(11)
(12)
(16)
(17)
(22)

(16) (17) (19)
(18)
(17) (18) (21)
(11)(18)(22)
(23)

Arn
Apn
AUn+l
Asn+2
Aun+2

(19)
(16) (17) (19) (20)
(19) (20) (21)
(20) (22)
(23)

Aqn
Ayn+l
Atn+2

(19) (20)
(19) (20)
(20)

(19)
(19)
(20)
(20)

(17)
(17)
(18)
(18)

3.1. Implementation details. In Table 1, we summarize the notation we will be using in
our implementation of the CS-CGSTAB algorithm. We list the vector used in the algorithm,
its corresponding polynomial form, and the equations in which it is derived and used.

At every step, we must anticipate a 2 x 2 step even if we decide to take a x step. (The
stepping strategy will be discussed in 3.2.) Recall that in one step of Bi-CGSTAB, only two
matrix-vector multiplications are performed: qn Apn and Yn+l AUn+l. From the third
column of Table 1, we see that eight matrix-vector products are required to do a 2 2 step
which appears to be four more than two steps of Bi-CGSTAB.

However, the total eight products can be reduced to four multiplications by precomputing
certain values and absorbing them into vector updates rather than explicitly multiplying by A.
Specifically, by precomputing Cn Aqn, the multiplication Yn+l AUn+l can be written

Yn+l tTnen pnAqn
ffnen pnCn.

Similarly, if we have d,,+l -= Ayn+l, then the product en+l Arn+l can also be evaluated
without having to multiply by A"

en+l (Yn+l Wn+lAyn+l)/Crn

(Yn+l O)n+ldn+l)/ffn.

Furthermore, qn+l = Apn+l can also be updated:

qn+l Arn+l + n+(Apn OOn+lAqn)

en+ + fln+ (q. O)n+lCn).

Thus, the 1 x 1 step can still be performed with only two (pre)multiplications with A" Aqn
and Ayn+l. Moreover, by precomputing Vn+2 =- Atn+2 and qn+2 Apn+2, we can update the
remaining values in the 2 x 2 step in a similar fashion.

However, using this precomputing strategy to update

en+2 =- Arn+2 A(I Wn+A)(I O)n+2A)sn+2
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implies that we need A3Sn+2 which we do not have. Thus, the 2 x 2 step requires an additional
matrix-vector multiplication: wn+2 A3sn+2 A(vn+2).

Hence, as in CSCGS, there are five matrix-vector multiplications for a 2 x 2 step, whereas
in two steps ofBi-CGSTAB, only four are needed. This is the price we must pay for composite
step. If we do not need to take many 2 x 2 steps in practice, this price will not be too costly.

3.2. CS-CGSTAB stepping strategy. As far as deciding when to actually take a 2 x 2
step, we follow the principles in [2, 3, 9]. As with these methods, CS-CGSTAB employs a
practical stepping strategy that will skip over exact breakdowns using the criterion

(28) Ilrn+lll > max{llrnl[, Ilr+2[I}.

If this condition were met (e.g., at a near breakdown) and we performed two 1 x 1 steps,
it would result in a "peak" in the residual convergence. By taking a 2 x 2 step, we skip over
this and obtain a smoother, more stable method. In order to avoid unnecessary computation
of Ilrn/21[, we express condition (28) in the following algorithm.

If (llr/l < Ilr II) then +--- Condition (28a)
choose x 1 step

else
if ([Ir/l < [[rn/2[[) then +--- Condition (28b)

choose x 1 step
else

choose 2 x 2 step
end

end

In order to avoid repeating work and to do this in a stable way, Condition (28a) can be
written

I1(I COn+IA)un+ll < Irlllrnll.

For Condition (28b), we first rescale the r,+2 update in order to estimate IIr,,/211 stably by
letting

1)n+2 = 6nrn+2 n(I OOn+lA)(I OOn+2A)sn+2,

where 6 is the determinant of the 2 2 matrix in (19). Evaluating vn+2 exactly would
involve the quantity A2s+2 which would require an additional matrix-vector multiplication
if we decide to take a 1 step. Hence, for practical purposes, we use an upper bound
approximation to estimate Ilun/211, Note that although we do not have A2sn+2, the quantity
Asn+2 can be made available even if we take a step, and it can be done without an
additional matrix-vector product using the precomputed values en, Cn, and d+l"

(29) t+2 Asn+2
A(6nrn qn Otn+lYn+l)
(ne OlnCn Oln+ldn+ 1.

Thus, we would like to estimate ]]v+2l] ]13. (I co+ A)(I O)n+zA)sn+2]] using (29)
and without any further matrix-vector multiplications. Our strategy is to set O)n/2 0 and
minimize ll6n (I Wn+ A)sn+2 II, thereby eliminating the need to compute A2sn+2 Doing this
gives an upper bound estimate to Vn+2 which can be shown by defining

h(cOn+l, O)n+2) ll6(I COn+la)(l O)n+2A)sn+2ll
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and establishing the following inequality:

(30) min h(con+l, con+2) < min h(on+l, 0).
gOn+l, gOn+2 gOn+l

The minimization problem

min h(cO+l, 0) min 11(I 09n+lA)Sn/2[[ min [[sn+2
(-On+ (.On+ O)n+l

is solved with &+l (/n+2, Sn+2)/(tn+2, tn+2).
Hence, Condition (28b), Ilr+ < Ilrn+2ll, is evaluated by the approximated condition

(31)

where IlDn/21] is the estimated upper bound for Ilvn/2/anll:

(32) Ilv+2/$l[ < IID+2I[ Ilsn+2- &n+ltn/2ll.

If a 2 2 step is chosen, then the true Pn+2 is evaluated. After 1)n+2 is computed, we add
one final check to make sure the approximation was indeed valid. If not, we take a step.
In Table 2, we present the CS-CGSTAB algorithm. Note that if only x steps are taken, we
have exactly the Bi-CGSTAB algorithm.

4. A variant of CS-CGSTAB. A problem in the CS-CGSTAB method is that additional
breakdowns may occur ifA is skew symmetric or nearbreakdowns if it has complex eigenvalues
with large imaginary parts. Suppose we are at step n of the algorithm. In the case that A is
skew symmetric, it can be easily checked that Ogn+l co+2 0. The 2 2 step attempts to
divide by the quantity 9/2 con+loon+2 which causes a breakdown. For nearly skew symmetric
A, Y2 will be small, thus causing near breakdown and numerical instability.

This can be cured by modifying the local minimization at that particular 2 2 step. The
idea is to require

(33) Ilrn+2ll min Ilgo(A)v(A)+2(A)rol],

where 792 is the set of all polynomials of degree (at most) 2 and rp(0) 1.
Performing this minimization over two degrees of freedom was first presented in the Bi-

CGSTAB2 algorithm by Gutknecht 18]. The purpose was to cure problems that arise in the
steepest descent part of Bi-CGSTAB due to eigenvalues of A in the complex spectrum that
are not approximated well with (2). Hence, every other step of the Bi-CGSTAB2 method
performs (33) in order to handle conjugate pairs of eigenvalues. (In the remaining steps
of the Bi-CGSTAB2 algorithm, the usual Bi-CGSTAB update is taken.) The Bi-CGSTAB2
algorithm can be summarized:

1-D min 2-D min
"Cnd/)n 17n+lCn+l "---+ rn+2n+2.

Unfortunately, in the implementation presented in [18], the 2-D minimization steps of
Bi-CGSTAB2 are computed based on the Bi-CGSTAB step immediately before them. For
skew-symmetric A, this poses a similar breakdown problem to the one mentioned above
because the Bi-CGSTAB step requires a division by COn+a, which will be zero in this case.

Note that Bi-CGSTAB2 is mathematically equivalent to the Bi-CGSTAB(/) algorithm
due to Sleijpen and Fokkema [25] in the case where 2, but the implementation is different.
Bi-CGSTAB(2) does not compute the intermediate Bi-CGSTAB residual r+l r,+lq,+xr0.
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TABLE 2
Algorithm CS-CGSTAB.

P0 ir0’ Po ro; 0 Ilroll" e0 q0 Aro" 1*o
n-0

While method not converged yet do:
Crn (?qn)lZn" Cn Aqn % Evaluate (27)
Un+l rnrn Pnqn; Yn+l rnen pnCn; dn+l Ayn+l
(.0n+l (Yn+l, Un+l)/(Yn+l, Yn+l)
n/l Un/l O)n+lYn+l" n/l Yn+l OOn+ldn+l" n+l IIn/lll
% Decide whether to take a x step or a 2 x 2 step.

If 7*n+l < Irnl4n, Then % Condition (28a): I[rn/lll < Ilrnll
one-step

Else

all ?qn" a12 ?f Yn+l" a21 ?Cn; a22 ?dn+l
3n alia22 a2a21’ bl Pn/lZn; b2 r-en+l
Otn a22bl a12b2; an+l -a21bl + alb2 % Solve (19)
Sn+2 nrn Olnqn Oln+lYn+l tn+2 nen OgnCn Oln+ldn+l
ffn/l (tn/2, sn/2)/(tn/2, tn/2); n/2 IlSn/2 n/tn/211 % Evaluate (32)
If 16nl!/n+l < Icrnlfin+2, Then % Condition (28b): Ilrn/ll < Ilrn/211

one-step
Else

Un+2 Atn+2; ton+2 Avn+2;
O)n+2 (Zn+2, Un+2)/(Zn+2, Zn+2);
n+2 Sn+2 + Vltn+2 "if- y21)n+2;

n+2 tn+2 + V1Vn+2 q- ’2tt)n+2
If I3nln+ < lernlvn+2, Then

one-step
Else

one-step 0
End If; End If; End If

% Compute next iterate.
If one-step, Then % *** Usual Bi-CGSTAB ***

rn+l n+l/t’rn" en+l n+l/ffn" qn+l n+l/an
xn+ Xn + (PnPn + (-On/lUn/l)/ffn
/Zn+l (lZnPn)/(rnO)n+l); Pn+l (Yrn+)lZn+
+
Pn+l rn+l + fln+l (Pn oon+lqn)
qn+l en+l + fln+l(qn O)n+lCn)
n+-n+l

Else % *** 2 2 step CS-CGSTAB ***
rn+2 ?n+2/n; en+2 n+2/n; bn+2 Pn+2/n
Xn+2 Xn q" (OlnPn -t- Oln+lUn+l ylSn+2 ’2tn+2)/(n
/Zn+2 --tZn(Otn+lPn/an’2)" Pn+2 (rn+2)lZn+2
bl rtn+2" b2 r Vn+2
Bin (a22bl a2b2)/an; fln+ (-a21bl -k aIb2)/an % Solve (20)
Pn+2 rn+2 fln(Pn q- }/lqn + }*2Cn) fln+l(Un+l q- }qYn+l q- /2dn+l)
qn+2 Apn+2
n+-n+2

End If
End While

% True lan+
Zn+2 tn+2 O)n+l t)n+2

V1 --(O)n+l @ (-0n+2); ’2 (-On+lO)n+2

Pn+2 IIn+2

% Retest w]lan+

% Evaluate (26)

Instead, it uses an intermediate basis vector A’cndPn+lro to generate the auxiliary residual
?,+2 rg+2ro. This algorithm can be summarized:

ArndPn+l 2-D min
"gnn 75nn+2-----’+ "gn+Zn+2.

By not involving r+, Bi-CGSTAB(2) will not suffer the breakdown mentioned above. How-
ever, note that it is still prone to breakdown in the BCG 4+ part.
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We now show how to overcome this breakdown problem. Recall thatCS-CGSTAB already
cures the BCG pivot breakdown in step n + 1, so all we need to do now is to show how to
modify CS-CGSTAB so that it will overcome the rn+l breakdowns as well. The idea is to note
that CS-CGSTAB has access to the Arncn+lro vector through the relationship n+l crnbn+l.
We use it to compute the auxiliary residual s+2 rnb,,+2ro to yield

Arnn+ 2-D min
75nn -"+ "gnn+2 Z’n+2n+2.

The quantity Sn+2 is updated by (17) and the 2-D minimization step can be performed by first
writing the residual

rn+2=Sn+2+R[9/1]’9/2

A2sn+2 =-- tn+2 Vn+2 ], and then minimizing Ilrn+2l[ by solving thewhere R [Asn+2
system

(34) RTR[9/1]---RTsn+2"9/2
In the case where A is skew symmetric, the attempt to divide by 9/2 O)n+lOgn+2 in the
2 x 2 step can now be performed without breakdown. In particular, if A -Ar, then

T T 2
9/2 --(Vn+2, Sn+2)/(l)n+2, Vn+2) 0 because the numerator t)n+zSn+2 Sn+2A Sn+2 > O.

We can now form a variant of the CS-CGSTAB algorithm which follows the former
method in allowing 1 x 1 and 2 x 2 steps and differs only in the 2 x 2 step, performing
instead the minimization over the two degrees of freedom described above. We use the same
stepping strategy and approximation scheme to estimate Vn/2 II. We incorporate this into the
new variant CS-CGSTAB2. This is a more stable implementation which will not breakdown
when A is skew symmetric. Rather, in this case, provided there are no pivot breakdowns, it
will always take 2 x 2 steps and will be equivalent to the Bi-CGSTAB(2) method.

In fact, when only 2 x 2 steps are taken, the methods Bi-CGSTAB, Bi-CGSTAB(2), CS-
CGSTAB, and CS-CGSTAB2 are all mathematically equivalent. In general, the composite
step methods differ because they are variable step methods.

Note that in CS-CGSTAB2, the composite step is used to skip over breakdowns in the

rn+l polynomial as well as q5+1. However, if there was no n-t-1 breakdown, and we took a
2 x 2 step in CS-CGSTAB2, then it is still possible that there could be pivot breakdown due
to q,+2. In principle, we can solve this by applying the composite step idea to Bi-CGSTAB2
and taking a 3 x 3 step when we foresee possible pivot breakdown because bn+3 exists under
our assumption of det(H()) 0. However, we will not pursue this in this paper.

5. Numerical experiments. All experiments are run in MATLAB 4.0 on a SUN SPARC-
station with machine precision of about 10-16 In most cases, as expected, composite step
methods behave similarly to their noncomposite step counterparts. In terms of the number of
iterations they take to converge, composite step methods are never worse in almost all cases
and, in terms ofthe number ofmatrix-vector products performed, the cost is minimal. Here, we
present a few selected examples where composite step does make a significant improvement.

Example 1. We begin the numerical experiments with a contrived example to illustrate the
superior numerical stability of composite step methods over those without composite steps.
Let A be a modification of an example found in [23]:

M

M ) RNxN’
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TABLE 3
Example 1.

Rel. error in the solution after two steps (N 40)
Bi-CGSTAB2 Bi-CGSTAB(2) CGSe Bi-CGSTAB

10-4 1.5 10-12

10-8 4.9 10-9

10-12 3.0 10-5

8.6 10-13

4.7 10-9

7.3 x 10-4

2.5 10-16

1.0x 10-9

2.5 10-4

3.6 x 10-8

2.2 10
3.0 108

CS-CGSTAB, CS-CGSTAB2, and CSCGS all converge with errors < 10-16.

TABLE 4
Example 2.

Rel. error in the solution after two steps (N 40)
e Bi-CGSTAB Bi-CGSTAB2 Bi-CGSTAB(2) CGS

10-4 2.1 10-12 2.9 10-13 2.9 10-13 2.5 10-8

10-8 2.0 x 10-8 bd 1.0 10-8 1.0 l0
l0-12 1.2 10-4 2.7 101 1.0 10-12 1.3 10

bd: Encountered breakdown
CS-CGSTAB2 converged each time with error < 10-16.

CS-CGSTAB

2.3 10-13

7.6 10-1

bd

i.e., A is an N N block diagonal with 2 2 blocks, and N 40. By choosing b
(1 0 1 0 ...)r and a zero initial guess, we set tr0 e and, thus, we can foresee numerical
problems with BCG polynomial-based methods such as Bi-CGSTAB, Bi-CGSTAB2, and
CGS when e is small. Although these methods converge in two steps in exact arithmetic when
e 0, in finite precision, convergence gets increasingly unstable as e decreases. Table 3
shows the relative error in the solution after two steps of BCG, CGS, and Bi-CGSTAB. Note
that the loss of significant digits in BCG and Bi-CGSTAB is approximately proportional to
O (e-l) and the loss of digits in CGS is proportional to O (e-2). The accuracy ofCS-CGSTAB,
CS-CGSTAB2, and CSCGS, the composite step CGS algorithm [9], is insensitive to e and
these three methods all converge in two steps with errors less than or equal to 10-16.

Example 2. Next we alter Example 1 slightly to show the advantage of CS-CGSTAB2
over CS-CGSTAB. Recall that CS-CGSTAB2 was developed to overcome breakdowns in
cases where A is (nearly) skew symmetric. Hence, if we change the last example so that

--|

we see that as gets small, CS-CGSTAB exhibits poor numerical results, whereas CS-
CGSTAB2 converges in the first 2 x 2 step as in Example 1 (see Table 4).

To emphasize the point made in this example, We pick a random skew-symmetric matrix
with dimension N 20 and a random fight-hand side. All the methods mentioned above
either diverge or break down except for CS-CGSTAB2 and BiCGSTAB(2), which achieve
residual tolerance 10-11 in 24 iterations.

Example 3. We now show an example using a matrix which comes from the Harwell-
Boeing set of sparse test matrices [11]. It is a discretization of the convection-diffusion
equation:

L(u) -Au + lO0(xux + yUy) 100u

on the unit square for a 63 63 grid. We use a random right-hand side, zero initial guess, and
no preconditioning. Figure 1 plots the true residual norm for Bi-CGSTAB, Bi-CGSTAB(2),
CS-CGSTAB, and CS-CGSTAB2 versus the number of iterations taken, and Figure 2 shows
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FIG. 1. Example 3.
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FIG. 2. Example 3.

the number of matrix-vector products. The random right-hand side that was used yields
some numerical instability for Bi-CGSTAB due to a near pivot breakdown around step 135
which results in convergence stagnation. Taking composite steps in this case overcomes this
problem. We also see the advantage ofthe 2-D minimization steps in the convergence behavior
of Bi-CGSTAB(2) and CS-CGSTAB2.
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The stepping strategy that we have described and implemented is conservative in that a
2 2 step is chosen whenever there is a peak in the residual convergence. If the result of the
composite step is only a slight improvement, the extra cost it takes to perform a 2 x 2 step
would be wasted. However, in practice, this increase in cost is relatively small. For example,
in this particular problem, 96 of the steps taken in CS-CGSTAB are 2 x 2 steps and 50 2 x 2
steps are taken in CS-CGSTAB2. We see that the composite step methods require only about
15% more matrix-vector products in this example.

6. Best approximation results. Until recently there has been very little theory known
on the convergence of the BCG algorithm or other related methods. When Bank and Chan
introduced CSBCG in [3], they also included a proof of a "best approximation" result for
BCG. It is based on an analysis by Aziz and Babuka and is similar to the analysis of the
Petrov-Galerkin methods in finite element theory. Specifically, if we let Mk be any symmetric
positive definite matrix and define the norm II vlll, o Mkv, then Bank and Chan showed

_BCG xCGthat the BCG error term ek x CPk(A)eo can be bounded as follows:

_BCG(35) Ille III, < (1 + 1-’/) inf II(M AM: )llllle0111,,
bk :tk (0)--"

where and ; are constants independent of k determined from inequalities involving v ;k
and w Wk, where ;k and Wg are the Krylov subspaces generated by the Lanczos method
at the kth step:

IwrAvl _< rlllvlll.lllwlll.,
inf sup wrAy > ,k > , > O.
vE;II wEV911

IIIvlll,=l IIIwlll,=l

Moreover, if we define the Lanczos tridiagonal matrix Tk W[AV and its LU-factorization

Tt LkDtUg, and define M: WkU[(DDt.)UkW[, then 1-’ 1, also shown in [3].
This result establishes convergence of BCG when there are no breakdowns, because, in

this case, Mk is well defined and symmetric positive definite. In the case where there are
breakdowns, the tridiagonal matrix T would be singular and the resulting M would not be
positive definite. However, the convergence result can be extended to cover these situations
using methods such as composite step to handle breakdown. Specifically, assuming no Lanczos
breakdowns, the composite step approach yields a valid Mk matrix based on a factorization
of Tk which may involve 2 x 2 block and, hence, the above result applies to the error e
corresponding to the well-defined iterates Xk [2]. In principle, if we add a look-ahead method
to handle the Lanczos breakdowns to this, we can prove convergence ofBCG for cases where
both breakdowns occur.

Note that, in general, simple upper bounds for the term

(36) inf IIk(Mff AMk )11=
bk :tk (0)’"

are known only for special cases. For example, if we assume that the eigenvalues of A are
contained in an ellipse in the complex plane which does not contain the origin, then, due to a
result by Manteuffel [22], the quantity (36) can be bounded by a value dependent on the foci
of the ellipse.

The product methods discussed earlier (CGS and Bi-CGSTAB) both involve the BCG
polynomial. Hence, we can use the result in (35) to establish bounds on these methods as

well. For the following proofs, we define k M AM- We first prove a lemma which
will be used in the derivation of both bounds for CGS and Bi-CGSTAB.
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LEMMA 1. For any matrix A RNxN, vector v RN, and polynomial p,

Illp(a)vlll, <_ IIp(ak)llzlllvlll,.

Proof. By definition, ]llwll], IIM wll2 and, thus, IIIp(a)vlll, IIM p(a)vll2
_! _!

We now use this result to estimate a bound on the CGS method and show the squaring
effect on the convergence rate.

CGS 2THEOREM 1. Let ek (A)eo. Then

]lleGSlll, < C inf 114(-)11= ]lle0]ll,.

Proof Applying Lemma 1 to III -cGs’% Il,,weget

III _GAS. .2e III, 1114(A)eolll, _< 11()ll2111(A)eolll,

_BCG ( )2-ll4()[lilllek 111, < c inf 114()112 [lleoll[,.
Ok :Ok (0)--

Next we show convergence of the Bi-CGSTAB method and how the convergence rate of
BCG can be improved by the effect of the steepest descent.

THEOREM 2. Let ei-CGSTaB r(A)qb(A)eo, and define S to be the symmetric part of
~TAk~ (i.e., S- ( + A )). Then if S is positive definite,

11, Bi-CGSTAB ( /’min(S)2 ) ( )lek III, < c2 1 inf 114()112 Ille0111,.
,max(/k) \0k:0k (0)=1

Proof First note that we can bound

minllrk(k)H2< (1- Lmin(S)2 )ZkePk Xmax(ff/k)

by applying the proof in Theorem 3.3 of Eisenstat, Elman, and Schultz 12] to the matrix
Combining this fact with Lemma 1, we can establish the following bound:

I1’ Bi-CGSTAB
le III, min IIlv(A)cb(A)eolll, <_ min IIv(M AMe )]121ll(A)e011l,

<(min[[rk(a)ll2)lll(A)eoll[ <(1-min(S)2)5 _BCG

max(Ak Ak)

-r- inf 11()112 Ille0lll,.
max(Ak Ak) k:k(0)=l

Recently, Bth and Manteuffel [4] have shown that the constant (1 + F/3) in (35) can
_c is minimized over Kn(ro) in the III III, no.be improved to one. In other words, %

Coespondingly, the constants C and c2 in Theorems 1 and 2 can be improved to one.

A. Appendix. Here, we present the proof of the nonsingulity of the coefficient matrix
in (19) and (20).
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LEMMA A. 1. Assume that the Lanczos process underlying BCG does not break down;
i.e., Di O, O, n and ~T BC

Zn+lZn+l O. tfcr O, then the coefficient matrix in
(19) and (20) is nonsingular.

Proof. Since o:i-CGSTaB 1__ o.:CG, where/n is as defined in 3 it suffices to show
/Z

that if o:i-CGSTaB 0, then the 2 2 matrix in (19) and (20) is nonsingular. Note that
ff2i-CGSTAB =Ta_Bi-CGSTAB

’0 -P’n (0, tgZ’nlPnr0), the (1,1) element of the 2 2 matrix in
question. Note also the relationship of the off diagonal elements in the case where CrnBc 0
(0, 15nn+lrO) (0, ’tSn(cr2CGCn 19nln)ro) --Dn(O, L2"gnnro).

Since Pn O, nonsingularity follows from showing that (0, 02V,n Ttnro) 5/= 0 when

crBc 0. Analogous to the derivation of (26) and (27), (o, AZi-cn(A)n(A)ro)
~T Z 2I (lPn(AT)o A27tn(A)ro) Using 0 Zn+ n+l Pn(lPno, A2nro)and /9n 0, we

//n

now have (Po, A2apro) 0, thus completing our proof. [3
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